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Abstract

Mortgage structure matters not only for monetary policy transmission, but also for
financial stability. In an adjustable-rate mortgage (ARM) regime, interest rate rises cause
higher default rates due to increases in mortgage payments. In a fixed-rate mortgage
(FRM) regime, households are protected, but banks are potentially more exposed to rate
rises. To evaluate these competing mechanisms under different mortgage regimes, we
build a quantitative model with flexible mortgage contract structures, borrowers, and an
intermediary sector. Our approach captures borrowers’ endogenous default decisions and
intermediaries’ equilibrium pricing effects on mortgage rates and risk premia, reflecting
the interaction between interest rate and credit risks, and intermediary net worth. We find
that financial stability risks are “U-shaped” in mortgage structure: while ARM payments
are more sensitive to interest rates, defaults happen in states when intermediary net
worth is high, resulting in lower risk premia in constrained states of the world compared
to the benchmark FRM economy. As a result, an intermediate mortgage fixation length
minimizes the volatility of intermediary net worth and improves the sharing of aggregate
risks. Our findings have implications for mortgage design, macroprudential, and monetary
policy.

JEL: E52, G21, G28, R31, E44.

Keywords: mortgages, financial stability, interest rate risk, credit risk, fixed-rate,
adjustable-rate mortgages, risk sharing, intermediary asset pricing, household finance
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1 Introduction

Mortgage structure matters for macroeconomic outcomes. It directly affects the transmission

of monetary policy, since adjustable-rate mortgages (ARMs) reset more immediately compared

to fixed-rate mortgages (FRMs) (e.g. Calza et al., 2013; Di Maggio et al., 2017; Fuster and

Willen, 2017). In this paper, we show that mortgage structure also matters for financial stability

risks. Differences in mortgage structure were brought into sharp relief by the global monetary

tightening cycle between 2022 to 2023, which led to a divergence in mortgage payments despite

similar policy rate increases across countries, as shown in Figure 1. Panel (a) illustrates that

policy rates increased by comparable amounts of 300 to 400 basis points between 2022 to 2023

across countries, while Panel (b) shows that measures of average mortgage payments in FRM

economies, including the US and some Euro Area countries, remained stable, but payments in

ARM economies such as the UK and Canada saw increases of up to 25% by the beginning of

2023.

Figure 1: Comparison of Policy Rates and Mortgage Payments, 2020–2023

(a) Policy Rates (b) Measure of Mortgage Payments

Notes: Panel (a) shows main monetary policy rates for the US, Euro Area (EA), United Kingdom (UK), Canada

(CA), and Australia (AUS). Panel (b) shows measures of average mortgage payments. Euro Area fixed-rate

mortgage markets (EA FRM) aggregates France and Germany, adjustable-rate mortgage markets (EA ARM)

aggregates Finland, Italy and Portugal. Data sources: US: mortgage debt service ratio (DSR) from FRED; EA:

total DSR from BIS; UK: average expected monthly mortgage payment from the FCA; CA: average monthly

scheduled outstanding mortgage payments from CMHC.

The differential mortgage payment sensitivity to rate changes highlights differential financial

stability risks and risk-sharing properties across mortgage structures. Interest rate rises in an
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ARM economy lead to increases in mortgage payments for households, raising defaults and

bank credit losses. In contrast, in an FRM regime, households are protected from rate rises,

but banks are potentially more exposed to interest rate risk.

How would one evaluate the effect of mortgage structure on financial stability and risk sharing

between households and financial intermediaries? A näıve starting point could be to consider

a mortgage structure that aims to offset the cash flow sensitivity of bank liabilities, in particu-

lar deposits, yielding a “zero duration” financial system where interest rate risks are perfectly

hedged. However, this näıve approach ignores several channels that likely arise in equilibrium.

First, narrowly focusing on interest rate risk neglects that changes in interest rates also affect

credit risk, since households make endogenous decisions to default, and these decisions differ

across macroeconomic environments and mortgage structures (Campbell and Cocco, 2015). For

instance, rising rates and ARM payments can trigger default for liquidity-constrained house-

holds, while this effect is absent for FRMs. Second, financial intermediaries’ willingness to hold

mortgages and their mortgage pricing, in particular of risk premia, depends on intermediary

net worth, such that overall financial stability depends on interest rate and credit risk, and the

correlation of these risks with intermediary net worth.

To tackle these conceptual challenges and to evaluate financial stability and risk sharing under

different mortgage regimes in equilibrium, we build a quantitative macro-finance model with

flexible mortgage contract structures, borrowers, and a financial sector. We then calibrate the

model to the US FRM economy as a benchmark, and compare it to counterfactual economies

with alternative mortgage structures. In the model, there are two types of households, bor-

rowers who borrow to finance their housing purchases, and savers, who own intermediaries

(“banks”). Households face idiosyncratic income shocks. Borrowers and banks trade in two

financial markets: deposits and mortgages. We model realistic and flexible mortgage payment

structures. In an FRM regime, mortgages have fixed payments. In an ARM regime, mortgages

are issued with fixed payments in an initial teaser stage, and subsequently convert to floating

payments (a fixed spread over the contemporaneous risk-free rate) with some probability, to

reflect varying fixed-rate lengths in typical adjustable-rate mortgages.

Since we are interested in the greater default sensitivity of borrowers to interest rates in

the ARM economy, it is important to incorporate a realistic notion of liquidity-driven default
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(Gerardi et al., 2018; Ganong and Noel, 2022), where households default because they cannot

afford to make increased mortgage payments. To do so, we follow Diamond et al. (2022) and

split household decision-making into two stages with a cash-in-advance-type constraint. In the

consumption stage, households may use only their liquid assets – income and deposit holdings

– to consume and make housing and mortgage payments, with the option to default. Default

can provide liquidity, but lowers subsequent wealth. In the ensuing trading stage, households

make portfolio decisions to allocate their wealth between deposits, housing, and Lucas trees,

and they can adjust their mortgage balance by taking out a new mortgage. Banks lend in the

mortgage market subject to a leverage constraint, financing their loan portfolios with savers’

equity and deposits, which are risk-free one-period bonds held by households and also elastically

demanded by outside investors. The deposit rate does not necessarily move one-for-one with

the policy rate, to which ARMs are indexed. Our reduced form model of imperfect pass-

through is consistent with banks’ market power in deposit markets (Drechsler et al., 2017)

and time-varying liquidity premia due to the opportunity cost of holding money (Nagel, 2016;

Krishnamurthy and Li, 2022).

To solve the model, we follow Diamond and Landvoigt (2021) and Diamond et al. (2022) to

show that, despite idiosyncratic and undiversifiable risks, borrowers make identical choices per

unit of wealth. This removes the borrower wealth distribution as an infinite-dimensional state

variable, making the model tractable.

We evaluate the US fixed-rate market regime under a counterfactual with fully adjustable-

rate mortgages as well as varying intermediate fixation lengths. We also consider how our

results change with greater pass-through of policy rates to the cost of bank funding, and when

we vary intermediaries’ effective risk aversion. Our benchmark FRM economy and ARM coun-

terfactual produce empirically valid and differential responses to a rise in rates: In the FRM

economy, mortgage payments remain stable, with a small reduction in defaults since holding on

to the current mortgage becomes more valuable. In contrast, in the ARM economy, mortgage

payments rise, causing a spike in default rates and reduction in house values.

In the FRM economy, when the policy rate goes up, banks’ interest income remains un-

changed. The cost of deposit funding – the banks’ interest expenses – increases, albeit less than

the policy rate. Taken together, this leads to a drop in banks’ net interest margin. Banking
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becomes less profitable, despite slight offsetting decreases in credit losses. However, fixed-rate

mortgages have a long duration. In response to higher rates, the market value of bank assets

falls (Jiang et al., 2024). With both lower cash flows and lower asset values, the net worth

of the banking sector declines. More constrained banks demand higher compensation to take

on mortgage risk, a key implication of intermediary-based asset pricing models (Elenev et al.,

2016; Diamond and Landvoigt, 2021).

In contrast, in the ARM economy, the net interest margin of banks increases as mortgages

are indexed to the policy rate rather than the deposit rate. Therefore, banks become more

profitable even as credit losses rise. Moreover, because the increase in cash flows outpaces the

increase in the relevant discount rate (the deposit rate), adjustable-rate mortgages effectively

have negative duration: their value increases with higher rates. With higher cash flows and

higher asset values, the net worth of the banking sector increases.

Next, we turn to evaluating financial stability outcomes by solving counterfactual economies

ranging from a pure ARM counterfactual with annual rate resets to economies with increas-

ingly long fixation lengths to the benchmark fully fixed-rate economy. We find that financial

stability risks, measured using a range of metrics including our preferred measure – volatility of

intermediaries’ return on equity (ROE) – are “U-shaped” in mortgage structure: ROE volatility

is highest in a pure ARM economy where intermediary net worth is very sensitive to interest

changes, leading to large negative duration. Volatility is less high in an FRM economy as sticky

deposits provide a hedge to the large positive duration of fully fixed-rate mortgages.

Because mortgage are risky, the sensitivity of bank assets to interest rates depends not just

on the policy rate but also on expected losses and risk premia, which vary over time with

intermediary net worth. In the FRM economy, risk premia are higher than in the ARM economy

when intermediaries are constrained, which typically occurs in a high-rate environment. In

contrast, in the ARM economy intermediaries are constrained when both interest rates and

default rates are low. As interest rates rise, defaults in the ARM economy typically rise as well,

coinciding with states when intermediary net worth is high, which provides a “hedge” from a

net-worth perspective. As a result, intermediary ROE volatility is minimized by balancing both

forces in ARM and FRM economies, around an intermediate fixation length of 3 years.

Intuitively, an intermediate fixation length reduces the cyclicality of default and net worth
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with respect to interest rates. While ARM economies exhibit strong pro-cyclical default and

FRM economies exhibit somewhat counter-cyclical default, intermediate fixation lengths result

in lower cyclicality overall, reducing volatility.

We evaluate other factors that drive the relationship between mortgage structure and financial

stability in counterfactual economies. Removing the role of risk premia in a counterfactual with

risk-neutral intermediaries indeed improves financial stability of the FRM economy relative to

the ARM one. On the other hand, increasing deposit sensitivity exacerbates financial stability

risks as it increases duration mismatch on the liability side with fixed-rate mortgages on the

asset side, consistent with (Drechsler et al., 2017). These forces affect which contract structure

minimizes intermediary ROE volatility, but do not overturn the “U-shape” result.

Lastly, we assess the way mortgage structure determines how risks are shared between house-

holds. To quantify the degree of risk sharing, we compare the variance of individual consumption

growth relative to aggregate borrower consumption growth as a measure of intra-borrower risk-

sharing of idiosyncratic risks, and the variance of aggregate consumption growth of borrowers

relative to savers as a measure of risk-sharing of aggregate risks between borrowers and savers.

Mortgage structure most strongly affects the sharing of interest rate risk between borrowers and

savers with aggregate risk-sharing optimized at a fixation length of 3 years, which also minimizes

the volatility of intermediary ROE. In this economy with low effective mortgage duration and

default rates that respond little to interest rates, rate shocks have the weakest redistributive

effect.1 However, low exposure to aggregate risk leads borrowers to endogenously choose higher

exposure to idiosyncratic risk, highlighting a somewhat subtle downside in equilibrium.

Our work has implications for monetary policy and macroprudential regulation of financial

stability risks. The paper provides a framework for how changes in interest rates differentially

affect financial stability depending on mortgage structure. It thus helps formalize mechanisms

that affect linkages between monetary policy and financial stability. We propose a flexible

modeling framework to study the effect of mortgage structure on financial stability, which

takes into account endogenous household default decisions, interaction effects between interest

rate and credit risk, and the capitalization of the banking system. Our findings highlight how

intermediate fixation lengths, common in many countries, can balance sources of volatility in

1See e.g. Auclert (2019).
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both pure ARM and FRM structures.

Related Literature Our paper makes several contributions to the existing literature. First,

we assess macroeconomic implications of different mortgage contract designs, similar to Garriga

et al. (2017); Greenwald et al. (2019); Campbell et al. (2021); Guren et al. (2021), but focusing

on the novel channel of interest rate and credit risk sharing between households and banks.

Conceptually, we thus integrate features of existing quantitative macro-models with financial

intermediaries such as Elenev et al. (2016); Diamond et al. (2022), as well as recent work

by Sanchez Sanchez (2023), who studies mortgage choice in a counterfacual economy without

government guarantees, into a framework with flexible mortgage structures and liquidity-driven

default, matching empirical evidence (Gerardi et al., 2018; Ganong and Noel, 2022). Our

mechanism is closely related to Campbell and Cocco (2015) who show that fixed- and adjustable-

rate mortgages default in different macroeconomic states of the world, and we integrate this

intuition into a macroeconomic framework with a banking sector.

We contribute to existing work on mortgage choice (Campbell and Cocco, 2003; Koijen et al.,

2009; Badarinza et al., 2018; Liu, 2022) as well as optimal mortgage contract design (Piskorski

and Tchistyi, 2010; Campbell, 2012; Eberly and Krishnamurthy, 2014; Mian and Sufi, 2015;

Piskorski and Seru, 2018). Our work is further related to papers that emphasize the role of

the mortgage market (Scharfstein and Sunderam, 2016; Di Maggio et al., 2017; Fuster and

Willen, 2017; Greenwald, 2018; Chen et al., 2020; Di Maggio et al., 2020; Berger et al., 2021;

Eichenbaum et al., 2022) and financial intermediaries (Wang, 2018; Di Tella and Kurlat, 2021;

Wang et al., 2022; Diamond et al., 2024) on monetary policy transmission.

The paper further offers a novel lens to interpret linkages between monetary policy and

financial stability (Adrian and Shin, 2008; Hanson et al., 2011; Stein, 2012; Borio, 2014; Jiménez

et al., 2014; Garriga and Hedlund, 2018; Smets, 2018; Caballero and Simsek, 2019; Martinez-

Miera and Repullo, 2019; Ajello et al., 2022; Boyarchenko et al., 2022; Gomes and Sarkisyan,

2023), highlighting that mortgage structure can mediate how changes in interest rates affect

financial stability.

