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Abstract
This paper investigates how data technology affects firms’ market power and asset prices.
Using a novel dataset tracking firms’ employment of data scientists, we document three key
empirical findings: firms with higher proportions of data scientists exhibit larger markups,
have higher information quality proxied by lower sales forecast errors, and earn higher stock
returns. Specifically, a long-short portfolio strategy based on firms’ data scientist ratios gen-
erates significant annual excess returns of approximately 4%. To quantitatively rationalize
these empirical findings, we develop a heterogeneous firm model in which firms optimally hire
data scientists to learn about unobserved consumer tastes. The model demonstrates how
data enables firms to improve demand forecasting accuracy and extract higher markups.
Importantly, supply-constrained firms have stronger incentives to hire data scientists, lead-
ing to countercyclical data scientist hiring that amplifies their exposures to aggregate risk
through an operating leverage channel. We provide empirical evidence supporting our model
mechanism.
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1 Introduction

The significance of data in the modern economy has grown dramatically in recent years.
Data is crucial in enhancing companies’ understanding of consumer behavior, enabling them
to optimize pricing strategies. For instance, Uber employs dynamic pricing algorithms that
leverage customer data and historical activity patterns. Similarly, airlines and retailers utilize
consumer data and sophisticated algorithms to deliver personalized recommendations and
boost sales performance. These examples illustrate a key benefit of data investment: by
analyzing customer behavior, firms can extract monopolistic rents and increase their price
markups. In this paper, we first document empirical evidence on how data influences firms’
market power, corporate policies, and equity returns. We then develop a quantitative model
to explain these empirical patterns.

Given the intangible nature of data, measuring a firm’s data technology presents an
empirical challenge. To address this challenge, we examine firms’ workforce composition,
specifically focusing on employees with data analytical skills, whom we term as data scien-
tists. Under the assumption that the amount of data a firm can process is determined by its
labor force with such skills, our focus on data scientists should provide a good proxy for a
firm’s unobserved data technology. We use a detailed occupation-level dataset to construct
a firm-year measure of employees with data analytical skills. Our key metric is the data
scientist ratio, defined as the proportion of data scientists relative to total employees.

We document several novel empirical facts regarding data scientists, firm dynamics, risk
and returns. First, firms with more data scientists exhibit higher markups and profit margins,
suggesting that data accumulation could strengthen firms’ market power. Second, we find
that firms hiring more data scientists can improve their forecast accuracy, supporting the
view Farboodi and Veldkamp (2021) that data is valuable information that improves the
accuracy of firms forecasting. Third, we show that firms with higher data scientist ratios
are riskier and earn higher expected stock returns. A long-short portfolio based on the data
scientist ratio yields an annual excess return of approximately 4%, which remains significant
after controlling for popular equity risk factors.

Our empirical findings reveal novel relationships between data, market power, and risk.
To understand the underlying economic mechanisms and quantify the impact of data on firm
dynamics and returns, we incorporate endogenous data production, data scientist hiring,
and learning about consumer demand into an otherwise standard production-based asset
pricing model. On the supply side, our model shares several common features with the
production-based asset pricing literature, including capital investment subject to adjustment
costs, neoclassical production technology, and heterogeneous firms due to idiosyncratic firm-
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level TFP shocks. More importantly, we introduce novel features on the consumer demand
side, including deep habit preferences and unobservable consumer taste. Following Ravn,
Schmitt-Grohé, and Uribe (2006), consumers exhibit deep habit preferences for products,
which creates an inelastic component in the demand curve alongside the standard elastic
component. The relative importance of this inelastic component depends on the firm’s ability
to accurately forecast unobserved consumer taste. When a firm better aligns its products
with current consumer taste, the inelastic component plays a more important role, then the
firm can charge higher price markups. Thus, the demand side of our model provides a theory
of demand forecasting and markups.

Data plays a crucial role in resolving uncertainty about consumer taste and improves
demand forecasting. In our model, a firm can observe a noisy signal of the true consumer
taste. Following Farboodi and Veldkamp (2021), we assume this signal contains both the true
taste and a noise component, with the signal’s precision increasing with the efficient units of
data generated by the firm’s data scientists. This mechanism incentivizes firms to hire data
scientists and accumulate data, which ultimately leads to higher markups. To emphasize
the role of data scientists in learning and increasing market power, we assume they do not
directly contribute to production. Consequently, there is no factor income associated with
their activities.

The optimality condition for hiring data scientists introduces a novel data-Q condition
analogous to the classic Q theory of investment. This condition states that the marginal cost
of hiring an additional data scientist must equal the present value of the markup increase
derived from improved demand forecasts. The data-Q relation also yields predictions about
the joint dynamics of supply shocks (TFP) and data scientist hiring. Specifically, firms ex-
periencing supply bottlenecks (negative firm-level TFP shocks) have stronger incentives to
increase current profits by raising price markups. To achieve this, firms hire more data scien-
tists to enhance their data processing capabilities, improving their ability to track consumer
demand and strengthen market power. Therefore, our model predicts that data scientist
hiring should be relatively more countercyclical than other cyclical business quantities, such
as capital investment.

The countercyclical hiring of data scientists has important implications for the risk profile
of data-intensive firms. On one side, data scientists enable firms to charge higher markups
and maintain profitability during economic downturns, providing a valuable hedge for in-
vestors during periods of high marginal utility. However, the countercyclical nature of data
scientist hiring also introduces a labor-induced operating leverage effect that amplifies the
cyclicality and risk in firms’ cash flows. Our quantitative analysis reveals that the operating
leverage effect dominates the hedging benefit, explaining why firms with higher proportions
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of data scientists earn greater returns in our model.
We calibrate our model to match salient features of the data regarding the cross-sectional

variation in data scientist ratio, markups and other prominent firm characteristics. We find
that our model can quantitatively account for the positive association between data sci-
entist ratio, information quality, markups, and expected stock returns. In addition to the
quantitative success, we further test our model’s predictions regarding the cyclicality of data
scientist hiring both at the aggregate time series and cross-sectional firm level. At the aggre-
gate level, we find that the IT-related investment to total investment ratio is countercyclical.
At the firm level, we show that firms with more data scientists experience lower firm-level
productivity shocks.

Related Literature

Our paper contributes to the growing literature studying the impact of data on the econ-
omy and the financial markets (see Veldkamp and Chung (2022) for a recent review). We
model data as a tool that mitigates information frictions and enhances firms’ learning about
unobserved fundamentals, building on the framework in Farboodi and Veldkamp (2021),
which emphasizes data’s role in reducing uncertainty. Abis and Veldkamp (2024) also use
employment information of data-related jobs to infer the value of data. Begenau, Farboodi,
and Veldkamp (2018) demonstrate how data’s impact on uncertainty reduction dispropor-
tionately benefits large firms. Babina, Fedyk, He, and Hodson (2024) show firms that invest
more in AI increase their exposure to the systematic risk, measured by market betas. Bryn-
jolfsson and McElheran (2019) find that data-driven decision-making enhances efficiency.
While prior work associates data technology with gains in efficiency and productivity, our
research highlights data accumulation’s role in increasing market power. Additionally, we ad-
dress the risks associated with data investment and its implications for asset pricing through
the learning channel, filling a gap in the literature.

This paper belongs the production-based asset pricing literature based on q-theory. For
instance, Zhang (2005) explains the value premium within a q-theory framework, while Ai,
Li, and Tong (2022) and Kogan, Li, and Zhang (2023) address both value and profitability
premiums. Our concept of data scientists aligns with studies examining labor’s impact on
firm dynamics and stock returns. For example, Belo, Li, Lin, and Zhao (2017) find that
industries with more high-skilled workers tend to amplify the negative relationship between
hiring rates and future stock returns, and Donangelo, Gourio, Kehrig, and Palacios (2019)
and Kuehn, Simutin, and Wang (2017) analyze how labor share and exposure to labor market
conditions, respectively, relate to equity returns. However, our study diverges from these by
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examining data scientists’ influence on firm dynamics via market power rather than as a
traditional labor input. In our model, firms’ optimal data acquisition resembles investment
q-theory, with our "data-Q" relation indicating that the present value of expected markups
and reductions in demand uncertainty drive variations in data investment across firms and
over time.

The concept of data relates to the literature on intangible capital. For example, Eis-
feldt and Papanikolaou (2013) highlight the significance of organizational capital for firm
dynamics, particularly due to the risks posed by key talent departures. Crouzet and Eberly
(2023) suggest that intangible assets account for significant fluctuations in the gap between
investment rates and Tobin’s q. Our paper introduces a distinct perspective, positioning
data as a unique role that enhances firms’ ability to forecast demand, which increases firms’
market power. This approach expands the literature by focusing on data’s specific role in
improving demand prediction and boosting firm market power.

Our article relates to the growing literature in finance studying the impact of market
power on asset prices in equilibrium models with production and strategic interactions, e.g.,
Aguerrevere (2009), Bustamante and Donangelo (2017), Loualiche et al. (2016), Corhay,
Kung, and Schmid (2020), Dou and Ji (2021), Dou, Ji, and Wu (2021). In these studies,
market power matters for risk because it amplifies exposure to aggregate productivity risk.
Earlier works have not examined the risks associated with data investment. We provide a
theory of heterogeneous exposures to aggregate risk when firms can endogenously acquire
data and improve the accuracy of information. Corhay, Li, and Tong (2022) explores the
impact of asset pricing on exogenous shocks to aggregate markups. We analyze the role of
data investment in securing market power which leads to endogenous variation in markups
and study its asset pricing implications. Finally, Eeckhout and Veldkamp (2022) develops
a framework to study the interaction between data and imperfect competition. We share
some of the insights emerging in their static framework: data leads to risk reduction which
tends to make firms safer. In addition, our dynamic model provides a more complete char-
acterization of the risks associated with data accumulation: countercyclical data investment
constitutes a form of operating leverage that increases firms’ risks and expected stock re-
turns. Our theoretical model also provides guidance on how to isolate the two competing
effects empirically.

