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Abstract

Mortgage structure matters not only for monetary policy transmission, but also for
financial stability. Adjustable-rate mortgages (ARMs) expose households to rising rates,
increasing default risk through higher payments, while fixed-rate mortgages (FRMs) pro-
tect households but potentially expose banks to greater interest rate risk. To evaluate
these competing forces, we develop a quantitative model with flexible mortgage contracts,
liquidity- and net worth-driven household default, and a banking sector with sticky de-
posits and occasionally binding constraints. We find financial stability risks exhibit a
U-shaped relationship with mortgage fixation length. FRMs benefit from deposit rate
stickiness, reducing volatility, whereas ARMs provide net worth hedging by concentrating
defaults when intermediary net worth is high, thus lowering risk premia. An intermediate
fixation length balances these effects, minimizing banking sector volatility and improving
aggregate risk-sharing. Our model explains observed differences in delinquencies, house
prices, and bank equity prices between ARM and FRM countries during 2022–2023, with
implications for mortgage design, macroprudential regulation, and monetary policy.
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1 Introduction

Mortgage structure matters for macroeconomic outcomes. It directly affects the transmission of

monetary policy, since adjustable-rate mortgages (ARMs) reset more immediately compared to

fixed-rate mortgages (FRMs) (e.g. Calza et al., 2013; Di Maggio et al., 2017; Fuster and Willen,

2017; Garriga et al., 2017). In this paper, we show that mortgage structure also matters for

financial stability risks. Differences in mortgage structure were brought into sharp relief by the

global monetary tightening cycle between 2022 to 2023. Despite similar policy rate increases of

approximately 400–500 basis points across major economies, mortgage payments increased by

15 to 25% in countries with ARMs (U.K., Canada, and Euro Area), while remaining stable in

the U.S., where 30-year FRMs are predominant (Figure 1).

Figure 1: Comparison of Policy Rates and Mortgage Payments, 2022–2023

(a) Policy Rates (b) Measure of Mortgage Payments

Notes: Panel (a) shows main monetary policy rates for the US, United Kingdom (UK), Euro Area (EA), and

Canada (CA). Panel (b) shows measures of average mortgage payments. EA ARM aggregates Finland, Italy

and Portugal. Data sources: US: 2024Q2 revised mortgage debt service ratio (DSR) from FRED; UK: total

expected (incl. agreed changes in payments e.g. due to forbearance) monthly mortgage payment from the

Financial Conduct Authority (FCA); Euro Area: total DSR from BIS; Canada: average monthly scheduled

outstanding mortgage payments from the Canada Mortgage and Housing Corporation (CMHC).

The contrasting mortgage payment sensitivity to rate changes highlights distinct financial

stability risks and risk-sharing properties across mortgage structures. Specifically, rising inter-

est rates in ARM economies directly increase mortgage payments, thereby raising household

defaults and bank credit losses. Conversely, FRMs shield households from rising payments but

potentially expose banks to greater interest rate risk.
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How should one evaluate the implications of mortgage structure for financial stability and risk

sharing between households and financial intermediaries? A natural starting point might be to

select a mortgage structure that offsets the cash flow sensitivity of bank liabilities, particularly

deposits, achieving a “zero duration” financial system that fully hedges interest rate risk. How-

ever, such an approach overlooks several channels that likely arise in equilibrium.1 First, interest

rate changes also affect credit risk, as households make endogenous default decisions that dif-

fer across macroeconomic environments and mortgage structures (Campbell and Cocco, 2015).

For instance, rising rates and ARM payments can trigger defaults among liquidity-constrained

households, an effect absent under FRMs. Second, financial intermediaries’ willingness to hold

mortgages and their mortgage pricing, especially risk premia, depend on intermediary net worth.

As a result, overall financial stability depends on both interest rate risk and credit risk, and

the correlation of these risks with intermediary net worth.

To embed these channels and evaluate financial stability and risk sharing across different

mortgage structures in equilibrium, we develop a quantitative macro-finance model with flexible

mortgage contract structures, borrowers, and a financial sector. We calibrate the model to

the U.S. FRM economy as a benchmark, and compare it to counterfactual economies with

alternative mortgage structures.

The model yields three main results. First, rising interest rates affect households and fi-

nancial intermediaries in opposite directions depending on mortgage structure: under FRMs,

intermediary net worth deteriorates; under ARMs, borrower defaults increase but intermediary

net worth improves due to higher mortgage payments. Second, financial stability risks exhibit

a U-shaped relationship with mortgage fixation length. While the FRM economy is rendered

more stable by sticky deposit rates, ARMs provide inherent net worth hedging given deposit

stickiness: defaults typically occur when intermediary net worth is high, when interest income

rises relative to deposit funding cost, reducing risk premia. Intermediate fixation lengths of

3 and 5 years minimize intermediary net worth volatility and optimize aggregate risk-sharing.

Third, the optimal fixation length depends on the correlation of interest rate risk with aggregate

income risk. In a procyclical rate environment, the optimal fixation length is higher – rising to

3.5 and 5.5 years for the 1987 to 2024 sample, for instance.

1We develop the intuition behind deviations from this interest rate “immunization” more formally in Sec-
tion 5.2.
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In the model, there are two types of households: borrowers who borrow to finance their

housing purchases, and savers, who own intermediaries (“banks”). Households face idiosyncratic

income shocks. Borrowers and banks trade in two financial markets: deposits and mortgages.

We model realistic and flexible mortgage payment structures. Under FRMs, mortgages have

fixed payments. Under ARMs, mortgages are issued with fixed payments in an initial teaser

stage, and subsequently convert to floating payments (a fixed spread over the contemporaneous

risk-free rate) with some probability, to reflect varying fixed-rate lengths in typical adjustable-

rate mortgages.2

Given our focus on borrowers’ default sensitivity to interest rate changes under ARMs, the

model incorporates a realistic notion of liquidity-driven default (Gerardi et al., 2018; Ganong

and Noel, 2022), where defaulting allows liquidity-constrained households to increase immediate

consumption at the expense of future wealth. Following Diamond et al. (2022), we model

household decision-making in two distinct stages with a cash-in-advance-type constraint. In

the first stage (“consumption stage”), households must rely on liquid assets – income and

deposits – to finance consumption, housing costs, and mortgage payments, and decide whether

or not to default. They cannot access illiquid housing wealth at this stage. Default provides

immediate liquidity but reduces subsequent wealth. In the second (“trading”) stage, households

make portfolio decisions to allocate their wealth between deposits, housing, and stocks, and they

can adjust their mortgage balance by taking out a new mortgage. Banks lend in the mortgage

market subject to a leverage constraint, financing their loan portfolios with savers’ equity and

deposits, which are risk-free one-period bonds held by households and also elastically demanded

by outside investors. ARMs are indexed to the policy rate, while the deposit rate does not

necessarily move one-for-one with the policy rate. Our reduced-form model of imperfect pass-

through is consistent with banks’ market power in deposit markets (Drechsler et al., 2017)

and time-varying liquidity premia due to the opportunity cost of holding money (Nagel, 2016;

Krishnamurthy and Li, 2022).

To solve the model, we follow Diamond and Landvoigt (2022) and Diamond et al. (2022) and

show that, despite idiosyncratic and undiversifiable risks, borrowers make identical choices per

2We cast the model in real terms to study the redistributive effects of real interest rate changes on borrowers
and savers depending on mortgage structure. The effects of mortgage structure also operate through nominal
(Fisherian) channels, as studied by Garriga et al. (2017).
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unit of wealth. This removes the borrower wealth distribution as an infinite-dimensional state

variable, making the model tractable.

We evaluate the US fixed-rate mortgage regime relative to counterfactual adjustable-rate

mortgage economies with varying fixation lengths, starting with the main ARM counterfactual

where mortgage rates reset every year. The benchmark FRM economy and ARM counterfactual

produce empirically consistent responses to a rise in rates. In the FRM economy, mortgage

payments remain stable, slightly reducing defaults since holding on to the current mortgage

becomes more valuable, consistent with recent U.S. experience. In contrast, the ARM economy

experiences sharply higher mortgage payments, elevated defaults, and a reduction in house

values, similar to recent U.K. dynamics (illustrated in Appendix Figures IA.3-IA.5, with the

caveat that the model is calibrated to the U.S.).

Under FRMs, banks face unchanged interest income and rising deposit expenses when policy

rates increase, reducing net interest margins and profitability despite slight offsetting decreases

in credit losses. In addition, FRMs have a long duration. In response to higher rates, the

market value of bank assets falls (Jiang et al., 2024). With both lower cash flows and lower

asset values, the net worth of the banking sector declines. More constrained banks demand

higher compensation to take on mortgage risk, a key implication of intermediary-based asset

pricing models (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014; Elenev et al.,

2016; Diamond and Landvoigt, 2022).

Note that we model intermediaries to reflect the financial sector as a whole. While US banks

have experienced a substantial reduction in on-balance sheet mortgage lending and substitution

towards mortgage-backed securities (MBS) over recent decades (Buchak et al., 2018, 2024a,b),

the banking sector remains the largest private holder of mortgage-backed securities as a whole.

In Appendix Figure IA.1, we show that more than half of all non-government residential mort-

gages (MBS and portfolio loans) are held by the banking sector, and that share has remained

relatively stable over the past decade.3

Conversely, in the ARM economy, the net interest margin of banks increases as mortgage

payments rise faster than deposit costs, effectively creating negative mortgage duration and

3We also conduct robustness exercises where we allow for greater pass-through of policy rates to deposit
rates, capturing the notion that other financial intermediaries and holders of MBS may have less sticky sources
of funding compared to banks.
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enhancing intermediary net worth despite higher defaults.

We next evaluate how these dynamics translate into financial stability outcomes by evaluating

counterfactual economies with mortgage fixation lengths ranging from pure ARMs (annual

resets) to the benchmark fully fixed-rate economy. Financial stability, measured primarily by

the volatility of intermediaries’ return on equity (ROE), exhibits a “U-shaped” relationship

with mortgage structure. Volatility is highest in a pure ARM economy where intermediary net

worth is very sensitive to interest changes, leading to large negative duration. It is somewhat

lower in an FRM economy as sticky deposits provide a hedge to the large positive duration of

fixed-rate mortgages.

Because mortgages carry credit risk, bank asset sensitivity to interest rates depends not

only on policy rates but also on expected credit losses and time-varying risk premia linked to

intermediary net worth. Under FRMs, risk premia rise when intermediaries become constrained,

typically in high-rate environments. In contrast, ARM intermediaries are constrained primarily

when rates and defaults are low; thus, rising rates and defaults coincide with periods of high

intermediary net worth, providing a net-worth hedge. An intermediate fixation length (around

3 years) minimizes intermediary ROE volatility by balancing these opposing forces, reducing

the cyclicality of defaults and net worth in response to interest rate fluctuations.

We further assess how mortgage structure determines risk-sharing between households.4 To

quantify the degree of risk sharing, we measure intra-borrower risk-sharing of idiosyncratic risks

via individual versus aggregate borrower consumption variance, and borrower-saver aggregate

risk-sharing through borrower versus saver aggregate consumption variance. Mortgage structure

predominantly affects borrower-saver sharing of interest rate risk, optimized at a fixation length

of around 5 years – slightly longer than the volatility-minimizing fixation length, suggesting

a modest trade-off between financial stability and risk-sharing. In this economy with low

effective mortgage duration and default rates that respond little to interest rates, rate shocks

have the weakest redistributive effect.5 However, low exposure to aggregate risk leads borrowers

to endogenously choose higher exposure to idiosyncratic risk, highlighting a somewhat subtle

downside in equilibrium.

4Our focus on interest rate risk sharing through mortgages of various fixation lengths is complementary to
Greenwald et al. (2019)’s study of contracts that share house price risks.

5See e.g. Auclert (2019).
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Lastly, we investigate how results vary with different macroeconomic scenarios, by introducing

aggregate income shocks which correlate with interest rate shocks. In the data, this correlation

is time-varying and depends on the sample period, reflecting underlying demand or supply

shocks (leading to a positive or negative correlation, respectively). We find that a positive

correlation between aggregate income and interest rate shocks of 0.3 (reflecting the correlation

in the 1987 to 2024 sample) makes FRM economies relatively more stable and ARM economies

relatively riskier.6 Intuitively, higher rates in an FRM economy come with even lower default

risks due to increased borrower incomes. In contrast, this positive correlation weakens the net-

worth hedging property of ARMs, as higher incomes mitigate payment-driven defaults (and

lower incomes exacerbate defaults when rates are low, when ARM intermediaries have low net

worth). Thus, a positive correlation between income and rate shocks increases the optimal

mortgage fixation length. Quantitatively, the fixation length that minimizes intermediary net

worth volatility rises from approximately 2.7 to 3.9 years as the correlation increases from -0.3

to 0.5. Overall, these effects are modest and reinforce the central finding that an intermediate

fixation length (around 3 to 5 years) best balances financial stability and risk sharing.

Our work has implications for monetary policy and macroprudential regulation of financial

stability risks. The paper provides a framework for analyzing how interest rate fluctuations

differentially affect financial stability depending on mortgage structure. It thus helps formalize

monetary policy and financial stability linkages, and underlying mechanisms. We propose a

flexible modeling framework to study the effect of mortgage structure on financial stability,

which takes into account endogenous household default decisions, interaction effects between

interest rate and credit risk, and the capitalization of the banking system. Our findings highlight

how intermediate fixation lengths, common in many countries, can balance sources of volatility

in both pure ARM and FRM structures.

Related Literature Our paper makes several contributions to the existing literature. First,

we assess macroeconomic implications of different mortgage contract designs, similar to Garriga

et al. (2017); Greenwald et al. (2019); Campbell et al. (2021); Guren et al. (2021), but focusing

6In the data, this correlation varies over time, taking positive or negative values in demand or supply-shock
driven macroeconomic contexts, respectively. In a finance context, Campbell et al. (2009, 2017, 2020) show that
inflation and monetary policy can explain this time variation and variation in the sign of stock-bond return
correlation.
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on the novel channel of interest rate and credit risk sharing between households and banks.

Conceptually, we thus integrate features of existing quantitative macro-models with financial

intermediaries (e.g. Elenev et al., 2016; Diamond et al., 2022; Sanchez Sanchez, 20237) into a

framework with flexible mortgage structures and liquidity-driven default, matching empirical

evidence (Gerardi et al., 2018; Ganong and Noel, 2022). Our mechanism is closely related to

Campbell and Cocco (2015) who show that fixed- and adjustable-rate mortgages default in dif-

ferent macroeconomic states of the world, and we integrate this intuition into a macroeconomic

framework with a banking sector.

Both Campbell et al. (2021) and Guren et al. (2021) focus on the role that mortgage structure

can play at providing liquidity to households in downturns when interest rates are low while

default rates are high, given the context of the 2008–2009 financial crisis. In contrast, we study

how mortgage structure affects household and intermediary outcomes in response to isolated

rate shocks given a low historical correlation of income with real rates overall and also given

the 2022–2023 rate hike cycle, where both rates and defaults rose in ARM but not in FRM

countries. Like Campbell et al. (2021), we study how different mortgage structures expose

not just borrowers but lenders to risk. These exposures not only affect the ex-ante prices of

mortgages but have implications for the stability of financial intermediary balance sheets, a

particular focus of our paper.

We contribute to existing work on mortgage choice (Campbell and Cocco, 2003; Koijen et al.,

2009; Badarinza et al., 2018; Liu, 2022; Albertazzi et al., 2024; Boutros et al., 2025) as well as

optimal mortgage contract design (Piskorski and Tchistyi, 2010; Campbell, 2012; Eberly and

Krishnamurthy, 2014; Mian and Sufi, 2015; Piskorski and Seru, 2018). Our work is further

related to papers that emphasize the role of the mortgage market (Scharfstein and Sunderam,

2016; Di Maggio et al., 2017; Fuster and Willen, 2017; Greenwald, 2018; Chen et al., 2020;

Di Maggio et al., 2020; Berger et al., 2021; Garriga et al., 2021; Eichenbaum et al., 2022;

Altunok et al., 2024) and financial intermediaries (Wang, 2018; Di Tella and Kurlat, 2021;

7These papers also study the effect of the Government-Sponsored Enterprises (GSEs). In case of default, they
guarantee to an MBS trust the “timely payments of principal and interest”, but typically repurchase a defaulted
mortgage loan within 24 months, meaning that default leads to missed interest payments akin to prepayment
(e.g. Fannie Mae, 2023). As a result, GSEs only partially protect intermediaries from cash flow shortfalls in our
framework. For FRMs, defaults are higher when rates are low, making prepayment costly. For ARMs, defaults
are higher when rates are high (i.e. when mortgage payments are high), also making prepayment costly.
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Wang et al., 2022; Diamond et al., 2024) on monetary policy transmission.

The paper offers a novel lens to interpret linkages between monetary policy and financial

stability (Adrian and Shin, 2008; Hanson et al., 2011; Stein, 2012; Borio, 2014; Jiménez et al.,

2014; Garriga and Hedlund, 2018; Smets, 2018; Caballero and Simsek, 2019; Martinez-Miera

and Repullo, 2019; Ajello et al., 2022; Boyarchenko et al., 2022; Gomes and Sarkisyan, 2023),

highlighting that mortgage structure can mediate how changes in interest rates affect financial

stability.