Lastly, we contribute to a growing body of work on the financial stability implications (Jiang

et al., 2024; Drechsler et al., 2023; Haas, 2023; Varraso, 2023; Begenau et al., 2024; DeMarzo
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et al., 2024) and transmission mechanism (Fonseca and Liu, 2023; Greenwald et al., 2023) of

recent rate rises.

2 Motivating Facts on Mortgage Structure

This section illustrates variation in mortgage structure across a range of different countries

which motivates the counterfactual mortgage structures that we study using our model.

2.1 Mortgage Structure Across Countries

There is substantial variation in mortgage market systems and contract structures across coun-

tries (Campbell, 2012; Badarinza et al., 2016).2 Figure 2 shows the average fixed-rate length

across countries from different data sources.

A striking fact noted by Campbell (2012) is that the US appears as an outlier in international

comparison, with an average fixed-rate length of almost 25 years, driven by the reliance on 30-

year FRMs and 15-year FRMs.3 The US is followed by a group of countries including Denmark,

Germany, Belgium, and the Netherlands, which offer mortgages with fixation lengths of up to

30 years, but the average mortgage outstanding has a length typically closer to 10 years. For

Belgium, data is available only for new mortgage originations, which have been close to 20

years. The vast majority of all remaining mortgage markets have fixed-rate lengths between 2

to 5 years, including countries such as Australia, Canada, the UK, Ireland, Portugal, Greece,

and Spain. Other Scandinavian countries such as Finland, Sweden, and Norway (the latter

with no data on average fixed-rate lengths) are typically thought of as originating many pure

adjustable-rate mortgages, with rates resetting at least every year.

Even within the common currency Euro Area, countries vary from longer-term fixed-rate

2In this paper, we will not take a stance on the drivers of the underlying structure and take prevalent contract
structures as given. Reasons that have been put forward to explain cross-country heterogeneity in mortgage
structure include historical path dependence, the availability of long-term mortgage funding, historical inflation
experiences (Badarinza et al., 2018), as well as variation in underwriting standards and the role of credit risk
(Liu, 2022).

3The only country with a comparable average fixed-rate length is typically thought of as France. While data
for average fixation lengths is not available for France, the typical mortgage is a 30-year fixed-rate mortgage
according to the European Mortgage Federation.
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Figure 2: Average Mortgage Fixed-Rate Lengths Across Countries

Notes: “Outstanding” reflect data from Badarinza et al. (2016) (“BCR”) as of 2013, while “New Originations”

reflect data from the European Mortgage Federation for new mortgage originations, as of 2023Q1, from the

EMF Quarterly Review of European Mortgage Markets 2023 Q2. Figure adapted from Liu (2022).

mortgage systems (such as Germany and France) to largely variable-rate mortgage systems

such as Finland, Greece, Ireland and Portugal, which is reflected in the divergence in mortgage

payments in 2022 in Figure 1.4

As a result, mortgages typically exist on a spectrum from fully adjustable-rate mortgages

common in countries such as Finland, Sweden and Norway which reset every year (or depending

on contract terms, even semi-annually), to short fixation periods of two to five years common in

many countries including the UK, Canada, Australia and most Eurozone countries, to the 30-

year fixed-rate mortgage common in the US. We think of mortgages with short fixation periods

as sitting between pure ARM and FRM structures from an interest rate risk perspective, as

these will allow households to fix their mortgage rate for some, but typically not all, of the term

over which the mortgage is repaid.5

4Spain has seen much longer fixation lengths in newly originated mortgages compared to past mortgage
originations, likely a result of government interventions in 2022 that allow conversion of adjustable to fixed-
rate mortgages, aimed at protecting vulnerable borrowers from interest rate rises, see e.g. Financial Times,
November 2022.

5Thus fixation length is a distinct feature and different from the choice of the loan repayment window, which
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terfactual economies with a pure ARM structure as well as intermediate fixation lengths.

3 Model

In this section, we develop a rich quantitative dynamic model of the mortgage market. The

key qualitative insights also emerge from a stylized two-period model, which we relegate to

Appendix C.

Time is infinite and discrete t = 0, 1, . . .. The economy is populated by continuums of two

types of households with preferences over housing and non-durables – borrowers labeled B

indexed by i ∈ [0, ℓ] and savers labeled S indexed by i ∈ (ℓ, 1].

Households’ utility function is given by

∞∑
t=0

βtuB(cit, h
i
t−1)

uB(cit, h
i
t−1) =

(
(cit)

1−θ(hi
t−1)

θ
)1−γ − 1

1− γ

where β is the discount factor, θ governs the share of housing in the utility function, and γ is

the coefficient of relative risk aversion.

The aggregate supply of houses is exogenous and fixed at H̄, with a fraction αH owned by

borrowers while the remaining fraction 1−αH belongs to savers. Only borrowers trade houses.

Each unit of housing requires a maintenance payment of δh every period to prevent its full

depreciation.

Non-durable goods are produced by a continuum k ∈ [0, 1] of Lucas trees, whose aggregate

yield each period is given by Yt. Borrowers own a total of α trees, while savers owns the

remaining 1 − α. Each type of agent can trade trees within their type, but not across types.

The yield of borrower-owned trees is subject to an idiosyncratic shock εit, which is i.i.d. across

borrowers and time. Saver-owned trees are not subject to idiosyncratic shocks. Therefore, each
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household’s income is given by

yit = sit−1(Yt + εit) ∀i ∈ [0, ℓ]

yit = sit−1Yt ∀i ∈ (ℓ, 1]

where sit−1 is the share of trees owned by each agent type at the start of period t, so that∫ ℓ

0
sit−1di = α and

∫ 1

ℓ
sit−1di = 1− α.

In addition to trading houses, borrowers trade in two financial markets – deposits and mort-

gages. Deposits are one-period risk-free bonds, while mortgages are long-term, defaultable, and

may have fixed or adjustable payments.

Their counterparties in these markets are banks labeled I (short for “intermediaries”). Banks

are firms who issue equity to saver households.

3.1 Borrowers

Following Diamond et al. (2022), we split each period into two subperiods – consumption and

trading. In the consumption subperiod, shocks are realized, and borrowers make mortgage

payments or default. In the trading subperiod, all households make portfolio choices.

Borrowers enter the period with a house hi
t−1, a mortgage with outstanding balance mi

t−1,

and deposits dit−1. They receive income yit after the realization of aggregate and idiosyncratic

income shocks.

Mortgage Regimes We consider two mortgage regimes. In the fixed-rate mortgage regime

(FRM), the outstanding balance of the mortgage implies a fixed mortgage payment xi
t = ιf +

δq̄m per unit of mortgage mi
t−1, where ιf denotes the interest component and the principal

component is normalized to a fraction δ of the steady-state mortgage price q̄m. In the adjustable-

rate mortgage regime (ARM), the mortgage payment is determined by whether or not the

adjustable rate mortgage is in its teaser stage τ .

In the teaser stage, ARM payments are fixed at (ιτ + δq̄m)mi
t−1 with ιτ the initial fixed

“teaser” rate of the mortgage. After the teaser stage, the mortgage payment is determined by
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the policy (risk-free) rate rft plus the spread ιa on adjustable-rate mortgages.

xi
t =

ιτ + δq̄m, 1τ = 1

rft + ιa + δq̄m 1τ = 0

An adjustable-rate mortgage is always issued in the teaser stage and it becomes a regular

ARM with probability πτ at the end of the second (trading) subperiod. Therefore, the expected

duration of the teaser stage, or “fixation period,” is 1
πτ
.

After payments are made, the mortgage balance decreases by δ, such that the remaining

balance is (1− δ)mi
t−1.

Consumption Stage In the consumption stage, households use income yit and their deposits

holdings dit−1 to make mortgage payments xi
tm

i
t−1 and housing maintenance payments δHh

i
t−1.

Households can choose to default. If they default by failing to make the mortgage payment,

they lose their house and their mortgage balance is written off. They also lose a fraction λ of

their endowment of Lucas trees and face a continuous idiosyncratic shock to their post-default

value function. In other words, default carries both a pecuniary and a non-pecuniary cost.

A household that repays the mortgage faces a consumption-stage budget constraint given by:

ci,ndt + xi
tm

i
t−1 + δHh

i
t−1 + ait = yit + dit−1

where ait ≥ 0 is the household’s holdings of intra-period deposits that a household can bring

into the trading stage in lieu of consuming. It enters the trading stage with wealth:

wi,nd
t = ait − (1− δ)mt−1q

m
t + pht h

i
t−1 + psts

i
t−1

where qmt is the price of the mortgage, pht is the price of housing, and pst is the price of the Lucas

trees. The nonnegativity constraint ait ≥ 0 operates similarly to cash-in-advance or working

capital constraints, requiring borrowers to have enough liquidity to finance their consumption

before being able to rebalance their portfolios by selling assets or borrowing.
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A household that defaults faces a budget constraint given by:

ci,dt = yit + dit−1

Having expunged their mortgage, lost their house, and given up a fraction of future income, it

enters the trading stage with wealth:

wi,d
t = (1− λ)psts

i
t−1

The default decision depends on the utility of consumption plus the continuation value as

represented by the trading stage value function V i
t (w

i
t,Zt), where Zt denotes state variables

exogenous to an individual borrower.

Denote the value of default by V i,d and the value of repayment by V i,nd. The value of making

the mortgage payment is given by:

V i,nd
t (dit−1,m

i
t−1,1τ , h

i
t−1, ϵ

i
t,Zt) = max

ait≥0
uB(ci,ndt , hi

t−1) + V (wi,nd
t ,Zt)

while the value of default is given by:

V i,d
t (dit−1,m

i
t−1,1τ , h

i
t−1, ϵ

i
t,Zt) = uB(ci,dt , hi

t−1) + V (wi,d
t ,Zt)

subject to the budget constraints and wealth evolution equations above. Households default iff:

ηitV
d
t (·) > V nd

t (·)

where ηit is the household’s idiosyncratic default shock.

Trading Stage In the trading stage households make portfolio decisions. They allocate their

wealth wi
t between deposits dit, housing hi

t, and Lucas trees sit. They can also revise their

mortgage balance from (1− δ)mi
t−1 to mi

t at current price qmt .

Borrowers are subject to a cost of deviating from a target loan-to-value ratio, given by

Φ
(

qmt mi
t

pht h
i
t
− ¯LTV

)
. This cost, rebated Ri

t to the household in proportion to wealth to neutralize
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income effects, captures the notion of a mortgage rate schedule in reduced form and rules out

equilibria in which borrowers take on LTV ratios >> 1 at very high rates in the expectation

that they will likely default.

The trading stage budget constraint is given by:

wi
t +Ri

t =
dit

1 + rdt
+ qmt m

i
t + pht h

i
t + psts

i
t + Φ

(
qmt m

i
t

pht h
i
t

− ¯LTV

)

and the value function is:

V (wi
t,Zt) = max

dit,h
i
t,s

i
t,m

i
t

βEt

[
max

{
max
ait≥0

uB(ci,ndt+1 , h
i
t) + V (wi,nd

t+1 ,Zt), η
i
t

(
uB(ci,dt+1, h

i
t) + V (wi,d

t+1,Zt)
)}]

where the innermost maximization indicates the optimal consumption-savings choice in next

period’s consumption stage, the middle maximization indicates the default decision, and the

outermost maximization indicates portfolio choices in the current period.

3.2 Banks

Banks are owned by savers so maximize the stream of dividends discounted at the saver’s

stochastic discount factor.

They lend in the mortgage market, financing their loan portfolios with equity and deposits,

which are risk-free one-period bonds held by borrowers and outside investors. Outside investors

have perfectly elastic demand for deposits at a price of 1
1+rdt

. The deposit rate rdt may differ

from the policy rate rft to which adjustable mortgages are indexed. Recent work has shown

that changes to policy rates do not pass through one-for-one to deposits, complicating banks’

exposure to interest rate risks.6 We model the relationship in reduced form as

rdt = (r̄f − αd) + βd(r
f
t − r̄f )

with α ≥ 0 and βd ∈ (0, 1]. The parameter αd captures the average spread between policy and

deposit rates, while βd capture the degree of deposit rate sensitivity to policy rate deviations

6E.g., Nagel (2016), Drechsler et al. (2017), and Krishnamurthy and Li (2022)
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from its mean. When αd = 0 and βd = 1, the two rates are always equal.

Banks portfolios are perfectly diversified and hence identical across banks, so we can write

the bank’s problem without i subscripts. They enter a period with a stock of outstanding

mortgages mI
t−1, of which a fraction F η

t default. On mortgages that do not default, banks

receive a payment xt per unit of mortgage mI
t−1 and have an ex-payment value (1− δ)qmt .

Mortgage defaults lead lenders to seize the house, on which they must make a maintenance

payment before selling it in foreclosure at a price pt(1 − ζ) per unit, where ζ represents a

foreclosure cost. The total foreclosure proceeds are

∫ ℓ

0

1
i
defaulth

i
t−1pt((1− ζ)− δH)di

The payoff per unit of mortgage is therefore:

Xt = (1− F η
t )(xt + (1− δ)qmt ) +

∫ ℓ

0

1
i
default

hi
t−1

mI
t−1

pt((1− ζ)− δH)di

Running the intermediation technology is costly. Banks must pay a fraction ν of the value of

their mortgage portfolio as intermediation costs. Their net worth is then given by:

wI
t = (1− ν)Xtm

I
t−1 + dIt−1

where negative values of dIt represent borrowing by the lender.

Banks use their equity deposits to finance dividends and mortgage purchases, maximizing

max
mI

t ,d
I
t

Et

[
∞∑
s=t

MS
t,sDivt

]

subject to a budget constraint:

wI
t =

dIt
1 + rdt

+ qmt m
I
t +Divt

15



and a capital requirement:

−dt ≤ ξ(κq̄m + (1− κ)qmt )m
I
t

where ξ represents the maximum leverage ratio and κ represents the fraction of the mortgage

portfolio that is carried at book value on the lender’s balance sheet. A value of κ = 1 indicates

that mark-to-market losses on the mortgage portfolio do not tighten leverage constraints, while

κ = 0 indicates a fully mark-to-market regime.