The remainder of our paper is organized as follows. In Section 2, we present some stylized
empirical facts and introduce data construction and summary statistics. We introduce our
model in Section 3 and provides a quantitative analysis of the model in Section 4. Section 5
concludes.
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2 Empirical Findings

In this section, we first discuss our measure of firm-level data scientists as a proxy for firm-
level data technology. Using this new measure, we document several new findings regarding
data technology, information quality, markup and stock returns.

2.1 Data Source

Job occupation data We obtain occupation-level job data from Revelio Labs, a major
provider of labor data that continuously gathers online profiles and resumes from platforms
such as LinkedIn. Revelio Labs categorizes jobs into 150 distinct occupations.1 The data
becomes comprehensive since 2008 and is aggregated at the firm-occupation-month level,
covering current headcounts, as well as employee exits and new hires within a firm for
each month. We identify data scientists within this dataset by selecting occupations that
perform roles similar to data scientists, such as data scienitsts, economists, data analysts,
etc. Section C.1 of the Appendix provides a detailed list of data science-related occupations.
To merge this data with Compustat, we aggregate the monthly employment data to an
annual frequency. Our key measure, the data scientist ratio, is defined as the ratio of data
scientists to total employees for each firm at the end of each calendar year.

Stock returns and firm fundamentals Our sample consists of firms that lie in the
intersection of Compustat, the Center for Research in Security Prices (CRSP), and the
Revelio database, dropping observations that lack necessary financial data and stock returns.
We obtain accounting data from Compustat and stock price data from CRSP. Our sample
firms include those with nonmissing data scientist ratios and nonmissing NAICS two-digit
industry classification codes, as well as those with domestic common shares (SHRCD =
10 and 11) trading on NYSE, AMEX, or NASDAQ. Following the stream of literature of
empirical asset pricing, we exclude financial firms. We require firms have at least two years
of observations in Compustat.

IBES and forecasts We collect data on management’s sales forecasts and actual sales
from the IBES (Institutional Brokers Estimate System) Guidance database. Managers’ sales
forecast errors are used as a proxy for the precision of firms’ demand forecasts, reflecting

1To enhance the data’s representativeness, especially considering potential biases in online profiles, Revelio
Labs employs a de-biasing technique. This method adjusts the recorded employee counts based on the
likelihood of individuals having online profiles, with adjustments according to the distribution from the
Bureau of Labor Statistics. Additional details on job categories and methodologies are available on Revelio
Labs’ website: https://www.data-dictionary.reveliolabs.com/methodology.html.
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how accurately firms forecast consumer demand for their goods. The idea is that firms with
more data scientists can provide better information to managers, improving the accuracy of
these forecasts. To address the potential issue that firms with more analyst coverage may
have an information advantage, we control for the number of analysts covering a firm, which
is also collected from the IBES database.

Macroeconomic Data Macroeconomic data are from the Federal Reserve Economic Data
(FRED) maintained by the Federal Reserve in St. Louis.

2.2 Summary Statistics

Table 1, Panel A reports pooled summary statistics. Specifically, Panel A reports the
pooled mean, median, standard deviation (Std), 5th percentile (P5), 25th percentile (P25),
75th percentile (P75), and 95th percentile (P95) of the variables of interest, as well as number
of observations for each variable. Our main variable, data scientist ratios, is the total number
of data scientists scaled by the total number of employees. The hiring rate is calculated as
the ratio of newly hired data scientists to the average number of data scientists employed
in the current and previous years. Hiring growth is measured as the logarithmic difference
(i.e., growth rate) in the number of newly hired data scientists. The other variables include
market capitalization (ME), book-to-market ratio (B/M), investment rate (I/K), return on
assets (ROA), markup, profit margin, book leverage (Lev), operating leverage (OP Lev),
and asset growth.2

We have a total of 29,462 firm-year observations with non-missing data scientist ratios.
The average data ratio is 6.90%, suggesting that firms hire non-trivial amounts of employees
with data skills in the labor force. Industry-level summary statistics for data scientist ratios
are presented in Section C.2 of the Appendix.

Panel B of Table 1 presents a correlation matrix for all variables considered in Panel A.
In the following subsection, we conduct the univariate portfolio sort, factor regressions, and
Fama-MacBeth regressions to document the return predictability of data scientist ratios. In
the rest of our analyses, we focus on data scientist ratios according to the general occupation
descriptions.

2Detailed information on the markup construction refers to De Loecker et al. (2020).
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Table 1: Statistics and Correlations

This table presents summary statistics in Panel A and a correlation matrix in Panel B for the firm-year sample. The hiring rate is calculated as the
ratio of newly hired data scientists to the average number of data scientists employed in the current and previous years. DS hiring growth is measured
as the logarithmic difference (i.e., growth rate) of the number of newly hired data scientists. ME is market capitalization deflated by CPI (measured
in 2009 million USD) at the end of June. B/M is the ratio of book equity to market capitalization. I/K is capital expenditures (item CAPX) divided
by property, plant, and equipment (item PPENT). Return on assets (ROA) is the gross profit (item GP) scaled by total assets (item AT). Markup
is used to measure the market power, following De Loecker et al. (2020). Profit margin is sales revenue (SALE) minus the cost of goods sold (item
COGS) and then divided by the cost of goods sold. Book leverage (Lev) is the summation of current liabilities (item DLC) and long-term debt (item
DLTT) scaled by total assets. Operating leverage (OP Lev) is the selling, general, and administrative expenses (item XSGA) scaled by gross property,
plant, and equipment (item PPEGT). Asset growth is measured as the logarithmic difference (i.e., growth rate) in total assets deflated by CPI. We
report the pooled mean, standard deviation (Std), 5th percentile (P5), 25th percentile (P25), median, 75th percentile (P75), and 95th percentile (P95).
Observations denote the valid number of observations for each variable. The sample period is 2008 to 2021 at an annual frequency.

DS Ratio DS Hiring Rate DS Hiring Growth ME B/M I/K GP/AT Markup Margin Lev OP Lev Asset Growth

Panel A: Summary Statistics

Mean 6.90 0.23 4.67 6,833.55 0.65 0.29 0.31 1.87 1.56 0.25 1.87 4.69
Std 7.13 0.22 245.17 34,608.93 0.81 4.58 0.33 1.35 13.31 0.26 10.53 29.00
P5 0.43 0.00 -260.54 18.25 0.08 0.04 -0.10 0.97 -0.29 0.00 0.00 -32.26
P25 2.48 0.10 -37.4 155.73 0.26 0.11 0.16 1.20 0.28 0.03 0.12 -5.96
Median 4.44 0.18 4.15 763.45 0.47 0.19 0.29 1.44 0.57 0.21 0.58 2.45
P75 8.73 0.29 41.61 3,144.98 0.80 0.32 0.45 1.96 1.26 0.37 1.59 12.38
P95 21.00 0.64 218.22 25,581.19 1.69 0.63 0.81 4.30 4.87 0.66 5.86 50.10
Observations 29,462 26,344 25,934 28,889 27,941 29,385 29,462 25,137 29,433 29,329 29,054 27,886

Panel B: Correlation

DS Ratio 1
Hiring Rate 0.15 1
Hiring Growth 0.01 0.38 1
ME 0.12 0.01 0.00 1
B/M -0.16 -0.11 -0.04 -0.09 1
I/K 0.01 0.01 0.00 0.00 -0.01 1
GP/AT 0.04 0.03 0.01 -0.02 -0.19 0.00 1
Markup 0.37 0.19 0.01 0.06 -0.2 0.01 0.32 1
Margin 0.34 0.17 0.01 0.07 -0.16 0.01 0.25 0.95 1
Lev -0.15 -0.05 -0.01 0.04 0.01 -0.01 -0.26 -0.16 -0.11 1
OP Lev 0.04 0.09 0.00 -0.02 -0.03 0.19 0.05 0.10 0.07 -0.07 1
Asset Growth 0.07 0.14 0.03 0.03 -0.17 0.03 -0.03 0.12 0.11 0.05 0.05 1
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2.3 Data Scientists and Stock Returns

2.3.1 Univariate Portfolio Sorting

To explore the connection between data scientist ratios and expected stock returns in the
cross-section, we construct five portfolios by sorting firms based on their data scientist ratio.
The data scientist ratio is calculated as the year-end number of data scientists divided by
the total number of employees. These portfolios are rebalanced annually.

At the end of each June in year t, we sort firms into quintile portfolios based on their
data scientist ratios at the end of year t − 1. Additionally, the portfolio sort is relative to
peers within their NAICS two-digit industries, using NYSE breaking points. Firms with
non-missing data scientist ratios in year t− 1 are allocated to portfolios, with the low (high)
portfolio comprising firms with the lowest (highest) ratios. To examine the relationship
between data scientist ratios and returns, we construct a high-minus-low portfolio by taking
a long position in the highest quintile and a short position in the lowest.

We calculate value-weighted monthly returns for these portfolios from July of year t to
June of year t+1, weighting firms by market capitalization at portfolio formation to reduce
the impact of small, less tradable firms. Firms with asset values or sales below $1 million
are excluded to further minimize the influence of very small firms.

In Panels A of Table 2, the top row presents the annualized average excess stock return
in percentage (E[R]-Rf, in excess of the risk-free rate), t-statistic, standard deviation, and
Sharpe ratio for the six portfolios we consider. The table shows that a firm’s data scientist
ratio forecasts stock returns. Taking Panel A, which uses data scientist ratio, as an example,
the quintile portfolio sorts from low to high have annualized excess returns of 11.21%, 12.75%,
12.32%, 13.28%, and 15.34%, respectively. More importantly, the H-L portfolio has an
annualized excess return of 4.13% with a t-statistic of 2.00. In addition, the Sharpe ratios
of the quintile portfolios are 0.67, 0.83, 0.85, 0.89, and 1.05, respectively, and that of the
high-minus-low portfolio is 0.45, which is comparable to the Sharpe ratio of the aggregate
equity premium. The finding that the return on the H-L portfolio is economically large and
statistically significant suggests a significant predictive ability of firm-level data scientist
ratios for stock returns. Overall, Table 2 provides empirical evidence that firm-level data
scientist ratios help explain subsequent stock returns.