Lastly, we contribute to a growing body of work on the financial stability implications (Jiang

et al., 2024; Drechsler et al., 2023; Haas, 2023; Varraso, 2023; Begenau et al., 2024; DeMarzo

et al., 2024) and transmission mechanism (Fonseca and Liu, 2024; Greenwald et al., 2023; Bracke

et al., 2024; De Stefani and Mano, 2025) of recent rate rises.

2 Motivating Facts on Mortgage Structure

This section illustrates variation in mortgage structure across a range of different countries

which motivates the counterfactual mortgage structures that we study using our model.

2.1 Mortgage Structure Across Countries

There is substantial variation in mortgage market systems and contract structures across coun-

tries (Campbell, 2012; Badarinza et al., 2016).8 Figure 2 shows the average fixed-rate length

across countries from different data sources.

A striking fact noted by Campbell (2012) is that the US appears as an outlier in international

comparison, with an average fixed-rate length of almost 25 years, driven by the reliance on 30-

year FRMs and 15-year FRMs.9 The US is followed by a group of countries including Denmark,

8In this paper, we will not take a stance on the drivers of the underlying structure and take prevalent contract
structures as given. Reasons that have been put forward to explain cross-country heterogeneity in mortgage
structure include historical path dependence, the availability of long-term mortgage funding, historical inflation
experiences (Badarinza et al., 2018), as well as variation in underwriting standards and the role of credit risk
(Liu, 2022).

9The only country with a comparable average fixed-rate length is typically thought of as France. While data
for average fixation lengths is not available for France, the typical mortgage is a 30-year fixed-rate mortgage
according to the European Mortgage Federation.
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Germany, Belgium, and the Netherlands, which offer mortgages with fixation lengths of up to

30 years, but the average mortgage outstanding has a length typically closer to 10 years. For

Belgium, data is available only for new mortgage originations, which have been close to 20

years. The vast majority of all remaining mortgage markets have fixed-rate lengths between 2

to 5 years, including countries such as Australia, Canada, the UK, Ireland, Portugal, Greece,

and Spain. Other Scandinavian countries such as Finland, Sweden, and Norway (the latter

with no data on average fixed-rate lengths) are typically thought of as originating many pure

adjustable-rate mortgages, with rates resetting at least every year.

Figure 2: Average Mortgage Fixed-Rate Lengths Across Countries

Notes: “Outstanding” reflect data from Badarinza et al. (2016) (“BCR”) as of 2013, while “New Originations”

reflect data from the European Mortgage Federation for new mortgage originations, as of 2023Q1, from the

EMF Quarterly Review of European Mortgage Markets 2023 Q2. Figure adapted from Liu (2022).

Even within the common currency Euro Area, countries vary from longer-term fixed-rate

mortgage systems (such as Germany and France) to largely adjustable-rate mortgage systems

such as Finland, Greece, Ireland and Portugal, which is reflected in the divergence in mortgage

payments in 2022 in Figure 1.10

As a result, mortgages typically exist on a spectrum from fully adjustable-rate mortgages

10Spain has seen much longer fixation lengths in newly originated mortgages compared to past mortgage
originations, likely a result of government interventions in 2022 that allow conversion of adjustable to fixed-
rate mortgages, aimed at protecting vulnerable borrowers from interest rate rises, see e.g. Financial Times,
November 2022.
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common in countries such as Finland, Sweden and Norway which reset every year (or depending

on contract terms, semi-annually), to intermediate fixation periods of two to five years common

in many countries including the UK, Canada, Australia and most Eurozone countries, to the 30-

year fixed-rate mortgage common in the US. We think of mortgages with intermediate fixation

periods as sitting between pure ARM and FRM structures from an interest rate risk perspective,

as these will allow households to fix their mortgage rate for some, but typically not all, of the

term over which the mortgage is repaid.11

However, mortgage structure is certainly not the only economic fundamental that differs

across countries. To assess how differential mortgage structures lead to differences in economic

outcomes, financial stability, and risk-sharing properties more formally, in the next section we

develop and calibrate a quantitative model of an FRM economy, and evaluate counterfactual

economies with a pure ARM structure as well as intermediate fixation lengths.

3 Model

In this section, we develop a rich quantitative dynamic model of the mortgage market.12

Time is infinite and discrete t = 0, 1, . . .. The economy is populated by continuums of two

types of households with preferences over housing and non-durables – borrowers labeled B

indexed by i ∈ [0, ℓ] and savers labeled S indexed by i ∈ (ℓ, 1].

Households’ utility function is given by

∞∑
t=0

βtuB(cit, h
i
t−1)

uB(cit, h
i
t−1) =

(
(cit)

1−θ(hi
t−1)

θ
)1−γ − 1

1− γ

where β is the discount factor, θ governs the share of housing in the utility function, and γ is

the coefficient of relative risk aversion.

The aggregate supply of houses is exogenous and fixed at H̄, with a fraction αH owned by

11Thus fixation length is a distinct feature and different from the choice of the loan repayment window, which
is typically 30 years on average for most countries (see Liu (2022) for a more detailed discussion).

12Key qualitative insights also emerge from a stylized two-period model, which we relegate to Appendix V.
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borrowers while the remaining fraction 1−αH belongs to savers. Only borrowers trade houses.

Each unit of housing requires a maintenance payment of δh every period to prevent its full

depreciation.

Non-durable goods are produced by a continuum k ∈ [0, 1] of Lucas trees, whose aggregate

yield each period is given by Yt. Borrowers own a total of α trees, while savers owns the

remaining 1 − α. Each type of agent can trade trees within their type, but not across types.

The yield of borrower-owned trees is subject to an idiosyncratic shock εit, which is i.i.d. across

borrowers and time. Saver-owned trees are not subject to idiosyncratic shocks. Therefore, each

household’s income is given by

yit = sit−1(Yt + εit) ∀i ∈ [0, ℓ]

yit = sit−1Yt ∀i ∈ (ℓ, 1]

where sit−1 is the share of trees owned by each agent type at the start of period t, so that∫ ℓ

0
sit−1di = α and

∫ 1

ℓ
sit−1di = 1− α.

In addition to trading houses, borrowers trade in two financial markets – deposits and mort-

gages. Deposits are one-period risk-free bonds, while mortgages are long-term, defaultable, and

may have fixed or adjustable payments.

Their counterparties in these markets are banks labeled I (short for “intermediaries”). Banks

are firms who issue equity to saver households.

3.1 Borrowers

Following Diamond et al. (2022), we split each period into two subperiods – consumption and

trading. In the consumption subperiod, shocks are realized, and borrowers make mortgage

payments or default. In the trading subperiod, all households make portfolio choices.

Borrowers enter the period with a house hi
t−1, a mortgage with outstanding balance mi

t−1,

and deposits dit−1. They receive income yit after the realization of aggregate and idiosyncratic

income shocks.
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Mortgage Regimes We consider two mortgage regimes. In the fixed-rate mortgage regime

(FRM), the outstanding balance of the mortgage implies a fixed mortgage payment xi
t = ιf +

δmq̄
m per unit of mortgage mi

t−1, where ιf denotes the interest component and the principal

component is normalized to a fraction δ of the steady-state mortgage price q̄m. In the adjustable-

rate mortgage regime (ARM), the mortgage payment is determined by whether or not the

adjustable rate mortgage is in its teaser stage τ .

In the teaser stage, ARM payments are fixed at (ιτ + δmq̄
m)mi

t−1 with ιτ the initial fixed

“teaser” rate of the mortgage. After the teaser stage, the mortgage payment is determined by

the policy (risk-free) rate rft plus the spread ιa on adjustable-rate mortgages.

xi
t =

ιτ + δmq̄
m, 1τ = 1

ιτ + δmq̄
m, 1τ = 1

An adjustable-rate mortgage is always issued in the teaser stage and it becomes a regular

ARM with probability πτ at the end of the second (trading) subperiod. Therefore, the expected

duration of the teaser stage, or “fixation period,” is 1
πτ
.

After payments are made, the mortgage balance decreases by δm, such that the remaining

balance is (1− δm)m
i
t−1.

Consumption Stage In the consumption stage, households use income yit and their deposits

holdings dit−1 to make mortgage payments xi
tm

i
t−1 and housing maintenance payments δhh

i
t−1.

Households can choose to default. If they default by failing to make the mortgage payment,

they lose their house and their mortgage balance is written off. They also lose a fraction λ of

their endowment of Lucas trees and face a continuous idiosyncratic shock to their post-default

value function. In other words, default carries both a pecuniary and a non-pecuniary cost.

A household that repays the mortgage faces a consumption-stage budget constraint given by:

ci,ndt + xi
tm

i
t−1 + δhh

i
t−1 + ait = yit + dit−1

where ait ≥ 0 is the household’s holdings of intra-period deposits that a household can bring
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into the trading stage in lieu of consuming. It enters the trading stage with wealth:

wi,nd
t = ait − (1− δm)mt−1q

m
t + pht h

i
t−1 + psts

i
t−1

where qmt is the price of the mortgage, pht is the price of housing, and pst is the price of the Lucas

trees. The nonnegativity constraint ait ≥ 0 operates similarly to cash-in-advance or working

capital constraints, requiring borrowers to have enough liquidity to finance their consumption

before being able to rebalance their portfolios by selling assets or borrowing.

A household that defaults faces a budget constraint given by:

ci,dt = yit + dit−1

Having expunged their mortgage, lost their house, and given up a fraction of future income, it

enters the trading stage with wealth:

wi,d
t = (1− λ)psts

i
t−1

The default decision depends on the utility of consumption plus the continuation value as

represented by the trading stage value function V i
t (w

i
t,Zt), where Zt denotes state variables

exogenous to an individual borrower.

Denote the value of default by V i,d and the value of repayment by V i,nd. The value of making

the mortgage payment is given by:

V i,nd
t (dit−1,m

i
t−1,1τ , h

i
t−1, ϵ

i
t,Zt) = max

ait≥0
uB(ci,ndt , hi

t−1) + V (wi,nd
t ,Zt)

while the value of default is given by:

V i,d
t (dit−1,m

i
t−1,1τ , h

i
t−1, ϵ

i
t,Zt) = uB(ci,dt , hi

t−1) + V (wi,d
t ,Zt)

subject to the budget constraints and wealth evolution equations above. Households default iff:

ηitV
d
t (·) > V nd

t (·)
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where ηit is the household’s idiosyncratic default shock.

Trading Stage In the trading stage households make portfolio decisions. They allocate their

wealth wi
t between deposits dit, housing hi

t, and Lucas trees sit. They can also revise their

mortgage balance from (1− δm)m
i
t−1 to mi

t at current price qmt .
13

Borrowers are subject to a cost of deviating from a target loan-to-value ratio, given by

Φ
(

qmt mi
t

pht h
i
t
− ¯LTV

)
. This cost, rebated Ri

t to the household in proportion to wealth to neutralize

income effects, captures the notion of a mortgage rate schedule in reduced form and rules out

equilibria in which borrowers take on LTV ratios >> 1 at very high rates in the expectation

that they will likely default.

The trading stage budget constraint is given by:

wi
t +Ri

t =
dit

1 + rdt
+ qmt m

i
t + pht h

i
t + psts

i
t + Φ

(
qmt m

i
t

pht h
i
t

− ¯LTV

)

and the value function is:

V (wi
t,Zt) = max

dit,h
i
t,s

i
t,m

i
t

βEt

[
max

{
max
ait≥0

uB(ci,ndt+1 , h
i
t) + V (wi,nd

t+1 ,Zt), η
i
t

(
uB(ci,dt+1, h

i
t) + V (wi,d

t+1,Zt)
)}]

where the innermost maximization indicates the optimal consumption-savings choice in next

period’s consumption stage, the middle maximization indicates the default decision, and the

outermost maximization indicates portfolio choices in the current period.

3.2 Banks

Banks are owned by savers so maximize the stream of dividends discounted at the saver’s

stochastic discount factor.

They lend in the mortgage market, financing their loan portfolios with equity and deposits,

which are risk-free one-period bonds held by borrowers and outside investors. Outside investors

have perfectly elastic demand for deposits at a price of 1
1+rdt

. The deposit rate rdt may differ

13We note here that FRMs would be less attractive with households refinancing, as the option to prepay limits
intermediary gains from rate cuts in the FRM economy (e.g. Hanson, 2014; Diep et al., 2021).
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from the policy rate rft to which adjustable mortgages are indexed. Recent work has shown

that changes to policy rates do not pass through one-for-one to deposits, complicating banks’

exposure to interest rate risks.14 We model the relationship in reduced form as

rdt = (r̄f − αd) + βd(r
f
t − r̄f )

with α ≥ 0 and βd ∈ (0, 1]. The parameter αd captures the average spread between policy and

deposit rates, while βd capture the degree of deposit rate sensitivity to policy rate deviations

from its mean. When αd = 0 and βd = 1, the two rates are always equal.15

Banks portfolios are perfectly diversified and hence identical across banks, so we can write

the bank’s problem without i subscripts. They enter a period with a stock of outstanding

mortgages mI
t−1, of which a fraction F η

t default. On mortgages that do not default, banks

receive a payment xt per unit of mortgage mI
t−1 and have an ex-payment value (1− δm)q

m
t .

Mortgage defaults lead lenders to seize the house, on which they must make a maintenance

payment before selling it in foreclosure at a price pt(1 − ζ) per unit, where ζ represents a

foreclosure cost. The total foreclosure proceeds are

∫ ℓ

0

1
i
defaulth

i
t−1pt((1− ζ)− δh)di

The payoff per unit of mortgage is therefore:

Xt = (1− F η
t )(xt + (1− δm)q

m
t ) +

∫ ℓ

0

1
i
default

hi
t−1

mI
t−1

pt((1− ζ)− δh)di

Running the intermediation technology is costly. Banks must pay a fraction ν of the value of

their mortgage portfolio as intermediation costs. Their net worth is then given by:

wI
t = (1− ν)Xtm

I
t−1 + dIt−1

14E.g., Nagel (2016), Drechsler et al. (2017), and Krishnamurthy and Li (2022)
15The discounted present value of all future payments rft − rdt has been referred to as (gross) franchise value

in the literature (e.g. Drechsler et al., 2017, 2023; Haddad et al., 2023; DeMarzo et al., 2024; Jiang et al., 2024).
In our framework with FRMs, this present value is increasing in rates, i.e. has negative duration, as the relevant
discount rate, governed by the saver’s SDF, does not move one-for-one with rft . In addition, changes in rates
are mean-reverting rather than permanent.
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where negative values of dIt represent borrowing by the lender.

Banks use their equity deposits to finance dividends and mortgage purchases, maximizing

max
mI

t ,d
I
t

Et

[
∞∑
s=t

MS
t,sDivt

]

subject to a budget constraint:

wI
t =

dIt
1 + rdt

+ qmt m
I
t +Divt

and a capital requirement:

−dt ≤ ξ(κq̄m + (1− κ)qmt )m
I
t

where ξ represents the maximum leverage ratio and κ represents the fraction of the mortgage

portfolio that is carried at book value on the lender’s balance sheet. A value of κ = 1 indicates

that mark-to-market losses on the mortgage portfolio do not tighten leverage constraints, while

κ = 0 indicates a fully mark-to-market regime.

3.3 Savers

Saver households have the same preferences as borrowers, but receive income from their shares of

Lucas trees free from idiosyncratic risk. As owners of bank equity, they also receive net dividends

from the banks. Finally, they are rebated lump-sum the costs associated with mortgage default

– both the pecuniary cost of default faced by borrowers and the foreclosure cost faced by banks

– as well as the cost of intermediation. Their budget constraint is simply:

cst = Divt +
α

ℓ
Yt +Rebatest.
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3.4 Equilibrium

Given the exogenous processes for aggregate income Yt and risk-free rate rft and given the

idiosyncratic income shocks εit and ARM reset shocks 1τ , and the idiosyncratic default shocks

ηit, an equilibrium is a set of borrower household allocations {cit, hi
t, s

i
t,m

i
t, d

i
t, a

i
t}∞t=0, borrower

default decisions {1d}∞t=0 bank allocations {Divt,mI
t , d

I
t}∞t=0, saver allocations {cSt }∞0 , and prices

{pht , pst , qmt }∞t=0 such that each agent maximizes their value function subject to their constraints,

and the following market-clearing conditions hold:

1. The mortgage market clears:

(1− ℓ)mI
t = MB

t ≡
∫ ℓ

0

mi
tdi

2. The borrower housing market clears:

αHH̄ = HB
t ≡

∫ ℓ

0

hi
tdi

3. The market for borrower Lucas trees shares clears:

α =

∫ ℓ

0

sitdi

Note that the elastic demand for deposits by outside investors at rate rft implies that the

deposit market within the model does not need to clear.

Appendix III contains the derivation of the equilibrium conditions and the solution to the

model.

