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Abstract

We investigate how trust shocks affect innovation networks through an incomplete

contracting framework. Using academic misconduct cases in China (2015-2021) as

an identification strategy, we construct a comprehensive dataset combining patent

activities and venture capital investments. We document three key findings. First,

academic misconduct triggers persistent declines in university-industry collabora-

tion, reducing both joint patents and citations to university research. Second,

affected firms strategically shift toward inter-firm R&D alliances. This substitu-

tion decreases patent basicness but increases product orientation. Third, trust

shocks propagate to capital markets, with venture capitalists reducing investments

in firms previously linked to universities involved in misconduct. Our findings high-

light trust as an irreplaceable mechanism in innovation governance and demonstrate

how trust breakdowns reconfigure contractual relationships and resource allocation

in innovation networks.
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1 Introduction

Innovation partnerships face unique contractual challenges due to their inherent uncer-

tainty and complexity(Aghion and Tirole, 1994; Francois and Roberts, 2003; Xie et al.,

2022). Although formal mechanisms such as monitoring and incentive schemes can ad-

dress these challenges, such solutions often prove prohibitively costly in innovation set-

tings (Holmstrom, 1989; Manso, 2011). In response, firms increasingly rely on trust as an

informal mechanism to reduce transaction costs, minimize monitoring needs, and mitigate

information asymmetries between partners(Williamson, 1993; Carlin et al., 2009).

Trust, a core element of social capital (Glaeser et al., 2000; Xie et al., 2022), shapes

organizational interaction patterns and enables various forms of inter-organizational part-

nerships, from venture capital investments to research collaborations (McEvily et al.,

2003; Nanda and Rhodes-Kropf, 2018). This coordination function becomes particu-

larly vital in university-industry collaboration (UIC), where universities serve as primary

sources of knowledge creation in innovation networks. However, fundamental organi-

zational differences create inherent tensions: universities prioritize open research and

academic breakthroughs, while firms focus on commercial value and proprietary devel-

opment (Rosenberg and Nelson, 1994; Aghion et al., 2008). Trust helps bridge these

institutional barriers by fostering shared expectations and reducing formal contracting

costs (Aghion and Tirole, 1994; Xie et al., 2022).

While prior research has focused on trust’s facilitative role in collaboration, how trust

breakdown reshapes innovation networks remains poorly understood. This gap warrants

attention for three reasons. First, distinct from technological or competitive shocks, trust

breaches directly undermine the core mechanism that sustains innovation partnerships.

Second, such shocks destabilize the broader informal governance structure that com-

pensates for contractual limitations in innovation networks. Third, despite the growing

importance of UIC for breakthrough innovations(Hsu et al., 2024), we lack evidence on

the resilience of these partnerships during trust crises. We address this gap by examining

academic misconduct as a trust shock, investigating its impact through three channels:

firms’ restructuring of R&D partnerships, changes in innovation characteristics, and shifts

in venture capital allocation.

To investigate these questions, we construct a comprehensive dataset of academic mis-

conduct cases, patent activities, and Venture Capital (VC) investments in China from

2010 to 2021. Our dataset combines 134 academic misconduct cases across six disci-

plines 1 from the National Natural Science Foundation of China (NNSFC) with over 18

million patent applications from the China National Intellectual Property Administra-

tion (CNIPA) and their Google Patents citation records. We complement this with VC

1Six disciplines include Information Sciences, Medical Sciences, Engineering and Materials Sciences,
Life Sciences, Earth Sciences, and Chemistry, see appendix Table A.1
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investment data from PEDATA, covering over 100,000 investments during our sample

period.

Our analysis spans three levels. At the city-industry level, we track changes in firm-to-

university patent citations and joint patents following misconduct exposure. At the pair

level, we examine the strategic adjustments of firms between university and corporate

R&D partnerships. At the firm level, we analyze changes in innovation characteristics

and VC investment patterns.

China provides an ideal setting for studying trust shocks in innovation networks

for several reasons. First, rapid growth in UIC and strengthening intellectual property

protection have created high-stakes trust relationships vulnerable to misconduct shocks

(Chen et al., 2016).2 Second, the basic research infrastructure in China remains relatively

weak and commercialization faces substantial barriers, making trust particularly critical

for innovation partnerships.3 Third, strong geographical barriers in knowledge spillovers,

driven by transportation costs and regional development heterogeneity (Hong and Su,

2013), increase the importance of local university-industry relationships. The substantial

variation in regional innovation systems, with local factors explaining 15-25% of univer-

sity research commercialization outcomes (Lerner et al., 2024), offers unique identification

opportunities to study trust shocks.

Our analysis yields three key findings. First, exposure to academic misconduct evi-

dently damages university-industry trust, leading to persistent declines in both firm-to-

university patent citations and joint patent applications. These negative effects persist

up to five years after exposure, consistent with the reputation stickiness documented by

Levine (2021) and Boone and Uysal (2020).

Second, firms respond to trust shocks by pivoting toward inter-firm R&D alliances

rather than seeking alternative academic partners or increasing internal R&D. This strate-

gic change fundamentally alters innovation characteristics, resulting in lower basicness

and stronger product orientation in firms’ patents.

Third, trust shocks propagate through innovation networks to affect market responses.

Venture capitalists (VCs) significantly reduce both the likelihood and magnitude of invest-

ments in firms previously associated with universities that involve misconduct, suggesting

broader implications for resource allocation in innovation ecosystems.

Our paper makes several contributions to the literature. First, we advance incomplete

contracting theory in innovation studies by examining how networks reconfigure when

informal contracting mechanisms fail, departing from prior work that focuses primarily

2Over 10% of Chinese firms have established research partnerships with universities(Hsu et al., 2024),
reflecting the crucial role of academic institutions in China’s innovation ecosystem.

3Despite government efforts to increase basic research funding from 2.76% of R&D expenditure in
2002 to 6.03% in 2020, this remains significantly below the 15% benchmark of technologically advanced
countries. Meanwhile, paper retraction rates have quadrupled since 2015, reaching 2,318 cases in 2021,
nearly double the 2020 figure.
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on trust’s facilitative role (Nguyen, 2018; Xie et al., 2022). While Kondo et al. (2021)

document the withdrawal of inventors from collaboration due to trust issues, we provide

a novel firm-level perspective by examining how organizations respond strategically when

they lose trust in inventors. This analysis enriches our understanding of corporate science

engagement (Krieger et al., 2024) by revealing how trust shocks undermine firms’ ability

to build on academic research, while also illuminating how these shocks impede the

commercialization of early-stage university innovations (Lerner et al., 2024).

Second, this is the first study to examine academic misconduct as a trust shock in

innovation networks. Using this exogenous variation, we identify the causal effects of

trust destruction on innovation, advancing beyond prior studies that rely on macrolevel

correlations between national trust and economic outcomes (La Porta et al., 1997; Kondo

et al., 2021; Xie et al., 2022). This approach enables us to address endogeneity concerns

and track the dynamic impacts of trust changes. Our findings reveal that misconduct

exposure significantly disrupts UIC, with firms reducing both patent citations and joint

applications with affected universities. The adverse effects persist up to five years after

exposure, consistent with the reputation stickiness theory of Levine (2021) and Boone

and Uysal (2020).

Third, we document a novel mechanism in the strategic responses of firms to trust

shocks. Although prior research shows that firms typically react to external shocks by

increasing internal R&D (Bloom et al., 2016), adjusting innovation direction (Hombert

and Matray, 2018), or reducing novelty (Krieger et al., 2022), we find that firms primarily

pivot toward inter-firm R&D alliances rather than seeking alternative academic partners

or expanding internal R&D. This strategic shift creates a fundamental trade-off between

basic research capabilities and product orientation. Building on Hsu et al. (2024), who

demonstrate that UIC promotes product innovation, we extend this literature by revealing

systematic shifts in firms’ innovation characteristics following the loss of academic part-

nerships. Specifically, we find that the transition to inter-firm collaboration substantially

reduces firms’ basic research capabilities. This finding highlights the irreplaceable role

of university partnerships in the innovation strategy of firms and competitive advantage

(Krieger et al., 2024).

Fourth, we extend the innovation financing literature by documenting how trust

shocks reshape VC allocation through innovation networks. While prior studies exam-

ine how VC promotes innovation (Lerner, 2000) and how innovation cycles affect VC

decisions (Nanda and Rhodes-Kropf, 2013), we reveal the dynamic propagation of trust

shocks. Whereas Bottazzi et al. (2016) establish the predictive power of cross-country

trust levels for VC investments, our analysis captures the dynamic transmission of trust

shocks through innovation networks. Following Chemmanur et al. (2014) seminal work

on VC types and innovation outcomes, we demonstrate how VCs systematically respond

to trust shocks through investment decisions. Our findings complement the moral hazard
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framework (Loyola and Portilla, 2024) by identifying how trust shocks create additional

contractual frictions in VC screening. In contrast to the examination of the response

of corporate venture capital to the deterioration of internal innovation (Ma, 2020), we

document how compromised trust leads VCs to reassess investment risks and reallocate

resources. This trust-based mechanism provides new insights into the spillovers of the

innovation ecosystem (Hochberg et al., 2007) and quantifies the economic costs of trust

deterioration.

The remainder of this paper is organized as follows. Section 2 reviews the relevant

literature and develops our hypotheses. Section 3 describes our data sources and variable

construction. Section 4 examines how academic misconduct affects university-firm trust

relationships. Section 5 investigates firms’ strategic adjustments to academic misconduct,

analyzing changes in R&D partnerships and innovation characteristics. Section 6 explores

market responses to academic misconduct through VC allocation decisions. Section 7

concludes.

2 Prior Literature and Hypothesis Development

2.1 Contract Theory and Innovation Networks

Innovation activities are characterized by high uncertainty and complexity, making inno-

vation collaboration an inherently incomplete contracting problem (Aghion and Tirole,

1994; Francois and Roberts, 2003). In innovation activities, significant information asym-

metries exist between principals (firms) and agents (universities/firms). This asymmetry

manifests itself in two dimensions: ex ante difficulties in fully assessing partners’ research

capabilities and integrity levels (adverse selection) (Bolton and Dewatripont, 2004), and

ex post challenges in monitoring research processes and verifying research quality (moral

hazard) (Hart and Moore, 2008; Loyola and Portilla, 2024). These contractual chal-

lenges are particularly pronounced in innovation contexts, where substantial investment

risks and information asymmetries complicate the specification of knowledge ownership,

control rights, and profit sharing arrangements (Xie et al., 2022).

To address these contractual frictions, the literature identifies two key governance

mechanisms. The first comprises formal mechanisms, including detailed contractual pro-

visions, monitoring systems, and incentive designs (Williamson, 2007). However, due

to the unique nature of innovation activities, these mechanisms often face high design

and implementation costs while yielding limited effectiveness (Holmstrom, 1989; Manso,

2011). The second involves informal mechanisms, particularly trust. Extensive research

demonstrates that trust plays an irreplaceable role in innovation networks by reducing ne-

gotiation costs, minimizing monitoring requirements, and facilitating knowledge sharing

(Williamson, 1993; Carlin et al., 2009).
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Trust plays an especially critical role in UIC due to fundamental differences in or-

ganizational attributes. First, regarding goal orientation, universities pursue knowledge

breakthroughs and academic reputation through open research, while firms prioritize com-

mercial value and proprietary development (Rosenberg and Nelson, 1994; Aghion et al.,

2008). Second, in terms of incentive structures, academic researchers’ career advance-

ment is primarily dependent on peer review and scholarly publications, while corporate

researchers’ performance is closely tied to marketable results (Stern, 2004; Sauermann and

Stephan, 2013). Third, in terms of behavioral norms, universities emphasize research veri-

fiability and reproducibility, while firms are cautious about sharing commercially sensitive

information and tacit knowledge (Cohen et al., 2002; Santoro and Saparito, 2003).

These systematic differences create contractual challenges in UIC: difficulties in de-

signing unified evaluation criteria, balancing knowledge exposure with protection, and

defining intellectual property rights (Xie et al., 2022). Consequently, UIC relies heavily

on informal mechanisms, particularly trust, to maintain relationships. Trust compensates

for formal contractual limitations by fostering shared expectations and facilitating mutual

understanding (Bruneel et al., 2010). However, this trust-based governance equilibrium

remains potentially unstable. When trust experiences severe shocks, existing contractual

arrangements may fail, triggering significant adjustments in innovation networks (Poppo

and Zenger, 2002).