Panels B of Table 2 reports the average firm characteristics across quintile portfolios.
On average, firms in the highest quintile group exhibit a data scientist ratio of 16.58% per
year, compared to just 0.01% per year for firms in the lowest quintile group. Additionally,
firms with higher data scientist ratios tend to have higher data scientist hiring rates and
growth rates. Furthermore, we find that firms with high data scientist hiring ratios are
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Table 2: Univariate Portfolio Sorting

This table reports average excess returns for five portfolios sorted on data scientist ratios, using NYSE
breaking points, relative to their industry peers in Panel A and the time-series average of the cross-sectional
medians of firm characteristics in Panel B, for which we use the NAICS two-digit industry classifications,
and rebalance portfolios at the end of every June. The sample starts from July 2009 to December 2022,
financial firms are excluded. We report average excess returns over the risk-free rate (E[R]-Rf), t-statistics,
and Sharpe ratios (SR) across five portfolios in each panel. Portfolio returns are value-weighted by firms’
market capitalization, and are multiplied by 12 to make the magnitude comparable to annualized returns.
t-statistics based on standard errors using the Newey-West correction are reported in parentheses. Variables
of portfolio characteristics are described in Table 1.

Panel A: Univariate Sorted Portfolios

L 2 3 4 H H-L

E[R] - Rf (%) 11.21 12.75 12.32 13.28 15.34 4.13
[t] 3.24 3.91 3.88 4.35 5.27 2.00
SR 0.67 0.83 0.85 0.89 1.05 0.45

Panel B: Firm Characteristics

L 2 3 4 H

DS Ratio (%) 0.01 2.13 4.04 7.20 16.58
Hiring Rate 0.14 0.17 0.17 0.19 0.20
Hiring Growth (%) -1.15 2.86 3.93 4.86 5.46
Log ME 5.83 6.84 7.00 7.18 6.95
BM 0.57 0.53 0.48 0.41 0.39
I/K 0.13 0.14 0.15 0.16 0.16
GP/AT 0.26 0.29 0.31 0.32 0.29
Markup 1.31 1.36 1.42 1.52 1.47
Profit Margin 0.46 0.50 0.59 0.68 0.70
Book Lev 0.22 0.25 0.23 0.21 0.16
OP Lev 0.38 0.38 0.48 0.64 0.76
Asset Growth (%) 1.87 2.04 2.54 2.44 3.47

characterized by lower book-to-market ratios but higher investment rates, markup, profit
margins, operating leverage, as well as asset growth. However, there is little variation in
book leverage and profitability across the quintile-sorted portfolios.

2.3.2 Asset Pricing Factor Regressions

Next, we analyze the extent to which the variability in the average returns of the data-
scientist-hiring-rates-sorted portfolios can be explained by exposure to standard risk factors
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as proposed by the Fama and French (2015) five-factor model, the Hou, Xue, and Zhang
(2015) q-factor model.3

To test the standard risk factor models, we perform time-series regressions of data-
scientist-hiring-rates-sorted portfolios’ excess returns on the Fama and French (2015) five-
factor model (the market factor-MKT, the size factor-SMB, the value factor-HML, the prof-
itability factor-RMW, the investment factor-CMA) in Panel A and on the Hou, Xue, and
Zhang (2015) q-factor model (the market factor-MKT, the size factor-SMB, the investment
factor-I/A, the profitability factor-ROE) in Panel B, respectively. Such time-series regres-
sions enable us to estimate the betas (i.e., risk exposures) of each portfolio’s excess return
on various risk factors and to estimate each portfolio’s risk-adjusted return (i.e., alphas in
%). We annualize the excess returns and alphas in Table 3.

As presented in Table 3, the risk-adjusted returns (intercepts) of the high-minus-low port-
folio sorted by data scientist ratios remain notably large and statistically significant. These
intercepts range from 4.81% for the Fama and French (2015) five-factor model in Panel A
to 3.13% for the Hou, Xue, and Zhang (2015) q-factor model in Panel B. These intercepts
are all at least 3.03 standard errors above zero, indicating high statistical significance. Ad-
ditionally, the alphas estimated by both the Fama-French five-factor model and the HXZ
q-factor model remain comparable to the return spread observed in the univariate sorting
(Table 2). Furthermore, the high-minus-low portfolio’s returns exhibit significantly negative
size and value betas in relation to both the Fama and French (2015) five-factor model and
the Hou, Xue, and Zhang (2015) q-factor model. However, these returns show insignificant
market betas with respect to both models.

Taken altogether, the outcomes from the asset pricing factor tests detailed in Table 3
indicate that the variation in cross-sectional returns among portfolios categorized by data
scientist ratios cannot be absorbed by the Fama French five-factor model (Fama and French
(2015)) and the HXZ q-factor model (Hou, Xue, and Zhang (2015)). Consequently, the
elevated returns linked to data scientist ratios are not explained by common risk factors.
In the subsequent subsection, we reinforce the association between data scientist ratios and
returns by utilizing Fama-Macbeth regressions.

2.3.3 Fama-Macbeth Regressions

We further investigate the predictability of data scientist ratios for cross-sectional stock
returns using Fama-MacBeth cross-sectional regressions (Fama and MacBeth (1973)). This

3The Fama and French factors are sourced from Kenneth French’s data library (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html). The HXZ factors are obtained from
the q-factors data library (http://globalq.org/index.html).
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Table 3: Asset Pricing Factor Tests

This table shows asset pricing factor tests for five portfolios sorted on data scientist ratios, using NYSE
break points, relative to their industry peers, for which we use the NAICS two-digit industry classifications
and rebalance portfolios at the end of every June. The results reflect monthly data, for which the sample
starts from July 2009 to December 2022. To adjust for risk exposure, we perform time-series regressions of
data-scientist-hiring-rates-sorted portfolios’ excess returns on the Fama and French (2015) five factors (MKT,
the size factor-SMB, the value factor-HML, the profitability factor-RMW, and the investment factor-CMA)
in Panel A and on the Hou, Xue, and Zhang (2015) q-factors (MKT, SMB, the investment factor-I/A, and
the profitability factor-ROE) in Panel B, respectively. Data on the Fama-French five-factor is from Kenneth
French’s website. Data on the I/A and ROE factors are provided by the q data library. These betas,
together with alphas, are annualized by multiplying 12. The Newey-West adjusted t statistics are reported
in parentheses.

L 2 3 4 H H-L

Panel A: FF5

αFF5 -3.05 -1.73 -0.53 -0.91 1.76 4.81
[t] -2.89 -1.14 -0.48 -1.25 2.21 3.03
MKT 0.99 0.98 0.91 1.00 0.99 -0.00
[t] 46.88 36.19 47.36 49.27 58.14 -0.09
SMB 0.35 0.18 0.12 0.00 -0.13 -0.48
[t] 8.26 4.56 3.25 0.10 -3.90 -7.45
HML 0.08 -0.01 0.04 -0.08 -0.20 -0.28
[t] 1.70 -0.13 0.59 -2.09 -6.39 -3.46
RMW 0.14 0.21 0.20 0.10 0.08 -0.05
[t] 1.88 2.99 2.82 2.52 2.38 -0.66
CMA -0.02 0.23 0.01 0.15 -0.02 -0.01
[t] -0.11 1.45 0.08 2.47 -0.25 -0.03

Panel B: HXZ

αHXZ -1.45 -0.28 0.72 -0.34 1.68 3.13
[t] -1.36 -0.18 0.76 -0.41 4.40 3.32
MKT 0.99 0.99 0.91 0.99 1.00 0.01
[t] 56.72 44.56 32.05 53.37 89.45 0.59
SMB 0.32 0.11 0.10 -0.07 -0.22 -0.54
[t] 6.78 1.78 2.41 -1.66 -8.06 -12.68
I/A 0.09 0.24 0.08 0.06 -0.22 -0.31
[t] 0.94 2.49 1.20 1.15 -4.50 -2.81
ROE -0.02 0.03 0.03 -0.04 0.06 0.08
[t] -0.38 0.47 0.85 -0.68 1.73 1.04

regression enables us to account for an extensive array of firm characteristics that predict
stock returns. Moreover, it allows us to explore whether the positive relationship between
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data scientist ratios and returns can be attributed to other established predictors at the firm
level in the literature.

We perform cross-sectional regressions for each month spanning from July of year t to
June of year t+ 1 as expressed in the following equation:

Ri,t+1 −Rf,t+1 = aj + b× DS Ratioi,t + c× Controli,t + εit, (1)

where aj captures the industry fixed effects. Within each month, we regress the monthly
returns of individual stocks (annualized by multiplying by 12) against the data scientist
ratios of year t − 1 (reported by the end of December of year t − 1), diverse sets of control
variables known by the end of June of year t, and industry fixed effects. The control variables
include the natural logarithm of market capitalization at the end of each June (Size), which is
deflated by the CPI index, book-to-market ratio (B/M), investment rate (I/K), profitability
(GP/AT), book leverage (Lev), operating leverage (OP Lev), SGA ratio (SGA/AT), markup,
asset growth, and industry indicators based on NAICS two-digit industry classifications. To
mitigate the impact of outliers, all independent variables are normalized to possess a zero
mean and a one-standard-deviation following winsorization at the 1st and 99th percentiles.

In Table 4, we report the average slopes from monthly regressions, and the corresponding
t-statistics are the average slopes divided by their time-series standard errors. We annual-
ize the slopes. The results support the return predictive ability of data scientist ratios. In
Specification 1, data scientist ratios significantly positively predict future stock returns with
a slope coefficient of 2.07 and a t-statistic of 2.48. This finding is consistent with the pre-
dictability and implies that a one-standard-deviation increase in data scientist ratios leads
to a significant increase in the annualized stock return of 2.07%.