4 Calibration

We calibrate the model at an annual frequency in two steps. Table 1 displays parameters whose

values we choose outside the model based on external sources. Table 2 displays “internally”

calibrated parameters, whose values are chosen so that the model with fixed-rate mortgages

(πτ = 0) matches moments estimated in the data. We discuss each set of parameters in turn.
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Stochastic Environment Aggregate dynamics of the model are governed by shocks to ag-

gregate income Yt and the interest rate rft . In our baseline calibration, we abstract away from

income shocks, setting Yt = 1. The risk-free rate process is parameterized by an AR(1) process

with mean µr, standard deviation σr, and persistence ρr, calibrated to match the dynamics of

the 1-year Treasury constant maturity rate from 1987 to 2024. We estimate a mean rate of

0.034, an unconditional standard deviation of 0.014, and a persistence of 0.724. The standard

deviation and persistence parameters imply the standard deviation of interest rate shocks.

We normalize the idiosyncratic income shocks to have a mean of 0, which means that they

are governed by two parameters. The probability of a low income realization πL is set to 0.058,

which is the average post-war unemployment rate. The magnitude of the low income shock ϵL

is set based on the Ganong and Noel (2019) estimates of the income loss from unemployment.

They find that income loss occurs gradually over the first year as unemployment insurance

expires. Since our model is annual, we average the income loss in months after UI kicks in as

reported in Figure 2, Panel A of that paper, producing a value of -0.456. The high income

shock ϵH is set to ensure that the expected value of the idiosyncratic income shock is zero.

Deposit Rates Bank deposit rates are lower than risk-free rates, such as T-Bill and Fed

Funds, on average and adjust less than one for one with those rates. We estimate deposit rates

using quarterly Call Reports data from 1987 to 2024 as the ratio of interest expense to previous

quarter’s balance on all non-time deposits. The main role deposits play in our model is liquidity

– they are the only asset that can be liquidated to finance consumption in the consumption

stage. Time deposits incur penalties for liquidation before maturity, motivating their exclusion.

We set αd to the average spread between the Fed Funds rate and the deposit rate of 0.018.

It often takes multiple quarters for deposit rates to adjust after a change in the Fed Funds

rate. Our specification of rdt as a linear function of rft does not allow for such intertia, and

contemporaneous responses of deposit rates may understate the sensitivity of the deposit rate

to the risk-free rate. We estimate a VAR(1) of Fed Funds and deposit rates and set βd = 0.340,

the peak of the deposit rate impulse response to a one-unit shock to the Fed Funds rate.
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Table 1: Externally Calibrated Parameters

Parameter Value

Panel A: Stochastic Processes

Mean of risk-free rate process µr 0.034
Std. dev. of risk-free rate process σr 0.014
Persistence of risk-free rate process ρr 0.724
Probability of low idiosyncratic income shock (ϵL) πL 0.058
Idiosyncratic income drop in low state ϵL -0.456
Idiosyncratic income increase in high state ϵH Set such that E[ϵ] = 0

Panel B: Deposit Rates

Deposit spread w.r.t. base interest rate αd 0.018
Deposit sensitivity w.r.t. base interest rate βd 0.340

Panel C: Borrowers and Savers

Borrower population share ℓ 0.400
Borrower income share α 0.600
Borrower housing share αh 0.500
Risk aversion γ 1.5

Panel D: Housing, Mortgages and Banks

Housing maintenance payment δh 0.020
Mortgage rate reset probability πτ 0.000
Deviation from target LTV cost ϕ 0.050
Max. leverage ratio ξ 0.920
Share at book value κ 0.000

Population, Income, and Housing Shares Using 2023 SCF data, we set ℓ = 0.400 to

the approximate share of homeowners that have a mortgage LTV of at least 30%. Given this

definition of borrowers, α = 0.600 and and αh = 0.500 are set to the approximate shares of

income and housing, respectively, held by borrowers in the SCF data.

Banks Banks are subject to a capital requirement that limits their leverage. We set the

maximum leverage ratio ξ to 0.920, which is the maximum Tier 2 capital ratio for banks under

Basel III. This calibration effectively assumes a mortgage risk weight of 100%, which is the

standard risk weight for residential mortgages. In the baseline calibration, we set the book

value share κ to 0.000, meaning that mortgages are held at market value.

Borrower Preferences, Housing, and Defaults Housing maintenance payments as a frac-

tion of housing are set to 0.020 based on the post-war average residential housing depreciation

rate. Our model does not include housing investment, so the maintenance payment can be

thought of as investment needed to offset depreciation and maintain housing stock at its steady-
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Table 2: Internally Calibrated Parameters

Parameter Value Target Value (FRM Bench)

Panel A: Borrowers

Borrower patience β 0.969 Mortgage/income 145.16
Housing utility weight for borrowers θ 0.183 Housing/income 268.10
Std. dev of idiosyncratic default shock ση 0.045 Default rate 2.07
Income loss upon default λ 0.148 Deposits/income 25.74

Panel B: Intermediaries

Foreclosure cost ζ 0.530 LGD 14.00
Banker intermediation cost ν 0.034 Mortgage rates 0.059
Principal payment share δm 0.034 Mortgage duration 6.9

state value.

We set household risk aversion γ to 1.5, a standard value in the literature.

The remaining set of borrower preference and default-related parameters are calibrated in-

ternally. Panel A of Table 2 displays four parameters that must be calibrated jointly. We set

patience β to 0.969, which yields a mortgage/income ratio of 145.16% given the values of other

parameters, matching its value in the 2023 SCF. The value of housing to income is determined

in equilibrium by the present value of user costs parameterized by the utility weight on housing

θ, discounted at the rate implied by β and the probability of losing the house in foreclosure (i.e,

default rate). We set θ to 0.183 such that, at the target default rate and given the calibrated

value of β, the value of housing/income matches 268.10% in the SCF.

Housing- and mortgage-to-income ratios imply a LTV ratio of approximately 60%. The

mapping of this ratio into default rates depends on two parameters – the standard deviation

of the idiosyncratic default shock ση and the share of future income lost in default λ. The

pecuniary cost of default motivates agents to hold deposits so that they can decrease their

default probability in the event of a low income realization. We set ση to 0.045 and λ to 0.148

to match the average 2003-2023 flow into 90-day delinquency in the New York Fed’s Quarterly

Report on Household Debt and Credit (QRHDC) of 2.07%, and the deposits-to-income ratio

of 25.74% in the SCF.

Mortgages In our model, there are no idiosyncratic shocks to home values, so in the cross-

section defaulting households have the same LTV ratios as non-defaulting households. Given
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the LTV ratio implied by the calibration of housing and mortgage-to-income ratios, we set

foreclosure cost ζ to 0.530, which implies a loss given default (LGD) of 14.00%. This is consistent

with the average LGD in the data, computed as average charge-off rate on mortgages held by

depository institutions, from the St. Louis Fed FRED database, divided by the average default

rate from the NY Fed QRHDC.

The mortgage interest payment in the FRM economy ιf is set so that the steady-state mort-

gage price q̄m is equal to 1, and thus ιf can be interpreted as the steady-state mortgage yield,

or par rate. The historical average rate is 0.059. In the model, the mortgage yield, defined

as the discount rate, which discounts expected future cash flows to par, depends on (1) the

intermediary’s cost of funding, a leverage-weighted average of the equity cost of capital implied

by β and the deposit cost of capital r̄ − αd, (2) expected losses, a function of the default rate

and LGD, and (3) the cost of intermediation parameterized by ν. Given a calibration that

matches target default rates and LGD, we set ν to 0.034 so that q̄m = 1 at ιf = 0.059.

In counterfactual exercises with adjustable rate mortgages, we set ιa = ιf − r̄, making

payments the same on average. In the baseline calibration, we set interest payments in the

teaser/fixed stage of an ARM ιτ to ιf so that the end of the fixation period does not cause a

jump in payments.16

Borrowers in our model do not endogenize the effect of their demand on their, rather than the

equilibrium, mortgage rate.17 As a result, at low equilibrium rates, they may face an incentive

to take on a large mortgage that implies a high default probability and hence a low expected

cost of borrowing. One way to address this issue is to set a maximum LTV constraint, that

would be slack in steady state but bind in some states of the dynamic model. To simplify

model solution, we follow a different approach and impose a per-housing-dollar quadratic cost

of deviating from the steady-state book LTV ratio ϕ
2

(
qmt
pthi

t
− ¯LTV

)2
. We set ϕ to a small

positive value, 0.050. It has negligibly small effects on equilibrium dynamics but improves our

ability to solve the model by ruling out equilibria with counterfactually high LTV ratios.

The last mortgage contract feature is the fraction of the principal paid in each period, δm.

16In the data, teaser rates are often set lower such that a jump does occur, but we abstract from this feature
in the baseline to develop intuition about the effects of stochastic, rather than predictable, rate changes.

17Models with an endogenous debt schedule and long-term debt must tackle dilution incentives and the
optimal contract can be difficult to solve. In our framework, such a model would be intractable.
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This parameter determines the duration of the mortgage, which we set to match the duration

of a 30-year fixed rate mortgage in the data. Our model generates an endogenous reduction in

duration relative to its contractual value that occurs because of default, but we do not capture

the reduction due to moving-induced prepayments. To calculate the correct target duration in

the data, we compute an amortization schedule for a 30-year fixed rate mortgage with a rate

of ιf and an annual prepayment probability of 6%, close to the unconditional annual moving

probability of mortgage borrowers reported by Fonseca and Liu (2024). This procedure yields

δm equal to 0.085, which implies a duration of 6.9 years. We describe the procedure in more

detail in Appendix IV.

4.1 Model Solution

The model is solved numerically using the global Transition Function Iteration method of Elenev

et al. (2021). Our main experiments compare the performance of the economy across a range of

mortgage fixation lengths parameterized by πτ . When this parameter is equal to 0, the economy

is in a fully fixed-rate mortgage (FRM) regime. At the other extreme when πτ is equal to 1,

the economy is in an adjustable-rate mortgage (ARM) regime where mortgage payments reset

every year. For each economy considered below, we simulate 16 paths of 5,000 periods each

after discarding the first 1,000 and report unconditional moments of the long simulation. We

also consider impulse responses to interest rate shocks at the stochastic steady state of each

model.

5 Results

We first show that rising interest rates affect households and financial intermediaries in opposite

directions depending on mortgage structure, using impulse responses. Under FRMs, interme-

diary net worth deteriorates; under ARMs, borrower defaults increase but intermediary net

worth improves due to higher mortgage payments. Second, we show outcomes on financial sta-

bility and risk-sharing based on unconditional moments of a long simulation, across a range of

counterfactual mortgage structures. We find that mortgages with intermediate fixation lengths

balance sources of volatility in pure ARM and FRM structures, minimizing intermediary net
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worth volatility and optimizing aggregate risk sharing. Lastly, we show that the optimal fixa-

tion length depends on the macroeconomic environment, reflected by the correlation of interest

rate risk with aggregate income risk.

5.1 FRM vs. ARM Economies Respond Differently to Rate Shocks:

Impulse Responses and Mechanisms

First, to understand how mortgage structure mediates interest rate shocks, we analyze impulse

responses of the pure FRM and ARM economies to a positive shock to the policy rate rft from

3.1% to 6%.18 Figures 3 displays the results for borrower variables, while 4 displays the results

for banks.

Borrowers When rates are fixed (“FRM”), total mortgage payments remain unchanged on

impact and borrower liquidity is unaffected. Mortgage rates go up, but existing borrowers are

shielded from the increase. In contrast, when mortgage payments reset every year (“ARM”),

borrowers face higher payments immediately. The liquidity burden of higher payments causes

a spike in default rates with higher defaults persisting as long as rates and hence payments

remain higher. With FRMs, higher rates raise the opportunity cost of default, as holding on to

their current mortgage becomes more valuable. As a result, borrowers are less likely to default

for strategic reasons. At the same time, new borrowers face higher mortgage rates and are less

likely to take out a loan, decreasing the aggregate mortgage balance and driving down demand

for housing, leading to a slight decrease in house prices. However, the persistent decrease in

default rates due to lower LTVs raises house prices subsequently.19 For ARMs, the reduction in

household liquidity has two consequences for credit demand. On one hand, persistently higher

default rates lower house prices restricting the available supply of mortgage collateral. But on

the other hand, the need to spend a larger share of their liquid assets on mortgage payments

disproportionately reduces borrower consumption relative to wealth. The desire to smooth

18To compute impulse responses, we initialize the economy at the stochastic steady state of a long simulation
at t = 0 and compute its t = 1 transition given a particular realization of exogenous variables. Subsequently,
we let the economy evolve stochastically, simulating 5,000 paths of 25 years each. The average path constitutes
the plotted impulse response.

19We do not model explicit mortgage lock-in effects (Fonseca and Liu, 2024) and their impact on house prices
in an FRM economy, see e.g. Fonseca et al. (2024).
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Figure 3: Impulse Responses to a Positive Interest Rate Shock: Borrowers
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Notes: Impulse Response Functions for a positive shock to the interest rate rft . ”FRM” (blue) denotes an

economy in which mortgage payments remain fixed at ιf +δmq̄m. ”ARM” (red) denotes an economy with a rate

fixation length of 1 year (πτ = 1.0) in which mortgage payments mortgages increase with rates rft + ιa + δmq̄m.

consumption raises demand for credit. On net, the demand effect wins out, resulting in larger

mortgage balances relative to the FRM economy.

Banks The different dynamics of default and credit demand have consequences for the finan-

cial sector. The top row of Figure 4 plots banks’ net interest margin and its components in

output units, to aid comparison. When rates go up, the cost of deposit funding – the banks’

interest expenses – also increases, though less than one for one. When mortgage rates are

fixed, interest income remains unchanged, leading to a drop in banks’ net interest margin.

Banking becomes less profitable, despite the slight offsetting decrease in credit losses discussed

above (due to borrowers defaulting less because their low-rate mortgage becomes more valu-

able). Moreover, fixed-rate mortgages have a long duration. The bottom row of Figure 4 plots

asset pricing moments. In response to higher rates, the price and market value of long-dated

bank assets falls. With both lower cash flows due to smaller net interest margins, and lower

asset values due to higher discount rates, the net worth of the banking sector declines. More

24



Figure 4: Impulse Responses to a Positive Interest Rate Shock: Banks
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rate fixation length of 1 year (πτ = 1.0) in which mortgage payments mortgages increase with rates rft + δmq̄m.

constrained banks demand higher compensation to take on mortgage risk, a result common to

intermediary-based asset pricing models. The spike in risk premia, i.e. expected excess returns

on mortgages, amplifies mortgage duration, further contributing to market value losses of banks

as it increases discount rates.

In contrast, in the ARM economy, higher rates lead to higher mortgage payments. Since

mortgages are indexed to the policy rather than the deposit rate, the net interest margin of

banks increases as mortgage income received rise by more than deposit expense paid. Banks

become more profitable even though credit losses rise due to a rise in defaults. Intuitively,

banks’ credit losses in the ARM economy are more “hedged” across states since they precisely

arise in states of the world where cash flows from mortgage payments are high. The increase in

cash flows outpaces the increase in the deposit rate, reflecting the deposit part of the bank cost

of funds. Stronger cash flow news than discount rate news raise bank net worth. Savers, who

own bank equity, consume more. As a result, they expect their consumption to grow less in
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the future, and a consumption-smoothing motive lowers the rate at which they discount bank

equity. Both cash flow and discount rate effects imply that adjustable-rate mortgages effectively

have negative duration: their value increases with higher rates. With higher cash flows and

higher asset values, the net worth of the banking sector increases. The increase in intermediary

net worth lowers mortgage risk premia. But risk premia are nonlinear in intermediary net

worth. An improved capital position of already healthy banks in the ARM economy does not

reduce risk premia much, but a deterioration in the capital position with impaired balance

sheets in the FRM economy leads to a sharp spike in risk premia.

Cross-Country Evidence Do these model predictions have empirical support? We show

illustrative evidence consistent with predicted differences in FRM and ARM economies using

differential developments in US and UK delinquencies, house prices, and bank equities over

2022 to 2023, as well as other ARM economies. Appendix Figure IA.3 shows that delinquencies

in the UK rose by more than 60% from their 2022 levels by the beginning of 2024, whereas

US delinquencies actually declined by almost 20% (albeit from a higher level). Figure IA.4

shows that US real house prices outperformed house prices in ARM economies by 10 to 15%

between 2022 and 2024. Similarly, UK, Australia, and Euro Area bank equities outperformed

bank equity indices in the US (and also Canada) by almost 40 per cent.

While merely suggestive (since the model ARM economy is a U.S. counterfactual, not a

calibration, e.g., to, the U.K.), we consider the cross-country evidence in outcomes following

the 2022 to 2023 tightening cycle as highly consistent with our model’s predictions.

5.2 Financial Stability

We start by building intuition for mechanisms in the full FRM and ARM economies, before

evaluating financial stability across mortgage structures. We measure financial stability as the

volatility of intermediary net worth, capturing that financial stability goals by central banks

typically relate to the volatility and cost of credit provision.20

20For instance, the Federal Reserve monitors risks to the financial system “to help ensure the system sup-
ports a healthy economy for U.S. households, communities, and businesses”, and is “resilient and able to
function even following a bad shock” (https://www.federalreserve.gov/financial-stability.htm). The European
Central Bank aims to “[mitigate] the prospect of disruptions in the financial intermediation process that
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Figure 5: Intermediary Net Worth and Default By Level of Interest Rate
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5.2.1 Interest Rate Levels, Intermediary Net Worth, and Default

The impulse responses suggest that intermediary net worth is differentially correlated with in-

terest rates depending on the underlying mortgage structure. Figure 5 illustrates this intuition,

showing average levels of intermediary net worth to GDP by interest rate levels (Panel a).