2.2 Trust Shocks and Innovation Network Reconfiguration

Academic misconduct represents a severe trust shock as it directly challenges the cred-

ibility of scientific research. Drawing from contract theory, we posit that such shocks

affect innovation networks through three mechanisms. First, they increase firms’ diffi-

culty in evaluating and verifying research quality, exacerbating information asymmetry.

Second, they weaken the disciplinary role of reputation mechanisms (Kondo et al., 2021),

increasing moral hazard. Third, they may trigger broader concerns about the integrity

of the academic community, affecting institutional trust (Glaeser et al., 2000; Azoulay

et al., 2017). These changes significantly increase the contractual costs of UIC, leading

firms to reduce their reliance on university research. Therefore, we propose:

H1: The exposure of academic misconduct leads firms to reduce both their citations to

university patents and the number of UIC patents.

When trust in university partnerships is damaged, firms face strategic choices in re-

configuring their innovation networks. We identify four potential strategies: (1) switching

to other universities (university substitution), (2) maintaining existing relationships de-

spite trust issues (status quo), (3) internalizing R&D activities (internalization), or (4)

increasing collaboration with other firms (firm substitution).

University substitution, while seemingly viable, faces two major contractual chal-
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lenges. First, the ”stigma effect”(Karpoff et al., 2008) generates broad skepticism about

academic research quality, increasing information asymmetry and search costs. Second,

inherent differences in objectives and incentive structures between universities and firms

maintain high contractual design and enforcement costs (Aghion et al., 2008).

Maintaining the status quo avoids partner switching costs, but significantly increases

monitoring and enforcement costs due to trust deficiency. Contract theory predicts that

when trust fails as an informal governance mechanism, firms need to invest more resources

in designing and enforcing formal contracts, which could lower the marginal benefits of

collaboration than its marginal costs (Poppo and Zenger, 2002).

Internalization, while avoiding external contractual frictions through unified owner-

ship and control, presents three key challenges. First, establishing comprehensive internal

R&D capabilities requires substantial investments in fixed assets, creating significant sunk

costs due to asset specificity (Williamson, 2007). Second, internal R&D often faces dis-

economies of scale, making it difficult for individual firms to maintain leadership across

multiple technological domains (Patel and Pavitt, 1997). Finally, abandoning external

collaboration means losing opportunities to acquire complementary knowledge and ca-

pabilities (Arora et al., 2001), a particularly significant opportunity cost in knowledge-

intensive industries.

Firm substitution emerges as a favorable strategy. Contract theory emphasizes that

contractual design and enforcement costs decrease significantly when the collaborating

parties share similar organizational attributes and incentive structures (Holmstrom and

Milgrom, 1994). Interfirm collaboration offers three advantages: reduced goal incongru-

ence through shared commercial orientation, reduced information asymmetry through

similar organizational structures, and effective reputational constraints through market

mechanisms(Klein and Leffler, 1981; Kondo et al., 2021).

Comparing the relative contractual costs of these strategies, inter-firm collaboration

emerges as the preferred response to trust crises due to its lower information costs,

stronger incentive compatibility, and better contractual enforceability. Thus, we pro-

pose:

H2: Following exposure to academic misconduct, firms mainly replace damaged university-

industry relationships by increasing inter-firm R&D alliances.

2.3 Contractual Relationship Changes and Innovation

Characteristics

Changes in contractual forms often lead to changes in innovation characteristics. Theoret-

ical evidence demonstrates that the allocation of intellectual property and control rights

significantly influences R&D direction and characteristics (Aghion and Tirole, 1994).

In UIC, contractual arrangements need to balance academic freedom with commercial
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orientation. Higher autonomy of research in universities and their independence from

short-term market pressures facilitate basic innovation (Cohen et al., 2002; Lerner et al.,

2024). This basic research orientation is further reinforced by universities’ specialized

human capital, research facilities, and academic reputation incentives.

In contrast, inter-firm collaborative contracts emphasize commercial objectives. As

both parties face market constraints and performance evaluations(Lacetera, 2009), con-

tractual incentive mechanisms drive R&D activities toward more market-oriented applica-

tions (Hsu et al., 2024). Recent empirical research provides systematic evidence support-

ing these theoretical predictions. Arora et al. (2018) find that firms’ reduced investment

in basic research often coincides with a shift from university-industry partnerships to

inter-firm collaborations, reflecting how contractual structures shape innovation direc-

tion. Similarly, Hsu et al. (2024), in their systematic study of Chinese firms, demonstrate

that reduced university collaboration leads to significant decreases in both basic research

characteristics and exploratory innovation, confirming the role of academic-industry con-

tracts in shaping firm innovation characteristics.

We expect the transition from university-industry to inter-firm collaboration to in-

fluence innovation characteristics through two mechanisms. First, reduced university

collaboration limits firms’ ability to access and absorb basic research knowledge. Second,

increased inter-firm collaboration strengthens product-oriented incentive mechanisms.

Based on this analysis, we propose:

H3a: The shift from university-industry to inter-firm collaboration leads to a decrease

in the basic research orientation of firm innovation.

H3b: The shift from university-industry to inter-firm collaboration leads to an increase

in the product orientation of firm innovation.

2.4 Trust Crisis Transmission and Market Response

Contract theory predicts that agency problems affect resource allocation through market

mechanisms (Holmström, 1979). This transmission is particularly salient in innovation

activities, where uncertainty and information asymmetry lead market participants to rely

heavily on signals for project quality assessment. As sophisticated market participants,

VCs evaluate not only the projects themselves but also the quality and verifiability of the

broader innovation environment during their decision-making process (Bernstein et al.,

2016). Through extensive due diligence, they scrutinize firms’ R&D collaboration net-

works as a crucial evaluation dimension.

The exposure of academic misconduct can influence VCs’ evaluation of companies

through three primary channels. First, it raises doubts about the reliability of existing

innovation outputs. Since the contributions of UICs are often difficult to disaggregate,

academic misconduct by research partners exposes firms to reputational risks regarding
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their innovation quality. Second, it weakens firms’ future innovation capabilities. As

universities serve as crucial sources of basic research, their damaged reputation affects

firms’ ability to access high-quality research resources. Third, it significantly increases

ongoing monitoring costs (Kaplan and Strömberg, 2004). VCs need allocate additional

resources to verify firms’ R&D activities, raising investment governance costs.

These effects are particularly pronounced for firms with close ties to the implicated

universities due to significant reputation spillover effects in innovation networks. Hochberg

et al. (2007) demonstrate that collaboration networks serve as channels for both knowl-

edge flows and reputation transmission. When core partners’ reputations are damaged,

firms often face associated trust crises. Lerner and Nanda (2020) further argue that trust

deficiency leads to increased information screening and monitoring costs, directly affect-

ing VCs investment willingness. Specifically, VCs need rely more heavily on formal due

diligence and continuous monitoring, increasing investment transaction costs.

Based on the above analysis, we expect the negative impact of academic misconduct

exposure to transmit through innovation networks to affect firms’ financing capabilities,

manifesting in both the likelihood and scale of funding. Therefore, we propose:

H4: Firms with prior collaborative relationships with universities involved in miscon-

duct experience adverse effects on both their probability of receiving VC investment and

the investment scale.

3 Data

This section details our data sources and sample construction. Our study draws on a

comprehensive dataset spanning from 2010 to 2021, integrating multiple data sources.

Below, we describe our data collection process and the construction of key variables.

3.1 Data Sources

3.1.1 Academic Misconduct Exposure

We manually collect academic misconduct cases from 2015 to 2021 through the National

Natural Science Foundation of China (NNSFC) Supervision Committee. After rigorous

screening, we identify 134 cases with complete information. These cases contain detailed

information including researchers’ names, project approval numbers, application codes,

and affiliated institutions, spanning six disciplines: information science, medical science,

engineering and materials science, life science, earth science, and chemistry (see Appendix

Table A.1). Notably, our analysis is constrained to the provincial level as the data

before 2019 only contain provincial-level institutional information rather than specific

institution name. The use of officially disclosed cases offers distinct advantages: these

cases undergo rigorous official investigation and review processes, providing authoritative
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definitions of misconduct. Moreover, they typically involve severe penalties, such as

research fund retraction and multi-year funding restrictions, suggesting more profound

impacts on regional research environments and related industries.

3.1.2 Patent Information

We integrate patent data from three primary sources. From the China National In-

tellectual Property Administration (CNIPA) database, we obtain basic information for

18,647,651 patent applications filed in China during 2010-2021. This information includes

patent application numbers, applicant information, patent abstracts, International Patent

Classification (IPC) codes, application years, and addresses. Additionally, we collect cita-

tion data for each patent from the Google Patent database based on application numbers.

3.1.3 Venture Capital Data

We collect venture capital investment events in China from 2010 to 2021 using PEDATA.

The data include information on investment institutions, target firms, firm addresses,

industry classifications, investment dates, investment stages, currency types, and invest-

ment amounts. After excluding observations with missing location and timing informa-

tion, our final sample contains 12,353 VC investments.

3.1.4 Additional Data

We incorporate several supplementary data sources. From the China City Statistical

Yearbook, we collect detailed municipal economic data, including GDP per capita, GDP

share of the secondary industry, fiscal budget expenditure, population size, number of

higher education institutions and technology expenditure. These data provide crucial

regional control variables. Additionally, we obtain detailed firm-level information from

the CSMAR database, including financial data, corporate governance structures, and

R&D investments for listed companies.

3.2 Data Construction and Variable Definition

We construct three distinct data structures to examine the multidimensional effects of

academic misconduct exposure on firm innovation activities.

3.2.1 City-Industry-Year Level Measures

Our city-industry-year panel construction involves three main steps. First, we map patent

IPC codes to four-digit industry codes from the Chinese Industry Classification System

(GB/T4754-2017) using the IPC-Industry Concordance Table issued by CNIPA. This

step enables precise industry identification for each patent. We also geocode patent
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applications to the city level using address information. Second, following Hall et al.

(2001), we match the patent IPC codes with the six disciplines of the NNSFC. The

discipline-IPC correspondence is detailed in the Appendix Table A.1. This matching

allows us to link misconduct exposure data with patent data at the city-industry-year

level. Retaining only city-industry combinations with patent applications during our

sample period, we construct a panel dataset covering 800 industries across 218 cities

from 2010 to 2021, totaling 526,092 observations.

Trust is a critical factor in fostering and maintaining university-industry partnerships,

and misconduct can introduce uncertainty and erode the foundation of trust necessary

for effective collaboration. Academic misconduct may generate uncertainty among in-

dustry partners and skepticism about the credibility of university research outputs and

collaborations. At the city-industry-year level, we therefore employ two key indicators to

reflect the interruption of trust caused by academic misconduct in universities: Firm-to-

University Patent Citations and University-Firm Collaborative Patents.

To identify patent applicants, we establish classification criteria through textual anal-

ysis of applicant names. For public research institutions, we identify keywords such as

university, college, research institute, academy and hospital. This keyword selection draws

from systematic analysis of the naming conventions of Chinese research institutions. For

firm patents, we identify profit-oriented entities through keywords such as company, fac-

tory, enterprise, and group. This classification method accounts for the organizational

characteristics of the Chinese, ensuring accurate identification (Hsu et al., 2024).

For patent citations, we count firm to university citations at the city-industry-year

level. Following Lerner and Seru (2022), we standardize citation counts within industries

to account for cross-industry heterogeneity. For UIC, we identify co-patents with both

firm and university applicants, aggregating counts at the city-industry-year level.

These two patent-based indicators reflect how academic misconduct can weaken trust

in the credibility and reliability of research from affected universities. Patent citations

reflect knowledge flows and recognition, while collaborative patents indicate deeper trust

relationships requiring substantial resource commitment and risk-sharing. Notably, our

choice of city-industry-year analysis aligns with the geographical proximity and industry

relevance characteristics of UIC (Bikard and Marx, 2020; Hsu et al., 2024; Lerner et al.,

2024).