3.3 Savers

Saver households have the same preferences as borrowers, but receive income from their shares of

Lucas trees free from idiosyncratic risk. As owners of bank equity, they also receive net dividends

from the banks. Finally, they are rebated lump-sum the costs associated with mortgage default

– both the pecuniary cost of default faced by borrowers and the foreclosure cost faced by banks

– as well as the cost of intermediation. Their budget constraint is simply:

cst = Divt +
α

ℓ
Yt +Rebatest.

3.4 Equilibrium

Given the exogenous processes for aggregate income Yt and risk-free rate rft and given the

idiosyncratic income shocks εit and ARM reset shocks 1τ , and the idiosyncratic default shocks

ηit, an equilibrium is a set of borrower household allocations {cit, hi
t, s

i
t,m

i
t, d

i
t, a

i
t}∞t=0, borrower

default decisions {1d}∞t=0 bank allocations {Divt,mI
t , d

I
t}∞t=0, saver allocations {cSt }∞0 , and prices

{pht , pst , qmt }∞t=0 such that each agent maximizes their value function subject to their constraints,

and the following market-clearing conditions hold:
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1. The mortgage market clears:

(1− ℓ)mI
t = MB

t ≡
∫ ℓ

0

mi
tdi

2. The borrower housing market clears:

αHH̄ = HB
t ≡

∫ ℓ

0

hi
tdi

3. The market for borrower Lucas trees shares clears:

α =

∫ ℓ

0

sitdi

Note that the elastic demand for deposits by outside investors at rate rft implies that the

deposit market within the model does not need to clear.

Appendix A contains the derivation of the equilibrium conditions and the solution to the

model.

4 Calibration

We calibrate the model at an annual frequency in two steps. Table 1 displays parameters whose

values we choose outside the model based on external sources. Table 2 displays “internally”

calibrated parameters, whose values are chosen so that the model with fixed-rate mortgages

(πτ = 0) matches moments estimated in the data. We discuss each set of parameters in turn.

Stochastic Environment Aggregate dynamics of the model are governed by shocks to ag-

gregate income Yt and the interest rate rft . In our baseline calibration, we abstract away from

income shocks, setting Yt = 1. The risk-free rate process is parameterized by an AR(1) process

with mean µr, standard deviation σr, and persistence ρr, calibrated to match the dynamics of

the 1-year Treasury constant maturity rate from 1987 to 2024. We estimate a mean rate of

0.031, an unconditional standard deviation of 0.010, and a persistence of 0.656. The standard

deviation and persistence parameters imply the standard deviation of interest rate shocks.
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Table 1: Externally Calibrated Parameters

Parameter Value

Panel A: Stochastic Processes

Mean of risk-free rate process µr 0.031
Std. dev. of risk-free rate process σr 0.010
Persistence of risk-free rate process ρr 0.656
Probability of low idiosyncratic income shock (ϵL) πL 0.058
Idiosyncratic income drop in low state ϵL -0.456
Idiosyncratic income increase in high state ϵH Set such that E[ϵ] = 0

Panel B: Deposit Rates

Deposit spread w.r.t. base interest rate αd 0.018
Deposit sensitivity w.r.t. base interest rate βd 0.340

Panel C: Borrowers and Savers

Borrower population share ℓ 0.400
Borrower income share α 0.600
Borrower housing share αh 0.500
Risk aversion γ 1.5

Panel D: Housing, Mortgages and Banks

Housing maintenance payment δh 0.020
Mortgage rate reset probability πτ 0.000
Deviation from target LTV cost ϕ 0.050
Max. leverage ratio ξ 0.920
Share at book value κ 0.000

We normalize the idiosyncratic income shocks to have a mean of 0, which means that they

are governed by two parameters. The probability of a low income realization πL is set to 0.058,

which is the average post-war unemployment rate. The magnitude of the low income shock ϵL

is set based on the Ganong and Noel (2019) estimates of the income loss from unemployment.

They find that income loss occurs gradually over the first year as unemployment insurance

expires. Since our model is annual, we average the income loss in months after UI kicks in as

reported in Figure 2, Panel A of that paper, producing a value of -0.456. The high income

shock ϵH is set to ensure that the expected value of the idiosyncratic income shock is zero.

Deposit Rates Bank deposit rates are lower than risk-free rates, such as T-Bill and Fed

Funds, on average and adjust less than one for one with those rates. We estimate deposit rates

using quarterly Call Reports data from 1987 to 2024 as the ratio of interest expense to previous

quarter’s balance on all non-time deposits. The main role deposits play in our model is liquidity

– they are the only asset that can be liquidated to finance consumption in the consumption

stage. Time deposits incur penalties for liquidation before maturity, motivating their exclusion.
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We set αd to the average spread between the Fed Funds rate and the deposit rate of 0.018.

It often takes multiple quarters for deposit rates to adjust after a change in the Fed Funds

rate. Our specification of rdt as a linear function of rft does not allow for such intertia, and

contemporaneous responses of deposit rates may understate the sensitivity of the deposit rate

to the risk-free rate. We estimate a VAR(1) of Fed Funds and deposit rates and set βd = 0.340,

the peak of the deposit rate impulse response to a one-unit shock to the Fed Funds rate.

Population, Income, and Housing Shares Using 2023 SCF data, we set ℓ = 0.400 to

the approximate share of homeowners that have a mortgage LTV of at least 30%. Given this

definition of borrowers, α = 0.600 and and αh = 0.500 are set to the approximate shares of

income and housing, respectively, held by borrowers in the SCF data.

Banks Banks are subject to a capital requirement that limits their leverage. We set the

maximum leverage ratio ξ to 0.920, which is the maximum Tier 2 capital ratio for banks under

Basel III. This calibration effectively assumes a mortgage risk weight of 100%, which is the

standard risk weight for residential mortgages. In the baseline calibration, we set the book

value share κ to 0.000, meaning that mortgages are held at market value.

Borrower Preferences, Housing, and Defaults Housing maintenance payments as a frac-

tion of housing are set to 0.020 based on the post-war average residential housing depreciation

rate. Our model does not include housing investment, so the maintenance payment can be

thought of as investment needed to offset depreciation and maintain housing stock at its steady-

state value.

We set household risk aversion γ to 1.5, a standard value in the literature.

The remaining set of borrower preference and default-related parameters are calibrated in-

ternally. Panel A of Table 2 displays four parameters that must be calibrated jointly. We set

patience β to 0.969, which yields a mortgage/income ratio of 148.83% given the values of other

parameters, matching its value in the 2023 SCF. The value of housing to income is determined

in equilibrium by the present value of user costs parameterized by the utility weight on housing

θ, discounted at the rate implied by β and the probability of losing the house in foreclosure (i.e,
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Table 2: Internally Calibrated Parameters

Parameter Value Target Value (FRM Bench)

Panel A: Borrowers

Borrower patience β 0.969 Mortgage/income 148.83
Housing utility weight for borrowers θ 0.183 Housing/income 260.59
Std. dev of idiosyncratic default shock ση 0.045 Default rate 2.23
Income loss upon default λ 0.148 Deposits/income 23.91

Panel B: Intermediaries

Foreclosure cost ζ 0.520 LGD 16.97
Banker intermediation cost ν 0.036 Mortgage rates 0.059
Principal payment share δ 0.036 Mortgage duration 6.9

default rate). We set θ to 0.183 such that, at the target default rate and given the calibrated

value of β, the value of housing/income matches 260.59% in the SCF.

Housing- and mortgage-to-income ratios imply a LTV ratio of approximately 60%. The

mapping of this ratio into default rates depends on two parameters – the standard deviation

of the idiosyncratic default shock ση and the share of future income lost in default λ. The

pecuniary cost of default motivates agents to hold deposits so that they can decrease their

default probability in the event of a low income realization. We set ση to 0.045 and λ to 0.148

to match the average 2003-2023 flow into 90-day delinquency in the New York Fed’s Quarterly

Report on Household Debt and Credit (QRHDC) of 2.23%, and the deposits-to-income ratio

of 23.91% in the SCF.

Mortgages In our model, there are no idiosyncratic shocks to home values, so in the cross-

section defaulting households have the same LTV ratios as non-defaulting households. Given

the LTV ratio implied by the calibration of housing and mortgage-to-income ratios, we set

foreclosure cost ζ to 0.520, which implies a loss given default (LGD) of 16.97%. This is consistent

with the average LGD in the data, computed as average charge-off rate on mortgages held by

depository institutions, from the St. Louis Fed FRED database, divided by the average default

rate from the NY Fed QRHDC.

The mortgage interest payment in the FRM economy ιf is set so that the steady-state mort-

gage price q̄m is equal to 1, and thus ιf can be interpreted as the steady-state mortgage yield,

or par rate. The historical average rate is 0.059. In the model, the mortgage yield, defined

as the discount rate, which discounts expected future cash flows to par, depends on (1) the
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intermediary’s cost of funding, a leverage-weighted average of the equity cost of capital implied

by β and the deposit cost of capital r̄ − αd, (2) expected losses, a function of the default rate

and LGD, and (3) the cost of intermediation parameterized by ν. Given a calibration that

matches target default rates and LGD, we set ν to 0.036 so that q̄m = 1 at ιf = 0.059.

In counterfactual exercises with adjustable rate mortgages, we set ιa = ιf − r̄, making

payments the same on average. In the baseline calibration, we set interest payments in the

teaser/fixed stage of an ARM ιτ to ιf so that the end of the fixation period does not cause a

jump in payments.7

Borrowers in our model do not endogenize the effect of their demand on their, rather than the

equilibrium, mortgage rate.8 As a result, at low equilibrium rates, they may face an incentive to

take on a large mortgage that implies a high default probability and hence a low expected cost

of borrowing. One way to address this issue is to set a maximum LTV constraint, that would be

slack in steady state but bind in some states of the dynamic model. To simplify model solution,

we follow a different approach and impose a per-housing-dollar quadratic cost of deviating from

the steady-state book LTV ratio ϕ
2

(
qmt
pthi

t
− ¯LTV

)2
. We set ϕ to a small positive value, 0.050.

It has negligibly small effects on equilibrium dynamics but improves our ability to solve the

model by ruling out equilibria with counterfactually high LTV ratios.

The last mortgage contract feature is the fraction of the principal paid in each period, δ.

This parameter determines the duration of the mortgage, which we set to match the duration

of a 30-year fixed rate mortgage in the data. Our model generates an endogenous reduction in

duration relative to its contractual value that occurs because of default, but we do not capture

the reduction due to moving-induced prepayments. To calculate the correct target duration in

the data, we compute an amortization schedule for a 30-year fixed rate mortgage with a rate

of ιf and an annual prepayment probability of 6%, close to the unconditional annual moving

probability of mortgage borrowers reported by Fonseca and Liu (2023). This procedure yields δ

equal to 0.086, which implies a duration of 6.9 years. We describe the procedure in more detail

in Appendix B.

7In the data, teaser rates are often set lower such that a jump does occur, but we abstract from this feature
in the baseline to develop intuition about the effects of stochastic, rather than predictable, rate changes.

8Models with an endogenous debt schedule and long-term debt must tackle dilution incentives and the
optimal contract can be difficult to solve. In our framework, such a model would be intractable.
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4.1 Model Solution

The model is solved numerically using the global Transition Function Iteration method of Elenev

et al. (2021). Our main experiments compare the performance of the economy across a range of

mortgage fixation lengths parameterized by πτ . When this parameter is equal to 0, the economy

is in a fully fixed-rate mortgage (FRM) regime. At the other extreme when πτ is equal to 1,

the economy is in an adjustable-rate mortgage (ARM) regime where mortgage payments reset

every year. For each economy considered below, we simulate 16 paths of 5,000 periods each

after discarding the first 1,000 and report unconditional moments of the long simulation. We

also consider impulse responses to interest rate shocks at the stochastic steady state of each

model.

5 Results

We first show impulse responses to interest rate shocks at the stochastic steady state of the FRM

and ARM economy, and discuss main mechanisms. We then report unconditional moments of

a long simulation, grouped by financial stability outcomes, borrowers and consumption, and

risk-sharing outcomes across a range of counterfactual mortgage structures.

5.1 Rate Shock Impulse Responses and Mechanisms

First, to understand the role of mortgage structure in the transmission of interest rates, we

analyze impulse responses of the FRM and ARM economies to a positive shock to the policy

rate rft .
9 Figures 4 displays the results for borrower variables, while 5 displays the results for

banks.

How does the economy respond to an increase in the policy rate from 3.1% to 5%? The

effects vary with the underlying mortgage structure. To contrast the differential effects, we

focus on a pure FRM economy where interests rates do not reset with a pure ARM economy

9To compute impulse responses, we initialize the economy at the stochastic steady state of a long simulation
at t = 0 and compute its t = 1 transition given a particular realization of exogenous variables. Subsequently,
we let the economy evolve stochastically, simulating 5,000 paths of 25 years each. The average path constitutes
the plotted impulse response.
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tion in household liquidity has two consequences for credit demand. On one hand, persistently

higher default rates lower house prices restricting the available supply of mortgage collateral.

But on the other hand, the need to spend a larger share of their liquid assets on mortgage

payments disproportionately reduces borrower consumption relative to wealth. The desire to

smooth consumption raises demand for credit. On net, the demand effect wins out, resulting in

higher credit demand which leads to larger mortgage balances and a bigger increase in mortgage

rates relative to the FRM economy.

Banks The different dynamics of default and credit demand have consequences for the finan-

cial sector. Figure 5 plots key banking variables in output units, to aid comparison. When rates

go up, the cost of deposit funding – the banks’ interest expenses – also increase, though less

than one for one. When mortgage rates are fixed, interest income remains unchanged, leading

to a drop in banks’ net interest margin. Banking becomes less profitable, despite the slight

offsetting decrease in credit losses discussed above (due to borrowers defaulting less because

their low-rate mortgage becomes more valuable). Moreover, fixed-rate mortgages have a long

duration. In response to higher rates, the market value of long-dated bank assets falls. With

both lower cash flows due to smaller net interest margins, and lower asset values due to higher

discount rates, the net worth of the banking sector declines, as does the consumption of their

equity-holders – the savers.