Intermediary net worth is strongly increasing in interest rates for ARM economies, meaning it

has large negative net worth duration. Interest income rises by more than deposit funding cost

increases, which outweighs the rise in defaults (Panel b). Conversely, net worth is somewhat

decreasing in interest rates for FRM economies, meaning it has positive net worth duration.

Deposit Sensitivity Figure 5a also shows that the level of intermediary net worth seems to

be more sensitive to interest rate changes in the pure ARM economy, i.e. its absolute duration

is larger. The lower volatility of FRMs is related to the calibrated degree of deposit stickiness

with βd = 0.34. βd ≤ 1 governs the pass-through of interest rate changes to deposit rates, and

thus affects how much less sensitive interest expense (as measured by deposit rates) is to rate

shocks than interest income. In a counterfactual where deposits are more sensitive to policy

rates (βHigh
d = 0.67, shown in dashed lines in Figure 5a), FRM intermediary net worth becomes

more sensitive to changes in interest rates. Intuitively, a greater deposit sensitivity aligns the

are severe enough to adversely impact real economic activity” (https://www.ecb.europa.eu/paym/financial-
stability/html/index.en.html).
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duration of liabilities under an ARM structure more with the duration of assets, while the

reverse is true in an FRM regime, consistent with findings by Drechsler et al. (2017, 2024).

Mortgage Default and Risk Premia Figure 5b suggests a hedging mechanism in both

economies: defaults are high when intermediary net worth tends to be high. Figure 6 illustrates

this further by comparing default rates across simulations by interest rate level (color) and

intermediary net worth (x-axis). In both ARM and FRM economies, defaults are positively

correlated with net worth.

Figure 6: Default Rates By Level of Interest Rate and Intermediary Net Worth

Notes: This figure shows simulation scatter plots of default rates by the level of intermediary net worth (x-axis)

and interest rates (color: blue is low, yellow is medium, orange is high). The left plot shows the ARM economy,

while the right plot shows the FRM economy.

However, Figure 6 also reveals substantial differences between FRM and ARM economies.

Consistent with Campbell and Cocco (2015), default occurs in different macroeconomic states

across mortgage structures, and is more rate-sensitive in the ARM economy. With ARMs, the

level of defaults is highest at high levels of interest rates (in orange). These are also states of the

world in which intermediary net worth is high given higher net interest margins. Thus, ARM
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defaults are net-worth hedged – credit losses offset interest rate gains. With FRMs, defaults

are higher when rates are low, which are also states in which net worth is high, but defaults are

less sensitive to rates in the FRM economy, illustrated by greater dispersion of defaults across

interest rate states. This means that the hedging force is smaller in the FRM world.

The relative strength of net worth hedging forces affects risk premia. Figure 7 shows that

the weaker FRM net-worth hedging channel makes risk premia (left y-axis) more sensitive to

intermediary net worth (x-axis) at low values. In the FRM economy (blue), risk premia are

high in constrained states of the world, i.e. when rates are high and intermediary net worth is

low, while in the ARM economy (red) risk premia are only moderately elevaed when rates and

intermediary net worth are low. However, Figure 7 also shows that ARMs make intermediary

net worth more volatile on average, with a higher probability of being in a low intermediary

net worth state compared to the FRM economy (shown as frequency distribution of simulation

periods on the right-hand y-axis), meaning that risk premia in the ARM economy are not

necessarily lower on average.

Figure 7: Mortgage Risk Premia Decrease with Intermediary Net Worth
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Notes: This figure shows conditional means of mortgage excess returns by the level of intermediary net worth,

for ARM and FRM economies.
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5.2.2 Net Worth Duration and Volatility Across Mortgage Structures

Thus far, we assessed the pure FRM and ARM economies which lie on two ends of the mortgage

structure spectrum. To evaluate the full range of mortgage structures, we next compare financial

stability outcomes in the benchmark FRM economy with several counterfactual economies

where we vary mortgage fixation length. To do so, we solve the model and simulate outcomes

for economies with values of πτ ∈ [0, 1] where πτ reflects the annual probability of the rate

resetting, and 1/πτ the (expected) fixation length. For instance, a full ARM economy has a

rate that resets every year with πτ = 1.0, a 10-year fixed-rate mortgage economy has πτ = 0.1,

while the full FRM economy has πτ = 0.

Figure 8a shows results across mortgage structure for the duration of intermediary net worth

δ, measured as the negative of the regression coefficient of log wealth on interest rates, i.e. the

OLS estimate of logW I
t = const. − δrft + ϵwt . Net worth duration reflects by what percentage

intermediary net worth declines in response to a 1 percentage point increase in rates. The pure

ARM economy with a fixation length of one year has large negative duration, meaning that net

worth increases substantially when interest rates go up (and vice versa), consistent with the

evidence from before. The pure FRM economy with an infinite fixation length has moderate

positive duration, meaning net worth declines when rates go up. Net worth duration is 0 with

an intermediate fixed-rate length of seven years.

However, net worth duration is an incomplete measure of risk as the regression only measures

the contemporaneous effect of interest rates. TheR2 of the duration regression in the benchmark

FRM economy is only 0.164, suggesting that there are dynamic and persistent effects of rate

changes on net worth that are not captured by duration and possibly other state variables that

could be correlated with interest rates, such as the effect of credit risk and risk premia. We

expand on this intuition more formally in Section II in the Appendix.

As a result, our preferred measure of financial stability is the volatility of banks’ return on

equity (ROE), shown in Figure 8b. This measure captures the combined equilibrium effects of

asset and liability-side volatility as well as leverage on the volatility of intermediary net worth.21

The volatility of banks’ ROE has a “U-shape” pattern, that is, volatility measures are higher

21This is consistent with the intuition in Meiselman et al. (2023), who show that banks’ ROE is a strong
predictor for systematic tail risks.
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Figure 8: Measures of Financial Stability Across Mortgage Structures

(a) Intermediary Net Worth Duration (δ)
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Notes: This figure shows the duration of intermediary net worth as the negative regression coefficient δ from

a regression of log wealth on interest rates: logW I
t = const. − δrft + ϵwt (Panel (a)) and the volatility of

intermediary return on equity, measured as the standard deviation of net income over net worth (Panel (b)). The

x-axis reflects an annual rate reset probability of πτ ∈ {1, 2/3, 0.5, 0.4, 1/3, 0.2, 1/7, 0.1, 0}, which corresponds

to fixed-rate lengths of 1, 1.5, 2, 2.5, 3, 5, 7, 10 years and ∞, respectively.

on both extremes of mortgage structure, fully adjustable or fully fixed, than at an intermediate

fixation length. Banks’ ROE volatility is minimized at a fixation length of approximately 3

years, which is shorter than the zero-duration fixation length of 7 years. This discrepancy

highlights the importance of evaluating financial stability in equilibrium, taking into account

endogenous default and pricing of risk premia.

The findings suggest that an intermediate fixation length balances sources of volatility in

ARM and FRM structures. Figure IA.7 in the Appendix adds the 3-year fixed-rate economy

(“ARM 3yr”) to the plot that shows intermediary net worth and default by interest rate levels.

Compared to both the full FRM and ARM economy, both intermediary net worth and default

are relatively stable across interest rate states in the 3-year fixed-rate economy. The results

suggest that an intermediate fixation length broadly balances the different mechanisms in both
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Table 3: Measures of Financial Stability

Deposit Sensitivity: Low (βd = 0.34) High (βd = 0.67)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Excess ROE (mean) 2.26 1.50 1.70 1.65 1.70 2.29
ROE (st. dev.) 20.79 1.41 9.11 12.74 8.05 16.89
Excess ROA (mean) 0.22 0.16 0.19 0.16 0.19 0.25
ROA (st. dev.) 2.20 0.66 1.17 1.73 1.58 2.25
Fraction of constraint binding 27.45 86.50 49.99 24.61 45.31 36.10
Duration of bank net worth -13.96 -2.41 1.99 -11.51 -0.70 4.82

PTI (OLS coef.) 1.61 0.45 -0.17 1.48 0.28 -0.33
LTV (OLS coef.) 2.47 0.17 -1.19 1.52 -0.99 -2.19
Default Rate (mean) 2.07 2.36 2.32 2.21 2.30 2.19
Default Rate (std. dev.) 0.36 0.07 0.26 0.19 0.29 0.48
Default Rate (OLS coef.) 0.14 0.01 -0.07 0.09 -0.05 -0.12
DTI (mean) 145.16 151.15 150.37 148.16 149.80 147.38
LTV (mean) 55.15 59.68 59.08 57.48 58.68 56.86
Deposits / Income (mean) 25.74 24.36 24.49 25.16 24.76 25.24

Notes: Unconditional moments from a long simulation of the model. Except for the duration of bank net worth,

all quantities are reported in percent. Rows marked ”OLS coef.” report the coefficient of a regression of the

variable on the policy rate rft .

extremes of mortgage structure, making the intermediary sector more stable across states of

the world with different interest rate levels.

5.3 Risk Sharing

Our analysis on financial stability thus far highlights the risks borne by savers, who hold bank

equity. To better understand risk sharing across mortgage structures, we compare outcomes

for both borrowers and banks in Table 3. The top panel reports bank-related metrics, and the

bottom panel shows borrower-related metrics. The first three columns present results for our

baseline scenario with low calibrated deposit sensitivity: full-ARM (annual resets), intermediate

fixation length (3-year) at which net worth volatility is minimized, and full-FRM economies,

respectively.

Borrowers and Consumption Mortgage structure shapes both the extent and the nature

of borrowers’ interest rate exposure, affecting default behavior and portfolio decisions. In ARM

economies, mortgage payment-to-income (PTI) ratios increase in rates, exposing borrowers to
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liquidity risks, as seen in the “PTI ( OLS coef.)” which reports the coefficient of a regression of

PTI on interest rates. A 1 percentage point increase in rates corresponds to a 1.61 percentage

point increase in PTI in the ARM (1yr) economy, but only a 0.45 percentage point increase in the

ARM (3yr) economy, and a −0.17 percentage point change in the FRM economy as households

delever. But rate shocks also have wealth effects, which determine borrowers’ strategic default

behavior. Higher interest rates always lower house prices on impact, but the extent to which

they affect the value of the mortgage – and, hence, LTV ratios, depends on the fixation length.

In the FRM economy, high rates lead to low mortgage values. This creates LTV ratios that

are mildly countercyclical in the interest rate (reflected in a negative “LTV (OLS coef.)”,

analogously defined to the PTI regression coefficient), and, together with stable payments,

yields countercyclical default rates (negative “Default Rate (OLS coef.)”, which is consistent

with the impulse responses showing a decrease in default rates when rates go up. As fixation

length shortens, mortgage duration drops and eventually flips sign. In the full-ARM economy,

rate hikes lead not only to higher house prices but higher mortgage values, which implies LTV

ratios strongly procyclical in rates. Together with procyclical payments, this leads to procyclical

default rates, which are more volatile than in the FRM economy. Conversely, default rates are

mildly countercyclical in the FRM economy. At intermediate fixation lengths, default rates are

close to acyclical with respect to interest rates, and are least volatile.

Higher exposure to interest rate risk in ARM economies lowers both the supply and the de-

mand for credit. Together with more expensive mortgages due to higher risk premia (“Excess

ROA”), volatile default rates cause households to reduce their demand for credit and expand

precautionary saving. Relative to the FRM economy, in the full-ARM economy, average mort-

gage debt falls both relative to income (DTI) and relative to house prices (LTV), while deposits

to income increase. As a result, less indebted borrowers default less often on average. The

opposite is true for the safer ARM (3yr) economy.

Differences in risk exposures and indebtedness have implications for consumption. Fewer

mortgages mean a smaller banking sector, with reduced dividends lowering saver consumption

(Panel A) in the ARM economy. While the banking sector is more volatile, its smaller size makes

its returns a relatively smaller part of saver consumption, leading to decreased unconditional

consumption volatility across time. However, conditional on a particular state of the economy,
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Table 4: Consumption Measures

Deposit Sensitivity: Low (βd = 0.34) High (βd = 0.67)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Panel A: Savers

Cons. (mean) 49.15 49.93 49.84 49.54 49.78 49.50
Cons. gr. (st. dev.) 2.35 0.52 2.29 0.74 2.74 3.97
Cond. vol of cons. gr. 2.05 0.29 1.83 0.55 2.09 3.22

Panel B: Borrowers

Cons. (mean) 47.79 47.01 47.10 47.43 47.20 47.49
Cons. gr. (st. dev.) 16.17 17.17 17.12 16.69 16.99 16.70
Cond. vol of cons. gr. 10.46 11.05 10.92 10.89 10.94 10.63

Notes: Unconditional moments from a long simulation of the model.

the volatility of consumption growth – which determines the price of risk in asset pricing models

– goes up, consistent with the higher risk premia in the ARM economy discussed above.

The effect on borrowers is the opposite in the ARM economy. With less debt, their interest

burden is smaller, and they suffer the pecuniary consequences of default less often. This results

in higher average consumption. Having to make larger payments in high rate regimes, borrowers

in the ARM economy have higher unconditional consumption volatility, but their endogenous

delevering results in the conditional volatility – driven mainly by idiosyncratic shocks – to go

down.

Robustness: Deposit Sensitivity An important source of financial stability risk in the

ARM economy is the large difference between high sensitivity of mortgage payments to policy

rates and the low sensitivity of deposit rates, calibrated to match the empirical evidence. We

thus consider a counterfactual in which we double the calibrated benchmark sensitivity of

βd = 0.34 to βd = 0.67 in the fourth through sixth columns of Tables 3 (Financial Stability)

and 4 (Consumption).

With more volatile deposit rates at which banks fund themselves, the FRM economy becomes

substantially riskier (third vs. sixth columns). Bank equity duration more than doubles,

the volatility of both asset and equity returns increases considerably, and banks demand a

larger compensation for the risk of holding mortgages. As before, a more volatile economy and

more expensive mortgages lead to lower borrower indebtedness, lower default rates, and higher
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consumption. The effect of switching from FRMs to ARMs in the high deposit sensitivity

counterfactual is opposite to that in the baseline experiment. When policy rates substantially

pass through to deposit rates, a mortgage structure in which payments are indexed to the

policy rate improves financial stability, reducing the volatility of bank balance sheets and the

risk premia associated with them and stimulating mortgage credit. Intuitively, the asset and

liability side of bank balance sheets are better aligned with ARMs when deposit rates fluctuate

more strongly with interest rates. Hence, a banking sector that faces less sticky deposit rates is

rendered most stable by an even shorter fixation length than 3 years, the level for the baseline

calibrated economy.

Measuring Risk Sharing Lastly, we assess how mortgage structure determines how risks

are shared between households. To quantify the degree of risk sharing, it is instructive to

consider a hypothetical complete markets benchmark. A social planner subject to rate shocks

but not to any of the economy’s frictions would insure households fully against idiosyncratic

shocks and award each household a constant fraction of overall consumption. In other words,

the difference ∆ log cit−∆ log cjt between consumption growth rates of any two households i and

j would be zero in all periods.22

We can then measure the quality of risk sharing by the unconditional variance of differences in

consumption growth rates between households. Recall that borrower households are subject to

undiversifiable idiosyncratic risk, while saver households are not. We can define two scale-free

measures of risk-sharing:

1. Higher values of RiB = Var0[∆ log cit −∆ logCB
t ], where CB

t is aggregate consumption of

borrowers, indicate worse intra-borrower risk-sharing;

2. Higher values of RBS = Var0[∆ logCB
t −∆ logCS

t ], where CS
t is aggregate consumption

of borrowers, indicate worse risk-sharing between borrowers and savers ;

22See Appendix III.5 for derivations. Moreover, the planner would optimize the overall economy’s exposure
to rate shocks. The planner would choose a net deposit position of the economy with respect to the rest of the
world to satisfy the consumption-savings Euler equation of the representative agent, whose consumption would
be equal to the aggregate consumption of the economy. We also derive these results in Appendix Appendix III.5,
but since these effects turn out to be quantitatively negligible, we do not report these separately.
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Figure 9: Measures of Risk Sharing across Mortgage Structures
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Notes: RiB measures the variance of individual consumption growth relative to aggregate consumption growth,

and RBS measures the variance of aggregate consumption growth of borrowers relative to savers. In each panel,

R is reported in deviations from the level in the ROE volatility-minimizing economy.

Figure 9 reports the results in standard deviations from the level in the ROE volatility-

minimizing economy.23

Considering Panel (b), intermediate mortgage fixation lengths lead to the best attainable risk-

sharing arrangements between borrowers and savers as RBS is minimized at a fixation length

of 5 years. This is a slightly longer fixation length relative to the contract that minimizes

the volatility of intermediary ROE, suggesting a small trade-off between financial stability and

aggregate risk sharing.