Capturing Academic Misconduct Exposure at City-Industry Level. Academic miscon-

duct exposure exhibits dual discipline-region characteristics, providing an ideal setting for

causal identification using difference-in-differences methodology. We construct a treat-

ment identifier, Exposure, at the city-industry-year level. This variable is equal to 1 for

city-industry combinations affected by misconduct exposure in their corresponding dis-

cipline, and 0 otherwise. The Post variable equals 1 for years following exposure and 0

otherwise. Our key explanatory variable, Exposure × Post, captures the causal effect of
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misconduct exposure by measuring the differential changes in outcome variables between

the treatment and control groups before and after exposure.

This construction method accounts for both disciplinary and regional attributes of

academic misconduct, enabling precise identification of affected research communities.

Using NNSFC official misconduct case announcements as exogenous shocks, our approach

provides a robust framework to estimate the causal effects of misconduct exposure.

3.2.2 Innovation Pair-Year Level Measures

We futher construct an Innovation Pair-Year panel dataset to examine how academic

misconduct exposure affects firms’ R&D collaboration networks. Our focus on listed

companies ensures data availability and reliability while providing rich firm character-

istics for mechanism analysis. The data construction process begins by matching listed

companies from the CSMAR database to patent data through company names, yielding

2,045,853 patent applications by listed companies from 2010 to 2021. Among these, we

identify 245,037 collaborative patent applications with multiple applicants, comprehen-

sively covering listed companies’ R&D collaborations with various innovation partners.

Following the patent classification criteria outlined in Section 3.2.1, we categorize in-

novation pairs into two types: firm-firm pairs and firm-university pairs. Firm-firm pairs

consist of listed companies and other enterprises, identified through the co-occurrence of

business entities in patent applications, totaling 36,447 pairs that reflect the dynamics

of inter-firm R&D alliances. Firm-university pairs comprise listed companies and aca-

demic institutions, identified through co-occurrence of business and academic entities in

patent applications, totaling 8,679 pairs that capture the evolution of industry-academia

partnerships. This innovation pair structure enables a comprehensive analysis of how

academic misconduct exposure affects firms’ innovation networks, particularly revealing

firms’ strategic adjustments across different types of collaboration partners.

Measures of R&D Partnerships. We measure R&D partnership intensity using the

number of collaborative patents at the innovation pair-year level. Specifically, we count

patent applications for each innovation pair annually, categorizing them into firm-firm

and firm-university collaborative patents. This approach allows us to examine the dy-

namic adjustments in both inter-firm and firm-university R&D relationships following

misconduct exposure. Collaborative patents reflect substantive R&D cooperation, as

joint patent applications typically involve extensive knowledge sharing and resource in-

tegration, representing deeper trust relationships than simple technology purchases or

consulting arrangements. Moreover, collaborative patent output requires sustained prior

investment and close coordination, effectively capturing long-term cooperation commit-

ment between partners.

Capturing Academic Misconduct Exposure at Innovation Pair Level. We construct
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treatment identifiers separately for firm-firm and firm-university innovation pairs. For

firm-university pairs, we define treatment groups as pairs where the university partner

experiences misconduct exposure, with other firm-university pairs serving as controls.

Specifically, we create a dummy variable Exposure that equals 1 if the university partner

in an innovation pair experiences misconduct exposure during the sample period, and 0

otherwise.

For firm-firm pairs, our treatment identification considers whether either firm had

prior patent collaboration with universities involved in misconduct. Specifically, we iden-

tify firm-firm pairs as treated if either firm had pre-existing collaboration with a university

that experienced misconduct exposure in the relevant discipline. This approach enables

us to trace the spillover effects of academic misconduct through firms’ collaboration net-

works.

3.2.3 Firm-Year Level Measures

We construct two firm-level panel datasets to examine the impact of academic misconduct

exposure: one focusing on listed companies to analyze changes in innovation character-

istics, and another based on venture capital-backed firms to study changes in venture

capital financing.

For the listed company sample, we begin with all A-share listed companies from 2010

to 2021 in the CSMAR database. We exclude firms without patent applications during the

sample period, as well as financial firms (due to their distinct accounting standards and

business models) and special treatment (ST) firms (due to financial distress potentially

affecting innovation decisions) (Edmans et al., 2012). The final balanced panel consists

of 1,097 listed companies with 13,164 firm-year observations.

Patent Basicness. Following Liu and Rosell (2013), we measure a patent’s basicness

through the breadth of its technological impact across fields. The basicness measure is

calculated as:

Basick =

(∑
T

CitationT

Citationp

)(
Citationp

Citationp − 1

)
(1)

where p denotes the patent, T represents the technologies fields (defined by 4-digit

IPC codes), Citationp is the total of citations received by the patent p, and CitationT

is the number of citations from the technology field T . Higher values of Basick indicate

broader technological impact across multiple fields. We calculate this measure for each

patent and then average across all patents filed by a firm in a given year.

Product Orientation. We construct a product orientation measure based on IPC clas-

sifications to capture firms’ commercial development priorities. We first identify patents

filed solely by firm itself to better reflect the intentions of autonomous product develop-
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ment (Hsu et al., 2024). We then classify the technology fields as product-oriented based

on their 4-digit IPC codes, focusing on areas directly related to product development,

such as agricultural machinery (A01D), medical devices (A61B), industrial processing

equipment (B01D), mechanical power devices (F01B), measurement equipment (G01B),

and electronic devices (H01H) (detailed in Appendix Table B.1). A patent is classified

as product-oriented if it is filed independently by the firm and falls within these techno-

logical domains. The firm-level product orientation measure is the annual proportion of

product-oriented patents among all patent applications.

Measures of Venture Capital Investment. For the VC-backed firm sample, we con-

struct a balanced panel of 3,418 VC-backed firms with 41,016 firm-year observations

using PEDATA. We develop two measures of VC investment. First, VC Amount rep-

resents the total annual venture capital investment received by a firm. For investments

in US dollars, we convert to RMB using monthly average exchange rates at the time of

investment. Second, VC Dummy is a binary variable equal to 1 if a firm receives any VC

investment in a given year, and 0 otherwise.

Capturing Academic Misconduct Exposure at Firm Level. Our treatment identifica-

tion strategy at the firm-year level builds on firms’ collaboration networks. We define

treatment groups as firms with patent collaborations with affected universities prior to

misconduct exposure, while firms without such collaborations serve as controls. This ap-

proach captures the multiple shocks firms face when their university partners experience

misconduct: the need to reevaluate existing partnerships and potentially adjust overall

innovation strategy and resource allocation decisions.

3.2.4 Controls

We construct control variables at multiple levels to account for factors that can influence

innovation activities. These controls fall into three categories: city characteristics, firm

characteristics, and partnership features.

At the city level, we develop a set of controls that capture the regional innovation

environment. We measure economic development using the natural logarithm of the gross

domestic product (GDP) and industrial structure using the ratio of secondary industry

to GDP (Industrial Structure). We also include measures of innovation resource endow-

ment: the number of universities (University), local government science and technology

expenditure (S&T Expenditure), and population density (Population). These variables

capture regional educational resources, government innovation support, and human cap-

ital agglomeration.

For innovation pair analysis, we focus particularly on geographical proximity between

innovation partners. We obtain precise geographical coordinates (latitude and longitude)

through the Baidu Maps API and calculate the linear distance between collaborating
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entities based on these coordinates.

For firm characteristics, focusing on listed companies due to data availability, we con-

trol for several key dimensions. We measure industry concentration using the Herfindahl-

Hirschman Index (HHI ), R&D investment using the ratio of R&D expenditure to sales

revenue (R&D Intensity), and government support through R&D subsidies (R&D Sub-

sidies). For corporate governance characteristics, we include a state ownership dummy

(SOE ) and ownership concentration (OWNCON ), measured as the sum of shareholdings

of the top ten tradable shareholders.

3.3 Characteristics and Trends of Academic Misconduct Cases

(2015-2021)

Using a comprehensive sample of 134 academic misconduct cases adjudicated by the

NNSFC from 2015 to 2021, we document the systematic variation in the temporal, dis-

ciplinary and spatial distribution of enforcement actions.

The temporal distribution of academic misconduct exhibits a bimodal pattern over our

sample period from 2015 to 2021. Following an initial 7.46% of cases in 2015, we document

two distinct enforcement waves: the first during 2016-2017 (46.27% of total cases) and

the second in 2021 (29.85%). The intervening period (2018-2020) saw significantly lower

enforcement intensity, with cases declining to 16.42% of the sample. This cyclical pattern

suggests an intensity of regulatory enforcement that varies over time, with potential

deterrence effects following periods of increased scrutiny.

Figure 1 plots temporal trends in the disciplinary distribution and types of miscon-

duct of 134 cases from 2015 to 2021. From a disciplinary perspective, Medical Science

consistently accounts for the largest proportion of misconduct cases across years. The

peak occurred in 2017 with 27 cases, followed by 2021 with 17 cases. Life Science and

Engineering & Materials also show notable numbers, particularly in 2016-2017 and 2021,

with about 5 cases each year.

Regarding types of misconduct, Publication Misconduct (including plagiarism, dupli-

cate publication, and improper authorship) represents the most common violation. For

example, in 2017, there were 28 cases of publication misconduct. Application Fraud

(including providing false information in grant applications) shows the second highest

frequency, with a significant spike in 2016 reaching 26 cases. Data Fabrication cases

appear less frequently but remain consistent across years, typically 3-5 cases annually.

Figure 2 maps the geographical distribution of academic misconduct cases in China

from 2015 to 2021. Spatially, these cases show significant regional clustering, predom-

inantly in coastal regions, with Shanghai (28 cases), Jiangsu (16 cases), Liaoning (15

cases), and Beijing and Shandong (14 cases each) reporting the highest frequencies. By

discipline, medical sciences (92 cases, 55.8%) and life sciences (42 cases, 25.5%) dominate
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Figure 1: Analysis of Academic Misconduct Cases by Discipline and Type (2015-2021)

Notes: This figure illustrates the temporal and disciplinary distribution of 134 academic misconduct cases in China
from 2015 to 2021, based on data from the National Natural Science Foundation of China Supervision Committee and
the China Research Integrity website. The left panel shows the distribution by academic disciplines (Medical Science,
Life Science, Engineering & Materials, Information Science, Earth Science, Chemistry, and Others), while the right
panel displays the distribution by types of misconduct (Publication Misconduct, Data Fabrication, Application Fraud,
and Project Violation). The horizontal bars represent the number of cases for each year, and different shades of blue
are used to distinguish between disciplines and types of misconduct.

Figure 2: Geographical Distribution of Academic Misconduct Cases in China

Notes: This figure maps the spatial distribution and disciplinary classification of 134 academic misconduct cases
in China from 2015 to 2021, based on data from the National Natural Science Foundation of China Supervision
Committee and the China Research Integrity website. Different marker shapes denote distinct disciplines: squares
for Engineering and Materials Science, triangles for Life Sciences, circles for Medical Sciences, hexagons for Chemical
Sciences, diamonds for Information Sciences, stars for Earth Sciences, and dots for Other disciplines. Marker sizes are
proportional to the number of disclosed cases in each region.
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the distribution.

This geographical distribution pattern raises potential endogeneity concerns for stag-

gered difference-in-differences (staggered DiD) estimation of the effects of academic over-

sight policies. First, regional clustering suggests that economically developed areas, typ-

ically hosting more universities and research institutions, may exhibit higher information

transparency and regulatory capacity, potentially affecting observed case frequencies.

Second, disciplinary imbalance indicates systematic differences across fields, possibly cor-

related with discipline-specific characteristics (e.g., experimental dependence, funding

intensity).

To address these endogeneity concerns, our empirical design explicitly controls for

regional heterogeneity through variables capturing local research capacity and economic

development, including the number of universities, science and technology expenditure,

and regional GDP. This approach helps mitigate estimation bias arising from regional

heterogeneity.