The results of these regressions are consistent with the results of the univariate portfolio
sorting on data scientist ratios in Table 2, which show that data scientist ratios significantly
positively predict future stock returns. From Specifications 2 to 6, data scientist ratios
positively predict stock returns with statistically significant slope coefficients when we include
control variables known to predict stock returns in the cross-section: size, book-to-market
ratio, investment rate, profitability, book leverage, operating leverage, markup, and asset
growth. More importantly, the predictability of data scientist ratios is not subsumed by
known predictors of stock returns in the literature, even when we include all control variables
jointly to run a horse race from Specifications 2 to 6.
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Table 4: Fama-Macbeth Regressions

This table presents the results of Fama-MacBeth regressions, in which we analyze individual stock excess
returns based on their data scientist ratios and alternative variables that are relevant in the literature. The
regressions are conducted in a cross-sectional manner for each month, spanning from July of year t to June of
year t+1. Specifically, in each month, we regress the monthly excess returns of individual stocks (annualized
by multiplying by 12) on the data scientist ratio from year t− 1, various sets of control variables known by
the end of June of year t, and industry fixed effects. Industry categories are defined using NAIC two-digit
industry classifications. To mitigate the influence of outliers, all independent variables are normalized to
have a zero mean and a one-standard-deviation, after winsorization at the 1st and 99th percentiles. The
reported t-statistics are computed based on standard errors estimated using the Newey-West correction. The
sample period for the analysis spans from July 2009 to December 2022.

(1) (2) (3) (4) (5) (6)

DS Ratio 2.07** 2.21*** 2.02** 2.31*** 1.88** 2.28***
(2.48) (2.77) (2.40) (2.91) (2.23) (2.74)

Log ME -0.26 -0.31 -0.82 -1.78 -0.10 -0.39
(-0.16) (-0.19) (-0.54) (-1.40) (-0.06) (-0.25)

B/M 0.91 0.84 0.67 0.24 0.77 0.39
(0.95) (0.88) (0.70) (0.26) (0.73) (0.41)

I/K -1.65** -1.49** -0.92 -1.49** -2.37*** -1.50**
(-2.25) (-2.09) (-1.31) (-2.12) (-3.18) (-2.07)

GP/AT 1.88* 1.96* 2.45** 4.95** 3.33*** 1.85*
(1.75) (1.84) (2.15) (2.53) (2.63) (1.77)

Lev 0.85
(0.87)

OP Lev -2.75***
(-3.35)

SGA/AT -4.56***
(-2.72)

Markup -0.63
(-0.96)

Asset Growth -1.98***
(-2.93)

Observations 335,255 333,672 331,177 335,255 287,116 287,116
R-squared 0.06 0.06 0.06 0.06 0.06 0.06
Industry FE Yes Yes Yes Yes Yes Yes

2.4 Data Scientists and Firm Dynamics

This section examines the empirical relationship between data scientist ratios and firm
characteristics. Specifically, we investigate the link between the data scientist ratio and
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market power, as well as the relationship between the data scientist ratio and firms’ forecast
accuracy.

2.4.1 Data Scientists and Markup

Previously, we have shown preliminary evidence on the positive correlation between data
scientists hiring and market power in Panel B of Table 2. To further strengthen the linkage,
we perform OLS regressions controlling for firm characteristics. Specifically, we run the
following regression,

Markupi,t = ai + δt + b× DSi,t + c× Controlsi,t + εi,t, (2)

where DSi,t is our proxy for data scientists, ai represents industry or firm fixed effects, and
δt denotes time fixed effects. We use three proxies for the hiring of data scientists: the data
scientist ratio (also used in the univariate portfolio sort exercise in Table 2), the data scientist
hiring rate, and the growth rate of newly hired data scientists. Control variables include
firm size, book-to-market ratio (B/M), investment-to-capital ratio (I/K), profitability, book
leverage (Lev), selling, general, and administrative (SGA) expenses to total assets ratio, and
asset growth.

Specification 1 of Table 5 shows that a one-standard-deviation increase in the data sci-
entist ratio or hiring rates is associated with a 15% increase in markup. This relationship
holds with alternative measures, such as the data scientist hiring growth rate, where a one-
standard-deviation increase corresponds to a 1.6% to 3.9% rise in markup. Specification 4
provides further robustness results, the positive correlation is also significant after controlling
for firm-level fixed effects. We also control for variables strongly correlated with markup, as
suggested by De Loecker et al. (2020), such as size and SGA. This empirical evidence strongly
supports the notion that data scientists contribute to firm markups, even after accounting
for other firm characteristics.

2.4.2 Data Scientists and Forecast Errors

We hypothesize that data technology enhances the information quality of a firm to un-
derstand consumer behaviors better and charge higher markups. This section tests the link
between data technology and information quality. Information quality is not directly ob-
served, so we employ sales forecast errors as proxies. Specifically, we investigate whether
firms with more data scientists exhibit lower forecast errors, focusing primarily on manage-
ment’s sales forecast errors. The rationale is that data scientists can process data, providing
managers with better insights into consumer demand, which in turn helps managers make
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Table 5: Markup and Data Scientists

This table examines the relationship between firm markups and data scientist-related measures. The variables
of interest are the DS ratio, DS hiring rate, and DS hiring growth, all of which are standardized to have a
mean of zero and a standard deviation of one for comparability. We report panel regressions of markups on
data scientist-related measures, along with other firm characteristics, as in Equation (2). Standard errors
are double clustered at the firm and year level.

(1) (2) (3) (4)

DS Ratio 0.155***
(3.696)

DS Hiring Rate 0.148***
(7.061)

DS Hiring Growth 0.039** 0.016*
(2.464) (2.039)

Log ME 0.062*** 0.070*** 0.073*** 0.251***
(4.246) (4.701) (4.768) (5.365)

B/M -0.017* -0.017 -0.023 -0.002
(-1.794) (-1.659) (-1.770) (-0.707)

I/K -0.001 -0.003 -0.003 0.001
(-1.615) (-1.010) (-1.055) (0.420)

GP/AT 1.992*** 1.977*** 1.894*** 2.545***
(14.982) (13.538) (13.757) (14.409)

Lev -0.063 -0.167 -0.188 0.002
(-0.542) (-1.316) (-1.478) (0.013)

SGA/AT 1.083*** 1.156*** 1.230*** 0.669***
(6.451) (7.266) (6.975) (3.077)

Asset Growth 0.127*** 0.113** 0.122*** 0.016
(3.179) (2.965) (3.074) (0.908)

Observations 40,294 37,043 36,454 35,807
R-squared 0.180 0.183 0.181 0.746
Industry FE Yes Yes Yes No
Firm FE No No No Yes
Year FE Yes Yes Yes Yes
Cluster Year Yes Yes Yes Yes
Cluster Firm Yes Yes Yes Yes
Controls Yes Yes Yes Yes

more accurate sales forecasts. Management forecasts offer a clear advantage over analyst
forecasts, as they incorporate information generated within the firm and publicly available
data that analysts can access. We focus on sales rather than earnings per share because
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sales can capture consumers’ demand better.
We collect managerial annual sales estimates reported in the IBES Guidance database

over our sample period. To quantify the precision of managerial forecasts, we construct a
measure of revision improvement (RI) based on forecast updates, calculated as the logarith-
mic difference in absolute forecast errors between the beginning and end of the year. This
approach is based on the assumption that firms with better data technology and forecasting
capabilities more effectively resolve sales uncertainty as new information becomes available
throughout the calendar year, resulting in improved year-end predictions,

RIi,t = − log
(
|Forecastlast

i,t − Actuali,t|
)
+ log

(
|Forecastfirst

i,t − Actuali,t|
)
, (3)

where Forecastlast
i,t represents the value of the final managerial sales forecast from the IBES

Guidance database at the end of the year, Actuali,t denotes the actual sales reported at the
end of the reporting period, and Forecastfirst

i,t refers to the initial managerial sales forecast at
the beginning of the year. This measure captures the improvement in forecasting precision
within a certain horizon, reflecting the firm’s ability to refine its predictions as more infor-
mation becomes available.4 It also captures the idea that firms with more data scientists
can quickly learn and incorporate all recent information.

To confirm that our data scientist ratio is a valid proxy for firms’ data investment to
improve learning, we examine whether firms with more data scientists experience reductions
in forecast revisions. We test the relation between firm-level revision improvement and data
scientist ratios by estimating the following OLS regression,

RIi,t+h = ai + δt + b× DS Hiring Ratei,t + c× Controlsi,t + εi,t, (4)

where DSi,t is the proxy for data scientists, ai represents industry or firm fixed effects, and
δt denotes time fixed effects. We control for a rich set of firm characteristics, including size,
B/M, I/K, profitability, book leverage, SGA over total asset ratio. Moreover, managers can
potentially better forecast their own firms’ performance because there are more analysts cover
their firms. To address this issue, we also include analyst coverage regressions. Standard
errors are double clustered at firm and year level.

Specifications 1 and 2 of Table 6 show that the estimated coefficient on the data scientist
ratio b is significantly positive, demonstrating that firms with more data scientists can achieve
better sales forecast accuracy contemporaneously. Specifications 3 and 4 demonstrate that
hiring more data scientists also improves future forecast revisions. Given the persistent
nature of data scientist hiring decisions, this suggests that firms consistently increasing their

4Feng et al. (2009) also use forecast revision to proxy for informativeness.
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Table 6: Forecast Errors Regressions

This table shows the link between the hiring rate with the forecast revision improvement. We report the
results of the panel regressions Equation (3). Both revision improvement (RI) and data scientist hiring rate
(DS hiring rate) are in percentage numbers. Industry fixed effects are based on NAICS two-digit industry
classifications. Standard errors are double clustered at firm and year level. All regressions are conducted at
the annual frequency.