More constrained banks demand higher compensation to take on mortgage risk, a result

common to intermediary-based asset pricing models. The spike in risk premia, i.e. expected

excess returns on mortgages, amplifies mortgage duration, further contributing to market value

losses of banks as it increases discount rates.

In contrast, in the ARM economy, higher rates lead to higher mortgage payments. Since

mortgages are indexed to the policy rather than the deposit rate, the net interest margin of

banks increases as mortgage rates received rise by more than deposit rates paid. Banks become

more profitable even though credit losses rise due to a rise in defaults. Intuitively, banks’ credit

losses in the ARM economy are more “hedged” across states since they precisely arise in states

of the world where cash flows from mortgage payments are high. Moreover, because the increase

in cash flows outpaces the increase in the relevant discount rate (deposit rate), adjustable rate
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mortgage structures, varying from fully adjustable (fixation length of 1 year) to fully fixed

(infinite fixation length), shown in Figure 6. Panel (a) shows the volatility of banks’ mortgage

returns. Since banks only hold mortgages in our setting, this is equivalent to the banks’ volatility

of return on assets (ROA). As such, it only measures income volatility, ignoring the volatility

of expenses (or, similarly, volatility on the asset side without considering the liability side), and

also ignores leverage effects. Next, Panel (b) shows the duration of intermediary net worth,

measured as the negative of the regression coefficient of log wealth on interest rates. Net worth

duration reflects by how much intermediary net worth (in per cent) declines in response to a 1

percentage point increase in rates. The pure ARM economy with a fixation length of one year

has large negative duration, meaning that net worth increases substantially when interest rates

go up (and vice versa). The pure FRM economy with an infinite fixation length has moderate

positive duration, meaning net worth declines when rates go up.

Net worth duration would be a comprehensive measure of risk if net worth was only driven

by contemporaneous rates, as captured by the regression. However, the R2 of the duration

regression is only 0.164, suggesting that there are dynamic and persistent effects of rate changes

on net worth that are not captured by this measure. As a result, our preferred measure of

financial stability is the volatility of banks’ return on equity (ROE), shown in Panel (c). This

measure captures the combined equilibrium effects of asset and liability-side volatility as well

as leverage on the volatility of intermediary net worth.11

Both mortgage return volatility and the volatility of banks’ ROE in Panel (a) and (c) of

Figure 6 reveal a “U-shape” pattern, that is, volatility measures are higher on both extremes

of mortgage structure, fully adjustable or fully fixed, than at an intermediate fixation length.

In an FRM economy (infinite fixation length), volatility comes from market value fluctuations

due to the long duration of mortgages. Shorter fixation lengths decrease duration, but they

also increase the volatility of cash flows. In a full ARM structure, mortgage payments and thus

cash flows are very sensitive to interest rate changes, more so than deposit expenses. This leads

intermediary equity to have strongly negative duration (Panel (b)). Overall, risks to financial

stability are minimized at an intermediate fixation length of approximately 3 years. We discuss

potential drivers behind this result in the following section.

11This is consistent with the intuition in Meiselman et al. (2023), who show that banks’ ROE is a strong
predictor for systematic tail risks.
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Figure 8: Default Rates By Level of Interest Rate and Intermediary Net Worth

Notes: This figure shows simulation scatter plots of default rates by the level of intermediary net worth (x-axis)

and interest rates (color: blue is low, yellow is medium, orange is high). The left plot shows the ARM economy,

while the right plot shows the FRM economy.

In contrast, intermediary net worth is somewhat negatively correlated with interest rates in

the FRM economy. Rate hikes push intermediary net worth lower. There is a small hedging

effect in the FRM economy as well, since rate hikes push default rates lower as shown in the

impulse responses, but the lower sensitivity of defaults to rates in the FRM economy means

the hedging force is smaller in the FRM world. Figure 9 shows that the weaker hedging effect

makes risk premia (left y-axis) more sensitive to intermediary net worth (x-axis) when it is low.

In the FRM economy (blue), risk premia are very high when rates are high and intermediary

net worth is low, while in the ARM economy (red) risk premia are only moderately high when

rates are low.

However, Figure 9 also shows that ARMs make intermediary net worth more volatile on

average, with a higher probability of being in a low intermediary net worth state compared to

the FRM economy (shown as frequency distribution of simulation periods on the right-hand

y-axis), meaning that risk premia in the ARM economy are not necessarily lower on average.
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Mortgage structure determines not only the degree but also the nature of borrowers’ expo-

sure to interest rate risk, which ultimately determines default and portfolio choices. In ARM

economies, mortgage payment-to-income (PTI) ratios increase in rates, exposing borrowers to

liquidity risks, as seen in the “PTI ( OLS coef.)” which reports the coefficient of a regression of

PTI on interest rates. A 1 percentage point increase in rates corresponds to a 1.66 percentage

point increase in PTI in the ARM (1yr) economy, but only a 0.48 percentage point increase in

the ARM (3yr) economy, and a −0.14 percentage point change in the FRM economy as house-

holds delever. But rate shocks also have wealth effects, which determine borrowers’ strategic

default behavior. Higher interest rates always lower house prices on impact, but the extent to

which they affect the value of the mortgage – and, hence, LTV ratios, depends on the fixation

length. In the FRM economy, high rates lead to low mortgage values. This creates mildly

countercyclical LTV ratios (reflected in a negative “LTV (OLS coef.)”, analogously defined to

the PTI regression coefficient), and, together with stable payments, yields countercyclical de-

fault rates (negative “Default Rate (OLS coef.)”, which is consistent with the impulse responses

showing a decrease in default rates when rates go up. As fixation length decreases, mortgage

duration drops and eventually flips sign. In the full-ARM economy, rate hikes lead not only to

higher house prices but higher mortgage values, which implies strongly procyclical LTV ratios.

Together with procyclical payments, this leads to procyclical default rates, which are more

volatile than in the FRM economy. Conversely, default rates can be mildly countercyclical in

the FRM economy. At intermediate fixation lengths, default rates are close to acyclical with

respect to interest rates, and are least volatile.

Higher exposure to interest rate risk in ARM economies lowers both the supply and the de-

mand for credit. Together with more expensive mortgages due to higher risk premia (“Excess

ROA”), volatile default rates cause households to reduce their demand for credit and expand

precautionary saving. Relative to the FRM economy, in the full-ARM economy, average mort-

gage debt falls both relative to income (DTI) and relative to house prices (LTV), while deposits

to income increase. As a result, less indebted borrowers default less often on average. The

opposite is true for the safer ARM (3yr) economy.

Differences in risk exposures and indebtedness have implications for consumption. Fewer

mortgages mean a smaller banking sector, with reduced dividends lowering saver consumption
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Table 3: Measures of Financial Stability

Deposit Sensitivity: Low (βd = 0.34) High (βd = 0.67)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Excess ROE (mean) 2.06 1.72 1.83 1.77 1.83 2.12
ROE (st. dev.) 13.36 0.79 6.45 7.57 6.01 11.89
Excess ROA (mean) 0.21 0.18 0.19 0.18 0.20 0.22
ROA (st. dev.) 1.31 0.44 0.79 1.06 1.08 1.50
Fraction of constraint binding 39.02 92.72 72.53 63.62 56.75 46.45
Duration of bank net worth -12.33 -1.95 2.21 -9.57 0.08 4.96

PTI (OLS coef.) 1.66 0.48 -0.14 1.55 0.34 -0.26
LTV (OLS coef.) 2.44 0.23 -0.99 1.59 -0.72 -1.82
Default Rate (mean) 2.23 2.35 2.33 2.29 2.31 2.26
Default Rate (std. dev.) 0.26 0.03 0.14 0.15 0.14 0.27
Default Rate (OLS coef.) 0.14 0.02 -0.05 0.10 -0.03 -0.09
DTI (mean) 148.83 151.27 150.91 150.01 150.65 149.63
LTV (mean) 57.58 59.43 59.15 58.56 58.88 58.05
Deposits / Income (mean) 23.91 23.37 23.41 23.66 23.57 23.76

Notes: Unconditional moments from a long simulation of the model. Except for the duration of bank net worth,

all quantities are reported in percent. Rows marked ”OLS coef.” report the coefficient of a regression of the

variable on the policy rate rft .

(Panel A) in the ARM economy. While the banking sector is more volatile, its smaller size makes

its returns a relatively smaller part of saver consumption, leading to decreased unconditional

consumption volatility across time. However, conditional on a particular state of the economy,

the volatility of consumption growth – which determines the price of risk in asset pricing models

– goes up, consistent with the higher risk premia in the ARM economy discussed above.

The effect on borrowers is the opposite in the ARM economy. With less debt, their interest

burden is smaller, and they suffer the pecuniary consequences of default less often. This results

in higher average consumption. Having to make larger payments in high rate regimes, borrowers

in the ARM economy have higher unconditional consumption volatility, but their endogenous

delevering results in the conditional volatility – driven mainly by idiosyncratic shocks – to go

down.
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Table 4: Consumption Measures

Deposit Sensitivity: Low (βd = 0.34) High (βd = 0.67)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Panel A: Savers

Cons. (mean) 49.76 50.09 50.05 49.93 50.00 49.88
Cons. gr. (st. dev.) 1.69 0.54 1.76 0.63 2.11 2.95
Cond. vol of cons. gr. 1.49 0.27 1.33 0.43 1.52 2.32

Panel B: Borrowers

Cons. (mean) 47.32 47.00 47.05 47.17 47.10 47.24
Cons. gr. (st. dev.) 16.92 17.42 17.42 17.10 17.29 17.07
Cond. vol of cons. gr. 11.01 11.24 11.19 11.19 11.18 11.04

Notes: Unconditional moments from a long simulation of the model.

5.5 Risk Sharing

Lastly, we assess how mortgage structure determines how risks are shared between households.

To quantify the degree of risk sharing, it is instructive to consider a hypothetical complete

markets benchmark. A social planner subject to rate shocks but not to any of the economy’s

frictions would insure households fully against idiosyncratic shocks and award each household

a constant fraction of overall consumption. In other words, the difference ∆ log cit − ∆ log cjt

between consumption growth rates of any two households i and j would be zero in all periods.12

We can then measure the quality of risk sharing by the unconditional variance of differences in

consumption growth rates between households. Recall that borrower households are subject to

undiversifiable idiosyncratic risk, while saver households are not. We can define two scale-free

measures of risk-sharing:

1. Higher values of RiB = Var0[∆ log cit −∆ logCB
t ], where CB

t is aggregate consumption of

borrowers, indicate worse intra-borrower risk-sharing;

2. Higher values of RBS = Var0[∆ logCB
t −∆ logCS

t ], where CS
t is aggregate consumption

of borrowers, indicate worse risk-sharing between borrowers and savers ;

12See Appendix A.5 for derivations. Moreover, the planner would optimize the overall economy’s exposure to
rate shocks. The planner would choose a net deposit position of the economy with respect to the rest of the
world to satisfy the consumption-savings Euler equation of the representative agent, whose consumption would
be equal to the aggregate consumption of the economy. We also derive these results in Appendix Appendix A.5,
but since these effects turn out to be quantitatively negligible, we do not report these separately.
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Figure 11: Measures of Risk Sharing across Mortgage Structures
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Notes: RiB measures the variance of individual consumption growth relative to aggregate consumption growth,

and RBS measures the variance of aggregate consumption growth of borrowers relative to savers. In each panel,

R is reported in deviations from the level in the ROE volatility-minimizing economy.

Figure 11 reports the results in standard deviations from the level in the ROE volatility-

minimizing economy.13

Considering Panel (b), intermediate mortgage fixation lengths lead to the best attainable

risk-sharing arrangements between borrowers and savers as RBS is minimized at a fixation

length of 3 years. With low effective mortgage duration and default rates that respond little to

interest rates, rate shocks have the least redistributive effects. They affect the consumption of

borrowers and savers similarly, leading to low RBS.

However, low exposure to aggregate risk leads borrowers to endogenously choose higher expo-

sure to idiosyncratic risk (Panel (a)). At intermediate fixation lengths, they choose the largest

mortgages, and hence the largest mortgage payments, should they choose to make them rather

than defaulting. When payments constitute a larger fraction of liquid income, the effect of

idiosyncratic income shocks on consumption is amplified. Moreover, higher mortgage balances

lead to a higher probability of default. Since consumption levels in and out of default are dif-

13At a fixation length of 3 years, RiB is 0.17, and RBS is 0.005. Since these measures are scale-free, the level
of undiversifiable idiosyncratic risk faced by borrowers is considerably larger than aggregate risk shared between
borrowers and savers, consistent with many macroeconomic models.
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ferent, a higher probability of default leads to higher consumption volatility. This is reflected

in the higher RiB at intermediate fixation lengths.

Overall, mortgage structure most strongly affects the sharing of interest rate risk between

borrowers and savers, with the best attainable outcome occurring at an intermediate fixation

length of 3 years. The findings on idiosyncratic risk sharing between borrowers highlight a

somewhat subtle downside: a more efficient (aggregate) risk-sharing arrangement leads bor-

rowers to take on more idiosyncratic risk, which the mortgage structures under consideration

cannot diversify away.

5.6 Counterfactuals

Lastly, we evaluate factors that affect the financial stability and risk-sharing properties of

different mortgage structures by considering additional counterfactual economies.

5.6.1 Deposit Sensitivity

A major source of financial stability risk in the ARM economy is the large difference between

high sensitivity of mortgage payments to policy rates and the low sensitivity of deposit rates,

calibrated to match the empirical evidence. How different do the trade-offs between ARMs

and FRMs look when the pass-through of interest rate changes to deposit rates is higher? We

consider a counterfactual in which we double the calibrated benchmark sensitivity of βd = 0.34

to βd = 0.67 in the fourth through sixth columns of Tables 3 (Financial Stability) and 4

(Consumption).

With more volatile deposit rates at which banks fund themselves, the FRM economy becomes

substantially riskier (third vs. sixth columns). Bank equity duration more than doubles,

the volatility of both asset and equity returns increases considerably, and banks demand a

larger compensation for the risk of holding mortgages. As before, a more volatile economy and

more expensive mortgages lead to lower borrower indebtedness, lower default rates, and higher

consumption.