3.4 Sample Descriptive Statistics

Table 1 presents descriptive statistics for our main variables. Key measures of Firm-to-

University Patent Citations, University-Firm Collaborative Patents, MisconductCopat,

and NoMisconductCopat exhibit strong right-skewed distributions. These variables show

zero values at the 25th, 50th and 75th percentiles, while their means are significantly

higher than medians. This pattern indicates that UIC is highly concentrated among a

small number of firms, consistent with findings from Hsu et al. (2024) using Chinese patent

data. This uneven distribution reflects not only significant heterogeneity in firms’ ability

to absorb and utilize university research resources, but also suggests the vulnerability of

collaboration networks: When key universities face trust crises, negative impacts may

disproportionately spread throughout the innovation network.

4 Academic Misconduct and University-Firm Trust

4.1 Model Specification

Academic misconduct exposures exhibit distinct disciplinary and geographical patterns,

typically concentrating within specific fields and research institutions. This variation

in discipline-region provides an ideal setting for identification. We employ a staggered

DiD approach at the city-industry-year level to examine how misconduct exposure affects

university-firm trust. Our baseline specification is:

Yc,j,t = α + βExposurec,j × Postt + ϕc,j,t + Controls+ FEc,j + FEt + εc,j,t (2)

17



Table 1: Descriptive Statistics

Obs. Mean SD Min P25 Med. P75 Max
Panel A: City-Industry-Year Level Variables (2010-2021)

City-Industry (N=43,841):
Firm-to-University Patent Citations 526,092 0.235 0.751 0.000 0.000 0.000 0.000 18.660
University-Firm Collaborative Patents 526,092 0.078 0.422 0.000 0.000 0.000 0.000 20.016

City characteristics:
GDP 526,092 10.666 0.502 8.576 10.284 10.690 11.067 12.073
University 526,092 2.640 1.111 0.000 1.792 2.398 3.738 4.489
Population 526,092 617.627 384.383 11.000 368.000 585.000 766.000 2,539.000
Industrial struct. 526,092 42.061 10.232 14.480 34.700 41.250 49.010 75.110
Government Size 526,092 0.128 0.053 0.045 0.095 0.118 0.147 1.485
S&T expend. 526,092 10.787 1.380 7.651 9.884 10.700 11.580 14.519
Admin Level 526,092 0.066 0.248 0.000 0.000 0.000 0.000 1.000

Panel B: Innovation Pair-Year Level Variables (2010-2021)
Firm-University Pairs (N=8,679):

CoPat 104,153 0.151 0.508 0.000 0.000 0.000 0.000 6.939
Distance 104,153 3.694 3.135 -6.807 0.000 3.912 6.895 8.046

Firm-Firm Pairs (N=36,447):
CoPat 437,368 0.156 0.469 0.000 0.000 0.000 0.000 2.492
Distance 437,368 3.446 3.210 -9.681 0.000 3.287 6.825 8.251

Panel C: Firm-Year Level Variables (2010-2021)
Listed Companies (N=1,097):

MisconductCopat 13,164 0.073 0.344 0.000 0.000 0.000 0.000 2.312
NoMisconductCop. 13,164 0.198 0.603 0.000 0.000 0.000 0.000 3.260
SoloPatent 13,164 1.741 1.911 0.000 0.000 1.444 3.180 7.042
Patent Basic. 13,164 2.027 2.370 0.000 0.000 0.000 4.488 8.106
Share Product Pat. 8,692 0.290 0.329 0.000 0.000 0.167 0.500 1.000

Firm characteristics:
HHI 13,164 0.198 0.236 0.000 0.041 0.123 0.211 1.000
R&D intensity 13,164 2.153 3.594 0.000 0.000 0.000 3.530 36.880
SOE 13,164 0.426 0.494 0.000 0.000 0.000 1.000 1.000
OWNCON 13,164 49.872 27.937 0.000 37.410 57.824 72.038 97.948
R&D Subsidies 13,164 8.466 7.305 0.000 0.000 12.899 15.014 20.235

VC-backed Firms (N=3,418):
VCDummy 41,016 0.015 0.120 0.000 0.000 0.000 0.000 1.000
VCamount 41,016 0.062 0.552 0.000 0.000 0.000 0.000 8.816

Notes: This table presents descriptive statistics for our main variables. Panel A reports city-industry-year level vari-
ables. Firm-to-University Patent Citations measures firms’ citations to university patents, standardized by industry-year.
University-Firm Collaborative Patents captures the number of university-industry collaborative patents, similarly stan-
dardized. City characteristics include: GDP (natural logarithm), University (number of higher education institutions),
Population (10,000 persons), Industrial Structure (secondary industry share of GDP, %), Government Size (fiscal expen-
diture to GDP ratio), S&T Expenditures (natural logarithm), and Admin Level (provincial capital dummy). Panel B
presents innovation pair-year level variables. CoPat measures collaborative patent applications (IHS transformed). Dis-
tance captures geographical distance between partners (natural logarithm). Panel C reports firm-year level variables. For
Listed Companies: MisconductCopat measures collaborative patents with universities involved in misconduct; NoMiscon-
ductCopat captures collaborative patents with universities not involved in misconduct; SoloPatent counts independently
filed patents; Patent Basicness measures fundamental nature of patents; Share of Product Patents represents proportion
of product-oriented patents. Firm characteristics include: HHI (Herfindahl-Hirschman Index), R&D Intensity (R&D to
sales ratio), SOE (state-owned enterprise dummy), OWNCON (top 10 shareholders’ holdings), and R&D Subsidies (natu-
ral logarithm). For VC-backed Firms: VCDummy indicates VC investment receipt; VCamount measures investment scale
(IHS transformed). All continuous variables are winsorized at 1% and 99% percentiles.

18



where the dependent variable Yc,j,t represents two measures for city c, industry j, in year

t: Firm-to-University Patent Citations and University-Industry Collaborative Patents.

Exposurec,j is a dummy variable indicating whether a relevant discipline in a city-industry

combination has experienced misconduct exposure. Postt equals one for years following

the exposure. The coefficient β identifies the causal effect of misconduct exposure on

university-firm trust by capturing the differential changes in outcome variables between

treatment and control groups before and after exposure.

Following Fuest et al. (2018), we include time trends specific to the treatment group

ϕc,j,t to control for potential differential dynamics. City-level controls include GDP, in-

dustrial structure, number of universities, science and technology expenditure, population

size, and government size. Since misconduct events may affect regional characteristics

(e.g., S&T expenditure), these time-varying controls could be outcomes of the shock, con-

stituting bad controls (Cinelli et al., 2024; Angrist and Pischke, 2009). We address this by

interacting baseline control variables with time trends to account for pre-shock differences

between treatment and control groups. FEc,j and FEt represent city-industry and year

fixed effects, respectively. εc,j,t is the error term. We use robust standard errors clustered

at the city-industry level to address both temporal and cross-sectional correlation.

The validity of our staggered DiD approach relies on the parallel trends assumption,

requiring similar trends in outcome variables between treatment and control groups absent

intervention. To verify this assumption, we conduct an event study analysis:

Yc,j,t = α +
−1∑

t=−4

µ−tDc,j,t +
6∑

t=1

βtDc,j,t + ϕc,j,t + Controls+ FEc,j + FEt + εc,j,t (3)

Where Dc,j,t represents the relative time dummies for the t period before and after

misconduct exposure for city c and industry j. We omit the time dummy variable for

the year before the occurrence of academic misconduct to avoid collinearity with fixed

effects. Other variables remain consistent with Equation (2).

4.2 Results

Table 2 presents estimates from Equation (2). In columns (1)-(2), the dependent variable

is Firm-to-University Patent Citations at the city-industry-year level. The coefficient on

Exposure×Post in column (1) is -0.027 and significant at the 1% level. The effect remains

significantly negative after including controls in column (2). Given the mean of Firm-

to-University Patent Citations is 0.235 and standard deviation of 0.751, this estimate

suggests that misconduct exposure reduces university patent citations by 8.63%.4

Columns (3)-(4) examine University-Firm Collaborative Patents. The Exposure×Post

4(-0.027×0.751)/0.235=-8.63%
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coefficient of -0.008 in column (4) is significant. Given the mean of University-Firm

Collaborative Patents is 0.078 and the standard deviation is 0.422, this implies a 4.33% 5

average decline in UIC patents for treated city-industry relative to controls. The similar

magnitude of negative effects across both measures supports our key finding that academic

misconduct exposure significantly damages university-firm trust.

Table 2: Academic Misconduct Exposure and University-Firm Trust

Firm-to-University University-Firm
Patent Citations Collaborative Patents

(1) (2) (3) (4)
Exposure×Post -0.027*** -0.027*** -0.011*** -0.008**

(0.005) (0.005) (0.004) (0.004)
GDP -0.000 -0.001***

(0.001) (0.000)
University 0.008*** 0.003***

(0.000) (0.000)
Population 0.000* 0.000**

(0.000) (0.000)
Industrial structure -0.000*** 0.000***

(0.000) (0.000)
Government Size 0.018*** -0.000

(0.004) (0.002)
S&T expenditures 0.002*** 0.002***

(0.000) (0.000)
Admin Level -0.036*** 0.013***

(0.002) (0.002)

Treatment time trends YES YES YES YES
City-Industry FE YES YES YES YES
Year FE YES YES YES YES

Number of observations 526,092 526,092 526,092 526,092
Mean of Dependent Variable 0.235 0.235 0.078 0.078
S.D. of Dependent Variable 0.751 0.751 0.422 0.422

Notes: This table reports estimates of Equation (2) at the city-industry level. The dependent vari-
ables are Firm-to-University Patent Citations (columns 1-2) and University-Firm Collaborative Patents
(columns 3-4), both standardized by industry-year. The coefficient on Exposure×Post measures the
causal effect of academic misconduct exposure on university-firm trust, where Exposure indicates whether
a city-industry’s relevant discipline experienced misconduct exposure, and Post indicates years follow-
ing exposure. Columns (2) and (4) include city-level controls (GDP, University, Population, Industrial
structure, Government Size, S&T expenditure) interacted with time trends. All regressions include treat-
ment group time trends, city-industry fixed effects, and year fixed effects. Standard errors clustered at
city-industry level are reported in parentheses. ***, **, and * denote significance at 1%, 5%, and 10%
levels, respectively.

These findings support H1 that academic misconduct exposure leads firms to re-

duce both university patent citations and collaborative patenting. This can be explained

through two theoretical lenses. First, from an information asymmetry perspective, mis-

conduct exposure increases firms’ difficulty in evaluating and verifying research quality

(Bolton and Dewatripont, 2004), consistent with reduced university patent citations.

Second, from a reputation deterioration perspective, this trust shock weakens academic

5(-0.008 × 0.422)/0.078=-4.33%
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reputation’s disciplinary role (Kondo et al., 2021), increasing moral hazard and explaining

reduced joint patent applications.

While these effects may appear modest at 4-8%, they represent economically signif-

icant impacts considering that our sample includes all city-industry combinations. The

findings confirm that academic misconduct can trigger systemic trust crises in innovation

networks (Azoulay et al., 2017), suggesting that firms can reevaluate and adjust their

innovation collaboration strategies.

4.3 Subsample Regression and Robustness Check

Due to data availability, the NNSFC only released province-level misconduct data before

2019, with university-discipline level data available thereafter. This constrains our main

analysis in equation (2) to province-level shocks, potentially weakening the causal link

between regional misconduct and university-specific trust. For example, misconduct in

Shanghai may not affect Fudan University’s reputation, as elite institutions are often

viewed independently of their regional context.

To address potential concerns about identification, we exploit detailed university-

discipline level data in the post-2019 period. While data limitations preclude a con-

ventional difference-in-differences design, we estimate the following specification using a

university-industry-year panel:

Yi,j,t = α + βMisconduct (1-3)Yi,j,t + Controls+ FEi,j + FEt + εi,j,t (4)

where i, j, and t index university, industry, and year. Following equation (4), the de-

pendent variables are Firm-to-University Patent Citations and University-Industry Col-

laborative Patents. Misconduct (1-3)Y i,j,t equals 1 if the industry corresponding to the

university’s discipline experienced misconduct disclosure in the past one to three years,

0 otherwise. Controls include characteristics of cities where universities are located. We

include university-industry and year fixed effects.

Table 3 presents university-industry level results. Consistent with baseline, academic

misconduct reduces innovation collaboration. Collaborative patents decrease by 0.155 in

the first year post-misconduct, with effects intensifying to -0.219 and -0.221 over two and

three years. Firm citations to university patents similarly decline by 0.108 and 0.121 over

two and three years.