(1) (2) (3) (4)
RIi,t RIi,t RIi,t+1 RIi,t+1

DS hiring rate 0.215* 0.318* 0.219* 0.352***
(1.792) (1.819) (1.888) (3.268)

Log ME 0.019 -0.103* 0.013 0.055
(1.331) (-2.015) (0.700) (1.238)

B/M 0.079* 0.056 0.142*** 0.155*
(1.778) (0.951) (3.189) (1.902)

I/K -0.463*** -0.246** -0.234*** -0.024
(-3.809) (-2.892) (-3.108) (-0.247)

GP/AT -0.353*** -0.132 -0.284*** 0.233
(-3.502) (-0.604) (-3.099) (0.841)

Lev -0.180 -0.177 -0.011 0.138
(-1.272) (-0.919) (-0.071) (0.704)

SGA/AT 0.219** 0.267 0.164* 0.110
(2.438) (0.973) (2.119) (0.388)

Number of Analysts -0.005* -0.001 -0.003 0.008
(-2.012) (-0.195) (-0.956) (1.677)

Observations 10,435 10,046 10,490 10,091
R-squared 0.032 0.233 0.027 0.226
Industry FE Yes No Yes No
Firm FE No Yes No Yes
Year FE Yes Yes Yes Yes
Cluster Year Yes Yes Yes Yes
Cluster Firm Yes Yes Yes Yes
Controls Yes Yes Yes Yes

data scientist workforce maintain a persistent advantage in sales forecasting.

3 The Model

Our empirical results present new evidence on the impact of data on firm dynamics,
information quality, and the cross-sectional variation in stock returns. In this section, we
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introduce a quantitative production-based asset pricing model that includes data scientists to
explain the empirical findings documented earlier. Our model is grounded in the investment-
based asset pricing literature, such as Zhang (2005), Ai et al. (2022), and Kogan et al. (2023),
and incorporates core features of these models, including convex capital adjustment costs,
neoclassical production technology, and heterogeneous firms due to firm-specific productivity
shocks. We contribute to this literature by incorporating new elements on the consumer
demand side, examining the role of data scientists in demand forecasting, markups, and
stock returns.

3.1 Production Technology

Time is infinite and discrete. The economy is populated by a continuum of firms indexed
by i. A firm uses capital Kit to produce the product Yit. The production technology follows
the standard Cobb-Douglas function,

Yit = ZitAtK
α
it,

where α controls the share of capital in the production. Firm-level productivity is denoted
as Zit, and At refers to aggregate productivity.

To focus on the effect of data scientists, we impose the assumption that firm’s demand
for normal labor, which refers to the labor force that performs production related tasks, is
fixed and normalized to one. As a result, the number of data scientists in our model can also
be interpreted as the ratio of data scientists to total employees, consistent with our empirical
measure of DS ratio.

The law of motion of capital Kit is given by

Kit+1 = (1− δK)Kit + Iit, (5)

where δK is the capital depreciation rate, and Iit is the investment. Capital investment is
subject to adjustment costs. We assume the standard quadratic form of capital adjustment
cost GK(Iit, Kit). The quadratic adjustment cost function ensures that the investment ad-
justment cost is zero in steady state when the investment rate equals the capital depreciation
rate.

Data Scientists Firms maintain a pool of data scientists Nit. We interpret Nit as data
scientists scaled by the total number of employees. New hires are denoted as Hit. δN is the
fraction of existing data scientists that leave the firm. The law of motion of data scientists
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is
Nit+1 = (1− δN)Nit +Hit, (6)

Changes in the current data scientist pool are subject to convex adjustment costs GN(Hit, Nit).
Data scientists produce data that will eventually improve the accuracy of demand fore-

casting as shown later. Data production technology can be interpreted as a combination
of data collection and analysis. Following Jones and Tonetti (2020), we assume that data
production is dependent on the past unit sold of the firms, Yit−1. The idea that larger firms
produce more data is consistent with the data production function as in Abis and Veldkamp
(2024). The one period lag between quantity sold and data production is intuitive since it
takes time for data scientists to analyze the volumious transaction data. For a firm i with a
total number of data scientists Nit, the amount of data produced is given by

ωit = ν0N
ν1
it Y

1−ν1
it−1 , (7)

where ν0 is a scaling parameter, and ν1 ∈ (0, 1) controls the share of data scientists in data
production.

3.2 Data and Demand Curve

The Demand Curve

We focus on the firm’s demand without explicitly modeling the representative consumer’s
consumption and saving decisions. Our framework closely follows the deep habit literature,
as in Ravn, Schmitt-Grohé, and Uribe (2006). The consumer derives utility from a continuum
of goods indexed by i ∈ [0, 1]

Yt =

[∫ 1

0

(Yit −ΘitSt)
1−1/ηdi

]1/(1−1/η)

,

where St denotes the external habit level that we specify exogenously.5 Yit refers to con-
sumption goods i produced by firm i and η controls the demand elasticity.

For any given level of Yt, the purchase of each good variety i ∈ [0, 1] in period t must
solve the expenditure minimization problem,

min
Yit

∫ 1

0

PitYitdi− Pt

[∫ 1

0

(Yit −ΘitSt)
1−1/ηdi

]1/(1−1/η)

.

5In the model calibration, we fix St as a constant for simplicity. One could potentially allow St time-
varying.
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The solution to the minimization problem yields the demand curve for consumption good
Yit, that is,

Yit ≤
(
Pit

Pt

)−η

Yt +ΘitSt. (8)

A firm’s product demand consists of two components: one that responds to price changes
and another that remains inelastic. When the inelastic component accounts for a larger
share of total demand variation, the overall demand elasticity decreases, enabling the firm
to set higher price markups.6 Variable Θit determines the importance of inelastic demand
in driving the overall demand variation and the strength of deep habit effect.

Forecasting Technology

The ways in which data influences firms’ activities are inherently complex. The existing
literature on the data economy highlights two main perspectives. The first perspective at-
tributes data to technological advancements that enhance productivity or product quality
(e.g., Jones and Tonetti (2020) and Agrawal, McHale, and Oettl (2018)). The second per-
spective views data as a tool to alleviate information frictions, thereby reducing uncertainty
and improving forecasting accuracy (e.g., Kozlowski et al. (2018), Begenau et al. (2018),
Farboodi, Mihet, Philippon, and Veldkamp (2019), Farboodi and Veldkamp (2021), Veld-
kamp and Chung (2022), Eeckhout and Veldkamp (2022), Abis and Veldkamp (2024). Our
empirical findings indicate that firms with higher DS ratios tend to achieve greater forecast
precision, forecast revision improvement. This finding leads us to concentrate on the second
perspective. In theory, within a model of sticky output prices, a firm can achieve higher
markups by improving production efficiency and reduce marginal cost of production. Such
efficiency improvements may result from data analytical tools like inventory management and
predictive analytics. However, pinpointing the exact source of efficiency gains due to data
technology is beyond the scope of this paper, as it would require detailed data on a firm’s
production processes. We now present our framework for data and demand forecasting.

Firms choose technology θit to align closely with the unobserved aggregate consumer
taste xt. For instance, xt can represent the popular color among clothing shoppers for the
current season, while θit represents the color companies predict will be popular. If firms make
accurate predictions and their chosen color closely matches the true consumer preference,
they will enjoy higher sales volumes. We avoid the complex strategic interaction due to
learning from other firms and assume that firms do not observe each other’s technology
decision θit. Otherwise firms may choose not to learn and just observe others decisions.

6Deep habit specifications have been widely used in macroeconomics and asset pricing, such as Heyerdahl-
Larsen (2014), van Binsbergen (2016), Gilchrist et al. (2017), and Crouzet and Mehrotra (2020)
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The strength of deep habit effect Θit is modeled as the squared distance between the
firm’s choice of θit and aggregate consumer taste xt:

Θit = Θ̄− (θit − xt)
2. (9)

The unobserved aggregate consumer taste xt follows a normal distribution xt ∼ N (0, σ2
θ)

and it is i.i.d. across time.7 It will become clearer later that this can also be interpreted as
a tracking problem, where firms select the tracking technology θit to minimize their tracking
error with respect to consumer taste xt.

Firms cannot observe xt directly. However, they receive noisy signals sit that are informa-
tive about xt. For each data point m ∈ [1 : ωit], the signal si,t,m contains the true consumer
taste plus a noise term εsi,t,m,

si,t,m = xt+1 + εsi,t,m,

where εsi,t,m is i.i.d. across firm and time. The noise follows a normal distribution εsi,t,m ∼
N(0, σ2

s).
Data can help increase the precision of the total signal sit. Specifically, if firm i has ωit

amount of data, the corresponding distribution of the signal becomes

sit = xt+1 + εsit, εsit ∼ N(0,
σ2
s

ωit

).

Effectively, with more data points, the signal becomes more precise.

Data and Forecasting Precision

Data scientists produce data that reduces the noise of the signal sit within the firm.
Firm’s forecast precision of demand curve can be captured by the posterior variance of xt.
The precision of firm i’s forecast of xt is

Ωit = E[(E[θt|Iit]− xt)
2]−1,

where Ωit is the posterior variance of the xt conditional on information set Iit. The inverse
of Ωit is the conditional variance of the forecasting error.

7Farboodi and Veldkamp (2021) assume xt is persistent and introduce a white noise term to prevent firms
from inferring the true xt by observing past sales. In our model, we assume xt to be i.i.d. However, it does
not mean data itself is not persistent. We will show that the persistent in the accumulation of data scientists
allows firms to continuously keep and gather data, which means they do not forget what they have learned.
Additionally, we do not need to assume the additional white noise term. This is because xt is assumed to be
i.i.d. in our model. Firms will never infer the true xt, even if they can observe the history of all variables.
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The dynamics of the posterior, following the standard Bayesian updating rule, evolves as
follows,

Ωit = σ−2
θ + σ−2

s ωit, (10)

where ωit is the amount of data produced by the data scientists by firm i. Clearly, the higher
the data produced ωit, the more precise the demand signal is. As Equation (10) shows that
firms can accumulate data by keep data scientists.

3.3 Firm’s Problem

A firm optimally chooses their taste tracking technology θit, hiring decision of conven-
tional labor Lit and data scientist Hit, and investment decisions Iit, to maximize the net
present value of dividends,

Vit = max
θi,t+j ,Hi,t+j ,Ii,t+j ,Li,t+j

Eit

[
∞∑
j=0

Mt,t+jDi,t+j

]
, (11)

subject to equation (5), (6), (8), (10), and dividend Dit is defined as

Dit = PitYit − Iit −GK(Iit, Kit)Kit −WN
t Nit −GN(Hit, Nit)Nit − F, (12)

where WN
t is the wage rate data scientists, F is the fixed cost, and Mt,t+j is the stochastic

discount factor between period t and t+ j. We introduce exogenous wage processes for data
scientists and workers in the calibration section.