To illustrate this trade-off directly, we plot the responses of borrower and saver consumption

to a positive rate shock for the benchmark FRM economy, the volatility-minimizing ARM 3yr

economy, and the risk-sharing optimizing ARM 5yr economy in Figure 10. In the FRM economy,

savers – who own banks – have a much greater exposure to this shock than borrowers. When

the fixation length is chosen to minimize bank volatility (ARM 3yr, green), savers become

almost insulated from the shock, but it is now borrowers whose consumption suffers. From

23At a fixation length of 3 years, RiB is 0.17, and RBS is 0.005. Since these measures are scale-free, the level
of undiversifiable idiosyncratic risk faced by borrowers is considerably larger than aggregate risk shared between
borrowers and savers, consistent with many macroeconomic models.
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a risk-sharing perspective, lowering the fixation length to 3 years leads to an over-correction.

A less aggressive choice of 5 years (purple) leads to similar consumption responses for both

borrowers and savers, and thus minimizes RBS.

However, low exposure to aggregate risk leads borrowers to endogenously choose higher expo-

sure to idiosyncratic risk (Panel (a) of Figure 9). At intermediate fixation lengths, they choose

the largest mortgages, and hence the largest mortgage payments, should they choose to make

them rather than defaulting. When payments constitute a larger fraction of liquid income, the

effect of idiosyncratic income shocks on consumption is amplified. Moreover, higher mortgage

balances lead to a higher probability of default. Since consumption levels in and out of default

are different, a higher probability of default also leads to higher consumption volatility. This is

reflected in the higher RiB at intermediate fixation lengths.

Overall, mortgage structure most strongly affects the sharing of interest rate risk between

borrowers and savers, with the best attainable outcome occurring at an intermediate fixation

length of 5 years. The findings on idiosyncratic risk sharing between borrowers highlight a

somewhat subtle downside: a more efficient (aggregate) risk-sharing arrangement leads bor-

rowers to take on more idiosyncratic risk, which the mortgage structures under consideration

Figure 10: Consumption Responses To Positive Rate Shock
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Notes: The figure shows impulse responses to a positive interesr rate shock. The left panel shows the response of

aggregate borrower consumption CB
t , while the right panel shows the response of aggregate saver consumption

CS
t . Benchmark FRM economy is in blue. Volatility-minimizing ARM 3yr economy is in green, and the RBS-

minimizing ARM 5yr economy is in purple.
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cannot diversify away.

5.4 Role of Aggregate Income Shocks

The results above show how financial stability and risk sharing are affected by mortgage struc-

ture in an environment in which the only source of aggregate risk is shocks to interest rates. It

is the source of risk whose allocation between borrowers and savers is most directly affected by

mortgage fixation length.

In the data, households also face aggregate income shocks, and these shocks may be correlated

with interest rates. For instance, times when interest rates rise may also be times when incomes

rise, as would be the case in an economy dominated by aggregate demand shocks. Alternatively,

interest rate increases may coincide with income declines if supply shocks predominate.24 How

do our results change if we allow for the possibility of correlated aggregate income and interest

rate shocks?

To answer this question, we relax the restriction Yt = 1 and calibrate a VAR(1) process to

govern the joint dynamics of (log Yt, r
f
t ), where log Yt is measured as the cyclical component of

log GDP and rft is as before. Over the baseline 1987-2024 sample period, we find a positive

correlation between innovations to the two series, with a correlation coefficient of 0.313. Relative

to the rate-only process in the baseline model, we also find a lower volatility of the innovations in

rates – 0.013 vs. 0.014. Intuitively, in a VAR some of the variation in rates is now attributed to

the contemporaneous and lagged effects of income innovations. Appendix I.1 contains details

on the VAR estimation and the resulting impulse response functions. We then re-solve the

model with the new process for each of the mortgage structures.25

The results are shown in Table 5. The left panel shows the results for the three main fixation

lengths – ARM with a one-year fixation length, ARM with a three-year fixation length, and

24In a New Keynesian framework, a positive demand shock increases both output and inflation, to which
central banks respond by raising nominal rates. With nominal rigidities, this leads to an increase real rates.
In contrast, a negative supply shock increases inflation while reducing output. If the central bank’s policy rule
responds to inflation more strongly than to output, it would raise nominal rates, leading real rates to rise as
well. See Woodford (2003) for a canonical treatment.

25As before, the FRM economy represents the data generating process. A change in the exogenous environment
leads to different values for the moments governing our internal calibration. In principle, this could require re-
calibrating the internally calibrated parameters. However, we find the fit of the model with income shocks to
be comparable to the baseline model without. For parsimony, we do not re-calibrate the model.
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Table 5: Measures of Financial Stability

Income Correlation: Calibrated (ρyr = 0.313) Uncorrelated (ρyr = 0)

Mortgage Structure: ARM (1yr) ARM (3yr) FRM ARM (1yr) ARM (3yr) FRM

Excess ROE (mean) 2.16 1.56 1.62 2.00 1.56 1.66
ROE (st. dev.) 18.04 4.51 8.04 16.37 4.82 8.65
Excess ROA (mean) 0.22 0.16 0.18 0.20 0.17 0.18
ROA (st. dev.) 1.93 0.73 1.03 1.74 0.76 1.08
Fraction of constraint binding 32.08 55.38 52.02 37.94 53.71 47.95
Duration of bank net worth -12.58 -2.57 1.53 -11.01 -1.75 2.21

PTI (OLS coef.) 1.44 0.33 -0.27 1.45 0.35 -0.23
LTV (OLS coef.) 1.67 -0.18 -1.23 1.63 -0.08 -1.03
Default Rate (mean) 2.12 2.34 2.34 2.15 2.34 2.33
Default Rate (std. dev.) 0.37 0.23 0.31 0.40 0.25 0.30
Default Rate (OLS coef.) 0.10 -0.01 -0.07 0.09 -0.00 -0.05
DTI (mean) 146.57 150.85 150.42 147.02 150.81 150.58
LTV (mean) 55.95 59.45 59.22 56.35 59.37 59.23
Deposits / Income (mean) 25.55 24.48 24.51 25.47 24.51 24.51

Notes: Unconditional moments from a long simulation of the model. Except for the duration of bank net worth,

all quantities are reported in percent. Rows marked ”OLS coef.” report the coefficient of a regression of the

variable on the policy rate rft .

FRM – in the exogenous environment with both income and rate shocks, calibrated to the

data. The right panel shows the results for the same three fixation lengths when the correlation

of income and rate innovations is counterfactually set to zero. This allows us to separately

consider the effect of introducing an extra source of aggregate risk into the model from the

effect of it being correlated with interest rates.

In the presence of income shocks, changing mortgage fixation becomes somewhat less effective

at reducing volatility than it was in the baseline, whether of intermediary returns on equity (top

panel, second row) or default rates (bottom panel, fourth row). In the baseline economy, going

from an economy with FRMs to an economy with a 3-year fixation length lowers intermediary

ROE volatility from 9.11 to 1.41. With uncorrelated income shocks, the corresponding reduction

is from 8.65 to only 4.82. This smaller effect occurs for two reasons. First, unlike rate shocks,

income shocks affect both households in a similar way. A positive rate shock benefits borrowers

at the expense of savers in the FRM economy, but a positive income shock benefits both.

Shortening the fixation length improves the sharing of interest rate risk because that risk is

allocated asymmetrically to begin with, but has little effect on the sharing of income risk.
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Second, the reduction in endogenous volatility achieved by intermediate fixation length (ARM

(3y) column vs. FRM column) reduces incentives for precautionary savings. Both borrowers

and savers take on more debt, with mortgage DTI and LTV slightly higher (bottom panel, rows

6-7) and with intermediary constraints binding more often (top panel, row 5). These riskier

portfolios leave households more exposed to income shocks, partly offsetting the reduction in

volatility due to better sharing of interest rate risk.

Next, consider what happens to financial stability in the FRM economy when income and

rate shocks become positively correlated, as they are in the data. An increase in rates now

lowers default rates not just because it lowers market-value LTVs (bottom panel, row 2), as in

the baseline with only rate shocks, but also because of a concurrent increase in income. Default

rates become more countercyclical in rates (bottom panel, row 5) leading to a stronger hedging

force offsetting the market value losses on long-term mortgages stemming from a rate hike. As

a result, intermediary ROE volatility in the FRM economy is lower than in the uncorrelated

case (top panel, row 2).

The opposite is true for ARMs. A rate hike increases borrower payments but they can afford

more of that increase because their incomes also rise. Intermediaries earn higher cash flows

because promised mortgage payments are less offset by rising default rates, weakening the

default hedging force that was present in the baseline model. In addition, defaults rise in the

state of the world when net worth is low, namely when rates are low, due to lower incomes.

In sum, positive correlation makes the FRM economy safer and the ARM economy riskier,

suggesting that a higher fixation length may be optimal.

To confirm this intuition, we solve a grid of economies with different fixation lengths and

different correlations between income and rate shocks. For each correlation, we find (1) the

fixation length that minimizes the volatility of intermediary ROE, and (2) the fixation length

that optimizes risk sharing between borrowers and savers (minimizes RBS). The results are

shown in Figure 11. Indeed, as we increase the correlation from -0.3 to 0.5, the ROE-minimizing

fixation length rises from 2.7 to 3.9 years. The fixation length that optimizes risk sharing rises

from 4 to 5.8 years, consistently remaining 1-2 years higher than the ROE-minimizing value as

in the baseline. At the calibrated correlation of 0.313, the ROE volatility is minimized by a

fixation length of 3.6 years while risk sharing is optimized by a lengh of 5.3 years.
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Figure 11: Optimal Fixation Lengths as a Function of Correlation
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Notes: For each correlation (x-axis), blue line plots the fixation length that minimizes ROE volatility, and red

line plots the fixation length that minimizes RBS (lower values mean better risk sharing between borrowers and

savers). The vertical dashed line shows the calibrated correlation of 0.313. To determine minima, we solve a

grid of economies with different fixation lengths and different correlations between income and rate shocks and

fit cubic splines to the ROE and risk sharing measures.

The magnitude of these effects are not large enough to overturn the main findings of the

paper. A mortgage with an intermediate fixation length of a few years does the best job of

promoting financial stability and risk sharing in the presence of income shocks, whether the

correlation is positive, as it has been in the recent sample, or zero, as it has been on average in

a longer 1962-2024 period.26

6 Conclusion

This paper highlights the effect of mortgage structure on financial stability and risk sharing

between households and financial intermediaries. To evaluate these effects in equilibrium, we

build a quantitative model with flexible mortgage contract structures, borrowers, and an in-

termediary sector. Borrowers endogenously default for liquidity and net worth-related reasons,

and default is more sensitive to interest rates in the adjustable-rate mortgage regime. In ad-

dition, intermediary distance to capital constraints affects equilibrium mortgage pricing. As a

26Appendix I.1 contains estimation details.
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result, our model captures complex interaction effects between interest rate and credit risk, and

intermediary net worth.

Our findings reveal that mortgage structure is key to understanding differential financial

stability risks in response to interest rate fluctuations. In an ARM economy, rising rates lead

to increased household mortgage payments, higher default rates, and declining house prices.

Despite higher credit losses, banks benefit from increased net interest margins and asset values,

ultimately raising their net worth. Conversely, an FRM economy shields households from higher

payments, thereby reducing defaults, but banks experience rising deposit costs and falling asset

values, reducing their net worth and profitability.

We identify a ”U-shaped” relationship between mortgage structure and financial stability

risks. Pure ARM economies exhibit high net worth volatility due to strong interest rate sen-

sitivity, whereas FRM economies partially hedge risks through sticky deposit rates. Yet ARM

economies better hedge defaults by concentrating them in states when banks’ net worth is

high. Intermediate fixation lengths, around 3 to 5 years, optimally balance these opposing

forces, minimizing volatility and maximizing aggregate risk-sharing. Additionally, introducing

correlated aggregate income and interest rate shocks suggests that a more positive correlation

increases the optimal fixation length.

Overall, our findings have implications for monetary policy and macroprudential regulation.

Our model provides a framework for understanding how changes in policy rates affect financial

stability differentially across mortgage structures. Our paper informs optimal mortgage de-

sign that aims to improve financial stability and risk-sharing between households and financial

intermediaries.

42



References

Adrian, T., and H. S. Shin (2008): “Financial intermediaries, financial stability, and mon-

etary policy,” Discussion Paper 346.

Ajello, A., N. Boyarchenko, F. Gourio, and A. Tambalotti (2022): “Financial

stability considerations for monetary policy: Theoretical mechanisms,” Discussion Paper

1002.

Albertazzi, U., F. Fringuellotti, and S. Ongena (2024): “Fixed rate versus adjustable

rate mortgages: evidence from euro area banks,” European Economic Review, 161, 104643.

Altunok, F., Y. Arslan, and S. Ongena (2024): “Monetary Policy Transmission with

Adjustable and Fixed-Rate Mortgages: The Role of Credit Supply,” Swiss Finance Institute

Research Paper, (24-65).

Auclert, A. (2019): “Monetary policy and the redistribution channel,” American Economic

Review, 109(6), 2333–2367.

Badarinza, C., J. Y. Campbell, and T. Ramadorai (2016): “International Comparative

Household Finance,” Annual Review of Economics, 8(1).

(2018): “What calls to ARMs? International evidence on interest rates and the choice

of adjustable-rate mortgages,” Management Science, 64(5), 2275–2288.

Begenau, J., T. Landvoigt, and V. Elenev (2024): “Interest Rate Risk and Cross-

Sectional Effects of Micro-Prudential Regulation,” Available at SSRN.

Berger, D., K. Milbradt, F. Tourre, and J. Vavra (2021): “Mortgage prepayment and

path-dependent effects of monetary policy,” American Economic Review, 111(9), 2829–2878.

Borio, C. E. (2014): “Monetary policy and financial stability: what role in prevention and

recovery?,” Discussion paper.

Boutros, M., N. Clara, and K. Kartashova (2025): “The Value of Mortgage Choice:

Payment Structure and Contract Length,” .

43



Boyarchenko, N., G. Favara, and M. Schularick (2022): “Financial stability consider-

ations for monetary policy: Empirical evidence and challenges,” Discussion Paper 1003.

Bracke, P., M. Everitt, M. Fazio, and A. Varadi (2024): “When refinancing meets

monetary tightening: heterogeneous impacts on spending and debt via mortgage modifica-

tions,” .

Brunnermeier, M. K., and Y. Sannikov (2014): “A macroeconomic model with a financial

sector,” American Economic Review, 104(2), 379–421.

Buchak, G., G. Matvos, T. Piskorski, and A. Seru (2018): “Fintech, regulatory arbi-

trage, and the rise of shadow banks,” Journal of Financial Economics, 130(3), 453–483.

(2024a): “Beyond the balance sheet model of banking: Implications for bank regulation

and monetary policy,” Journal of Political Economy, 132(2), 616–693.

(2024b): “The secular decline of bank balance sheet lending,” Discussion paper,

National Bureau of Economic Research.

Caballero, R. J., and A. Simsek (2019): “Prudential monetary policy,” Discussion paper,

National Bureau of Economic Research.

Calza, A., T. Monacelli, and L. Stracca (2013): “Housing finance and monetary policy,”

Journal of the European Economic Association, 11(1), 101–122.

Campbell, J. Y. (2012): “Mortgage market design,” Review of Finance, 17(1), 1–33.

Campbell, J. Y., N. Clara, and J. F. Cocco (2021): “Structuring mortgages for macroe-

conomic stability,” The Journal of Finance, 76(5), 2525–2576.

Campbell, J. Y., and J. F. Cocco (2003): “Household risk management and optimal

mortgage choice,” The Quarterly Journal of Economics, 118(4), 1449–1494.

(2015): “A model of mortgage default,” The Journal of Finance, 70(4), 1495–1554.

Campbell, J. Y., C. Pflueger, and L. M. Viceira (2020): “Macroeconomic drivers of

bond and equity risks,” Journal of Political Economy, 128(8), 3148–3185.

44



Campbell, J. Y., R. J. Shiller, L. M. Viceira, et al. (2009): Understanding inflation-

indexed bond markets, no. w15014. National Bureau of Economic Research Cambridge, MA.

Campbell, J. Y., A. Sunderam, L. M. Viceira, et al. (2017): “Inflation Bets or De-

flation Hedges? The Changing Risks of Nominal Bonds,” Critical Finance Review, 6(2),

263–301.

Chen, H., M. Michaux, and N. Roussanov (2020): “Houses as ATMs: mortgage refinanc-

ing and macroeconomic uncertainty,” The Journal of Finance, 75(1), 323–375.

De Stefani, A., and R. C. Mano (2025): “Long-Term Debt and Short-Term Rates: Fixed-

Rate Mortgages and Monetary Transmission,” .

DeMarzo, P., A. Krishnamurthy, and S. Nagel (2024): “Interest Rate Risk in Banking,”

Discussion paper.

Di Maggio, M., A. Kermani, B. J. Keys, T. Piskorski, R. Ramcharan, A. Seru,

and V. Yao (2017): “Interest rate pass-through: Mortgage rates, household consumption,

and voluntary deleveraging,” American Economic Review, 107(11), 3550–3588.

Di Maggio, M., A. Kermani, and C. J. Palmer (2020): “How quantitative easing works:

Evidence on the refinancing channel,” The Review of Economic Studies, 87(3), 1498–1528.

Di Tella, S., and P. Kurlat (2021): “Why are banks exposed to monetary policy?,”

American Economic Journal: Macroeconomics, 13(4), 295–340.

Diamond, W., Z. Jiang, and Y. Ma (2024): “The reserve supply channel of unconventional

monetary policy,” Journal of Financial Economics, 159, 103887.