The effect of switching from FRMs to ARMs in the high deposit sensitivity counterfactual is

opposite to that in the baseline experiment. When policy rates substantially pass through to
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deposit rates, a mortgage structure in which payments are indexed to the policy rate improves

financial stability, reducing the volatility of bank balance sheets and the risk premia associated

with them and stimulating mortgage credit. Intuitively, the asset and liability side of bank

balance sheets are better aligned with ARMs when deposit rates fluctuate more strongly with

interest rates.

5.6.2 Intermediary Risk Aversion and Risk Premia

We can further consider an economy with risk-neutral intermediaries and interaction effects with

deposit sensitivity. In Figure 12, we compute the volatility of intermediary ROE across different

fixation lengths, but setting the coefficient of risk aversion for savers γs = 0 (in yellow), and

also allowing for higher deposit sensitivity with βd = 0.67 and risk-neutral savers (in purple).14

Because savers own intermediaries, this comparison illustrates the effect of abstracting away

from intermediary frictions. Risk-neutral pricing makes fixed-rate mortgages more attractive

and reduces ROE volatility at longer fixation lengths. Consistent with the intuition developed

above, without risk premia, reductions in intermediary net worth due to increases in interest

rates play less of a role in the FRM economy. When we allow for both higher deposit sensitivity

and risk-neutral savers, economies with 10-year fixed-rate mortgages have similar ROE volatility

compared to full ARM economies, but ROE volatility is still higher compared to an economy

with volatility-minimizing 2-year fixed-rate mortgages.

5.6.3 Other Factors

To summarize, from a mortgage market design perspective, the sensitivity of deposit rates to

interest rates and intermediary risk aversion play a substantial role when evaluating which

mortgage structure is preferable from a financial stability and risk-sharing perspective. Other

factors that we aim to consider are how sensitive default is to an increase in mortgage payments,

which could for instance reflect how stringent the underlying recourse regime is, and the sources

of aggregate output shocks.

14We keep borrower risk aversion at the baseline level of both agents γ = 1.5.
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interest expenses and falling asset values, leading to a decline in net worth and profitability.

On net, we find that financial stability risks are “U-shaped” in mortgage structure: while

ARM payments are more sensitive to interest rates, defaults happen in states when interme-

diary net worth is high, resulting in lower risk premia in constrained states compared to the

benchmark FRM economy. As a result, an intermediate mortgage fixation length minimizes

the volatility of intermediary net worth and optimizes risk-sharing of aggregate risk.

Overall, our findings have implications for monetary policy and macroprudential regulation.

Our model provides a framework for understanding how changes in policy rates affect financial

stability differentially across mortgage structures. Our paper informs optimal mortgage de-

sign that aims to improve financial stability and risk-sharing between households and financial

intermediaries.
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times for monetary policy: What do twenty-three million bank loans say about the effects of

monetary policy on credit risk-taking?,” Econometrica, 2014, 82 (2), 463–505.

Koijen, Ralph SJ, Otto Van Hemert, and Stijn Van Nieuwerburgh, “Mortgage tim-

ing,” Journal of Financial Economics, 2009, 93 (2), 292–324.

Krishnamurthy, Arvind and Wenhao Li, “The Demand for Money, Near-Money, and

Treasury Bonds,” The Review of Financial Studies, 10 2022, 36 (5), 2091–2130.

Liu, Lu, “The Demand for Long-Term Mortgage Contracts and the Role of Collateral,” Avail-

able at SSRN 4321113, 2022.

43



Maggio, Marco Di, Amir Kermani, and Christopher J Palmer, “How quantitative

easing works: Evidence on the refinancing channel,” The Review of Economic Studies, 2020,

87 (3), 1498–1528.

, , Benjamin J Keys, Tomasz Piskorski, Rodney Ramcharan, Amit Seru, and

Vincent Yao, “Interest rate pass-through: Mortgage rates, household consumption, and

voluntary deleveraging,” American Economic Review, 2017, 107 (11), 3550–3588.

Martinez-Miera, David and Rafael Repullo, “Monetary policy, macroprudential policy,

and financial stability,” Annual Review of Economics, 2019, 11, 809–832.

Meiselman, Ben S, Stefan Nagel, and Amiyatosh Purnanandam, “Judging banks’ risk

by the profits they report,” Technical Report, National Bureau of Economic Research 2023.

Mian, Atif and Amir Sufi, House of debt: How they (and you) caused the Great Recession,

and how we can prevent it from happening again, University of Chicago Press, 2015.

Nagel, Stefan, “The Liquidity Premium of Near-Money Assets*,” The Quarterly Journal of

Economics, 07 2016, 131 (4), 1927–1971.

Piskorski, Tomasz and Alexei Tchistyi, “Optimal mortgage design,” The Review of Fi-

nancial Studies, 2010, 23 (8), 3098–3140.

and Amit Seru, “Mortgage market design: Lessons from the Great Recession,” Brookings

Papers on Economic Activity, 2018, 2018 (1), 429–513.

Sanchez, German Sanchez, “Mortgage Choice and the Credit Guarantee,” Working Paper,

2023.

Scharfstein, David and Adi Sunderam, “Market power in mortgage lending and the trans-

mission of monetary policy,” Technical Report 2016.

Smets, Frank, “Financial stability and monetary policy: How closely interlinked?,” 35th issue

(June 2014) of the International Journal of Central Banking, 2018.

Stein, Jeremy C, “Monetary policy as financial stability regulation,” The Quarterly Journal

of Economics, 2012, 127 (1), 57–95.

44



Tella, Sebastian Di and Pablo Kurlat, “Why are banks exposed to monetary policy?,”

American Economic Journal: Macroeconomics, 2021, 13 (4), 295–340.

Varraso, Paolo, “Banks and the Macroeconomic Transmission of Interest-Rate Risk,”Working

Paper, 2023.

Wang, Olivier, “Banks, low interest rates, and monetary policy transmission,” NYU Stern

School of Business, 2018.

Wang, Yifei, Toni M Whited, Yufeng Wu, and Kairong Xiao, “Bank market power

and monetary policy transmission: Evidence from a structural estimation,” The Journal of

Finance, 2022, 77 (4), 2093–2141.

45



A Model Derivations

A.1 Borrowers

The complete borrower’s problem is given by:

V (wi
t,Zt) = max

dit,h
i
t,s

i
t,m

i
t

βEt

[
max

{
max
ait≥0

uB(ci,ndt+1 , h
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t) + V (wi,nd

t+1 ,Zt), η
i
t
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t+1,Zt)
)}]

(1)

where
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i
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[
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θ
]1−γ
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such that
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t +Ri
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1 + rdt
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i
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i
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i
t + Φ

(
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i
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pht h
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− ¯LTV

)
(2)

ci,ndt + xi
tm

i
t−1 + δHh

i
t−1 + ait = st−1(Yt + ϵit) + dit−1 (3)

ci,dt = st−1(Yt + ϵit) + dit−1 (4)

wi,nd
t = ait − (1− δ)mi

t−1q
m
t + pht h

i
t−1 + psts

i
t−1 (5)

wi,d
t = (1− λ)psts

i
t−1 (6)

ait ≥ 0 (7)

where Ri
t is a rebate of the LTV adjustment cost Φ proportional to wealth wi

t. With this

parametrization, the adjustment cost does not have income effects.

Notice that u(c, h) is homogeneous of degree 1 − γ in c and h and that all constraints are

linear in wealth wi
t in the sense that if a given allocation is feasible for a wealth of 1, then wi

t

times that allocation is feasible for a wealth of wi
t. By Proposition 1 of Diamond and Landvoigt

(2021), these two properties imply that the borrower’s value function can be decomposed into

(wi
t)

1−γ

1−γ
and a term v(Z) that only depends on state variables exogenous to the borrower.

For a given choice git, define ĝit =
git
wi

t
. Then, the value function can be rewritten as:
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âit≥0

(wi
t)
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Divide both sides by (wi
t)

1−γ and drop i subscripts on hatted trading stage choice variables

following the proposition cited above, getting the following recursion:

v(Zt) = (1− γ) max
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βEt

[
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(ŵi,d
t+1)

1−γ

1− γ

)}]

such that

1 =
d̂t

1 + rdt
+ qmt m̂t + pht ĥt + pst ŝt + Φ
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ĉi,ndt + xi
tm̂t−1 + δH ĥt−1 + ait = ŝt−1(Yt + ϵit) + d̂t−1 (9)

ĉi,dt = ŝt−1(Yt + ϵit) + d̂t−1 (10)

ŵi,nd
t = âit − (1− δ)m̂t−1q

m
t + pht ĥt−1 + pst ŝt−1 (11)

ŵi,d
t = (1− λ)pst ŝt−1 (12)

âit ≥ 0 (13)

(14)

The remaining dependence on i is in consumption stage shock realizations and choices, which

enter the value function through the continuation values inside the expectations operator.

Therefore, if we can write the consumption stage problem as a function of state variables

exogenous to the borrower and i.i.d. idiosyncratic shocks, we will have confirmed the validity

of our aggregation.
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No Default Branch Consumption Decision If the borrower chooses not to default, they

choose ĉi,ndt and âit to maximize uB(ĉndt+1, ĥt) + v(Zt+1)
(ŵnd

t+1)
1−γ

1−γ
subject to the budget constraint

(9), wealth evolution (11), and the non-negative intraperiod savings constraint (13). The first

order condition for âit is:
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c (ĉ
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where κi,nd
t+1 is the Lagrange multiplier on the nonnegativity constraint (13). We will use the

functions ĉndt+1(y
i
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i
τ ) and ŵnd
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i
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i
τ ) to explicitly denote the dependence of the consumption

decision on the idiosyncratic realizations borrower’s income and the mortgage regime.

Default Decision Given the consumption decision above, a household decides to default iff
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This expression implies that there exist a default threshold η∗(ϵit,1
i
τ ) at which the household is

indifferent between defaulting and not defaulting. Which side of the threshold leads to a default

vs. no-default decision depends on the sign of the value function, which depends on whether

or not γ > 1. For the rest of these derivations, assume that γ > 1, the more common case, in

which case value functions are negative, and so the default region is given by [0, η∗(yit,1
i
τ )].

Using the Law of Iterated Expectations, we can separate the conditional expectation Et in

the definition of the value function into an expectation over the realization of aggregate shocks

EZ
t [·], the expectation over the realizations of i.i.d. idiosyncratic shocks to income ϵit and reset

probability 1i
τ denoted by Ei[·], and the expectation over i.i.d. default utility shocks ηi denoted

by Eη[·]. Let Fη denote the c.d.f. of the ηi distribution. Then the expectation in the value

function can be written as:
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Since idiosyncratic shocks are i.i.d., they affect the household problem only through the laws

of motion for wealth, admitting aggregation.

If ϵit idiosyncratic shocks were continuous, the nested expectations above imply integration

over a non-rectangular region of (ϵit, η
i
t), which can be challenging to calculate numerically.

Instead, we model shocks to ϵit as discrete. Shocks to the ARM stage 1i
τ are already Bernoulli.

In this case, the expectation Ei[·] above can be written as:

∑
τ∈{0,1}
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Note that conditional on default, the borrower’s value function does not depend on the specific

realization of the utility penalty, meaning that uB(ŝt−1(Yt+ ϵ)+ d̂t−1, ĥt)+ v(Zt+1)
(ŵd

t+1)
1−γ

1−γ
can

be brought outside the Eη[·] expectation.

Distribution of η Shocks Let log ηit ∼ N
(
−σ2

η

2
, σ2

η

)
. This implies that the average penalty

for default is purely pecuniary and governed by λ, while the dispersion of η shocks given by ση

governs the sensitivity of default rates to economic conditions.

The log-normal distribution admits a simple expression for the partial expectation of the

default penalty:
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As well as for the survival probability:
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F̃η(ϵ, τ) ≡ 1− Fη (η
∗(ϵ, τ)) = 1− Φ

(
log η∗(ϵ, τ) + σ2

η/2

ση

)
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Therefore, for a given ϵ and τ , the continuation value of the borrower’s problem can be written

as:

F−
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ARM Reset Probability For a given individual mortgage, the probability of an ARM reset

is πτ conditional on it still being in the teaser stage. Since we are not tracking the distribution

of mortgages, we can only calculate the unconditional probability of being in the floating (rather

than teaser) stage: Pτ (τ
i
t = 0) = πτ [1− St] + St, where St = P(τ(mi

t) = 0) is the share of

currently outstanding mortgages that have already reset.

We can define this share recursively. Suppose that at the start of the current period, before

reset shocks have been realized, the share was St−1. As a result of reset shocks, there are now

πτ [1− St−1] m̂t−1 new floating rate mortgages. As a result of balance decay, the balances of

these mortgages are 1− δ of what they used to be. Newly issued mortgages are all in the teaser

stage so do not enter the numerator. Therefore, the share of already reset mortgages is:

St =
(St−1 + πτ [1− St−1]) (1− δ)m̂t−1

m̂t

This aggregation also implies that the teaser vs. floating stage status of a mortgage is

randomly reshuffled between households during the trading stage, so that there is no persistence

to their mortgage status. This is necessary for aggregation.
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A.1.1 First Order Conditions

Preliminaries For a generic choice variable g, write the continuation value of the borrower’s

problem as:

Et
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Differentiating with respect to g yields and collecting terms:

Et

[
∂vdt+1(g)

∂g
F−
η (g) +

∂vndt+1(g)

∂g
F̃η(g) + fη(η

∗(g))
∂η∗(g)

∂g

(
−η∗(g)vdt+1(g) + vndt+1(g)

)]

Plugging in the default condition vndt+1(g) = η∗(g)vdt+1(g) leads the last term to become zero:

Et

[
∂vdt+1(g)

∂g
F−
η (g) +

∂vndt+1(g)

∂g
F̃η(g)

]

Which is the expression we will use to calculate the first order conditions below.

Define the LTV adjustment cost Φ to be Φ(x) = ϕ
2
x2.

Denote by µt the Lagrange multiplier on the time t budget constraint (8).