An alternative explanation suggests that misconduct lowers the quality of university

research, reducing firm collaboration. However, columns (7)-(9) show insignificant effects

on university patent quality6, indicating an unchanged research capability. The decline

6We measure university patent quality using Patent Knowledge Width. Patent Knowledge Width =
1−
∑

α2, where α represents the share of each IPC group classification. A higher value indicates a greater
disparity between patent classifications at the group level, suggesting a wider breadth of knowledge across
technological domains.
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in collaboration probably reflects damaged trust rather than quality deterioration.

Table 3: University-Industry Level Analysis of Academic Misconduct Impact

University-Firm Firm-to-University University
Collaborative Patents Patent Citations Patent Quality

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Misconduct 1Y -0.155*** -0.068 0.010

(0.042) (0.080) (0.025)
Misconduct 2Y -0.219*** -0.108* -0.002

(0.049) (0.061) (0.018)
Misconduct 3Y -0.221*** -0.121** -0.003

(0.050) (0.059) (0.017)

Controls YES YES YES YES YES YES YES YES YES
University-Industry FE YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES

Number of observations 643,460 643,460 643,460 643,460 643,460 643,460 643,460 643,460 643,460
Mean of Dependent Variable 0.411 0.411 0.411 1.089 1.089 1.089 0.031 0.031 0.031
S.D. of Dependent Variable 0.784 0.784 0.784 1.097 1.097 1.097 0.116 0.116 0.116

Notes: This table reports estimates of Equation (4) at the university-industry level. The dependent variables are
University-Firm Collaborative Patents (columns 1-3), Firm-to-University Patent Citations (columns 4-6), and Univer-
sity Patent Quality (columns 7-9), all standardized by industry-year. Misconduct 1Y, Misconduct 1Y, and Misconduct 1Y
are dummy variables that equal 1 if the university experiences academic misconduct in its corresponding industry within
one year, two years, and three years, respectively, and 0 otherwise. All regressions include city-level controls interacted
with time trends. Standard errors clustered at university-industry level are reported in parentheses. ***, **, and * denote
significance at 1%, 5%, and 10% levels, respectively.

Figure 3: Academic Misconduct Exposure and University-Firm Trust

Notes: This figure presents event study estimates based on academic misconduct exposures from
NNSFC, reporting coefficients µ−t and βt from Equation (3). Treatment groups are city-industry
combinations experiencing misconduct, while control groups are unaffected city-industries. The year
before Exposure serves as the reference period. Panel A shows the effect on firm-to-university patent
citations; Panel B shows the effect on university-firm collaborative patents. Error bars represent
95% confidence intervals with standard errors clustered at city-industry level.
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To validate our identification, we conduct an event study analysis. Figure 3 shows no

significant pre-trends in either citation or collaboration measures, supporting the parallel

trends assumption. Post-exposure, we document significant negative effects that per-

sist through year five. The persistent negative impact on university-firm collaboration

aligns with theories of reputation stickiness (Levine, 2021; Boone and Uysal, 2020), likely

reflecting both the path dependence of innovation partnerships and systemic concerns

about research integrity.

5 Firms Strategic Adjustments to Academic

Misconduct

5.1 Changes in R&D Alliances

The results in section 4 demonstrate that academic misconduct exposure significantly

and persistently damages university-firm trust relationships. Beyond reduced university

patent citations and collaborative patenting, this trust deficit can trigger deeper adjust-

ments in firms’ R&D collaboration strategies. We examine how firms reconfigure their

R&D alliance following academic misconduct shocks. Theoretically, firms may pursue four

strategic adjustments: (1) firm substitution—shifting toward inter-firm R&D alliances as

alternatives to university partnerships; (2) status quo maintenance—continuing collab-

orations with affected universities despite trust damage, due to resource dependence or

sunk costs; (3) university substitution—redirecting partnerships toward universities with-

out academic misconduct experience; or (4) internalization—strengthening independent

R&D while reducing external collaboration dependence. We examine these strategic

choices at both innovation-pair and firm levels.

To systematically analyze R&D alliance reconfiguration, we construct innovation pairs

based on listed companies’ collaborative patent data, employing the staggered DiD ap-

proach from section 4. Examining innovation at the pair level using collaborative patent

counts offers a key advantage over firm-level analysis: it more precisely captures changes

in bilateral cooperation intensity between firms and between firms-universities. To em-

pirically test our hypotheses, we specify the following model:

CoPati,j,t = α + βExposurei,j × Postt + ϕi,j,t + Controls+ FEi,j + FEt + εi,j,t (5)

where CoPati,j,t measures collaborative patent applications between entities i and j in

year t, transformed using inverse hyperbolic sine (IHS) following Dyer et al. (2024). We

categorize innovation pairs into firm-firm and university-firm pairs. For firm-firm pairs,

treatment status depends on whether either firm had pre-existing patent collaboration

with universities experiencing misconduct in relevant disciplines. For university-firm
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pairs, treatment indicates pairs where the university experienced misconduct exposure.

Exposurei,j equals 1 for treatment pairs and 0 otherwise. Postt indicates years following

misconduct exposure.

Similar to Equation (2), we control for treatment group time trends and city-level

characteristics. Given prior evidence that geographical proximity significantly influences

collaboration (Bikard and Marx, 2020; Hsu et al., 2024), we control for geographic distance

between entities. We also include listed-firms characteristics: HHI, R&DIntensity,

SOE, OWNCON , and R&DSubsidies. All controls enter as baseline values interacted

with time trends. The model includes innovation pair fixed effects FEi,j and year fixed

effects FEt , with standard errors clustered at the innovation pair level.

While innovation pair analysis captures structural changes in R&D collaboration net-

works, it cannot fully test four strategic adjustments. For instance, pair-level data cannot

effectively distinguish between university substitution and internalization strategies. We

therefore complement our analysis with firm-level data, and specify the following model:

StrategyAdji,t = α + βExposurei × Postt + ϕi,t + Controls+ FEi + FEt + εi,t (6)

Where the dependent variable StrategyAdji,t comprises three measures: Misconduct-

Copat, representing the number of joint patents with misconduct-involved universities to

assess status quo strategy; NoMisconductCopat, capturing the number of joint patents

with universities not involved in misconduct to examine university substitution strategy;

and SoloPatent, measuring the number of independently filed patents to evaluate in-

ternalization strategy. For treatment group identification, we classify firms with patent

collaboration relationships with universities involved in misconduct prior to exposure to

misconduct as the treatment group. Correspondingly, firms without such pre-exposure

patent collaboration are assigned to the control group. Similar to the innovation pair-level

model, our firm-level model controls for treatment group time trends, firm characteristics,

and city-level attributes. The model includes firm and year fixed effects, with standard

errors clustered at the firm level.

Table 4 presents innovation pair-level estimates. Panels A and B report effects on

firm-firm and university-firm R&D alliances, respectively. Results reveal significant but

opposite impacts. For firm-firm alliances (Panel A), treated pairs show a 5.2% increase in

collaborative patents post-exposure. This supports the firm substitution strategy—firms

seek alternative corporate partners when university trust erodes. For university-firm

alliances (Panel B), treated pairs experience a 8.8% decrease in collaborative patents.

This indicates that academic misconduct exposure significantly weakens university-firm

R&D collaborations, confirming our findings about damaged university-firm trust from

section 4.

These findings preliminarily support the prediction of H2 that firms substitute dam-
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Table 4: Academic Misconduct Exposure and R&D Alliances

Dependent variable: CoPat
Panel A: Firm-Firm Panel B: Firm-University

R&D Alliances R&D Alliances
(1) (2) (3) (4) (5) (6)

Exposure×Post 0.050*** 0.052*** 0.052*** -0.088*** -0.085*** -0.088***
(0.004) (0.004) (0.004) (0.010) (0.010) (0.010)

Distance -0.001*** -0.001*** -0.001*** 0.014*** 0.012*** 0.010***
(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)

HHI -0.016*** -0.010*** -0.002*** -0.002*** -0.002***
(0.001) (0.001) (0.000) (0.000) (0.000)

R&D intensity -0.000*** -0.000*** 0.007*** 0.006***
(0.000) (0.000) (0.002) (0.002)

SOE 0.003*** 0.002*** -0.001*** -0.001***
(0.001) (0.001) (0.000) (0.000)

OWNCON -0.000*** -0.000*** 0.004*** 0.003***
(0.000) (0.000) (0.001) (0.001)

R&D Subsidies -0.000*** -0.000*** -0.000** -0.000***
(0.000) (0.000) (0.000) (0.000)

GDP 0.013*** -0.001*** -0.000***
(0.001) (0.000) (0.000)

University 0.002*** 0.005***
(0.000) (0.001)

Population -0.000 0.002***
(0.000) (0.000)

Industrial structure 0.000*** -0.000***
(0.000) (0.000)

Government Size 0.043*** -0.000
(0.011) (0.000)

S&T expenditures -0.007*** 0.008**
(0.000) (0.004)

Admin Level -0.002 -0.001
(0.001) (0.001)

Treatment time trends YES YES YES YES YES YES
Pair FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Number of observations 437,368 437,368 437,368 104,153 104,153 104,153
Mean of Dependent Variable 0.156 0.156 0.156 0.151 0.151 0.151
S.D. of Dependent Variable 0.469 0.469 0.469 0.508 0.508 0.508

Notes: This table reports estimates of Equation (5). The dependent variable CoPat measures the number of collaborative
patent applications between innovation pairs (IHS transformed). Panel A presents results for firm-firm pairs, and Panel B
for university-firm pairs. The coefficient on Exposure×Post measures the causal effect of academic misconduct Exposure
on innovation collaboration. All specifications control for geographic distance between innovation partners (Distance).
Columns (2) and (5) include firm-level controls: HHI, R&D Intensity, SOE, OWNCON, and R&D Subsidies. Columns (3)
and (6) additionally control for city characteristics (GDP, University, Population, Industrial structure, Government Size,
S&T expenditure, and Admin Level) interacted with time trends. All regressions include treatment group time trends,
innovation pair fixed effects, and year fixed effects. Standard errors clustered at innovation pair level are reported in
parentheses. ***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.
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aged university partnerships with increased inter-firm R&D alliances. The substan-

tial substitution effect (5% increase in firm-firm collaboration versus 8% decrease in

university-firm collaboration) aligns closely with contract theory predictions: contrac-

tual design and enforcement costs decrease significantly when partners share similar or-

ganizational attributes and incentive structures Holmstrom and Milgrom (1994). Firms

demonstrate a preference for inter-firm collaboration over other potential substitution

strategies.

However, innovation pair analysis has limitations. Primarily, pair data only capture

realized collaborations, potentially missing comprehensive strategy shifts, particularly

between university substitution and internalization. To overcome these limitations and

conduct more comprehensive strategy testing, we supplement with firm-level panel anal-

ysis, examining adjustments along three dimensions: collaboration with affected universi-

ties (status quo), partnerships with unaffected universities (university substitution), and

independent innovation (internalization).

Table 5 presents firm-level evidence further validating firms’ strategic adjustments

to academic misconduct exposure. Columns (1)-(2) show that misconduct exposure sig-

nificantly reduces collaborative patents between firms and affected universities. After

controlling for firm and regional characteristics, treated firms exhibit a 4.2% decrease in

collaborative patents with affected universities relative to control firms. This result aligns

with innovation pair-level findings, confirming misconduct exposure’s detrimental effect

on university-firm trust relationships.

Columns (3)-(4) examine firms’ collaboration with unaffected universities. While

negative, the coefficients are statistically insignificant, indicating that firms do not sig-

nificantly increase collaboration with other universities. This suggests that university

substitution is not firms’ primary strategy, corroborating our innovation pair analysis

and implying that misconduct shocks may trigger broader concerns about academic re-

search quality. Columns (5)-(6) reveal that the coefficients for treated firms’ independent

patent applications are negative but statistically insignificant, indicating that firms do

not pursue internalization strategies. Combined with innovation pair analysis, these re-

sults suggest firms prefer strengthening inter-firm collaboration to mitigate misconduct

exposure’s negative impacts.