Diamond, W., and T. Landvoigt (2022): “Credit cycles with market-based household

leverage,” Journal of Financial Economics, 146(2), 726–753.

Diamond, W., T. Landvoigt, and G. Sanchez (2022): “Printing Away the Mortgages:

Fiscal Inflation and the Post-Covid Housing Boom,” SSRN Electronic Journal.

Diep, P., A. L. Eisfeldt, and S. Richardson (2021): “The cross section of MBS returns,”

The Journal of Finance, 76(5), 2093–2151.

45



Drechsler, I., A. Savov, and P. Schnabl (2017): “The deposits channel of monetary

policy,” The Quarterly Journal of Economics, 132(4), 1819–1876.

Drechsler, I., A. Savov, P. Schnabl, and D. Supera (2024): “Monetary Policy and the

Mortgage Market,” Working Paper, presented at Jackson Hole Economic Policy Symposium.

Drechsler, I., A. Savov, P. Schnabl, and O. Wang (2023): “Banking on uninsured

deposits,” Available at SSRN 4411127.

Eberly, J., and A. Krishnamurthy (2014): “Efficient credit policies in a housing debt

crisis,” Brookings Papers on Economic Activity, 2014(2), 73–136.

Eichenbaum, M., S. Rebelo, and A. Wong (2022): “State-Dependent Effects of Monetary

Policy: The Refinancing Channel,” American Economic Review, 112(3), 721–61.

Elenev, V., T. Landvoigt, and S. Van Nieuwerburgh (2016): “Phasing out the GSEs,”

Journal of Monetary Economics, 81, 111–132.

(2021): “A Macroeconomic Model With Financially Constrained Producers and In-

termediaries,” Econometrica, 89(3), 1361–1418.

Fonseca, J., and L. Liu (2024): “Mortgage Lock-In, Mobility, and Labor Reallocation,” The

Journal of Finance, 79(6), 3729–3772.

Fonseca, J., L. Liu, and P. Mabille (2024): “Unlocking Mortgage Lock-In: Evidence

From a Spatial Housing Ladder Model,” Available at SSRN 4874654.

Fuster, A., and P. S. Willen (2017): “Payment size, negative equity, and mortgage de-

fault,” American Economic Journal: Economic Policy, 9(4), 167–191.

Ganong, P., and P. Noel (2019): “Consumer Spending during Unemployment: Positive

and Normative Implications,” American Economic Review, 109(7), 2383–2424.

(2022): “Why do Borrowers Default on Mortgages?*,” The Quarterly Journal of

Economics, 138(2), 1001–1065.

Garriga, C., and A. Hedlund (2018): “Housing finance, boom-bust episodes, and macroe-

conomic fragility,” in 2018 Meeting Papers, vol. 354. Society for Economic Dynamics.

46
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Internet Appendix for “A Macro-Finance Model of Mortgage Structure:

Financial Stability & Risk Sharing”

I Additional Figures and Tables

Figure IA.1: Non-Government Residential Mortgage Holdings by Sector (Portfolio & MBS)

Notes: This figure shows the composition of non-government residential mortgage holdings, including bank

portfolio loans (I) and agency- and GSE-backed securities holdings (II), excluding direct government holdings,

and holdings by the GSEs and the Federal Reserve. Data for (I) is based on the Urban Institute Housing

Chartbook (“Unsecuritized First Liens (Bank Portfolio)”). Data for (II) comes from Table L211 from the

US Financial Accounts (Flow of Funds) split into Banks, Funds/REITs, Households/Firms, Insurance/Pension

Funds, and the Rest of World (RoW) in 2014Q2, 2021Q2, and 2024Q2. A detailed breakdown of constituent

sector definitions for (II) is provided in Table IA.I. The data is retrieved from the Federal Reserve. Since (II) is

reported at quarterly frequency, we obtain (I) from the Urban Institute Housing Chartbook from August 2014,

and September 2021 and 2024, which reflect data as of 2014, 2021, and 2024 for the second quarter of the year,

respectively.

1

https://www.urban.org/research/publication/housing-finance-glance-monthly-chartbook-september-2024
https://www.urban.org/research/publication/housing-finance-glance-monthly-chartbook-september-2024
https://www.federalreserve.gov/releases/z1/release-dates.htm


Figure IA.2: Non-Government MBS Holdings (Detailed Sector Breakdown)

Notes: This figure shows the composition of non-government agency- and GSE-backed securities holdings from

Table L211 from the US Financial Accounts (Flow of Funds), with a breakdown into underlying sectors that

form the groups of Banks, Funds/REITs, Households/Firms, Insurance/Pension Funds, and the Rest of World

(RoW) in Figure IA.1, in 2024Q2.

2



Table IA.I: Overview of Sector Definitions for Non-Government MBS Holdings

Sector Constituent Groups

Banks

U.S.-chartered depository institutions
Foreign banking offices in the U.S.
Banks in U.S.-affiliated areas
Credit unions
Security brokers and dealers
Holding companies

Funds/REITs
Mutual funds
Mortgage real estate investment trusts
Money market funds

Households/Firms
Households and nonprofit organizations
Nonfinancial corporate business

Insurance/Pension Funds

Property-casualty insurance companies, including those
held by U.S. residual market reinsurers
Life insurance companies
Private pension funds
Federal government retirement funds
State and local government employee defined benefit re-
tirement funds

Rest of World (RoW) Rest of the world

Notes: Constituent groups from Table L211 of the US Financial Accounts (Flow of Funds).
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Figure IA.3: Model Predictions & Evidence: Delinquencies

(a) IRF for Defaults (FRM vs. ARM)
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Notes: Panel (a) shows the impulse response function for default rates in response to an exogenous interest rate

shock as shown in section 5.1. Panel (b) shows delinquency measures in the US and UK, indexed to 2022 Q1.

Panel (c) shows these delinquency measures in levels. US delinquencies are measured on single-family residential

mortgages from FRED, reflecting loans past due 30 days or more and still accruing interest as well as those in

nonaccrual status. UK delinquencies are arrears balances as percent of total outstanding balances reported by

the FCA, reflecting loans where the amount of actual arrears is 1.5% or more of the borrower’s current loan

balance.

4



Figure IA.4: Model Predictions & Evidence: House Prices

(a) IRF for House Prices (FRM vs. ARM)
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(b) Real House Prices since 2022 (US vs. UK)

(c) Real House Prices since 2022 (Cross Country)

Notes: Panel (a) shows the impulse response function for house prices in response to an exogenous interest rate

shock as shown in section 5.1. Panel (b) shows real house prices in the US and UK indexed to 2022 Q1, and

Panel (c) shows real house prices in the US, UK, Canada, Australia, and Euro Area indexed to 2022 Q1.
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Figure IA.5: Model Predictions & Evidence: Bank Equity Prices

(a) IRF for Intermediary Net Wealth (FRM vs.
ARM)
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(b) Bank Equities since 2022 (US vs. UK)

(c) Bank Equities since 2022 (Cross Country)

Notes: Panel (a) shows the impulse response function for intermediary net wealth in response to an exogenous

interest rate shock as shown in section 5.1. Panel (b) shows MSCI bank equity indices in the US and UK

indexed to January 1, 2022, and Panel (c) shows MSCI bank equity indices in the US, UK, Canada, Australia,

and Euro Area indexed to January 1, 2022.
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Figure IA.6: Illustration of Net Worth Volatility and Duration
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Notes: This figure plots the relationship between V [logWt] and duration δ from Equation IA.1, for fixed values

of V [rt], γ, and V [xt], for Cov [rt, xt] = 0, Cov [rt, xt] > 0, and Cov [rt, xt] < 0.

7



Figure IA.7: Net Worth and Default by Interest Rate Level (Intermediate ARM)

(a) Intermediary Net Worth / GDP
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Notes: This figure shows simulation-based average rates of default and levels of intermediary net worth across

different levels of interest rates, for the full-ARM (1-year fixation length), intermediate ARM (3-year fixation

length), and full-FRM (infinite fixation length) economies.
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Figure IA.8: Mortgage Return Volatility

0 2 4 6 8 10

Fixation Length (Years)

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Notes: This figure shows the volatility of mortgage returns, measured as the standard deviation of net income

over total assets, i.e. reflecting volatility of return on assets (ROA). The x-axis reflects an annual rate reset

probability of πτ ∈ {1, 2/3, 0.5, 0.4, 1/3, 0.2, 1/7, 0.1, 0}, which corresponds to fixed-rate lengths of 1, 1.5, 2, 2.5,

3, 5, 7, 10 years and ∞, respectively.
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I.1 Estimation of Income and Interest Rate Process

We estimate the following VAR(1) for yt = log Yt and rt, where yt is the cyclical component of

log Real GDP and rt is the real interest rate, using annual data from 1987 to 2024. Cyclical

component of GDP is extracted using the one-sided Hodrick-Prescott filter. Real rates are

1-year real rates from the Federal Reserve Bank of Cleveland.

yt
rt

 =

I2 −

ϕyy ϕyr

ϕry ϕrr

0
r̄

+

ϕyy ϕyr

ϕry ϕrr

yt−1

rt−1

+

ϵy,t
ϵr,t

 ,

where

ϵy,t
ϵr,t

 ∼ N

02,

 σ2
y ρyrσyσr

ρyrσyσr σ2
r


The estimated values are ϕyy = 0.718, ϕyr = −0.189, ϕry = 0.219, ϕrr = 0.677, σy = 0.011,

σr = 0.013, and ρyr = 0.313. r̄ is unchanged from the baseline estimation of the AR(1) process

for rates.

These estimates yield generalized (not orthogonalized) impulse responses shown in Fig-

ure IA.9. Positive correlation yields positive comovement of the two series on impact, with

the effect being more persistent in rates for innovations to income rather than vice versa.

We also estimate the VAR(1) process for a longer sample 1962-2024. Because real rates from

the Cleveland Fed are not available prior to 1982, we instead construct real rates as nominal

constant maturity 1-year rates less realized inflation over the year. In the longer sample, the

innovations are uncorrelated (ρyr = 0.0066) and impulse responses of one innovation on the

other variable are not significant (see Figure IA.10).
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Figure IA.9: Impulse Responses of Income and Interest Rates: 1987-2024
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Figure IA.10: Impulse Responses of Income and Interest Rates: 1962-2024
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II Simple Zero-Duration Benchmark

Our starting point for measuring financial stability is the volatility of intermediary net worth:

V [logWt]. In a world where logWt only depends on current interest rates rt, we have:

logWt = α− δrt

As a result, we can interpret δ as the duration of intermediary net worth: −d logWt

drt
= δ. δ

measures the percent decline in net worth for a 1 percentage point increase in rates. Minimizing

V [logW ] is achieved when δ∗ = 0, i.e. in a “zero duration” financial system, the volatility-

minimizing mortgage fixation length would match the duration of deposits.27

However, logWt may further depend on other state variables represented by xt, which yields:

logWt = α− δrt + γxt

The variance of logWt is:

V [logWt] = δ2V [rt] + γ2V [xt] + δγCov [rt, xt] (IA.1)

To find the new volatility-minimizing duration δ∗∗, we can take the first-order condition with

respect to δ to obtain:

δ∗∗ = −γ

2

Cov [rt, xt]

V [rt]

As a result, the volatility-minimizing duration is not zero, but instead also depends on Cov [rt, xt].

For Cov [rt, xt] > 0, the volatility-minimizing duration is smaller than zero, and for Cov [rt, xt] <

0, it is greater than zero. Equation IA.1 further shows that net worth variance is quadratic in du-

ration, meaning duration is increasing in the absolute distance to the volatility-minimizing dura-

tion δ∗∗. Figure IA.6 in the appendix illustrates this intuition for different values of Cov [rt, xt].

As noted previously, “state variables” that may affect intermediary net worth beyond interest

27This duration-matching strategy to minimize the effect interest rate changes on portfolio values is also
referred to as “immunization” by practitioners.
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rates but that may be correlated with rates are endogenous default behavior by households,

as well as equilibrium pricing of mortgage rates, both of which may differ across mortgage

structures.
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III Model Derivations

III.1 Borrowers

The complete borrower’s problem is given by:

V (wi
t,Zt) = max

dit,h
i
t,s

i
t,m

i
t

βEt

[
max

{
max
ait≥0

uB(ci,ndt+1 , h
i
t) + V (wi,nd

t+1 ,Zt), η
i
t

(
uB(ci,dt+1, h

i
t) + V (wi,d

t+1,Zt)
)}]

(IA.2)

where

uB(cit, h
i
t−1) =

[
(cit)

1−θ(hi
t−1)

θ
]1−γ

1− γ

such that

wi
t +Ri

t =
dit

1 + rdt
+ qmt m

i
t + pht h

i
t + psts

i
t + Φ

(
qmt m

i
t

pht h
i
t

− ¯LTV

)
(IA.3)

ci,ndt + xi
tm

i
t−1 + δhh

i
t−1 + ait = st−1(Yt + ϵit) + dit−1 (IA.4)

ci,dt = st−1(Yt + ϵit) + dit−1 (IA.5)

wi,nd
t = ait − (1− δm)m

i
t−1q

m
t + pht h

i
t−1 + psts

i
t−1 (IA.6)

wi,d
t = (1− λ)psts

i
t−1 (IA.7)

ait ≥ 0 (IA.8)

where Ri
t is a rebate of the LTV adjustment cost Φ proportional to wealth wi

t. With this

parametrization, the adjustment cost does not have income effects.

Notice that u(c, h) is homogeneous of degree 1 − γ in c and h and that all constraints are

linear in wealth wi
t in the sense that if a given allocation is feasible for a wealth of 1, then wi

t

times that allocation is feasible for a wealth of wi
t. By Proposition 1 of Diamond and Landvoigt

(2022), these two properties imply that the borrower’s value function can be decomposed into

(wi
t)

1−γ

1−γ
and a term v(Z) that only depends on state variables exogenous to the borrower.

For a given choice git, define ĝit =
git
wi

t
. Then, the value function can be rewritten as:
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v(Zt)
(wi

t)
1−γ

1− γ
= max

d̂it,ĥ
i
t,ŝ

i
t,m̂

i
t

βEt

[
max

{
max
âit≥0

(wi
t)

1−γuB(ĉi,ndt+1 , ĥ
i
t) + v(Zt+1)

(wi
tŵ

i,nd
t+1 )

1−γ

1− γ
,

ηit

(
uB(ĉi,dt+1, ĥ

i
t) + v(Zt+1)

(wi
tŵ

i,nd
t+1 )

1−γ

1− γ

)}]

Divide both sides by (wi
t)

1−γ and drop i subscripts on hatted trading stage choice variables

following the proposition cited above, getting the following recursion:

v(Zt) = (1− γ) max
d̂t,ĥt,ŝt,m̂t

βEt

[
max

{
max
ât≥0

uB(ĉi,ndt+1 , ĥt) + v(Zt+1)
(ŵi,nd

t+1 )
1−γ

1− γ
,

ηit

(
uB(ĉi,dt+1, ĥt) + v(Zt+1)

(ŵi,d
t+1)

1−γ

1− γ

)}]

such that

1 =
d̂t

1 + rdt
+ qmt m̂t + pht ĥt + pst ŝt + Φ

(
qmt m̂

i
t

pht ĥ
i
t

− ¯LTV

)
− R̂t

(IA.9)

ĉi,ndt + xi
tm̂t−1 + δhĥt−1 + ait = ŝt−1(Yt + ϵit) + d̂t−1 (IA.10)

ĉi,dt = ŝt−1(Yt + ϵit) + d̂t−1 (IA.11)

ŵi,nd
t = âit − (1− δm)m̂t−1q

m
t + pht ĥt−1 + pst ŝt−1 (IA.12)

ŵi,d
t = (1− λ)pst ŝt−1 (IA.13)

âit ≥ 0 (IA.14)

(IA.15)

The remaining dependence on i is in consumption stage shock realizations and choices, which

enter the value function through the continuation values inside the expectations operator.

Therefore, if we can write the consumption stage problem as a function of state variables

exogenous to the borrower and i.i.d. idiosyncratic shocks, we will have confirmed the validity

of our aggregation.
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No Default Branch Consumption Decision If the borrower chooses not to default, they

choose ĉi,ndt and âit to maximize uB(ĉndt+1, ĥt) + v(Zt+1)
(ŵnd

t+1)
1−γ

1−γ
subject to the budget constraint

(IA.10), wealth evolution (IA.12), and the non-negative intraperiod savings constraint (IA.14).

The first order condition for âit is:

uB
c (ĉ

i,nd
t+1 , ĥt) = v(Zt+1)

(
ŵi,nd

t+1

)−γ

+ κi,nd
t+1

where κi,nd
t+1 is the Lagrange multiplier on the nonnegativity constraint (IA.14). We will use the

functions ĉndt+1(y
i
t,1

i
τ ) and ŵnd

t+1(y
i
t,1

i
τ ) to explicitly denote the dependence of the consumption

decision on the idiosyncratic realizations borrower’s income and the mortgage regime.