3.4 Optimality Conditions

This section derives the conditions that characterize the optimal firms’ choices. We then
provide two propositions that analyze the trade-off between data investment, uncertainty
reduction, and markups.

We solve the optimal tracking problem similarly to Farboodi and Veldkamp (2021), which
allows us to replace the reward from the tracking Θit with the precision of the information
Ωit.

Yit ≤
(
Pit

Pt

)−η

Yt + (Θ̄− Ω−1
it )St. (13)

The detailed derivations can be found in Appendix A.1.
With data technology, firms adjust the composition of their total demand in response to

economic shocks. A firm with better data technology that tracks consumers’ tastes more
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closely has higher information quality Ωit and lower posterior variance of consumer taste.
This essentially elevates the strength of the deep habit effect, which increases the weight of
inelastic demand and allows firms to charge higher markups.

Another way of interpreting demand function (13) is to consider a firm’s customer base.
A firm’s product demand comes from customers who react to price changes and those who
don’t. When price-insensitive customers drive more demand fluctuations, overall demand
becomes less elastic, letting firms charge higher markups. Data technology gives firms the
tools to alter this demand mix. By tracking consumer tastes more precisely, firms with
more advanced data technology can better identify and cater to price-insensitive customers,
increasing this group’s influence on overall demand and charging higher markups.

We formally show the impact of the data-learning channel on data investment and
markups in the following propositions.

Proposition 1. (Q-theory of Data Scientists)
The optimal hiring rate of data scientists satisfies

qNit = Eit

[
Mt,t+1

{
ν0ν1σ

−2
s St+1λit+1Ω

−2
it+1N

ν1−1
it+1 Y

1−ν1
it −WN

t+1 −
∂GN

∂Nit+1

+ qNit+1(1− δN)

}]
,

(14)

where qNit = ∂GN

∂Hit
is the marginal q of data scientists, and λit is Lagrangian multiplier asso-

ciated with the demand equation which denotes the shadow value of demand.

Proof. See Appendix A.1.

The left-hand side is the marginal q for data scientists. The right-hand side is the present
value of all future benefits of hiring an additional data scientist. The first term states that
adding data scientists raises a firm’s market power since better information allows firms
to better forecast consumer’s tastes and charge higher markups. Clearly, if markups are
countercyclical due to deep habit specification, the benefits of data investment that are
associated with grabbing markups must be countercyclical, thus inducing countercyclical
variations in data investment.

Expanding the pool of data scientists also enlarges the wage bill and the increase in cost
also plays a role in determining a firm’s hiring decision which shows up in the second term.
In bad times, too much wage bill of data scientists amplifies the risks in a firm’s cash flows
and investors require a higher expected return to hold the firm’s equity.

Proposition 2. (Pricing Equation)
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The price charged by a firm can be determined by

Pit = λit − λ̃it +MCit,

where λ̃i,t = Et[ν0(1− ν1)σ
−2
S St+1λit+1Ω

−2
it+1N

ν1
it+1Y

−ν1
it ].

Proof. See Appendix A.1.

Proposition 2 shows that the pricing equation includes an additional wedge term, λ̃it,
which is different from the classical Dixit-Stiglitz framework. This wedge term arises because
firms rely on both data scientists and past sales to produce valuable data for forecasting
demand curves. This setup introduces an intertemporal tradeoff: a firm can boost its market
power today by raising prices and reducing production, but this approach could weaken
future market power by reducing the volume of transaction data can be used for predicting
customer demand. As a result, exploiting the market power by lower production today can
reduce firm’s data accumulation and its future market power. This channel is captured by
the wedge term λ̃it in the pricing equation.

Proposition 3. (Markup and Data)
The firm-level markup is determined by the following equation

µit =

(
1 +

λ̃it

Pit

− 1

η

Yit

Yit − (Θ̄− Ω−1
it )St

)−1

(15)

Proof. See Appendix A.1.

Equation (15) establishes the relationship between firm-level markups and the data pro-
duced by data scientists. Firms with more data scientists can increase their precision Ωit,
which leads to a higher markup µit. Intuitively, when firms have more data scientists, they
can predict their demand curve more accurately, which can improve their pricing strategy.
As a result, they can charge a higher markup. The role of the wedge term λ̃it follows the
intuition we have discussed under Proposition 2, it lowers down the firm’s markup.

3.5 Stochastic Discount Factor

We directly specify the stochastic discount factor without explicitly modeling the house-
hold’s problem since we focus on the firm dynamics and stock returns in the cross section.
The pricing kernel is given by

log(Mt,t+1) = log(β)− γtσAε
A
t − 1

2
γ2
t σ

2
A, (16)
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where Mt,t+1 is the stochastic discount factor from time t to t+ 1, and εAt is the innovation
to the aggregate productivity shock at. The time-varying parameter γt controls the price of
risk, it is given by

γt = γ0 + γ1(at − ā),

where at is the log of aggregate productivity At.

4 Quantitative Results

In this section, we calibrate our model and evaluate its ability to jointly account for the
cross-section of firm characteristics and stock returns. In particular, we quantify the role of
data scientists on firms’ markups and returns.

4.1 Calibration

The model is solved and calibrated at an annual frequency. We calibrate our model to
match the firm dynamics whenever possible. The parameters are presented in Table 7.

The first block of parameters in Table 7 are related to the stochastic discount factor. We
set β to match the level of risk-free rate at 1%. We set γ0 and γ1 to match the mean and
volatility of the equity premium.

The second block of parameters is production technology parameters. Capital share α

is set to 0.33 as in the business cycle literature. To match the average investment rates of
physical capital, we set the depreciation rate at 15%. The capital adjustment cost parameter
cK is set to match the cross-sectional volatility of investment rates. We set the attrition rate
of data scientists at 15% as in the data. The parameter ν0 is a scaling parameter that controls
the data production; we normalize it to 1. The sensitivity parameter of data scientists in the
data production function ν1 is set to 0.65, roughly the same as the labor share in final goods
production. The fixed cost parameter is set at 0.805 to match the average book-to-market
ratio in the data, around 0.5.

For convex adjustment costs of physical capital investment GK and data scientist GN ,
we assume quadratic forms. For capital investment, we have

GK(Iit, Kit) =
cK
2

(
Iit
Kit

− δK

)2

25



Table 7: Calibration

Parameter Symbol Values

Discount rate β 0.9
Level of price of risk γ0 -22.5
Sensitivity parameter of price of risk γ1 15

Capital share in production α 0.33
Return to scale ϕ 0.85
Depreciation rate of capital δK 0.15
Investment adjustment cost cK 1.5
Quit rate of data scientists δN 0.15
Fixed cost F 0.805
Data scientists adjustment cost cN 10
Level parmeter of data production ν0 1
Sensitivity parameter of data production ν1 0.65
Level parameter of data scientist’s wage τN1 0.2
Sensitivity of the data scientist’s wage to productivity τN2 0.65

Demand elasticity η 8
Demand curve sensitivity to taste in steady state Θ̄ 0.63
Scaling parameter of taste S̄ 0.89
Volatility of signal σs 0.1
Volatility of forecasting technology σθ 0.32

Persistence of TFP ρA 0.91
Std of TFP shock σA 0.02
Persistence of dispersion ρv 0.7
Std of dispersion shock σv 0.15

For data scientist stock, we have a similar quadratic form,

GN(Iit, Kit) =
cN
2

(
Hit

Nit

− δ̃N

)2

where cK and cN controls the severity of capital investment and hiring frictions. The an-
choring parameter δ̃N is chosen so that data scientist stock is positive in the steady state
and stochastic simulations.

The third group of parameters relates to the demand curve. Following the business cycle
literature, we set the demand elasticity, η, to 8. The sensitivity parameter to aggregate
taste Θ̄ is set to 0.65 so that the average markup of the simulated economy aligns with the
average markup observed in our sample. With ν0 normalized to 1, the relative importance
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of data production technology is controlled by the precision of taste σ−2
θ and the precision

of the signal σ−2
s . If the signal is relatively noisy, then firms need more data scientist to

improve the quality of the learning by hiring more data scientists, which eventually increase
the average employment of data scientists. Therefore, σθ can be interpreted as a scaling
parameter, we set it together with Θ̄ to pin down the average markup of the economy. The
volatility of signal σs is set to match the data scientists’ wage bill to output ratio. The wage
information of data scientists are not of high quality, but we observe the data scientists to
total employment ratio, which is around 4%. Therefore, given the aggregate labor share
is roughly 2/3, the data scientists’ compensation to output ratio should be around 2% or
higher. We set σs to roughly match the data scientists share in output at 1%.8 Finally, we
shut down the variation of the habit process and set it to a constant scale parameter St = S̄.

Finally, the last group of parameters is about productivity shocks. We specify the pro-
ductivity processes in logs

at+1 − ā = ρA(at − ā) + σAε
A
t ,

zt+1 − z̄ = ρZ(zt − z̄) + σZε
Z
it,

where εAt and εZit are i.i.d. shocks. They are set following the production asset pricing
literature, such as Zhang (2005).

Given the parameters calibrated in Table 7, we simulate the model economy. The aggre-
gate moments are reported in Table 8. The aggregate moments roughly match the empirical
moments in the data.

Table 8: Aggregate Moments

Data Model

Volatility of aggregate output growth 0.02 0.02
Investment rate volatility 0.21 0.19

Average market excess return (%) 7.31 7.75
Volatility of market excess return (%) 21.56 17.65
Average real risk-free rate (%) 1.28 1.82
Volatility of real risk-free rate (%) 0.96 1.25

8We assume data scientists are not factor inputs. Therefore, their compensation relative to final sale ratio
is very low in general.
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4.2 Model Mechanism

To illustrate the model mechanism, we plot the impulse response functions (IRFs) in
response to positive aggregate and firm-level shocks, respectively.