These findings verify the core prediction in H2 : facing trust shocks, firms favor the

strategy with lowest contractual costs - increased inter-firm collaboration. This choice

aligns with the organizational similarity principle, which suggests that contractual de-

sign and enforcement costs are minimized when partners share similar organizational

attributes and incentive structures (Holmstrom and Milgrom, 1994). The finding also

resonates with prior evidence that market mechanisms provide effective reputational con-

straints (Klein and Leffler, 1981).
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Table 5: Academic Misconduct and Firms’ Strategic Adjustments

MisconductCopat NoMisconductCopat SoloPatent
(1) (2) (3) (4) (5) (6)

Exposure×Post -0.033* -0.042** -0.035 -0.040 -0.088 -0.082
(0.019) (0.020) (0.030) (0.030) (0.084) (0.083)

HHI 0.006 0.006 0.010 0.010 0.044* 0.046*
(0.005) (0.005) (0.008) (0.009) (0.025) (0.025)

R&D intensity -0.000 0.000 -0.000 -0.000 -0.000 0.000
(0.000) (0.000) (0.001) (0.001) (0.002) (0.002)

SOE 0.006** 0.005** 0.012*** 0.011** -0.013 -0.007
(0.002) (0.002) (0.004) (0.004) (0.012) (0.013)

OWNCON 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D Subsidies -0.000 -0.000 -0.000 -0.000 -0.002* -0.002*
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

GDP 0.006 0.011*** 0.002
(0.004) (0.004) (0.013)

University 0.003** 0.002 -0.006
(0.001) (0.002) (0.007)

Population -0.000* -0.000 -0.000
(0.000) (0.000) (0.000)

Industrial structure -0.001*** -0.000 -0.001
(0.000) (0.000) (0.001)

Government Size 0.077 0.020 -0.133
(0.050) (0.026) (0.114)

S&T expenditures -0.001 -0.003 0.007
(0.002) (0.002) (0.007)

Treatment time trends YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Number of observations 13,164 12,996 13,164 12,996 13,164 12,996
Mean of Dependent Variable 0.073 0.073 0.198 0.198 1.741 1.741
S.D. of Dependent Variable 0.344 0.344 0.344 0.344 1.911 1.911

Notes: This table reports estimates of Equation (6). The dependent variables are: MisconductCopat (collaborative patents
with misconduct-affected universities, testing status quo strategy, columns 1-2), NoMisconductCopat (collaborative patents
with unaffected universities, testing university substitution, columns 3-4), and SoloPatent (independent patents, testing
internalization, columns 5-6), all IHS transformed. The coefficient on Exposure×Post measures the causal effect of mis-
conduct Exposure on firms’ innovation strategies. Treatment firms are those with pre-Exposure patent collaborations with
affected universities. Columns (1), (3), and (5) include firm-level controls: HHI, R&D Intensity, SOE, OWNCON, and
R&D Subsidies. Columns (2), (4), and (6) additionally control for city-level controls (GDP, University, Population, Indus-
trial structure, Government Size, S&T expenditure) interacted with time trends. All regressions include treatment group
time trends, firm fixed effects, and year fixed effects. Standard errors clustered at firm level are reported in parentheses.
***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.
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5.2 Changes in Innovation Characteristics

Our empirical results suggest that firms respond to academic misconduct exposure by

favoring inter-firm substitution strategy, reducing university collaboration in favor of

strengthening R&D alliances with other firms. This transformation in innovation col-

laboration patterns likely induces significant changes in firms’ innovation characteristics.

Given the fundamental differences between university-industry and inter-firm collabora-

tions, we expect this shift to affect both the basicness and product orientation of inno-

vation.

Regarding innovation basicness, universities, as the main practitioners of basic re-

search, typically focus on exploring scientific frontiers and fundamental principles. UIC

provides firms with crucial channels to access and absorb basic knowledge (Cohen et al.,

2002). The deep theoretical foundations, expertise, and advanced experimental facilities

of university researchers enable firms to conduct more forward-looking research (Krieger

et al., 2024; Lerner et al., 2024). Consequently, reduced university collaboration may

weaken the basic research attributes of firms’ innovation activities.

In contrast, increased inter-firm collaboration likely strengthens innovation’s product

orientation. As market entities, firms’ R&D decisions are primarily driven by market

demand and commercial returns. Inter-firm collaboration typically builds on comple-

mentary advantages and resource sharing, with partners focusing on converting their re-

spective market and technological strengths into commercial value. Compared to UIC’s

longer R&D cycles and stronger exploratory nature, inter-firm collaboration usually sets

more explicit commercial objectives and shorter investment recovery periods. Addition-

ally, market competition pressures drive collaborating parties to emphasize innovation’s

application value and commercialization process.

Based on this analysis, we expect the shift in innovation collaboration patterns trig-

gered by academic misconduct exposure to induce two changes in innovation characteris-

tics: first, a decline in innovation basicness, potentially reflected in reduced basic research-

related patents; second, enhanced product orientation, manifested in more product-

oriented patents and stronger commercialization features. To examine how changes in

collaboration patterns affect patent characteristics, we first construct the following stag-

gered DiD model:

PatentChari,t = α + βExposurei × Postt + ϕi,t + Controls+ FEi + FEt + εi,t (7)

where PatentChari,t includes two dimensions: Patent Basicness and Share of Product-

Oriented Patents. Exposurei indicates firms with university collaboration prior to expo-

sure and Postt denotes post-exposure periods. To identify mechanisms driving innova-

tion characteristic changes, we introduce a triple-difference (DDD) specification with a
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declined university collaboration (DUC) dummy:

PatentChari,t = α+ βExposurei × Postt ×DUC+ ϕi,t + Controls+ FEi + FEt + εi,t (8)

whereDUC equals 1 for firms experiencing reduced university collaboration post-exposure.

This specification allows us to isolate characteristic changes specifically for firms that re-

duced university collaboration. The coefficient β captures differential changes in patent

basicness and product orientation for treated firms reducing university collaboration.

Table 6 reports how misconduct exposure affects patent basicness and product ori-

entation. The results provide systematic evidence linking collaboration pattern shifts to

patent characteristics.

Table 6: Academic Misconduct and Changes in Patent Characteristics

Patent Basicness Share of Product-Oriented Patents
(1) (2) (3) (4) (5) (6) (7) (8)

Exposure×Post -0.326*** -0.326*** 0.005 0.006
(0.104) (0.105) (0.012) (0.012)

Exposure×Post×DUC -0.675*** -0.733*** 0.064*** 0.070***
(0.143) (0.144) (0.020) (0.020)

HHI 0.016 0.017 0.017 0.017 0.002 0.003 0.003 0.004
(0.033) (0.033) (0.033) (0.033) (0.005) (0.005) (0.005) (0.005)

R&D intensity -0.003 -0.004 -0.003 -0.004 -0.001*** -0.001** -0.001*** -0.001**
(0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000)

SOE -0.018 -0.020 -0.020 -0.022 0.002 0.002 0.003 0.003
(0.015) (0.016) (0.015) (0.016) (0.002) (0.002) (0.002) (0.002)

OWNCON 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R&D Subsidies -0.004*** -0.003*** -0.004*** -0.004*** -0.000* -0.000* -0.000* -0.000*
(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

GDP 0.032 0.031 0.003* 0.003
(0.024) (0.023) (0.002) (0.002)

University 0.004 0.005 -0.002 -0.002
(0.009) (0.009) (0.001) (0.001)

Population 0.000* 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Industrial structure 0.000 0.000 0.000 0.000
(0.001) (0.001) (0.000) (0.000)

Government Size 0.041 0.043 -0.000 -0.002
(0.181) (0.172) (0.018) (0.018)

S&T expenditures -0.010 -0.008 -0.002* -0.003*
(0.010) (0.010) (0.001) (0.001)

Treatment time trends YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

Number of observations 13,164 12,996 13,164 12,996 8,635 8,537 8,635 8,537
Mean of Dependent Variable 2.027 2.027 2.027 2.027 0.290 0.290 0.290 0.290
S.D. of Dependent Variable 2.370 2.370 2.370 2.370 0.329 0.329 0.329 0.329

Notes: This table reports firm-level patent characteristic estimates based on equations (7) and (8). Columns (1)-(2)
and (5)-(6) present estimates of equation (6), where the dependent variables are Patent Basicness (columns 1-2) and
Share of Product-Oriented Patents (columns 5-6), respectively. The coefficient on Exposure×Post measures the causal
effect of academic misconduct exposure on patent characteristics, where firms with patent collaboration relationships with
misconduct-involved universities prior to exposure are identified as the treatment group. Columns (3)-(4) and (7)-(8)
present estimates of equation (7). The triple interaction term Exposure×Post×DUC captures the differential changes in
patent characteristics for treated firms that reduce university collaboration (DUC=1) following misconduct exposure, where
DUC is a dummy variable equal to 1 if a firm experiences a decrease in university collaboration patents post-exposure.
Columns (1), (3), (5), and (7) control for firm-level characteristics, including HHI, R&D Intensity, SOE, OWNCON,
and R&D Subsidies. Columns (2), (4), (6), and (8) additionally include city-level controls (GDP, University, Population,
Industrial structure, Government Size, S&T expenditure) interacted with time trends. All regressions control for treatment
group time trends, firm fixed effects, and year fixed effects. Standard errors clustered at the firm level are reported in
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.
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For patent basicness, misconduct exposure significantly reduces the fundamental re-

search attributes of treated firms’ patents. Post-exposure, treated firms’ patent basicness

decreases by 0.326 relative to control firms, representing 16.08% of the sample mean.

Triple-difference estimates reveal stronger negative effects for firms reducing university

collaboration, suggesting that reduced university partnerships indeed weaken firms’ basic

research capabilities, narrowing their patents’ technological spillover scope.

Regarding product orientation, while exposure alone does not significantly affect the

share of product-oriented patents, firms reducing university collaboration show a signif-

icant 7 percentage point increase. This indicates that firms shifting from university to

inter-firm collaboration develop more market-oriented innovations focused on commercial

products and equipment.

These findings systematically support H3a and H3b. First, the transition from univer-

sity to firm collaboration significantly reduces patent basicness, validating the argument

by Cohen et al. (2002) that universities’ unique research autonomy and long-term orien-

tation play irreplaceable roles in fundamental innovation.

Second, firms reducing university collaboration significantly increase their share of

product-oriented patents, supporting H3b. This shift aligns with recent evidence that

inter-firm collaboration, driven by shared market pressures and performance evaluations,

steers innovation towards more applied directions(Hsu et al., 2024). This character-

istic adjustment not only reflects how contractual structures shape innovation direc-

tion(Aghion and Tirole, 1994) but also reveals potential long-term innovation capability

risks from substituting university partnerships.

5.3 Subsample Regression and Robustness Check

Similar to equation (4), we also perform subsample testing at the pair level. Table 7

presents the robustness tests using university-discipline level misconduct data. For firm-

firm pairs (Panel A), firms experiencing misconduct disclosure increased their firm-firm

innovation collaboration by 4.9%-6.4%. For university-firm pairs (Panel B), university-

discipline level misconduct significantly reduced collaborative innovation, with negative

effects intensifying from -9.3% in year one to -21% in year three. These findings us-

ing granular data validate our province-level shock results and mitigate concerns about

regional-level misconduct inadequately capturing university-specific trust shocks.