Deposits Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of (inter-

period) deposits d̂t in the default and no-default states, respectively, are given by:
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∂V d
t+1

∂d̂t
= uB

c (ĉ
d
t+1(ϵ), ĥt) + v(Zt+1)

(
ŵi,d

t+1

)−γ ∂ŵi,d
t+1

∂d̂it
= uB

c (ĉ
d
t+1(ϵ), ĥt)

∂V nd
t+1

∂d̂t
= uB

c (ĉ
nd
t+1(ϵ, τ), ĥt) + v(Zt+1)

(
ŵi,nd

t+1

)−γ ∂ŵi,nd
t+1

∂d̂it
= uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)

The FOC for (inter-period) deposits d̂it is then given by:

µt

1 + rdt
= βEt

[
F−
η (ϵ, τ)uB

c (ĉ
d
t+1(ϵ), ĥt) + F̃η(ϵ, τ)u

B
c (ĉ

nd
t+1(ϵ, τ), ĥt)

]

Lucas Tree Shares Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values

of Lucas tree shares ŝt in the default and no-default states, respectively, are given by:

∂V d
t+1

∂ŝt
= uB

c (ĉ
d
t+1(ϵ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,d

t+1

)−γ

(1− λ)pst+1

∂V nd
t+1

∂ŝt
= uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pst+1

The FOC for shares ŝit is then given by:

µtp
s
t = βEt

[
F−
η (ϵ, τ)

(
uB
c (ĉ

d
t+1(ϵ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,d

t+1

)−γ

(1− λ)pst+1

)
+ F̃η(ϵ, τ)

(
uB
c (ĉ

nd
t+1(ϵ, τ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pst+1

)]

Houses Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of houses ĥt

in the default and no-default states, respectively, are given by:
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∂V d
t+1

∂ĥt

= uB
h (ĉ

d
t+1(ϵ), ĥt)

∂V nd
t+1

∂ĥt

= uB
h (ĉ

nd
t+1(ϵ), ĥt)− uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)δH + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pht+1

The FOC for houses ĥi
t is then given by:

µtp
h
t = Φh

qmt m̂
i
t

(ĥi
t)

2
+ βEt

[
F−
η (ϵ, τ)uB

h (ĉ
d
t+1(ϵ), ĥt)

+ F̃η(ϵ, τ)

(
uB
h (ĉ

nd
t+1(ϵ), ĥt)− uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)δH + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pht+1

)]

Mortgages Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of houses

m̂t in the default and no-default states, respectively, are given by:

∂V d
t+1

∂m̂t

= 0

∂V nd
t+1

∂m̂t

= uB
c (ĉ

nd
t+1(ϵ, τ), ĥt)x

i
t + v(Zt+1)

(
ŵi,nd

t+1

)−γ

(1− δ)qmt+1

The FOC for shares ŝit is then given by:

µtq
m
t

(
1− Φm

qmt

pmt ĥ
i
t

)
= βEt

[
F̃η(ϵ, τ)

(
uB
c (ĉ

nd
t+1(ϵ, τ), ĥt)x

i
t + v(Zt+1)

(
ŵi,nd

t+1

)−γ

(1− δ)qmt+1

)]

A.1.2 Market-Clearing Conditions and Aggregation

To calculate intermediary wealth and market clearing, we must integrate over the distribution

of borrower shocks. First, note that identical choices by borrowers in per-wealth units mean

that for any quantity git that is a function of borrower choices, we can express it is a product

of the common per-wealth choice ĝt and aggregate borrower wealth wB
t :
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∫ ℓ

0

gitdi = ĝt

∫ ℓ

0

wi
tdi = ĝtw

B
t

Aggregate share of defaulting mortgages F η
t is given by:

F η
t =

∫ ℓ

0

1
i
ddi =

∑
τ∈{0,1}

∑
ϵ∈E

Pϵ(ϵ
i
t = ϵ)Pτ (τ

i
t = τ)Fη(η

∗(ϵ, τ))

Aggregate per-unit mortgage payment xt is given by:

xt = Ei[x
i
t|ηi ≤ η∗,i(ϵit,1

i
τ )]

For other quantities,

• Mortgages:
∫ 1

ℓ
mI

tdi =
∫ ℓ

0
mi

tdi implies M I
t = m̂tW

B
t

• Borrower Tree Shares: α = ŝtW
B
t

• Houses: H̄ = ĥtW
B
t

Finally, the law of motion for aggregate borrower wealth is:

WB
t+1 =

∫ ℓ

0

wi
t+1di

= WB
t Ei

[
F̃η((ϵ

i
t,1

i
τ ))ŵ

i,d
t+1(ϵ

i
t) + Fη((ϵ

i
t,1

i
τ ))ŵ

i,nd
t+1 (ϵ

i
t,1

i
τ )
]

A.2 Banks

A.2.1 Problem

Banks are not subject to idiosyncratic shocks and are ex-ante identical. As a result, we can solve

the problem for the representative aggregate bank. Denote aggregate quantities with capital

letters. The bank’s complete problem is given by:
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V I(W I
t ,Zt) = max

DivIt ,D
I
t ,M

I
t

DivIt + Et

[
MS

t+1V
I(W I

t+1,Zt+1)
]

(15)

subject to

W I
t =

DI
t

1 + rdt
+ qmt M

I
t +DivIt (16)

W I
t+1 = (1− ν)Xt+1M

I
t +DI

t (17)

Dt ≤ ξ (κq̄m + (1− κ)qmt )M
I
t (18)

where Xt is the aggregate mortgage payment per unit of mortgage debt given borrowers’ choices:

Xt = F̃ η
t (xt + (1− δ)qmt ) + Ei

[
Fη(ϵ

i
t,1

i
t)
hi
t−1

M I
t−1

pt((1− ζ)− δh)

]

Since default decisions do not depend on wealth levels and since housing choices hi
t = ĥtw

i
t

are proportional to borrower wealth for all borrowers,

Ei

[
Fη(ϵ

i
t,1

i
t)h

i
t−1

]
= Ei

[
Fη(ϵ

i
t,1

i
t)
]
Ei

[
hi
t−1

]
= F η

t H
B
t−1 = F η

t αh

. As a result, the mortgage payoff can be written:

Xt = F̃ η
t (xt + (1− δ)qmt ) + F η

t

αh

M I
t

pt((1− ζ)− δh)

A.2.2 First Order Conditions

Mortgages The FOC for mortgages M I
t is given by:

qmt = µL
t ξ (κq̄

m + (1− κ)qmt ) + Et

[
MS

t+1Xt+1

]
where µL

t is the Lagrange multiplier on the leverage constraint (18).
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Deposits The FOC for deposits DI
t is given by:

1

1 + rdt
= µL

t + Et

[
MS

t+1

]
Note that absent occasionally binding borrowing constraints V I

t = W I
t . But in their presence,

this doesn’t hold.

A.3 Savers

Likewise, we write and solve the representative saver’s problem using aggregate quantities. For

symmetry, we define saver wealth inclusive of their Lucas Tree shares and housing, even though

neither is tradeable by them.

V S(W S
t ,Zt) = max

CS
t ,Et

u(CS
t , H

S
t ) + βEt[V

S(W S
t+1,Zt+1)]

subject to

W S
t = pstS

S
t + phtH

S
t + Etp

e
t + CS

t (19)

W S
t+1 = SS

t (p
s
t+1 + Yt) +HS

t (p
h
t+1 − δh) + Et(p

e
t+1 +DivIt+1) +RS

t+1 (20)

where Rt+1 are (1) borrower costs of default, parametrized by λ, (2) banks’ foreclosure costs,

parametrized by ζ, and (3) banks’ intermediation costs, parametrized by ν, rebated lump-sum:

RS
t = F η

t

(
λpstα + ζpht αh

)
+ νXtM

I
t

The first order condition for bank equity Et is

pet = Et

[
β

(
CS

t+1

CS
t

)−γ

(Divt+1 + pet+1)

]
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which implies the saver’s stochastic discount factor MS
t+1 = β

(
CS

t+1

CS
t

)−γ

.

Normalize the supply of bank shares Et to 1. Then, iterating on both the bank’s value

function and the saver’s FOC for bank equity, we get that V I
t = Divt + pet .

A.4 Resource Constraint

In this section, we verify that aggregate consumption and housing investment are financed by

the aggregate output of Lucas trees and by changes in the net deposit position of the economy.

Define aggregate borrower consumption in terms of conditional expectations of individual

consumption:

CB
t = WB

t−1Ei

[
Fη(η

∗,i)ĉi,ndt + F̃η(η
∗,i)ĉi,dt

]
= WB

t

(
F η
t Ei

[
ĉi,dt |ηi ≤ η∗,i

]
+ F̃ η

t Ei

[
ĉi,ndt |ηi > η∗,i

])
From the consumption stage budget constraints:

Ei

[
ĉi,dt |ηi ≤ η∗,i

]
= ŝt−1Ei

[
Yt + ϵit|ηi ≤ η∗,i

]
+ d̂t−1

Ei

[
ĉi,ndt |ηi > η∗,i

]
= ŝt−1Ei

[
Yt + ϵit|ηi > η∗,i

]
+ d̂t−1 − m̂t−1xt − δhĥt−1 − Ei

[
âit|ηi > η∗,i

]
From the no-default branch wealth evolution equation, we get that intra-period savings âit =

ŵi,nd
t − pht ĥt−1 − pst ŝt−1 + (1− δ)qmt m̂t−1. Furthermore, observe that

F̃ η
t Ei

[
Yt + ϵit|ηi > η∗,i

]
+ F η

t Ei

[
Yt + ϵit|ηi ≤ η∗,i

]
= Yt + Ei[ϵ

i
t] = Yt

Define aggregate borrower deposits DB
t = WB

t d̂t. Use market-clearing in Lucas trees and

housing to write WB
t ŝt = α and WB

t ĥt = αh. Use market-clearing in mortgages to write

WB
t m̂t = M I

t . Assembling,

CB = αYt +DB
t−1

+ F̃ η
t

[
αh(ph − δh) + αpst −M I

t−1 (xt + (1− δ)qmt )−WB
t−1Eτ

[
ŵi,nd

t |η > η∗,i
]]
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Recall that WB
t = WB

t−1Ei [ŵ
i
t]. We can break up the expectation as follows:

Ei

[
ŵi

t

]
= F̃ η

t Ei

[
ŵi,nd

t |η > η∗,i
]
+ F η

t Ei

[
ŵi,d

t |η ≤ η∗,i
]

Solving for the aggregate wealth of non-defaulters F̃ η
t W

B
t−1Ei

[
ŵi,nd

t | >≤ η∗,i
]
,

F̃ η
t W

B
t−1Ei

[
ŵi,nd

t |η > η∗,i
]
= WB

t −WB
t−1F

η
t Ei

[
ŵi,d

t |η ≤ η∗,i
]

Use the default-branch wealth evolution equation and market clearing in Lucas trees to substi-

tute

WB
t−1Ei

[
ŵi,d

t |η ≤ η∗,i
]
= (1− λ)pstα

Multiply the trading stage budget constraint by WB
t and plug in market-clearing conditions to

get

WB
t =

DB
t

1 + rdt
− qmt M

I
t + pht αh + pstα

Combining,

F̃ η
t W

B
t−1Ei

[
ŵi,nd

t |η > η∗,i
]
=

DB
t

1 + rdt
+ qmt M

I
t + pht αh + pstα− F η

t (1− λ)pstα

Plugging back into the expression for CB,

CB = αYt +DB
t−1 −

DB
t

1 + rdt
+ qmt M

I
t − pht αh − pstα + F η

t (1− λ)pstα

+ F̃ η
t

[
αh(ph − δh) + αpst −M I

t−1 (xt + (1− δ)qmt )
]

= αYt +DB
t−1 −

DB
t

1 + rdt
+ qmt M

I
t − F η

t (phαh + λpstα)

− F̃ η
t

[
δhαh +M I

t−1 (xt + (1− δ)qmt )
]

This expression admits an economic interpretation. Borrowers earn income from their Lucas

trees αYt and deposits DB
t−1. Those repaying their mortgages – a fraction F̃ η

t – expend resources
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on housing maintenance δhαh and mortgage paymentsM I
t−1 (Eτ [x

i
t|η > η∗,i] + (1− δ)qmt ). Those

who default – a fraction F̃ η
t – lose the value of their houses phαh and a fraction λ of the value

of their Lucas trees pstα. In the trading stage, they take out new mortgages qmt M
I
t and make

new deposits
DB

t

1+rdt
.

Next, consider saver consumption. From the budget constraint and wealth evolution equation

of savers,

CS
t = SS

t−1(p
s
t + Yt) +HS

t−1(p
h
t − δh) + Et−1(p

e
t +DivIt ) +RS

t − pstS
S
t − phtH

S
t − Etp

e
t

Plug in market clearing conditions Et = 1, SS
t = 1− α, HS

t = 1− αh, to get

CS
t = (1− α)Yt − (1− αh)δh +DivIt +RS

t

From the budget constraint for banks,

DivIt = (1− ν)XtM
I
t−1 +DI

t−1 −
DI

t

1 + rdt
− qmt M

I
t

Plugging for DivIt and Rt and collecting terms,

CS
t = (1− α)Yt − (1− αh)δh + XtM

I
t−1 +DI

t−1 −
DI

t

1 + rft
− qmt M

I
t + F η

t

(
λpstα + ζpht αh

)
Next, subtitute the definition of Xt:

CS
t = (1− α)Yt +DI

t−1 −
DI

t

1 + rdt
− qmt M

I
t + F η

t λp
s
tα

− (1− αh)δh + F̃ η
t (xt + (1− δ)qmt )M

I
t−1 + F η

t ptαh(1− δh)

Define aggregate deposits as Dt = DB
t +DI

t . Then, adding CB
t and CS

t and collecting terms,

we get the resource constraint:

CB
t + CS

t︸ ︷︷ ︸
Aggregate Consumption

+ δ︸︷︷︸
Housing Investment

= Yt︸︷︷︸
Output

+ Dt−1 −
Dt

1 + rdt︸ ︷︷ ︸
∆Net Foreign Assets
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A.5 Risk Sharing Measures

A.5.1 Complete Markets Benchmark

An unconstrained social planner chooses allocations for each agent that are proportional to the

weight that the planner puts on the utility of that agent.