Default Decision Given the consumption decision above, a household decides to default iff

uB(ĉndt+1(y
i
t,1

i
τ ), ĥt) + v(Zt+1)

(ŵnd
t+1(y

i
t,1

i
τ ))

1−γ

1− γ︸ ︷︷ ︸
vnd(dit,h

i
t,s

i
t,m

i
t,ϵ

i
t,1

i
τ )

< ηit

[
uB(ŷit + d̂t−1, ĥt) + v(Zt+1)

(ŵd
t+1(y

i
t))

1−γ

1− γ

]
︸ ︷︷ ︸

vd(dit,h
i
t,s

i
t,m

i
t,ϵ

i
t)

This expression implies that there exist a default threshold η∗(ϵit,1
i
τ ) at which the household is

indifferent between defaulting and not defaulting. Which side of the threshold leads to a default

vs. no-default decision depends on the sign of the value function, which depends on whether

or not γ > 1. For the rest of these derivations, assume that γ > 1, the more common case, in

which case value functions are negative, and so the default region is given by [0, η∗(yit,1
i
τ )].

Using the Law of Iterated Expectations, we can separate the conditional expectation Et in

the definition of the value function into an expectation over the realization of aggregate shocks

EZ
t [·], the expectation over the realizations of i.i.d. idiosyncratic shocks to income ϵit and reset

probability 1i
τ denoted by Ei[·], and the expectation over i.i.d. default utility shocks ηi denoted

by Eη[·]. Let Fη denote the c.d.f. of the ηi distribution. Then the expectation in the value

function can be written as:

EZ
t

[
Ei

[
Fη(η

∗(ϵ, τ))Eη

[
ηit

(
uB(ŝt−1(Yt + ϵit) + d̂t−1, ĥt) + v(Zt+1)

(ŵd
t+1)

1−γ

1− γ

)
|ηit > η∗(ϵit,1

i
τ )

]
+
(
1− Fη(η

∗(ϵit,1
i
τ ))
)(

uB(ĉndt+1(ϵ
i
t,1

i
τ ), ĥt) + v(Zt+1)

(ŵnd
t+1(ϵ

i
t,1

i
τ ))

1−γ

1− γ

)]]
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Since idiosyncratic shocks are i.i.d., they affect the household problem only through the laws

of motion for wealth, admitting aggregation.

If ϵit idiosyncratic shocks were continuous, the nested expectations above imply integration

over a non-rectangular region of (ϵit, η
i
t), which can be challenging to calculate numerically.

Instead, we model shocks to ϵit as discrete. Shocks to the ARM stage 1i
τ are already Bernoulli.

In this case, the expectation Ei[·] above can be written as:

∑
τ∈{0,1}

∑
ϵ∈E

Pϵ(ϵ
i
t = ϵ)Pτ (τ

i
t = τ)×

Ei

[
Fη(η

∗(ϵ, τ))Eη

[
ηit|ηit > η∗(ϵ, τ)

](
uB(ŝt−1(Yt + ϵ) + d̂t−1, ĥt) + v(Zt+1)

(ŵd
t+1)

1−γ

1− γ

)
+(1− Fη(η

∗(ϵ, τ)))

(
uB(ĉndt+1(ϵ, τ), ĥt) + v(Zt+1)

(ŵnd
t+1(ϵ, τ))

1−γ

1− γ

)]

Note that conditional on default, the borrower’s value function does not depend on the specific

realization of the utility penalty, meaning that uB(ŝt−1(Yt+ ϵ)+ d̂t−1, ĥt)+ v(Zt+1)
(ŵd

t+1)
1−γ

1−γ
can

be brought outside the Eη[·] expectation.

Distribution of η Shocks Let log ηit ∼ N
(
−σ2

η

2
, σ2

η

)
. This implies that the average penalty

for default is purely pecuniary and governed by λ, while the dispersion of η shocks given by ση

governs the sensitivity of default rates to economic conditions.

The log-normal distribution admits a simple expression for the partial expectation of the

default penalty:

F−
η (ϵ, τ) ≡ Fη (η

∗(ϵ, τ)) Eη

[
ηit|ηit ≤ η∗(ϵ, τ)

]
=

∫ η∗(ϵ,τ)

0

η

ση

√
2π

exp

(
−
(log η∗(ϵ, τ) + σ2

η/2)
2

2σ2
η

)
dη

= Φ

(
log η∗(ϵ, τ)− σ2

η/2

ση

)

As well as for the survival probability:
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F̃η(ϵ, τ) ≡ 1− Fη (η
∗(ϵ, τ)) = 1− Φ

(
log η∗(ϵ, τ) + σ2

η/2

ση

)
= Φ

(− log η∗(ϵ, τ)− σ2
η/2

ση

)

Therefore, for a given ϵ and τ , the continuation value of the borrower’s problem can be written

as:

F−
η (ϵ, τ)vdt (d

i
t, h

i
t, s

i
t,m

i
t, ϵ) + F̃η(ϵ, τ)v

nd
t (dit, h

i
t, s

i
t,m

i
t, ϵ, τ)

where

η∗(ϵ, τ) =
vdt (d

i
t, h

i
t, s

i
t,m

i
t, ϵ)

vndt (dit, h
i
t, s

i
t,m

i
t, ϵ, τ)

ARM Reset Probability For a given individual mortgage, the probability of an ARM reset

is πτ conditional on it still being in the teaser stage. Since we are not tracking the distribution

of mortgages, we can only calculate the unconditional probability of being in the floating (rather

than teaser) stage: Pτ (τ
i
t = 0) = πτ [1− St] + St, where St = P(τ(mi

t) = 0) is the share of

currently outstanding mortgages that have already reset.

We can define this share recursively. Suppose that at the start of the current period, before

reset shocks have been realized, the share was St−1. As a result of reset shocks, there are now

πτ [1− St−1] m̂t−1 new floating rate mortgages. As a result of balance decay, the balances of

these mortgages are 1 − δm of what they used to be. Newly issued mortgages are all in the

teaser stage so do not enter the numerator. Therefore, the share of already reset mortgages is:

St =
(St−1 + πτ [1− St−1]) (1− δm)m̂t−1

m̂t

This aggregation also implies that the teaser vs. floating stage status of a mortgage is

randomly reshuffled between households during the trading stage, so that there is no persistence

to their mortgage status. This is necessary for aggregation.
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III.1.1 First Order Conditions

Preliminaries For a generic choice variable g, write the continuation value of the borrower’s

problem as:

Et


(∫ η∗(g)

0

ηdFη(η)

)
︸ ︷︷ ︸

F−
η (g)

vdt+1(g) + [1− Fη(η
∗(g))]︸ ︷︷ ︸

F̃η(g)

vndt+1(g)


Differentiating with respect to g yields and collecting terms:

Et

[
∂vdt+1(g)

∂g
F−
η (g) +

∂vndt+1(g)

∂g
F̃η(g) + fη(η

∗(g))
∂η∗(g)

∂g

(
−η∗(g)vdt+1(g) + vndt+1(g)

)]

Plugging in the default condition vndt+1(g) = η∗(g)vdt+1(g) leads the last term to become zero:

Et

[
∂vdt+1(g)

∂g
F−
η (g) +

∂vndt+1(g)

∂g
F̃η(g)

]

Which is the expression we will use to calculate the first order conditions below.

Define the LTV adjustment cost Φ to be Φ(x) = ϕ
2
x2.

Denote by µt the Lagrange multiplier on the time t budget constraint (IA.9).

Deposits Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of (inter-

period) deposits d̂t in the default and no-default states, respectively, are given by:
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∂V d
t+1

∂d̂t
= uB

c (ĉ
d
t+1(ϵ), ĥt) + v(Zt+1)

(
ŵi,d

t+1

)−γ ∂ŵi,d
t+1

∂d̂it
= uB

c (ĉ
d
t+1(ϵ), ĥt)

∂V nd
t+1

∂d̂t
= uB

c (ĉ
nd
t+1(ϵ, τ), ĥt) + v(Zt+1)

(
ŵi,nd

t+1

)−γ ∂ŵi,nd
t+1

∂d̂it
= uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)

The FOC for (inter-period) deposits d̂it is then given by:

µt

1 + rdt
= βEt

[
F−
η (ϵ, τ)uB

c (ĉ
d
t+1(ϵ), ĥt) + F̃η(ϵ, τ)u

B
c (ĉ

nd
t+1(ϵ, τ), ĥt)

]

Lucas Tree Shares Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values

of Lucas tree shares ŝt in the default and no-default states, respectively, are given by:

∂V d
t+1

∂ŝt
= uB

c (ĉ
d
t+1(ϵ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,d

t+1

)−γ

(1− λ)pst+1

∂V nd
t+1

∂ŝt
= uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pst+1

The FOC for shares ŝit is then given by:

µtp
s
t = βEt

[
F−
η (ϵ, τ)

(
uB
c (ĉ

d
t+1(ϵ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,d

t+1

)−γ

(1− λ)pst+1

)
+ F̃η(ϵ, τ)

(
uB
c (ĉ

nd
t+1(ϵ, τ), ĥt)(Yt + ϵ) + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pst+1

)]

Houses Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of houses ĥt

in the default and no-default states, respectively, are given by:
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∂V d
t+1

∂ĥt

= uB
h (ĉ

d
t+1(ϵ), ĥt)

∂V nd
t+1

∂ĥt

= uB
h (ĉ

nd
t+1(ϵ), ĥt)− uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)δh + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pht+1

The FOC for houses ĥi
t is then given by:

µtp
h
t = Φh

qmt m̂
i
t

(ĥi
t)

2
+ βEt

[
F−
η (ϵ, τ)uB

h (ĉ
d
t+1(ϵ), ĥt)

+ F̃η(ϵ, τ)

(
uB
h (ĉ

nd
t+1(ϵ), ĥt)− uB

c (ĉ
nd
t+1(ϵ, τ), ĥt)δh + v(Zt+1)

(
ŵi,nd

t+1

)−γ

pht+1

)]

Mortgages Given the realizations of idiosyncratic shocks (ϵ, τ), the marginal values of houses

m̂t in the default and no-default states, respectively, are given by:

∂V d
t+1

∂m̂t

= 0

∂V nd
t+1

∂m̂t

= uB
c (ĉ

nd
t+1(ϵ, τ), ĥt)x

i
t + v(Zt+1)

(
ŵi,nd

t+1

)−γ

(1− δm)q
m
t+1

The FOC for shares ŝit is then given by:

µtq
m
t

(
1− Φm

qmt

pmt ĥ
i
t

)
= βEt

[
F̃η(ϵ, τ)

(
uB
c (ĉ

nd
t+1(ϵ, τ), ĥt)x

i
t + v(Zt+1)

(
ŵi,nd

t+1

)−γ

(1− δm)q
m
t+1

)]

III.1.2 Market-Clearing Conditions and Aggregation

To calculate intermediary wealth and market clearing, we must integrate over the distribution

of borrower shocks. First, note that identical choices by borrowers in per-wealth units mean

that for any quantity git that is a function of borrower choices, we can express it is a product

of the common per-wealth choice ĝt and aggregate borrower wealth wB
t :
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∫ ℓ

0

gitdi = ĝt

∫ ℓ

0

wi
tdi = ĝtw

B
t

Aggregate share of defaulting mortgages F η
t is given by:

F η
t =

∫ ℓ

0

1
i
ddi =

∑
τ∈{0,1}

∑
ϵ∈E

Pϵ(ϵ
i
t = ϵ)Pτ (τ

i
t = τ)Fη(η

∗(ϵ, τ))

Aggregate per-unit mortgage payment xt is given by:

xt = Ei[x
i
t|ηi ≤ η∗,i(ϵit,1

i
τ )]

For other quantities,

• Mortgages:
∫ 1

ℓ
mI

tdi =
∫ ℓ

0
mi

tdi implies M I
t = m̂tW

B
t

• Borrower Tree Shares: α = ŝtW
B
t

• Houses: H̄ = ĥtW
B
t

Finally, the law of motion for aggregate borrower wealth is:

WB
t+1 =

∫ ℓ

0

wi
t+1di

= WB
t Ei

[
F̃η((ϵ

i
t,1

i
τ ))ŵ

i,d
t+1(ϵ

i
t) + Fη((ϵ

i
t,1

i
τ ))ŵ

i,nd
t+1 (ϵ

i
t,1

i
τ )
]

III.2 Banks

III.2.1 Problem

Banks are not subject to idiosyncratic shocks and are ex-ante identical. As a result, we can solve

the problem for the representative aggregate bank. Denote aggregate quantities with capital

letters. The bank’s complete problem is given by:
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V I(W I
t ,Zt) = max

DivIt ,D
I
t ,M

I
t

DivIt + Et

[
MS

t+1V
I(W I

t+1,Zt+1)
]

(IA.16)

subject to

W I
t =

DI
t

1 + rdt
+ qmt M

I
t +DivIt (IA.17)

W I
t+1 = (1− ν)Xt+1M

I
t +DI

t (IA.18)

Dt ≤ ξ (κq̄m + (1− κ)qmt )M
I
t (IA.19)

where Xt is the aggregate mortgage payment per unit of mortgage debt given borrowers’ choices:

Xt = F̃ η
t (xt + (1− δm)q

m
t ) + Ei

[
Fη(ϵ

i
t,1

i
t)
hi
t−1

M I
t−1

pt((1− ζ)− δh)

]

Since default decisions do not depend on wealth levels and since housing choices hi
t = ĥtw

i
t

are proportional to borrower wealth for all borrowers,

Ei

[
Fη(ϵ

i
t,1

i
t)h

i
t−1

]
= Ei

[
Fη(ϵ

i
t,1

i
t)
]
Ei

[
hi
t−1

]
= F η

t H
B
t−1 = F η

t αh

. As a result, the mortgage payoff can be written:

Xt = F̃ η
t (xt + (1− δm)q

m
t ) + F η

t

αh

M I
t

pt((1− ζ)− δh)

III.2.2 First Order Conditions

Mortgages The FOC for mortgages M I
t is given by:

qmt = µL
t ξ (κq̄

m + (1− κ)qmt ) + Et

[
MS

t+1Xt+1

]
where µL

t is the Lagrange multiplier on the leverage constraint (IA.19).
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Deposits The FOC for deposits DI
t is given by:

1

1 + rdt
= µL

t + Et

[
MS

t+1

]
Note that absent occasionally binding borrowing constraints V I

t = W I
t . But in their presence,

this doesn’t hold.

III.3 Savers

Likewise, we write and solve the representative saver’s problem using aggregate quantities. For

symmetry, we define saver wealth inclusive of their Lucas Tree shares and housing, even though

neither is tradeable by them.

V S(W S
t ,Zt) = max

CS
t ,Et

u(CS
t , H

S
t ) + βEt[V

S(W S
t+1,Zt+1)]

subject to

W S
t = pstS

S
t + phtH

S
t + Etp

e
t + CS

t (IA.20)

W S
t+1 = SS

t (p
s
t+1 + Yt) +HS

t (p
h
t+1 − δh) + Et(p

e
t+1 +DivIt+1) +RS

t+1 (IA.21)

where Rt+1 are (1) borrower costs of default, parametrized by λ, (2) banks’ foreclosure costs,

parametrized by ζ, and (3) banks’ intermediation costs, parametrized by ν, rebated lump-sum:

RS
t = F η

t

(
λpstα + ζpht αh

)
+ νXtM

I
t

The first order condition for bank equity Et is

pet = Et

[
β

(
CS

t+1

CS
t

)−γ

(Divt+1 + pet+1)

]
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which implies the saver’s stochastic discount factor MS
t+1 = β

(
CS

t+1

CS
t

)−γ

.

Normalize the supply of bank shares Et to 1. Then, iterating on both the bank’s value

function and the saver’s FOC for bank equity, we get that V I
t = Divt + pet .

III.4 Resource Constraint

In this section, we verify that aggregate consumption and housing investment are financed by

the aggregate output of Lucas trees and by changes in the net deposit position of the economy.