We analyze the dynamic effects on firms’ innovation collaboration (Figure 4) and

patent characteristics (Figure 5) using event study methodology. The figures plot point

estimates and their 95% confidence intervals across event time. With the exception of

panel A1 in (Figure 4), coefficients in pre-exposure periods are statistically indistinguish-

able from zero across all panels. In panel A1, while the coefficient at t=-2 is insignificant,

the coefficient at t=-4 is significantly negative. Despite this, the overall temporal pat-
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Table 7: Academic Misconduct and R&D Alliances: Subsample Evidence

Panel A: Firm-Firm R&D Alliances Panel B: Firm-University R&D Alliances
(1) (2) (3) (4) (5) (6)

Misconduct 1Y 0.049*** -0.093***
(0.011) (0.018)

Misconduct 2Y 0.064*** -0.114***
(0.009) (0.015)

Misconduct 3Y 0.054*** -0.210***
(0.008) (0.015)

Controls YES YES YES YES YES YES
Pair FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Number of observations 437,368 437,368 437,368 104,153 104,153 104,153
Mean of Dependent Variable 0.156 0.156 0.156 0.151 0.151 0.151
S.D. of Dependent Variable 0.469 0.469 0.469 0.508 0.508 0.508

Notes: This table reports regression results using university-discipline level subsample of academic misconduct shocks.
The dependent variable CoPat measures the number of collaborative patent applications between innovation pairs (IHS
transformed). Panel A presents results for firm-firm pairs, and Panel B for university-firm pairs. The coefficient on
Misconduct 1Y indicates whether either partner in the pair experienced academic misconduct at the university level
within one year, while Misconduct 2Y and Misconduct 3Y capture misconduct occurrences within two and three years
respectively (all are dummy variables equal to 1 if misconduct occurred, 0 otherwise). All specifications control for Distance,
HHI, R&D Intensity, SOE, OWNCON, R&D Subsidies, GDP, Universities, Population, Industrial Structure, Government
Size and S&T Expenditure. Each control variable is interacted with time trends using its baseline value. All regressions
include pair fixed effects and year fixed effects. Standard errors clustered at pair level are reported in parentheses. ***,
**, and * denote significance at 1%, 5%, and 10% levels, respectively.

tern demonstrates largely similar trends between treatment and control groups prior to

misconduct exposure, providing general support for the parallel trends assumption and

validating our causal inference.

6 Market Response to Academic Misconduct

6.1 Model Specification

Our previous analysis demonstrates that exposure to academic misconduct damages firms’

trust in universities, triggering adjustments in R&D collaboration patterns and innovation

characteristics. However, this trust crisis extends beyond direct university-firm relation-

ships, potentially transmitting through innovation networks to capital markets. When

universities engage in academic misconduct, market investors can develop multiple con-

cerns about their corporate partners: first, close collaboration with institutions affected

by misconduct can question the reliability of firms’ innovation outputs; second, reputa-

tional damage from partners can weaken firms’ future innovation capabilities and market

competitiveness; third, firms may incur substantial switching costs in seeking new R&D

partners. This trust crisis spillover effect reflects a multilevel transmission chain: from

the academic integrity crisis to university-firm trust breakdown, ultimately evolving into

capital market distrust of affected firms.

VC investment decisions provide an ideal setting to examine this trust transmis-

sion mechanism. First, as sophisticated market investors, VCs conduct thorough due

diligence, accurately identifying firms’ R&D collaboration networks (Chemmanur et al.,
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Figure 4: Academic Misconduct Exposure and Innovation Networks

Notes: This figure plots event study estimates of how academic misconduct exposure affect firms’
innovation strategies, based on Equation (3). Panel A examines innovation network effects at the
pair level. A1 shows firm-firm pairs where treatment is defined by either firm’s pre-exposure col-
laboration with misconduct-involved universities. A2 shows university-firm pairs where treatment
universities experienced misconduct. Panel B examines firm-level responses: changes in collabo-
rations with misconduct-involved universities (B1, MisconductCopat), with other universities (B2,
NoMisconductCopat), and in independent patenting (B3, SoloPatent). Treatment firms are those
with pre-exposure ties to misconduct-involved universities. Red squares and blue circles indicate
pre-trends and post-exposure effects, respectively. Bars show 95% confidence intervals with stan-
dard errors clustered at pair/firm level.

2014; Bernstein et al., 2016). Second, VCs are particularly sensitive to the innovation

capabilities and growth prospects of firms (Tian et al., 2016), naturally responding to the

reputational changes in firms’ R&D partners. Third, compared to other market partici-

pants, VCs possess expertise in evaluating and managing innovation risks, making their

investment decisions more precise indicators of market reactions to academic misconduct.

Based on these considerations, we examine whether misconduct exposure affects firms’

access to and scale of venture capital. If markets indeed develop trust concerns about

firms collaborating with misconduct-involved universities, we expect these firms to face

greater difficulties in securing venture capital.
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Figure 5: Academic Misconduct Exposure and Patent Characteristics

Notes: This figure presents event study results of academic misconduct exposure’s effects on firm
patent characteristics in China from 2010 to 2021. Panel A shows the dynamic changes in Patent
Basicness. Panel A1 reports results under a DiD specification, while Panel A2 presents DDD es-
timates incorporating a university collaboration decrease dummy (DUC) to identify firms that ac-
tually reduced university collaboration post-exposure. Panel B displays the dynamic changes in
Share of Product-Oriented Patents. Similarly, Panel B1 reports DiD results, while Panel B2 presents
DDD estimates. Across all analyses, firms with pre-exposure patent collaboration relationships
with misconduct-involved universities are identified as the treatment group. Red squares represent
pre-exposure time trends between treatment and control groups, while solid blue circles represent
treatment effects post-exposure. Bars indicate 95% confidence intervals with standard errors clus-
tered at the firm level.

To examine how misconduct exposure affects VC acquisition, we specify:

VCi,t = α + βExposurei × Postt + ϕi,t + Controls+ FEi + FEt + εi,t (9)

where dependent variables V Ci,t include VCdummy (indicating whether firm i receives

venture capital in year t) and VCamount (IHS-transformed). Due to data availability

constraints, we only control for city-level characteristics. Other specifications follow Equa-

tion (7).To further identify VCs responses to firms’ R&D collaboration adjustments, we

estimate:

VCi,t = α + βExposurei × Postt × DUC+ ϕi,t + Controls+ FEi + FEt + εi,t (10)

where DUC equals 1 for firms that reduce university collaboration after exposure.
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This specification allows us to examine whether VCs respond differentially to firms’ strate-

gic adjustments. For firms reducing university collaboration, VCs may evaluate from two

perspectives: first, such adjustment may signal proactive innovation risk management;

second, as our previous analysis shows, these firms experience decreased patent basicness

but increased product orientation, potentially influencing VC investment decisions.

6.2 Results

Table 8 reports how academic misconduct exposure affects firms’ access to VC fund-

ing. Columns (1)-(4) examine the probability of receiving VC. The coefficient on Expo-

sure×Post is -0.012 and statistically significant, indicating that treated firms experience a

1.2 percentage point decrease in the probability of receiving VC relative to control firms.

Given the sample mean of 0.015, this effect is economically substantial, representing a 80%

reduction in venture capital access. The coefficient on Exposure×Post×DUC is -0.019

and significant at the 1% level, suggesting that VCs respond more strongly to changes

in firms’ R&D collaboration strategies. For firms reducing university collaboration after

exposure, the probability of receiving VC decreases by 1.9 percentage points.

Similarly, we find that treated firms experience a 5.3% reduction in VC investment

amounts relative to control firms post-exposure. This result indicates that VCs make sub-

stantial adjustments in response to misconduct exposure, reducing both their willingness

to invest and investment scale. The triple-difference estimates reveal even stronger effects

for firms reducing university collaboration, with a 9.3% decrease in investment amounts.

These findings demonstrate that VCs make material adjustments in both investment

probability and scale.

These results support H4, revealing how trust crises affect resource allocation through

market mechanisms. First, the significant decline in VC access for firms with prior collab-

oration with affected universities aligns with previous findings that VCs heavily weight

innovation environment quality and credibility (Bernstein et al., 2016). The stronger

negative effects for firms reducing university collaboration confirm significant reputation

spillover effects in innovation networks (Hochberg et al., 2007). Second, the substantial

decrease in investment scale supports theoretical predictions that VCs adjust investment

levels to address increased transaction costs from elevated information screening and mon-

itoring requirements Kaplan and Strömberg (2004). This systematic market response not

only validates the literature on how trust deficits affect VC decision-making Lerner (2000)

but also reveals how academic misconduct, by undermining innovation network trust, may

have broader resource allocation consequences.
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Table 8: Academic Misconduct Exposure and Venture Capital Investment

VCdummy VCamount
(1) (2) (3) (4) (5) (6) (7) (8)

Exposure×Post -0.013*** -0.012*** -0.058*** -0.053***
(0.004) (0.004) (0.020) (0.020)

Exposure×Post×DUC -0.018*** -0.019*** -0.091*** -0.093***
(0.004) (0.004) (0.017) (0.017)

GDP 0.000 0.000 0.001 0.001
(0.000) (0.000) (0.002) (0.002)

University -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.001) (0.001)

Population -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Industrial structure -0.000* -0.000** -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Government Size -0.001 -0.001 -0.006 -0.006
(0.001) (0.001) (0.006) (0.006)

S&T expenditures 0.000 0.000 0.001 0.002
(0.000) (0.000) (0.001) (0.001)

Treatment time trends YES YES YES YES YES YES YES YES
Firm FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES

Number of observations 41,016 41,016 41,016 41,016 41,016 41,016 41,016 41,016
Mean of Dependent Variable 0.015 0.015 0.015 0.015 0.062 0.062 0.062 0.062
S.D. of Dependent Variable 0.120 0.120 0.120 0.120 0.552 0.552 0.552 0.552

Notes: This table reports firm-level estimates from equations (9) and (10). The dependent variables are a dummy variable
indicating venture capital investment (VCdummy) in columns (1)-(4) and the IHS-transformed amount of venture capital
investment (VCamount) in columns (5)-(8). Columns (1)-(2) and (5)-(6) present estimates from equation (8), where the
coefficient on Exposure×Post measures the effect of academic misconduct exposure on venture capital investment. Columns
(3)-(4) and (7)-(8) present estimates from equation (9), where the triple interaction term Exposure×Post×DUC captures
the differential changes in venture capital investment for treated firms that reduce university collaboration (DUC=1)
following misconduct exposure. In all analyses, firms with pre-exposure patent collaboration relationships with misconduct-
involved universities are identified as the treatment group. Columns (2), (4), (6), and (8) include city-level controls: GDP,
University, Population, Industrial structure, Government Size, S&T expenditure. Each control variable is interacted with
time trends using its baseline value. All regressions control for treatment group time trends, firm fixed effects, and year
fixed effects. Standard errors clustered at the firm level are reported in parentheses. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% levels, respectively.
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6.3 Robustness

Figure 6 presents event study estimates of academic misconduct exposure’s impact on

venture capital funding using both DiD and DDD specifications. The plots show point

estimates and their 95% confidence intervals across event time. In pre-exposure periods

(marked by red squares), coefficients are statistically indistinguishable from zero across all

panels, with confidence intervals consistently containing zero. This pattern holds for both

the probability of receiving VC (Panels A1 and A2) and investment amounts (Panels B1

and B2), demonstrating similar pre-trends between treatment and control groups. These

results provide robust support for the parallel trends assumption, validating our causal

inference.

Figure 6: Academic Misconduct Exposure and VC investment

Notes: This figure presents event study results of academic misconduct exposure’s effects on firms’
venture capital financing in China from 2010 to 2021. Panel A shows the dynamic changes in the
probability of receiving venture capital investment (VC dummy). Panel A1 reports results under a
DiD specification, while Panel A2 presents DDD estimates incorporating a university collaboration
decrease dummy (DUC) to identify firms that reduced university collaboration post-exposure. Panel
B displays the dynamic changes in the IHS-transformed amount of venture capital investment (VC
amount). Similarly, Panel B1 reports difference-in-differences results, while Panel B2 presents triple-
difference estimates. Across all analyses, firms with pre-exposure patent collaboration relationships
with misconduct-involved universities are identified as the treatment group. Red squares represent
pre-exposure time trends between treatment and control groups, while solid blue circles represent
treatment effects post-exposure. Bars indicate 95% confidence intervals with standard errors clus-
tered at the firm level.

Recent literature demonstrates that traditional two-way fixed effects difference-in-
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differences (TWFE-DiD) estimators can produce biased estimates in the presence of

staggered treatment timing (Goodman-Bacon, 2021). This bias primarily stems from

treatment timing heterogeneity—in our context, cities and industries experiencing aca-

demic misconduct exposure at multiple times. Given that misconduct cases are disclosed

successively from 2015 to 2021, city-industry combinations treated earlier serve as con-

trols for later treatment groups. This setup may yield biased estimates if treatment effects

exhibit temporal or unit-level heterogeneity.