Define the social welfare problem:

max
{{(cit,hi

t−1)}1i=0}∞t=0

E0

[∫ 1

i=0

λi

∞∑
t=1

βt

(
(cit)

1−θ(hi
t)

θ
)1−γ − 1

1− γ
di

]

such that the resource constraints for each good, in each period and each state of the world are

satisfied:

∫ 1

0

cit = Yt ∀t, st∫ 1

0

hi
t−1 = H̄ ∀t, st

where every variable xt is implicitly a function of the random variable st, denoting the history

of the economy up to time t.

Assign µt and νt as Lagrange multipliers to each of the constraints at time t, history st,

respectively. Use π(st) to denote the density of the unconditional history distribution at a

given st. The first order condition for consumption for agent i at time t are:

λiβ
tπ(st)

(
(cit)

1−θ(hi
t−1)

θ
)−γ

(1− θ)(cit)
−θ(hi

t−1)
θ = µt

The first order condition for housing for agent i at time t− 1 are:

λiβ
tπ(st)

(
(cit)

1−θ(hi
t−1)

θ
)−γ

θ(cit)
1−θ(hi

t−1)
θ−1 = νt−1

Dividing them by each other, we get the optimal MRS between consumption and housing for
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a given state of the world, which is the same for all households:

cit
hi
t−1

=
1− θ

θ

µt

νt−1

Substitute for housing in the consumption FOC:

hi
t−1 =

θ

1− θ

µt

νt−1

cit

λiβ
tπ(st)

(
(cit)

[
θ

1− θ

µt

νt−1

]θ)−γ

(1− θ)1−θθθ = µ1−θ
t νθ

t−1

Dividing the consumption FOCs for agents i and j at time t by each other, we get:

λi

λj

(
cit
cjt

)−γ

= 1

which means that the ratio of consumptions is constant over time and states of the world at:

cit
cjt

=

(
λi

λj

)−1/γ

Rewrite as:

cit =

(
λi

λj

)−1/γ

cjt

Integrate both sides with respect to i to get aggregate time t consumption:

Ct ≡
∫ 1

0

citdi = λ
1
γ

j c
j
t

∫ 1

0

λ
− 1

γ

i di

Which implies that a given household’s consumption cjt is a constant fraction of aggregate

consumption Ct:

cjt =
λ
− 1

γ

j∫ 1

0
λ
− 1

γ

i di
Ct
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The same argument applies to housing, i.e. it can be shown that the planner’s optimal allocation

of housing to agent j

hj
t−1 =

λ
− 1

γ

j∫ 1

0
λ
− 1

γ

i di
H̄

is constant over time.

Since complete markets implement the planner allocation, this means that in a frictionless

economy the volatility of the ratio of consumptions is zero. This likewise implies that each

agent’s consumption grows at the same rate. Formally, take the log:

log cit − log cjt = −1

λ
(log λi − log λj)

Let ∆ log cit is defined as log cit− log cit−1. Then the log of the ratio of consumption growth rates

is:

∆ log cit −∆ log cjt ≡ (log cit − log cit−1)− (log cjt − log cjt−1)

= (log cit − log cjt)− (log cit−1 − log cjt−1)

Then in complete markets, it must be true that

Rij = Var0
[
∆ log cit −∆ log cjt

]
= 0

We refer to Rij as a measure of “internal” risk sharing. In an incomplete markets economy,

Rij ≥ 0 and Rij serves as a measure of risk sharing between households, with lower values

denoting better risk sharing.

A.5.2 Complete Markets Open Economy

The open economy version of the complete markets model is similar to the closed economy

version, except that the planner can now trade a risk-free bond with the rest of the world. The
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planner’s problem is:

max
{{(cit,hi

t−1)}1i=0,bt}∞t=0

E0

[∫ 1

i=0

λi

∞∑
t=1

βt

(
(cit)

1−θ(hi
t−1)

θ
)1−γ − 1

1− γ
di

]

such that

∫ 1

0

cit +
bt

1 + rdt
= Yt + bt−1 ∀t, st∫ 1

0

hi
t−1 = H̄ ∀t, st

The derivations above still hold. But now there is an additional choice variable of the planner.

Bonds bt(s
t) show up in the resource constraint for t, st and in the resource constraints for all

t, st+1 that are reachable from st. Denote this set of possible states as st+1|st and the . Then

the additional first order condition for the bond is:

µt

1 + rdt
π(st) =

∫
st+1|st

π(st+1)µt+1

Rearranging,

1 = (1 + rdt )

∫
st+1|st

π(st+1|st)
µt+1

µt

= (1 + rdt )Et

[
µt+1

µt

]

where π(st+1|st) denotes the conditional density of st+1 given st, and where the second equality

stems from the definition of a conditional expectation with Et [·] denoting E [·|st].

Plug in the FOC for consumption for the multipliers:

1 = (1 + rdt )Et

[(
cit+1

cit

)−γ(1−θ)−θ (
hi
t

hi
t−1

)θ(1−γ)
]

Recall that for any agent, the optimal housing allocation is constant and the growth rate of

consumption is equal to the aggregate consumption growth rate. Then the above equation
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simplifies to:

1 = (1 + rdt )Et

[(
Ct+1

Ct

)−γ(1−θ)−θ
]

The problem admits aggregation, i.e. the planner’s optimal choice of bonds is independent of

the resource allocation problem.

Take logs

0 = log(1 + rdt ) + logEt

[(
Ct+1

Ct

)−γ(1−θ)−θ
]

and define

Ragg = Var0

[
log(1 + rdt ) + logEt

[(
Ct+1

Ct

)−γ(1−θ)−θ
]]

≥ 0

as the “external” risk sharing measure. In complete markets, Ragg = 0, while in incomplete

markets larger values of Ragg indicate worse risk sharing between households in the economy

and the rest of the world.

A.5.3 Internal Risk Sharing in our Model

In our model, there are two kinds of households: borrowers with consumption denoted by cit and

savers, with consumption denoted by cSt and identical across all savers. Let CB
t =

∫ ℓ

0
cit denote

aggregate borrower consumption and CS
t = (1− ℓ)cst denote aggregate saver consumption.

Borrowers are unconditionally identical, meaning internal risk sharing is summarized fully by

two risk-sharing measures RiB and RBS, where RiB is the variance of the ratio of consumption

growth rates between borrower i and the aggregate borrower, and RBS is the variance of the

ratio of aggregate consumption growth rates between borrowers and savers.

Recall, we can write borrower i’s consumption at time t, cit, as the product of borrower

consumption per unit of wealth ĉit and borrower wealth at time t− 1, wi
t−1. Consumption per

unit of wealth only depends on the identity of the borrower i through the realizations of iid

shocks to S i
t = (ϵit, τ

i
t , η

i
t).
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Write the log growth rate of borrower i’s consumption as:

∆ log cit = log ĉt(S i
t)− log ĉt−1(S i

t−1) + log ŵt−1(S i
t−1)

where ŵt−1(S i
t−1) represents the growth rate in wealth ∆ logwi

t−1, which also depends on the

identity of the borrower i only through the realiations of iid shocks.

The definition of RiB is Var0[∆ log cit −∆ logCB
t ]. Using the law of total variance,

RiB = Var0
[
Et

[
∆ log cit −∆ logCB

t

]]
+ E0

[
Vart

[
∆ log cit −∆ logCB

t

]]
where the conditional moments Vart and Et are taken cross-sectionally with respect to realiza-

tions of idiosyncratic shocks. Simplifying,

RiB = Var0
[
Et

[
∆ log cit

]
−∆ logCB

t

]
+ E0

[
Vart

[
∆ log cit

]]
Finally, RBS is defined as Var0[∆ logCB

t −∆ logCS
t ].

B Calibration Details

B.1 Mortgage Payments and Duration

Recall, a fixed rate mortgage issued at time 0 pays ιf + δq̄m in the first period, (1− δ)(ιf + δq̄m)

in the second period, and so on.

Define a mortgage yield to maturity ytm as the discount rate which discounts mortgage cash

flows to the mortgage price.

It is easy to see that

qm(ytm) =
∞∑
t=1

(1− δ)t−1 ιf + δq̄m

(1 + ytm)t
=

ιf + δq̄m

ytm+ δ

and that therefore the mortgage is priced to par when ytm = ιf . We calibrate the model by

setting ιf to the steady state equilibrium ytm, thus ensuring that q̄m = 1.
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Define duration of the fixed rate mortgage as the negative semi-elasticity of the mortgage

price with respect to the yield to maturity. We have:

− ∂qm/qm

∂ytm

∣∣∣∣
ιf

=
1

ιf + δ

An adjustable rate mortgage makes fixed rate payments ιτ + δq̄m, (1 − δ)(ιτ + δq̄m), etc.

until (stochastic) reset time τ and pays adjustable payments (1 − δ)τ−1
(
rfτ + ιa + δq̄m

)
, (1 −

δ)τ
(
rfτ+1 + ιa + δq̄m

)
, etc. after.

In the baseline calibration, we set ιτ = ιf and ιa = ιf − r̄. Then the per-remaining-balance

portion of the ARM payment can be written as ιf + (rft − r̄).

Let 1fixed
1,...,t be a random indicator variable equal to 1 if the mortgage is still in the fixed/teaser

stage at time t. So the expected ARM cash flow at time t is then given by:

E0

[
(1− δ)t−1

[
1
fixed
1,...,t(ιf + δq̄m) +

(
1− 1

fixed
1,...,t

) (
ιf + rft − r̄ + δq̄m

)]]
Collecting terms,

(1− δ)t−1
(
(ιf + δq̄m) + E0

[(
1− 1

fixed
1,...,t

) (
rft − r̄

)])

Let 1adj
s be an indicator equal to 1 if a mortgage that resets from fixed to floating at time s.

Then

1
fixed
1,...,t =

t∏
s=1

(
1− 1

adj
s

)

The realization of morgage resets 1adj
s are independent of each other, and also independent

from the realizaton of future indexation rates rft . Every period, the probability that a mortgage

still in the teaser stage resets to the adjustable stage, i.e. E0[1
adj
s ] is πτ . So the expected ARM

cash flow at time t can be written as:

(1− δ)t−1
(
(ιf + δq̄m) +

(
1− (1− πτ )

t
) (

E0[r
f
t ]− r̄

))
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Define yield to maturity ytm for an adjustable rate mortgage as the (risk-neutral) discount

rate that discounts expected ARM cash flows to the mortgage price. We have:

qm(ytm) =
∞∑
t=1

(1− δ)t−1 ιf + δq̄m

(1 + ytm)t
+

∞∑
t=1

(1− δ)t−1
(
1− (1− πτ )

t
) E0[r

f
t ]− r̄

(1 + ytm)t

=
ιf + δq̄m

ytm+ δ
+
(
E0[r

f
t ]− r̄

)( 1

ytm+ δ
− 1− πτ

1 + ytm− (1− δ)(1− πτ )

)

The first term is the price of the FRM. The second term is equal to zero because E0[r
f
t ] = r̄

in equilibrium. In steady state, risk neutral and physical measures coincide because there are

no risk premia, so ytm = ιf prices the mortgage to par (q̄m = 1) just as before.

To define the duration of the adjustable mortgage, write the price of the mortgage as a

function of ytm and future rate r:

qm(ytm, r) =
ιf + δ

ytm+ δ
+ (r − r̄)

(
1

ytm+ δ
− 1− πτ

ytm− (1− δ)(1− πτ )

)

Then, consider the change in mortgage price due to a parallel shift in all interest rates, i.e. when

∂r
∂ytm

= 1. Formally, duration is given by −∂qm(ytm,r(ytm))/qm(ytm,r(ytm))
∂ytm

evaluated at ytm = ιf

and r such that qm(ιf , r) = 0, which means r = r̄. Taking derivatives,

∂qm(ytm, r(ytm))

∂ytm
= − 1

ytm+ δ
+ (r − r̄)

∂

∂ytm

(
1

ytm+ δ
− 1− πτ

1 + ytm− (1− δ)(1− πτ )

)
+

∂r

∂ytm

(
1

ytm+ δ
− 1− πτ

1 + ytm− (1− δ)(1− πτ )

)

Imposing r = r̄ leads the second term to drop out. Imposing ytm = ιf and ∂r
∂ytm

= 1, we get:

− ∂qm(ytm, r(ytm))

∂ytm

1

qm(ytm, r(ytm))

∣∣∣∣
ytm=ιf ,r=r̄

=
1− πτ

1 + ιf − (1− δ)(1− πτ )

which is the steady-state contractual duration of the ARM with a reset probability of πτ .

Note that at πτ = 0, the expression simplifies to 1/(ιf + δ), which is the FRM duration. At

πτ = 1, i.e. a reset occuring with probability at the time of the first cash flow (one year after

issuance), the duration is 0.
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C Two-Period Model

In this section, we illustrate the main differences in the allocation of risk between fixed-rate

mortgage (FRM) and adjustable-rate mortgage (ARM) regimes using a two-period model with

time indexed by t = 0, 1.

C.1 Borrowers

A continuum of borrowers indexed by i is endowed with equal initial wealth w0 and have

preferences over t = 1 consumption, residual t = 1 wealth, and housing.

Borrowers allocate their initial wealth to deposits di, mortgages mi, houses hi, and Lucas

trees si to maximize E[u(c1,i, w1,i, hi)], the expectation of their t = 1 utility kernel given by:

U(c, w, h) = (1− β) log c+ β logw + βθ log h (21)

subject to the t = 0 budget constraint:

w0 = ph0hi + ps0si + qdi − qm0 mi

Because ex-ante borrowers are identical in terms of their wealth and distributions of t = 1

shocks, they will make identical portfolio decisions, and so we will drop i subscripts on h, s, d,

and m.

t = 1 consists of two subperiods. In the first subperiod (“morning”), borrowers are exposed

to an idiosyncratic income shock ϵi ∈ {ϵL, ϵH} to the yield of their Lucas tree yi, such that

yi = 1 + ϵi.