Impulse responses to aggregate productivity shocks Figure 1 shows the impulse re-
sponse functions upon a positive aggregate productivity shock. The model generates similar
impulse responses on the supply side as in the standard q-theory model. A positive supply
productivity shock is good news for production: the firm’s output goes up, and it invests
more to take advantage of higher productivity in the near term. The persistent increase in
productivity raises future cash flows, which boosts the firm’s value.

Conversely, we observe an opposite response in the firm’s hiring decisions, where the firm
reduces its labor force skilled in data, as illustrated in the right panel of Figure 1. Proposition
1 confirms that the firm’s demand for data scientists reflects the behavior of markup dynam-
ics. Specifically, when markup is countercyclical, the firm’s demand for data scientists should
similarly be countercyclical. This countercyclical nature of markup dynamics arises from the
specification of deep habits on the consumer demand side. Under the demand curve (13),
actual demand contains both an elastic component and an inelastic component influenced by
historical consumer demands. Following a positive productivity shock, the elastic component
of the demand curve (13) becomes more significant, effectively increasing the elasticity of
demand. Because markup is inversely related to effective elasticity, a positive productivity
shock reduces the markup by enhancing elasticity, consistent with the key results related
to deep habits and markup variations as discussed in Ravn et al. (2006). Conversely, we
observe an opposite response in the firm’s hiring decisions, where the firm reduces its labor
force skilled in data, as illustrated in the right panel of Figure 1. Proposition 1 confirms that
the firm’s demand for data scientists reflects the behavior of markup dynamics. Specifically,
when markup is countercyclical, the firm’s demand for data scientists should similarly be
countercyclical. This countercyclical nature of markup dynamics arises from the specifica-
tion of deep habits on the consumer demand side. Under the demand curve (13), actual
demand contains both an elastic component and an inelastic component influenced by his-
torical consumer demands. Following a positive productivity shock, the elastic component
of the demand curve (13) becomes more significant, effectively increasing the elasticity of
demand. Because markup is inversely related to effective elasticity, a positive productivity
shock reduces the markup by enhancing elasticity, consistent with the key results related to
deep habits and markup variations as discussed in Ravn et al. (2006).
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Figure 1: Impulse Response to Aggregate Productivity Shocks

This figure plots the log deviations from the steady-state for quantities and prices with respect to a one
standard-deviation shock to the aggregate productivity shock. One period is a year. All parameters are
calibrated as in Table 7.
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Impulse responses to firm-level productivity shocks The IRFs with respect to firm-
level productivity shocks are shown in Figure 2. The left panels illustrate that the effect
of a positive firm-level productivity shock aligns with the intuition of the standard q-theory
model: output, investment, and firm value all increase when a firm experiences a positive
firm-level productivity shock. In the right panels, the responses of markup and data scientist
hiring rates are similar to those seen with an aggregate productivity shock, both decreasing
following a positive firm-level productivity shock due to the deep habit mechanism.

A firm-level productivity shock leads to an increase in precision. This difference is driven
by two main channels. First, the data production technology, as seen in Equation (7), implies
that past sales data as input for data production. Thus, a positive productivity shock helps
the firm accumulate more data, leading to a delayed increase in precision Ω.

The second and more significant channel is shock persistence. As shown in Table 7,
firm-level shocks are less persistent than aggregate shocks. As noted in Ai et al. (2022), a
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Figure 2: Impulse Response to Firm-Level Productivity Shocks

This figure plots the log deviations from the steady-state for quantities and prices with respect to a one
standard-deviation shock to the aggregate productivity shock. One period is a year. All parameters are
calibrated as in Table 7.
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less persistent shock encourages firms to focus on short-term cash flow rather than long-term
investment. In our model, firms can boost short-term cash flow by increasing markup. Thus,
in response to a transitory firm-level shock, firms reduce data scientist hiring and increase
investment, but to a lesser extent than they would for a persistent aggregate shock. As
illustrated in Figure 2, a 15% increase in firm-level productivity results in roughly a 20%
decrease in data scientist hiring and a 20% increase in investment. In comparison, a 2.2%
increase in aggregate TFP leads to a 10% drop in data scientist hiring and nearly a 15% rise
in investment.

4.3 Implications for the Cross-Section

This section presents the model’s implications on the cross-section’s firm characteristics
and stock returns. We simulate 4000 firms for 1000 periods. The number of firms roughly
matches the sample size in CRSP.

We perform the same exercises as in the empirical analysis using the simulated data from
the model. We sort firms into quintile portfolios each year based on their data scientists to
total employee ratio, N . We report the statistics for data scientist ratio sorted portfolios.
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Table 9: Firm characteristics and expected returns: data and model

This table compares the cross-sectional moments in the empirical data and the model simulated data at an
annual frequency.

Panel A: Data

L 2 3 4 H H-L

DS Ratio (%) 0.00 2.13 4.04 7.20 16.58
DS Hiring 0.14 0.17 0.17 0.19 0.20
I/K 0.13 0.14 0.15 0.16 0.16
Markup 1.31 1.36 1.42 1.52 1.47
OP Lev 0.38 0.38 0.48 0.64 0.76
Sale/Capital 0.49 0.59 0.69 0.82 0.86

E[R] - Rf (%) 11.21 12.75 12.32 13.28 15.34 4.13

Panel B: Model

L 2 3 4 H H-L

DS Ratio (%) 3.81 4.22 4.59 5.06 6.19
DS Hiring 0.14 0.14 0.14 0.14 0.14
I/K 0.15 0.15 0.15 0.16 0.18
Markup 1.25 1.32 1.42 1.58 1.96
OP Lev 0.65 0.69 0.72 0.75 0.82
Sale/Capital 0.86 0.89 0.94 1.01 1.19

E[R] - Rf (%) 7.95 9.14 9.99 11.03 12.49 4.54

The model replicates the empirical patterns documented in Section 2. Firms with more data
scientists charge higher price markups, make more investments and earn higher returns.

The dynamics of markup and data scientists follow the economic intuition discussed in
Section 4.2 and Proposition 3: the deep habit channel leads to countercyclical markup and
data scientists ratio, hence firms with more data scientists are relatively less productive firms.
Firms with lower firm-level productivity would like to employ more data scientists because
they improve the information quality of demand estimation, thus allowing firms to charge
high markups.

Additionally, firms with more data scientists tend to invest slightly more on average. This
is because, after the initial impact of a productivity shock, both the investment rate I/K

and data scientist ratio N gradually return to their steady-state levels from below. This
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process creates a weak positive correlation between these two variables.
The model generates a substantial return spread across the data scientist ratio-sorted

portfolios, as in Section 2. There are two economic forces drive this result. One is the
hedging effect, as discussed in Section 4.2. Firms with low firm-level productivity employ
more data scientists to boost sales. Therefore, more data scientists can provide a hedge
against adverse productivity shocks. The other channel is the operating leverage channel.
On the contrary, countercyclical data scientist hiring implies that firms are burdened with
high labor compensation to data scientists in economic downturns. This data scientist-
induced operating leverage oeffect is more prominent in firms experiencing low productivity,
thus amplifying their exposures to aggregate risk. Additionally, firms face fixed cost, which
makes less productive firms bear relatively higher operating leverage. Quantitatively, we
find that the operating leverage channel dominates. As a result, firms with low firm-level
productivity hire more data scientists and earn lower expected returns. Empirically, we find
firms with more data scientists have higher operating leverage, as shown in Table 9.

4.4 Empirical Support for the Model Mechanism

In this section, we explore the predictions of our model in the data by examining several
key testable implications. As discussed in Section 4.3, our model predicts that firms increase
data scientist hiring in economic downturns. This countercyclical hiring of data scientists
raises firms’ fixed costs, amplifiying the sensitivity of firms’ cash flows to economic cycles
to reflect a key mechanism of the operating leverage channel. To do so, we provide empir-
ical evidence on the data scientist hiring at both aggregate and firm levels to validate the
operating leverage channel.

Aggregate-level At the aggregate level, the short sample for data scientists makes iden-
tifying cyclical fluctuations long the time-series dimension challenging. We therefore use
the ratio of aggregate investment related data processing to physical investment as a proxy
for the aggregate data scientist ratio, based on the idea that data scientists require these
equipments to perform their work. We estimate a VAR system with the following variables,
ordered sequentially: log of aggregate TFP, log of total investment, log of IT investment
share, log of consumption, log of GDP, and log of the GDP deflator.9 We adopt the stan-
dard recursive ordering, such that TFP affects quantities immediately.

9The data for aggregate IT-related investment is from lines 5, 78, 87, 88, and 93 in NIPA Table 2.7.
Aggregate TFP growth rates are from the Federal Reserve Bank of San Francisco, and cumulative TFP
growth rates are used to obtain the level of TFP. We have also tested a VAR model using growth rates of
aggregate variables, yielding similar results.
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Figure 3: Time-series Patterns of the IT Investment Ratio

This figure plots the impulse responses of selected variables to an orthogonoalized one-standard deviation
shock to the aggregate TFP shock. The shaded bands represent the 95% confidence intervals calculated from
1000 bootstrap replications. The sample period is 1955 to 2022, at an annual frequency.
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Figure 3 presents the IRFs of selected variables. A one-standard-deviation increase in
aggregate TFP immediately raises aggregate physical investment. However, the ratio of IT
investment to physical investment declines, reflecting the acyclicality of IT-related invest-
ments. This result suggests that IT investment relative to physical investment is counter-
cyclical. This empirical observation aligns with the IRFs generated by our model, as in
Figure 1.

Figure 3 suggests that IT investment relative to physical investment is countercyclical,
as also evidenced by the significantly negative correlations between the HP-filtered ratio
and its logarithmic difference with the GDP and TFP growth rates, respectively. During
recessions, when GDP or TFP experiences a decline, IT-related investment tends to increase
or decrease less than physical capital investment. This contributes to the observed rise in
the ratio. Although it is a well-established fact that investment, in general, is procyclical,
the distinctive cyclicality of the IT-to-general investment ratio points to potentially different
economic mechanisms driving their dynamics across business cycles. As a robustness check,
we estimated a VAR system using IT investment instead of IT investment share, as shown in
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Figure B.1. The results confirm that IT investments remain acyclical, while physical invest-
ment is strongly procyclical. Consequently, the relative share of IT to physical investment
responds negatively to aggregate productivity shocks.