To address this concern, we conduct robustness checks using recently developed econo-

metric methods. Specifically, we re-estimate all analyses from Sections 4-6 using the ro-

bust estimators proposed in Borusyak et al. (2024); Cengiz et al. (2019); De Chaisemartin

and d’Haultfoeuille (2020). These methods address the identification challenges of the

overlap in treatment timing through distinct technical approaches (results reported in

Appendix Figures A.1-A.4).

These robustness checks yield results highly consistent with our main findings: aca-

demic misconduct exposure significantly reduces firms’ trust in universities, leads firms

to shift toward inter-firm R&D alliances, and triggers adjustments in innovation charac-

teristics and VC allocation. The robustness of estimates suggests our core findings are

not driven by technical bias potentially arising from staggered DiD design.

7 Conclusion

This study examines how academic misconduct reshapes innovation networks through

trust destruction in China from 2015 to 2021. We find that misconduct exposure signif-

icantly reduces firms’ trust in affected universities, leading to decreased patent citations

and collaborations. Firms respond by strategically increasing R&D alliances with other

firms rather than internalizing R&D or seeking alternative university partners. This

shift in collaboration patterns triggers systematic changes in innovation characteristics:

reduced patent basicness but increased product orientation. The negative impact fur-

ther propagates through innovation networks to capital markets, where VCs significantly

reduce investments in firms that previously collaborated with universities affected by mis-

conduct. These findings highlight trust’s irreplaceable role in innovation governance and

demonstrate how trust shocks can fundamentally reshape innovation networks through

contractual adjustments and market responses. While our study focuses on academic

misconduct, future research could explore various types of trust shocks across different

institutional contexts and examine the psychological mechanisms underlying trust crises

in innovation ecosystems.
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Appendix

Figure A.1: Academic Misconduct Exposure and University-Industry Trust with Robust
Estimators

Notes : This figure presents robustness tests using three estimation methods(Borusyak
et al., 2024; Cengiz et al., 2019; De Chaisemartin and d’Haultfoeuille, 2020) for
university-industry trust relationships. The left panel shows dynamic changes in firm-
to-university patent citations, while the right panel displays changes in university-firm
collaborative Patents. All variables are standardized within industry-year. The es-
timates demonstrate consistent treatment effects in direction and significance across
different methods, supporting the robustness of our main findings. Error bars indicate
95% confidence intervals with standard errors clustered at the city-industry level.

43



Figure A.2: Academic Misconduct Exposure and Innovation Network Reconfiguration
with Robust Estimators

Notes : This figure employs three robust estimation methods (Borusyak et al., 2024;
Cengiz et al., 2019; De Chaisemartin and d’Haultfoeuille, 2020) to examine dynamic
changes in joint patent applications (CoPat, IHS-transformed). The empirical results
show significant innovation network restructuring following academic misconduct ex-
posure across different estimation methods, consistent with our main findings. Error
bars indicate 95% confidence intervals with standard errors clustered at the innova-
tion pair and firm level.
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Figure A.3: Academic Misconduct Exposure and Innovation Characteristics with Robust
Estimators

Notes : This figure presents tests using three robust estimation methods(Borusyak
et al., 2024; Cengiz et al., 2019; De Chaisemartin and d’Haultfoeuille, 2020) for Patent
Basicness and Share of Product-Oriented Patents. The empirical results demonstrate
that academic misconduct exposure significantly reduces patent basicness while in-
creasing the share of product-oriented patents across different estimation methods,
validating the robustness of our main findings. Error bars indicate 95% confidence
intervals with standard errors clustered at the firm level.

Figure A.4: Academic Misconduct Exposure and Venture Capital Investment with Robust
Estimators

Notes : This figure reports tests using three robust estimation methods(Borusyak
et al., 2024; Cengiz et al., 2019; De Chaisemartin and d’Haultfoeuille, 2020) for the
probability of receiving venture capital investment and investment amount. The em-
pirical results show that academic misconduct exposure significantly reduces both the
likelihood and magnitude of venture capital investment for firms with pre-exposure
collaboration relationships with misconduct-involved universities across different esti-
mation methods, supporting the robustness of our main findings. Error bars indicate
95% confidence intervals with standard errors clustered at the firm level.

45



Table A.1: Mapping of NNSFC Disciplines to IPC Codes

NNSFC Discipline International Patent Classification (IPC)
Chemical Sciences A01N, A01P, A21D, A23B, A23C, A23D, A23J, A23K, A23L, A61Q, A62C, A62D, B01J,

B09B, B09C, C02F, C03C, C05B, C05C, C05D, C05F, C05G, C06B, C06D, C06F, C07B,
C07C, C07D, C07F, C07G, C07H, C07J, C07K, C08B, C08C, C08F, C08G, C08H, C08J,
C08K, C08L, C09B, C09C, C09D, C09F, C09G, C09H, C09J, C10B, C10C, C10F, C10G,
C10H, C10J, C10K, C10L, C10M, C11B, C11C, C11D, C12C, C12F, C12G, C12H, C12J,
C12L, C12M, C13B, C13C, C13D, C13F, C13G, C13H, C13J, C13K, C14C, C25B, C25C,
C25D, C25F, D01C, F42B, G03C, G21G, G21J, H01M

Life Sciences A01G, A01H, A01J, A01K, C12N, C12Q, C12R

Earth Sciences G01V, G01W

Engineering & A01B, A01C, A01D, A01F, A01L, A01M, A21B, A21C, A22B, A22C, A23N, A23P, A24B,
Materials Sciences A24C, A41H, A43D, A45D, A62B, A63B, B01B, B01F, B01L, B03B, B03C, B04B, B04C,

B05B, B05C, B05D, B06B, B07B, B21B, B21C, B21D, B21F, B22C, B22D, B22F, B23B,
B23C, B23D, B23F, B23G, B23H, B23K, B23P, B23Q, B24B, B24C, B24D, B25B, B25C,
B25D, B25F, B25G, B25H, B25J, B26B, B26D, B26F, B27B, B27C, B27D, B27F, B27G,
B27H, B27J, B27K, B27N, B28B, B28C, B28D, B29B, B29C, B29D, B29K, B31B, B31C,
B31D, B31F, B32B, B41B, B41C, B41D, B41F, B41G, B41J, B41K, B41L, B44C, B44B,
B60B, B60C, B60D, B60F, B60G, B60H, B60J, B60K, B60L, B60M, B60N, B60Q, B60R,
B60T, B60V, B60W, B61B, B61C, B61D, B61F, B61G, B61H, B61J, B61K, B61L, B62B,
B62C, B62D, B62H, B62J, B62K, B62L, B62M, B63B, B63C, B63G, B63H, B63J, B64B,
B64C, B64D, B64F, B64G, B65B, B65C, B65F, B65G, B65H, B66B, B66C, B66D, B66F,
B67D, B68F, B68G, B81B, B81C, B82B, B82Y, C03B, C03C, C04B, C06C, C06F, C09K,
C14B, C21B, C21C, C21D, C23C, C23D, C23F, C23G, C30B, D01B, D01D, D01F, D01G,
D01H, D02G, D02H, D03J, D05B, D05C, D06N, D21B, D21F, D21G, E01B, E01C, E01F,
E02C, E02D, E02F, E03B, E03C, E03D, E03F, E04B, E04C, E04D, E04F, E04G, E04H,
E05B, E05C, E05D, E05F, E06B, E21B, E21C, E21D, E21F, F01B, F01C, F01D, F01K,
F01L, F01M, F01N, F01P, F02B, F02C, F02D, F02F, F02G, F02K, F02M, F02N, F02P,
F03B, F03C, F03D, F03G, F03H, F04B, F04C, F04D, F04F, F15B, F15C, F15D, F16B,
F16C, F16D, F16F, F16H, F16J, F16K, F16L, F16M, F16N, F16P, F16S, F16T, F17D,
F21L, F21S, F21V, F21W, F22B, F22D, F22G, F23B, F23C, F23D, F23G, F23H, F23K,
F23M, F23N, F23Q, F23R, F24B, F24C, F24D, F24F, F24H, F24J, F25B, F25C, F25D,
F25J, F26B, F27B, F27D, F28B, F28C, F28D, F28F, F28G, F41A, F41B, F41C, F41F,
F41G, F41H, F42C, G01B, G01C, G01D, G01F, G01G, G01H, G01J, G01K, G01L, G01M,
G01N, G01P, G01Q, G01R, G01T, G02B, G02F, G03B, G03D, G03F, G04B, G04C, G04D,
G04F, G04G, G04R, G05B, G05D, G05F, G05G, G06C, G06D, G06E, G06J, G07B, G07C,
G07D, G07G, G08B, G09C, G10F, G10G, G10H, G10K, G12B, G21B, G21C, G21D, G21H,
G21J, G21K, H01B, H01C, H01F, H01G, H01H, H01J, H01L, H01P, H01Q, H01R, H01S,
H01T, H02B, H02G, H02H, H02J, H02K, H02M, H02N, H02P, H03B, H03C, H03D, H03F,
H03G, H03H, H03L, H04Q, H04R, H04S, H04W, H05B, H05C, H05H, H05K

Information Sciences G01S, G03G, G03H, G06F, G06G, G06K, G06M, G06N, G06Q, G06T, G08C, G08G, G09G,
G10L, G11B, G11C, H03K, H03J, H03M, H04B, H04H, H04J, H04K, H04L, H04M, H04N, H04W

Medical Sciences A61K, A61C, A61D, A61F, A61G, A61H, A61J, A61B, A61M, A61L, A61N, A61P

Notes: This table presents the correspondence between National Natural Science Foundation of China (NNSFC) disci-
plines and International Patent Classification (IPC) codes. Following Hall et al. (2001), this mapping enables industry-level
matching between patent data and academic misconduct exposure data. Engineering and Materials Sciences covers the
broadest range, spanning mechanical (Class B) to electrical engineering (Class H). Chemical Sciences primarily corresponds
to Class C, while Life Sciences focuses on Classes A01 and C12. Information Sciences relates to computing and commu-
nication technology (Classes G and H). Medical Sciences concentrates on Class A61, and Earth Sciences primarily covers
Classes G01V and G01W.
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Table B.1: Classification of Product-related Technology Fields

Technological Field International Patent Classification (IPC)
Agricultural Machinery A01D, A01F, A01K
Medical Instruments and Apparatus A61B, A61C, A61F, A61M
Chemical Process Apparatus B01D, B01F, B01J
Machine Tools and Industrial Robots B21D, B23K, B25J
Engines and Pumps F01B, F02-F04
Mechanical Elements and Systems F15B, F16, F17
Measuring and Testing Instruments G01B, G01N, G01R
Optical and Photographic Apparatus G02B, G02F, G03B
Computing and Control Systems G06F, G07, G08
Vehicles and Transportation Systems B60-B64
Electrical Components and Systems H02-H05
Printing Machinery B41
Material Handling and Packaging Machinery B65-B67
Lighting and HVAC Apparatus F21, F24-F25, F28
Display and Information Systems G09-G12
Semiconductor Devices and Lasers H01L, H01S

Notes: This table identifies product-oriented technological fields based on the first four digits of IPC
codes. We classify 16 technological fields directly related to product development: Agricultural Ma-
chinery (e.g., A01D, A01F, A01K), Medical Equipment (e.g., A61B, A61C, A61F, A61M), Chemical
Processing Equipment (e.g., B01D, B01F, B01J), Machine Tools and Industrial Robots (e.g., B21D,
B23K, B25J), Engines and Pumps (F01B and F02-F04 classes), Mechanical Components and Systems
(e.g., F15B, F16, F17 classes), Measurement and Testing Instruments (e.g., G01B, G01N, G01R), Op-
tical and Photographic Equipment (e.g., G02B, G02F, G03B), Computing and Control Systems (e.g.,
G06F, G07, G08 classes), Transportation Systems (B60-B64 classes), Electrical Components (H02-H05
classes), Printing Machinery (B41 class), Material Handling and Packaging (B65-B67 classes), Lighting
and HVAC Equipment (e.g., F21, F24-F25, F28 classes), Display Systems (G09-G12 classes), and Semi-
conductor Devices and Lasers (e.g., H01L, H01S). These fields characteristically produce innovations
that directly manifest as tangible products or equipment with clear market applications. We use this
classification system to calculate the share of product-oriented patents of firms as a measure of product
orientation in innovation activities.
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