Borrowers use their liquid assets – income and deposits – to make mortgage payments and

consume. Any excess liquid assets can be carried over into the second subperiod (“afternoon”)

and constitute remaining borrower wealth along with the value of their housing, trees, and
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mortgages.

Crucially, borrowers cannot trade these illiquid assets until the afternoon, meaning they

cannot obtain additional liquidity in the morning to finance their mortgage payments and

consumption. Their only way to increase liquid assets at t = 1 is to default on the mortgage

payment. To characterize the borrowers’ default decision, consider the two branches of their

decision tree.

If borrowers do not default, they solve a simple consumption-savings problem:

max
ai≥0

(1− β) log(ℓi − ai) + β log(ωi + ai)

where

ℓi = yis+ d− xm

is their stock of liquid assets after making the mortgage payment xmi, and

ω = ps1s+ ph1h− qm1 (1− δ)m

is their illiquid wealth, consisting of Lucas trees, houses, and remaining fraction 1− δ of their

mortgage balance, all at t = 1 prices.

The borrowers per-unit mortgage payment x is given by ι+ δ, where ι represents the interest

payment and δ represents the principal payment. In an FRM regime, ι is fixed, while in an

ARM regime, ι = r + ιa is a fixed spread over the prevailing short rate r. Therefore, shocks to

r constitute the second, aggregate, source of risk in the economy.

The optimal unconstrained choice of intraperiod savings equates the marginal utility of con-

sumption (1− β)/ci with the marginal utility of wealth β/wi, yielding the following expression

for intraperiod savings:
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a∗i = max {0, βℓi − (1− β)ω}

is increasing in liquid assets and decreasing in illiquid wealth, such that when liquid assets are

low – either because of a bad income realization or because ARM mortgage payments increase

due to a rate hike – the borrower is constrained. She would like to borrow from her illiquid

wealth to finance additional consumption at the expense of future wealth, but she cannot do so

directly. The only way to accomplish this is to default, gaining liquid assets xm at the expense

of losing housing wealth ph1 and a fraction of non-housing wealth λps1s, as well as extinguishing

the remaining principal (1− δ)qmi m. A positive value of λ represents pecuniary costs of default

in addition to foreclosure, e.g. partial recourse, costs of being locked out of the financial market

for some amount of time, etc.

Additionally, defaulting comes with a non-pecuniary stochastic default penalty ηi ∼ Fη, such

that a household defaults iff

u(cndi , wnd
i , h) < u(cdiw

d
i , h) + ηi

where the no-default consumption and wealth are given by

cndi = yis+ d− xm− a∗i

wnd
i = a∗i + ps1s+ ph1h− qm1 (1− δ)m

and the default consumption and wealth are given by

cdi = yis+ d

wd
i = (1− λ)ps1s

Borrowers optimally default if the realization of ηi is above a threshold value η∗i , which

depends on both idiosyncratic and aggregate shocks and is given by
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η∗i = (1− β) log
cndi
cdi

+ β log
wnd

i

wd
i

implying a survival probability Fi = F (η∗i ).

For a borrower with a large stock of liquid assets s and d, the ratio of no-default to default

consumption is close to 1, and so her default decision will be largely strategic, i.e. based on the

change in wealth due to default. When λ is low, such a borrower will “send in the keys” to a

property underwater.

But when the stock of liquid assets is smaller, the driver of default will be the liquidity

borrowers can unlock in high marginal utility states by foregoing the mortgage payment xm,

even if this default leads to lower future wealth. Empirical evidence, e.g., Ganong and Noel

(2022), suggests that this is the primary reason borrowers default. In our model, a rise in ARM

mortgage payments due to interest rate hikes together with interaction effects with drivers of

strategic default can lead to significant amplification.

We are now ready to characterize the borrowers’ t = 0 problem. Denoting the Lagrange

multiplier on (shadow value of relaxing) the budget constraint by µ, we can write the Euler

equation for deposits as:

qµ = E

[
(1− Fi)

1− β

cndi
+ Fi

1− β

cdi

]

The marginal cost of deposits is given by qµ, while the marginal benefit is given by the

expected marginal utility of consumption, with the expectation taken over aggregate interest

rate shocks, idiosyncratic income shocks, and idiosyncratic default penalty shocks, which enter

the problem exclusively through the default probabilities Fi that they imply.

The Euler equation for houses equates the marginal cost of housing ph0µ against the marginal

benefit, which consists of the user cost βθ/h and the marginal contribution of housing to wealth,

which borrowers receive only if they do not default:
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ph0µ = E

[
βθ

h
+ β(1− Fi)

ph1
wnd

i

]

By obtaining a mortgage, borrowers relax their budget constraint by qm0 (worth qm0 µ to them)

at t = 0. The marginal cost at t = 1 consists of the two terms. First, mortgage payments

enter the marginal utility of consumption. Second, the remaining mortgage balance enters the

marginal utility of wealth. Both terms apply only if the borrower does not default:

qm0 µ = E

[
(1− Fi)

(
1− β

cndi
x+

β

wnd
i

(1− δ)qmi

)]

Finally, Lucas trees have a utility cost of ps0µ and yield marginal benefits of all four types –

consumption and wealth in both no-default and default branches:

ps0µ = E

[
(1− Fi)

(
1− β

cndi
yi +

β

wnd
i

ps1

)
+ Fi

(
1− β

cdi
yi +

β

wd
i

(1− λ)ps1

)]

To close the borrower side of the model, we assume that houses and Lucas trees are in fixed

unit supply H =
∫
hdi = S =

∫
sdi = 1.

C.2 Lenders

Lenders are perfectly competitive and risk-neutral financial intermediaries (an assumption we

will relax in the fully dynamic model). They raise funds in the form of deposits DI at price

q from borrower households as well as in wholesale markets. They use these funds to make

mortgage loans M I at price qm to households.

Each performing mortgage yields a t = 1 cash flow of x to the lender, as well as having a

remaining ex-payment value of (1 − δ)qm1 . When borrowers default, lenders foreclose on the

house, yielding a per-house value ph1(1 − ζ) net of foreclosure costs ζ ≥ 0. The remaining

mortgage balance is extinguished.
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Let FI =
∫
Fidi denote the aggregate default rate (taking an expectation over idiosyncratic

income realizations of borrowers). Then the total t = 1 of the lenders mortgage portfolio is:

XM I = (1− ν)
[
(1− FI)(x+ (1− δ)qm1 )M

I + FIp
h
1H(1− ζ)

]
where ν ≥ 0 denotes the lenders’ operating costs as a fraction of the mortgage portfolio. The

lender’s t = 0 problem is to maximize their profit:

max
DI ,MI

E[(1− ν)XM I −DI ]

subject to the budget constraint qDI = qm0 M
I .

Competition between lenders yields a zero-profit condition:

q(1− ν)E[X ] = qm0

C.3 Equilibrium

To close the model, we assume that outside investors supply short-term funding elastically at

exogenous price q. We also assume exogenous t = 1 asset prices ph1 , p
s
1 and qm1 . This allows us

to directly vary the sensitivity of these prices to interest rate shocks r and thus to decompose

the effects of these rate shocks onto default rates and lender profits into cash flow effects on

mortgage payments x and valuation effects through asset prices.

Given these prices and initial endowment w0, the competitive equilibrium is defined as a set

of time 0 portfolio choices s, h, d,m,DI ,M I , time 0 prices qm0 , p
h
0 , p

s
0, time 1 consumption and

intraperiod savings decisions {cndi , ai, c
d
i }, and time 1 default decisions 1i for each realization of

idiosyncratic and aggregate shocks such that households solve their optimization problems as

characterized by the optimality conditions above, lenders satisfy the zero-profit condition and

budget constraint, and markets clear: h = 1, s = 1, m = M I .

To discipline our characterization, we proceed in two steps. First, we solve a “steady state”
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of the model, in which we assume constant interest rates, i.e. r̄ = 1
q
− 1, and constant prices

qm0 = qm1 , p
h
0 = ph1 , p

s
0 = ps1. Second, we solve four different models with interest rate shocks.

1. FRM (Constant Prices): Mortgage payment x is fixed at r̄ + ι + δ, with ι normalized

such that time 0 mortgage price qm0 = 1. Since FRMs are a long duration asset, time 1

mortgage prices are inversely proportional to interest rates: qm1 = r̄+ι+δ
r+ι+δ

, with δ governing

the duration and hence sensitivitity of mortgage prices to rate shocks. Unlike mortgage

prices, house prices ph1 and Lucas tree price ps1 remain fixed at ph0 and ps0, respectively,

i.e., in this economy we assume no pass-through of rate shocks to real asset prices. With

payments and real asset prices remaining fixed, the only effect of interest rate shocks in

this economy is on the market value of mortgages.

2. FRM: The mortgage market is the same as in (1). However, we now allow house and Lucas

tree prices to vary with interest rates. Both assets can be thought of as perpetuities, and

hence a risk-neutral expectation of their cash flows can be written as pj0r̄ for j ∈ {h, s}.

After a change in interest rates, the new present value of these cash flows is pj0
r̄
rj
, where

rj = (1 − ϕj)r̄ + ϕjr is the discount rate appropriate for asset j. Here, the parameter

ϕj governs the degree of interest rate pass-through to asset j. ϕj = 0 corresponds to the

economy described in (1), while ϕj > 0 implies that asset prices fall when interest rates

rise. Because asset prices may affect default rates and lender profits, we renormalize the

mortgage rate spread ι to ensure that qm0 remains at 1.

3. ARM (Constant Prices): Mortgage payment x is now a spread over the short rate, x =

r + ι + δ. As in (1), we assume no pass-through of rate shocks to real asset prices.

Moreover, because mortgage coupons adjust with rates, the mortgage duration is now 0,

so qm1 = qm0 for all realizations of r. The only effect of interest rate shocks in this economy

is on the mortgage payment. Like in (2), we renormalize ι to ensure qm0 = 1.

4. ARM: The mortgage market is the same as in (3) and real asset prices respond as in (2).

As in the other economies, ι is renormalized to ensure qm0 = 1.
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C.4 Numerical Example Parametrization

The effect of interest rates on mortgage markets and financial stability depends on the mortgage

regime and the degree to which rate shocks are passed through to the prices of real assets.

To illustrate this, we consider a numerical example. For most parameters, we choose values

consistent with the calibration of the dynamic model in the subsequent section. For other

parameters for which the two-period model provides clearer guidance, we provide a rough

calibration as follows:

Interest Rates The time 0 interest rate is r̄ = 0.01, implying a bond price q of approximately

0.99. Time 1 interest rates are normally distributed with a mean of r̄ and a standard deviation

of 0.01.

Households Household discount factor β is 0.985. Setting it to a value below q implies

that absent liquidity constraints, household would not hold deposits. Borrowers value housing

services at 10% of their non-housing consumption. A negative income shock leads to a 3/4

drop in income and occurs with probability of 5%. This unlikely but sharp decline in income

represents the liquidity consequences of losing a job or, e.g., incurring a large medical expense.

In a two-period model with CRRA preferences, initial wealth w0 is a key determinant of portfolio

choices. We set w0 to produce a mortgage loan-to-value ratio of 80% in the FRM (Fixed Prices)

economy, keeping it constant across our experiments so that results can be comparable.

Default The pecuniary penalty of default λ is 0.1, meaning that households’ future income

declines by 10% as a result of default. Utility costs of default are normally distributed with

mean 0 and standard deviation of 0.2125. Together, these parameters imply default rates of

1.6%-2.2% in line with recent empirical estimates.

Lenders Lenders’ operating costs ν are set to 0.06, and foreclosure costs ζ are 0.5. These

parameters directly effect mortgage rates and losses given default. The mortgage duration δ is

set to 0.07. At mortgage rates implied by ν, this value of δ yields a FRM mortgage duration

of approximately 7 years, consistent with the effective duration of mortgages in the US.
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lender’s perspective, the value of now short-duration surviving mortgages remains constant, as

does LGD, since prices are fixed. Their total return responds to rates entirely through cash

flows. Higher payments collected on performing loans outweigh the increase in defaults, and

returns increase in rates.

Comparing FRMs with ARMs holding prices fixed conveys the traditional FRM vs. ARM

intuition. Under the FRM regime, rate hikes benefit households who are protected from rate

rises, at the expense of lenders, while this is reversed in the ARM economy.

However, this simple intuition becomes more nuanced when we allow prices to adjust in the

economy. In the ARM economy where prices respond to shocks, in response to a rate hike,

not only do borrower payments go up, but the cost of default also goes down in present value

terms. Moreover, there is no offsetting mortgage rate value channel, i.e. unlike with fixed-rate

mortgages, existing borrowers do not benefit from holding a low-rate mortgage in a high-rate

environment. As a result, default rates increase substantially, as do losses-given default.

While the lender still benefits from higher payments collected on performing loans, the in-

crease in losses due to higher default rates and LGD leads to a lower net return if the rate hike

is large enough. However, the source of these losses is markedly different: while FRM lenders

experience losses stemming from interest rate risk, ARM lenders experience losses primarily

stemming from credit risk induced by rate rises. The magnitude of these losses depend both

on the size of the interest rate shock but also on the level of household debt. An alternative

parametrization in which the t = 0 LTVs are closer to 100% than to 80% can generate loss-

driven low returns on mortgages of the same magnitude as the rate-driven low returns in the

FRM economy. In work going forward, we will quantitatively evaluate under what conditions

one force dominates the other from a financial stability perspective.

The discussion above also abstracts away from lenders’ funding costs. The change in ROA

is an upper bound on their unlevered return on equity (ROE) because it represents the case

where funding costs are unchanged (e.g., because lenders have a high degree of market power

in deposits). The increase in interest income collected by ARM lenders gives them a negative

exposure to interest rate risk, i.e. negative duration. Were their funding costs to increase one

for one with rates, the asset and liability effects would offset each other, and their portfolio

would be immunized, leaving borrowers to bear all the interest rate risk. However, the last
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set of results makes it clear that even as ARMs immunize lenders from interest rate risk, they

increase their exposure to credit risk.

The quantitative model we develop in the paper allows us to explore these trade-offs in a

more realistic setting, where lenders face funding costs and households face a broader set of

risks. We will also be able to evaluate the implications of these trade-offs for optimal monetary

policy.
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