Firm-level As shown Figure 2, firms cut data scientist hiring when they receive a positive
firm-level productivity shock. To test this prediction, we regress variables related to data
scientist hiring decisions on firm-level productivity shocks. The log productivity of firm-level
TFP is from İmrohoroğlu and Tüzel (2014), we take the first difference as the TFP shock.

DSit = ai + δt + b×∆TFPit + c× Controlsi,t + εi,t

Consistent with our model predictions in Figure 2, we observe a significantly negative
coefficient for both the data scientist ratio and the data scientist hiring rate. The results
imply that when firms experience a positive productivity shock, they are would like to
reduce their hiring of data scientists. These empirical findings strongly support our model
prediction, which suggests that data hiring decisions are countercyclical.

5 Conclusion

In this paper, we investigate the role of data in firm dynamics and equity returns. We
empirically demonstrate that firms with more data scientists have higher markups, lower sales
forecast errors, and earn greater returns. To explain these empirical findings, we develop a
heterogeneous firm model with endogenous data scientist hiring and learning decisions. In
our model, firms face a downward-sloping demand curve due to their market power, which
includes an unobservable inelastic consumer habit component. Firms hire data scientists to
forecast this unobservable component. By improving their forecasts of consumer taste, firms
can effectively increase the inelastic component of demand, allowing them to charge higher
markups. Furthermore, our model suggests that the endogenous hiring of data scientists
introduces an operating leverage channel, making firms with more data scientists riskier
and, therefore, demanding higher returns. We also present additional empirical evidence
that supports the mechanisms outlined in our model.

Future work could examine the risks associated with data investment through other well-
known sources of aggregate fluctuations, such as the markup shock in Corhay, Li, and Tong
(2022), the investment-specific technology shock as in Kogan and Papanikolaou (2013), or
the financing shock as in Belo, Lin, and Yang (2019). The impact of data investment in
general equilibrium is a promising future research area.
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Table 10: Response to Firm-level Productivity Shock

This table documents the relationship between firm-level productivity shocks and data scientist-related
measures, specifically the data scientist ratio (DS ratio) and data scientist hiring rate (DS hiring rate). Both
DS ratio and DS hiring rate are expressed as percentages. The growth rate of TFP (∆TFP) is standardized
to have a mean of zero and a standard deviation of one. Control variables include book leverage (Lev),
book-to-market ratio (BM), investment rate (I/K), size (log of total assets), SGA-to-asset ratio (SGA/AT),
and gross profitability. The regressions include both firm and year fixed effects. Standard errors are double
clustered by the firm and year.

(1) (2)
DS Ratio (%) DS Hiring Rate (%)

∆TFP -0.016* -0.147**
(-1.858) (-2.460)

Lev 0.164 -3.772**
(1.301) (-2.740)

BM -0.003 -0.471**
(-0.440) (-2.674)

I/K 0.001 -0.007
(1.239) (-0.620)

Size 0.213*** 3.620***
(3.923) (10.221)

SGA/AT 0.555* -0.166
(2.150) (-0.050)

GPA 0.201 7.157**
(0.876) (2.871)

Observations 20,283 18,474
R-squared 0.981 0.500
Firm FE Yes Yes
Year FE Yes Yes
Cluster Year Yes Yes
Cluster Firm Yes Yes
Controls Yes Yes
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Appendix

A Model Appendix

A.1 Proof of Propositions

A.1.1 Proof of proposition 1

We normalize the aggregate price level Pt to one. The Lagrangian associated with the
firm maximization problem (11) is

L = Et

∞∑
s=0

[
Mt,t+s

{
Pi,t+sYi,t+s −WL

t+sLi,t+s − Ii,t+s −WN
t+sNi,t+s −GK

i,t+sKi,t+s −GN
i,t+sNi,t+s

+ λi,t+s

(
P−η
i,t+sYt+s +Θi,t+sSt+s − Yi,t+s

)
+MCi,t+s

(
Zi,t+sAt+sF (Ki,t+s, Li,t+s)− Yi,t+s

)
+ qKi,t+s((1− δK)Ki,t+s + Ii,t+s −Ki,t+s+1) + qNi,t+s((1− δN)Ni,t+s +Hi,t+s −Ni,t+s+1)

}]
.

We firstly take the first order condition with respect to the forecasting technology choice
θit, this step closely follows Farboodi and Veldkamp (2021). By doing so, we can have
the optimal technology θ̂it = Ei[xt|Iit]. Therefore, the expected forecasting technology is
E[Θit] = Θ̄−E[(Ei[xt|Iit]− xt])

2]. The second term is the conditional variance of xt, which
is Ω−1

it . Therefore, the expected demand curve becomes Equation (13). We can rewrite the
Lagrangian as

L = Et

∞∑
s=0

[
Mt,t+s

{
Pi,t+sYi,t+s −WL

t+sLi,t+s − Ii,t+s −WN
t+sNi,t+s −GK

i,t+sKi,t+s −GN
i,t+sNi,t+s

+ λi,t+s

(
P−η
i,t+sYt+s + (Θ̄− Ω−1

i,t+s)St+s − Yi,t+s

)
+MCi,t+s

(
Zi,t+sAt+sF (Ki,t+s, Li,t+s)− Yi,t+s

)
+ qKi,t+s((1− δK)Ki,t+s + Ii,t+s −Ki,t+s+1) + qNi,t+s((1− δN )Ni,t+s +Hi,t+s −Ni,t+s+1)

}]
.

(A1)

Take the first order condition with respect to data scientist Nit, price Yit,

qNit = Eit

[
Mt,t+1

{
ν0ν1σ

−2
s St+1λi,t+1Ω

−2
i,t+1N

ν1−1
i,t+1Y

1−ν1
i,t −WN

t+1 −
∂GN

i,t+1

∂Ni,t+1

+ qNi,t+1(1− δN)

}]
,

(A2)

Pit = λit +MCit −Et[ν0(1− ν1)σ
−2
S St+1λi,t+1Ω

−2
i,t+1N

ν1
i,t+1Y

−ν1
it ], (A3)

Yit = ηλitP
−η−1
it Yt. (A4)
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To simplify the notation, let’s denote λ̃i,t = Et[ν0(1 − ν1)σ
−2
S λi,t+1Ω

−2
i,t+1N

ν1
i,t+1Y

−ν1
it ]. By

combining the Equation (A2) and (A3), we will reach Proposition 1.

A.1.2 Proof of proposition 3

By combining Equation (13) and (A4), we can derive the Proposition (3).

B Additional Empirical Evidence

B.1 Impulse Responses of IT Related Investments

In Section 4.4, we have shown that the ratio of aggregate IT investment to physical
investment is countercyclical. For robustness, we now present the IRFs of IT investment in
response to aggregate TFP shocks, using the same recursive ordering but replacing the IT
investment ratio with the log of IT investment. The results presented in Figure B.1 show
that aggregate IT-related investment shows very little response to an aggregate TFP shock,
hence the IT investment is acyclical.

C Data Appendix

C.1 Occupations related to data scientists

We use a broad set of definition for data scientists, the list of occupations includes data
scientist, data analyst, data engineer, data administrator, economist, IT analyst, IT special-
ist, information specialist, information security, scientist, software developer, and software
engineer. These job names are directly from Revelio’s database. We keep these occupations
related to data science because they play important supportive roles in data storage and
analysis. A firm with more of these types of employees can do better in analyzing data.

C.2 Summary Statistics Across Industries

In Table C.1, we report summary statistics for data scientist ratios of firms in each
industry according to the NAICS two-digit industry classifications. Some industries have
more firms reporting to the hiring database, such as the Professional, Scientific, and Techni-
cal Services, Primary Metal Manufacturing, Construction, and Administrative and Support
Service industries. There is a relatively large cross-industry variation in data scientist ra-
tios. Specifically, the standard deviation of data scientist ratios ranges from 1.69% for the
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Figure B.1: Time-series Patterns of the IT Investment

This figure plots the impulse responses of selected variables to an orthogonoalized one-standard deviation
shock to the aggregate TFP shock. The shaded bands represent the 95% confidence intervals calculated from
1000 bootstrap replications. The sample period is 1955 to 2022, at an annual frequency.
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Transportation and Warehousing industry to 10.82% for the Wood Product Manufacturing
industry. Therefore, to make sure our results are not driven by any particular industry, we
control for industry effects in our further analyses.
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Table C.1: Data Scientist Ratios across NACIS Two-digit Industries

This table reports summary statistics of the industry-year observations of nonmissing data scientist ratios
(%) across industries, including the pooled mean and median. Industries are based on NAICS two-digit
industry classifications, excluding financial industries. The sample period is 2008-2021.

NAICS Industry Name Obs Mean Median Std

21 Mining 1,612 3.76 3.07 3.54
22 Utilities 1,043 6.08 6.15 2.55
23 Construction 543 2.01 1.79 1.71
31 Food Manufacturing 1,270 3.52 2.73 5.31
32 Wood Product Manufacturing 4,796 10.41 6.09 10.82
33 Primary Metal Manufacturing 8,500 5.92 4.51 4.61
42 Wholesale Trade 1,079 3.89 3.16 3.28
44 Retail Trade 759 3.05 2.23 2.54
45 General Merchandise Retailers 913 2.93 2.54 1.73
48 Transportation and Warehousing 676 3.12 2.68 1.69
51 Information 3,643 11.65 10.64 7.68
53 Real Estate and Rental and Leasing 633 5.20 3.14 5.83
54 Professional, Scientific, and Technical Services 1,402 11.89 10.65 7.67
56 Administrative and Support Services 779 6.02 4.05 5.45
62 Health Care and Social Assistance 686 5.04 3.91 3.72
71 Arts, Entertainment, and Recreation 22 3.32 2.68 3.64
72 Accommodation and Food Services 696 1.30 0.79 1.83
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