Define aggregate borrower consumption in terms of conditional expectations of individual

consumption:

CB
t = WB

t−1Ei

[
Fη(η

∗,i)ĉi,ndt + F̃η(η
∗,i)ĉi,dt

]
= WB

t

(
F η
t Ei

[
ĉi,dt |ηi ≤ η∗,i

]
+ F̃ η

t Ei

[
ĉi,ndt |ηi > η∗,i

])
From the consumption stage budget constraints:

Ei

[
ĉi,dt |ηi ≤ η∗,i

]
= ŝt−1Ei

[
Yt + ϵit|ηi ≤ η∗,i

]
+ d̂t−1

Ei

[
ĉi,ndt |ηi > η∗,i

]
= ŝt−1Ei

[
Yt + ϵit|ηi > η∗,i

]
+ d̂t−1 − m̂t−1xt − δhĥt−1 − Ei

[
âit|ηi > η∗,i

]
From the no-default branch wealth evolution equation, we get that intra-period savings âit =

ŵi,nd
t − pht ĥt−1 − pst ŝt−1 + (1− δm)q

m
t m̂t−1. Furthermore, observe that

F̃ η
t Ei

[
Yt + ϵit|ηi > η∗,i

]
+ F η

t Ei

[
Yt + ϵit|ηi ≤ η∗,i

]
= Yt + Ei[ϵ

i
t] = Yt

Define aggregate borrower deposits DB
t = WB

t d̂t. Use market-clearing in Lucas trees and

housing to write WB
t ŝt = α and WB

t ĥt = αh. Use market-clearing in mortgages to write

WB
t m̂t = M I

t . Assembling,

CB = αYt +DB
t−1

+ F̃ η
t

[
αh(ph − δh) + αpst −M I

t−1 (xt + (1− δm)q
m
t )−WB

t−1Eτ

[
ŵi,nd

t |η > η∗,i
]]
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Recall that WB
t = WB

t−1Ei [ŵ
i
t]. We can break up the expectation as follows:

Ei

[
ŵi

t

]
= F̃ η

t Ei

[
ŵi,nd

t |η > η∗,i
]
+ F η

t Ei

[
ŵi,d

t |η ≤ η∗,i
]

Solving for the aggregate wealth of non-defaulters F̃ η
t W

B
t−1Ei

[
ŵi,nd

t | >≤ η∗,i
]
,

F̃ η
t W

B
t−1Ei

[
ŵi,nd

t |η > η∗,i
]
= WB

t −WB
t−1F

η
t Ei

[
ŵi,d

t |η ≤ η∗,i
]

Use the default-branch wealth evolution equation and market clearing in Lucas trees to substi-

tute

WB
t−1Ei

[
ŵi,d

t |η ≤ η∗,i
]
= (1− λ)pstα

Multiply the trading stage budget constraint by WB
t and plug in market-clearing conditions to

get

WB
t =

DB
t

1 + rdt
− qmt M

I
t + pht αh + pstα

Combining,

F̃ η
t W

B
t−1Ei

[
ŵi,nd

t |η > η∗,i
]
=

DB
t

1 + rdt
+ qmt M

I
t + pht αh + pstα− F η

t (1− λ)pstα

Plugging back into the expression for CB,

CB = αYt +DB
t−1 −

DB
t

1 + rdt
+ qmt M

I
t − pht αh − pstα + F η

t (1− λ)pstα

+ F̃ η
t

[
αh(ph − δh) + αpst −M I

t−1 (xt + (1− δm)q
m
t )
]

= αYt +DB
t−1 −

DB
t

1 + rdt
+ qmt M

I
t − F η

t (phαh + λpstα)

− F̃ η
t

[
δhαh +M I

t−1 (xt + (1− δ)qmt )
]

This expression admits an economic interpretation. Borrowers earn income from their Lucas

trees αYt and deposits DB
t−1. Those repaying their mortgages – a fraction F̃ η

t – expend resources
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on housing maintenance δhαh and mortgage paymentsM I
t−1 (Eτ [x

i
t|η > η∗,i] + (1− δm)q

m
t ). Those

who default – a fraction F̃ η
t – lose the value of their houses phαh and a fraction λ of the value

of their Lucas trees pstα. In the trading stage, they take out new mortgages qmt M
I
t and make

new deposits
DB

t

1+rdt
.

Next, consider saver consumption. From the budget constraint and wealth evolution equation

of savers,

CS
t = SS

t−1(p
s
t + Yt) +HS

t−1(p
h
t − δh) + Et−1(p

e
t +DivIt ) +RS

t − pstS
S
t − phtH

S
t − Etp

e
t

Plug in market clearing conditions Et = 1, SS
t = 1− α, HS

t = 1− αh, to get

CS
t = (1− α)Yt − (1− αh)δh +DivIt +RS

t

From the budget constraint for banks,

DivIt = (1− ν)XtM
I
t−1 +DI

t−1 −
DI

t

1 + rdt
− qmt M

I
t

Plugging for DivIt and Rt and collecting terms,

CS
t = (1− α)Yt − (1− αh)δh + XtM

I
t−1 +DI

t−1 −
DI

t

1 + rft
− qmt M

I
t + F η

t

(
λpstα + ζpht αh

)
Next, subtitute the definition of Xt:

CS
t = (1− α)Yt +DI

t−1 −
DI

t

1 + rdt
− qmt M

I
t + F η

t λp
s
tα

− (1− αh)δh + F̃ η
t (xt + (1− δm)q

m
t )M

I
t−1 + F η

t ptαh(1− δh)

Define aggregate deposits as Dt = DB
t +DI

t . Then, adding CB
t and CS

t and collecting terms,

we get the resource constraint:

CB
t + CS

t︸ ︷︷ ︸
Aggregate Consumption

+ δ︸︷︷︸
Housing Investment

= Yt︸︷︷︸
Output

+ Dt−1 −
Dt

1 + rdt︸ ︷︷ ︸
∆Net Foreign Assets
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III.5 Risk Sharing Measures

III.5.1 Complete Markets Benchmark

An unconstrained social planner chooses allocations for each agent that are proportional to the

weight that the planner puts on the utility of that agent.

Define the social welfare problem:

max
{{(cit,hi

t−1)}1i=0}∞t=0

E0

[∫ 1

i=0

λi

∞∑
t=1

βt

(
(cit)

1−θ(hi
t)

θ
)1−γ − 1

1− γ
di

]

such that the resource constraints for each good, in each period and each state of the world are

satisfied:

∫ 1

0

cit = Yt ∀t, st∫ 1

0

hi
t−1 = H̄ ∀t, st

where every variable xt is implicitly a function of the random variable st, denoting the history

of the economy up to time t.

Assign µt and νt as Lagrange multipliers to each of the constraints at time t, history st,

respectively. Use π(st) to denote the density of the unconditional history distribution at a

given st. The first order condition for consumption for agent i at time t are:

λiβ
tπ(st)

(
(cit)

1−θ(hi
t−1)

θ
)−γ

(1− θ)(cit)
−θ(hi

t−1)
θ = µt

The first order condition for housing for agent i at time t− 1 are:

λiβ
tπ(st)

(
(cit)

1−θ(hi
t−1)

θ
)−γ

θ(cit)
1−θ(hi

t−1)
θ−1 = νt−1

Dividing them by each other, we get the optimal MRS between consumption and housing for
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a given state of the world, which is the same for all households:

cit
hi
t−1

=
1− θ

θ

µt

νt−1

Substitute for housing in the consumption FOC:

hi
t−1 =

θ

1− θ

µt

νt−1

cit

λiβ
tπ(st)

(
(cit)

[
θ

1− θ

µt

νt−1

]θ)−γ

(1− θ)1−θθθ = µ1−θ
t νθ

t−1

Dividing the consumption FOCs for agents i and j at time t by each other, we get:

λi

λj

(
cit
cjt

)−γ

= 1

which means that the ratio of consumptions is constant over time and states of the world at:

cit
cjt

=

(
λi

λj

)−1/γ

Rewrite as:

cit =

(
λi

λj

)−1/γ

cjt

Integrate both sides with respect to i to get aggregate time t consumption:

Ct ≡
∫ 1

0

citdi = λ
1
γ

j c
j
t

∫ 1

0

λ
− 1

γ

i di

Which implies that a given household’s consumption cjt is a constant fraction of aggregate

consumption Ct:

cjt =
λ
− 1

γ

j∫ 1

0
λ
− 1

γ

i di
Ct
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The same argument applies to housing, i.e. it can be shown that the planner’s optimal allocation

of housing to agent j

hj
t−1 =

λ
− 1

γ

j∫ 1

0
λ
− 1

γ

i di
H̄

is constant over time.

Since complete markets implement the planner allocation, this means that in a frictionless

economy the volatility of the ratio of consumptions is zero. This likewise implies that each

agent’s consumption grows at the same rate. Formally, take the log:

log cit − log cjt = −1

λ
(log λi − log λj)

Let ∆ log cit is defined as log cit− log cit−1. Then the log of the ratio of consumption growth rates

is:

∆ log cit −∆ log cjt ≡ (log cit − log cit−1)− (log cjt − log cjt−1)

= (log cit − log cjt)− (log cit−1 − log cjt−1)

Then in complete markets, it must be true that

Rij = Var0
[
∆ log cit −∆ log cjt

]
= 0

We refer to Rij as a measure of “internal” risk sharing. In an incomplete markets economy,

Rij ≥ 0 and Rij serves as a measure of risk sharing between households, with lower values

denoting better risk sharing.

III.5.2 Complete Markets Open Economy

The open economy version of the complete markets model is similar to the closed economy

version, except that the planner can now trade a risk-free bond with the rest of the world. The
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planner’s problem is:

max
{{(cit,hi

t−1)}1i=0,bt}∞t=0

E0

[∫ 1

i=0

λi

∞∑
t=1

βt

(
(cit)

1−θ(hi
t−1)

θ
)1−γ − 1

1− γ
di

]

such that

∫ 1

0

cit +
bt

1 + rdt
= Yt + bt−1 ∀t, st∫ 1

0

hi
t−1 = H̄ ∀t, st

The derivations above still hold. But now there is an additional choice variable of the planner.

Bonds bt(s
t) show up in the resource constraint for t, st and in the resource constraints for all

t, st+1 that are reachable from st. Denote this set of possible states as st+1|st and the . Then

the additional first order condition for the bond is:

µt

1 + rdt
π(st) =

∫
st+1|st

π(st+1)µt+1

Rearranging,

1 = (1 + rdt )

∫
st+1|st

π(st+1|st)
µt+1

µt

= (1 + rdt )Et

[
µt+1

µt

]

where π(st+1|st) denotes the conditional density of st+1 given st, and where the second equality

stems from the definition of a conditional expectation with Et [·] denoting E [·|st].

Plug in the FOC for consumption for the multipliers:

1 = (1 + rdt )Et

[(
cit+1

cit

)−γ(1−θ)−θ (
hi
t

hi
t−1

)θ(1−γ)
]

Recall that for any agent, the optimal housing allocation is constant and the growth rate of

consumption is equal to the aggregate consumption growth rate. Then the above equation
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simplifies to:

1 = (1 + rdt )Et

[(
Ct+1

Ct

)−γ(1−θ)−θ
]

The problem admits aggregation, i.e. the planner’s optimal choice of bonds is independent of

the resource allocation problem.

Take logs

0 = log(1 + rdt ) + logEt

[(
Ct+1

Ct

)−γ(1−θ)−θ
]

and define

Ragg = Var0

[
log(1 + rdt ) + logEt

[(
Ct+1

Ct

)−γ(1−θ)−θ
]]

≥ 0

as the “external” risk sharing measure. In complete markets, Ragg = 0, while in incomplete

markets larger values of Ragg indicate worse risk sharing between households in the economy

and the rest of the world.

III.5.3 Internal Risk Sharing in our Model

In our model, there are two kinds of households: borrowers with consumption denoted by cit and

savers, with consumption denoted by cSt and identical across all savers. Let CB
t =

∫ ℓ

0
cit denote

aggregate borrower consumption and CS
t = (1− ℓ)cst denote aggregate saver consumption.

Borrowers are unconditionally identical, meaning internal risk sharing is summarized fully by

two risk-sharing measures RiB and RBS, where RiB is the variance of the ratio of consumption

growth rates between borrower i and the aggregate borrower, and RBS is the variance of the

ratio of aggregate consumption growth rates between borrowers and savers.

Recall, we can write borrower i’s consumption at time t, cit, as the product of borrower

consumption per unit of wealth ĉit and borrower wealth at time t− 1, wi
t−1. Consumption per

unit of wealth only depends on the identity of the borrower i through the realizations of iid

shocks to S i
t = (ϵit, τ

i
t , η

i
t).
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Write the log growth rate of borrower i’s consumption as:

∆ log cit = log ĉt(S i
t)− log ĉt−1(S i

t−1) + log ŵt−1(S i
t−1)

where ŵt−1(S i
t−1) represents the growth rate in wealth ∆ logwi

t−1, which also depends on the

identity of the borrower i only through the realiations of iid shocks.

The definition of RiB is Var0[∆ log cit −∆ logCB
t ]. Using the law of total variance,

RiB = Var0
[
Et

[
∆ log cit −∆ logCB

t

]]
+ E0

[
Vart

[
∆ log cit −∆ logCB

t

]]
where the conditional moments Vart and Et are taken cross-sectionally with respect to realiza-

tions of idiosyncratic shocks. Simplifying,

RiB = Var0
[
Et

[
∆ log cit

]
−∆ logCB

t

]
+ E0

[
Vart

[
∆ log cit

]]
Finally, RBS is defined as Var0[∆ logCB

t −∆ logCS
t ].

IV Calibration Details

IV.1 Mortgage Payments and Duration

Recall, a fixed rate mortgage issued at time 0 pays ιf + δq̄m in the first period, (1− δ)(ιf + δq̄m)

in the second period, and so on.

Define a mortgage yield to maturity ytm as the discount rate which discounts mortgage cash

flows to the mortgage price.

It is easy to see that

qm(ytm) =
∞∑
t=1

(1− δ)t−1 ιf + δq̄m

(1 + ytm)t
=

ιf + δq̄m

ytm+ δ

and that therefore the mortgage is priced to par when ytm = ιf . We calibrate the model by

setting ιf to the steady state equilibrium ytm, thus ensuring that q̄m = 1.
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Define duration of the fixed rate mortgage as the negative semi-elasticity of the mortgage

price with respect to the yield to maturity. We have:

− ∂qm/qm

∂ytm

∣∣∣∣
ιf

=
1

ιf + δ

An adjustable rate mortgage makes fixed rate payments ιτ + δq̄m, (1 − δ)(ιτ + δq̄m), etc.

until (stochastic) reset time τ and pays adjustable payments (1 − δ)τ−1
(
rfτ + ιa + δq̄m

)
, (1 −

δ)τ
(
rfτ+1 + ιa + δq̄m

)
, etc. after.

In the baseline calibration, we set ιτ = ιf and ιa = ιf − r̄. Then the per-remaining-balance

portion of the ARM payment can be written as ιf + (rft − r̄).

Let 1fixed
1,...,t be a random indicator variable equal to 1 if the mortgage is still in the fixed/teaser

stage at time t. So the expected ARM cash flow at time t is then given by:

E0

[
(1− δ)t−1

[
1
fixed
1,...,t(ιf + δq̄m) +

(
1− 1

fixed
1,...,t

) (
ιf + rft − r̄ + δq̄m

)]]
Collecting terms,

(1− δ)t−1
(
(ιf + δq̄m) + E0

[(
1− 1

fixed
1,...,t

) (
rft − r̄

)])

Let 1adj
s be an indicator equal to 1 if a mortgage that resets from fixed to floating at time s.

Then

1
fixed
1,...,t =

t∏
s=1

(
1− 1

adj
s

)

The realization of morgage resets 1adj
s are independent of each other, and also independent

from the realizaton of future indexation rates rft . Every period, the probability that a mortgage

still in the teaser stage resets to the adjustable stage, i.e. E0[1
adj
s ] is πτ . So the expected ARM

cash flow at time t can be written as:

(1− δ)t−1
(
(ιf + δq̄m) +

(
1− (1− πτ )

t
) (

E0[r
f
t ]− r̄

))
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Define yield to maturity ytm for an adjustable rate mortgage as the (risk-neutral) discount

rate that discounts expected ARM cash flows to the mortgage price. We have:

qm(ytm) =
∞∑
t=1

(1− δ)t−1 ιf + δq̄m

(1 + ytm)t
+

∞∑
t=1

(1− δ)t−1
(
1− (1− πτ )

t
) E0[r

f
t ]− r̄

(1 + ytm)t

=
ιf + δq̄m

ytm+ δ
+
(
E0[r

f
t ]− r̄

)( 1

ytm+ δ
− 1− πτ

1 + ytm− (1− δ)(1− πτ )

)

The first term is the price of the FRM. The second term is equal to zero because E0[r
f
t ] = r̄

in equilibrium. In steady state, risk neutral and physical measures coincide because there are

no risk premia, so ytm = ιf prices the mortgage to par (q̄m = 1) just as before.

To define the duration of the adjustable mortgage, write the price of the mortgage as a

function of ytm and future rate r:

qm(ytm, r) =
ιf + δ

ytm+ δ
+ (r − r̄)

(
1

ytm+ δ
− 1− πτ

ytm− (1− δ)(1− πτ )

)

Then, consider the change in mortgage price due to a parallel shift in all interest rates, i.e. when

∂r
∂ytm

= 1. Formally, duration is given by −∂qm(ytm,r(ytm))/qm(ytm,r(ytm))
∂ytm

evaluated at ytm = ιf

and r such that qm(ιf , r) = 0, which means r = r̄. Taking derivatives,

∂qm(ytm, r(ytm))

∂ytm
= − 1

ytm+ δ
+ (r − r̄)

∂

∂ytm

(
1

ytm+ δ
− 1− πτ

1 + ytm− (1− δ)(1− πτ )

)
+

∂r

∂ytm

(
1

ytm+ δ
− 1− πτ

1 + ytm− (1− δ)(1− πτ )

)

Imposing r = r̄ leads the second term to drop out. Imposing ytm = ιf and ∂r
∂ytm

= 1, we get:

− ∂qm(ytm, r(ytm))

∂ytm

1

qm(ytm, r(ytm))

∣∣∣∣
ytm=ιf ,r=r̄

=
1− πτ

1 + ιf − (1− δ)(1− πτ )

which is the steady-state contractual duration of the ARM with a reset probability of πτ .

Note that at πτ = 0, the expression simplifies to 1/(ιf + δ), which is the FRM duration. At

πτ = 1, i.e. a reset occuring with probability at the time of the first cash flow (one year after

issuance), the duration is 0.
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V Two-Period Model

In this section, we illustrate the main differences in the allocation of risk between fixed-rate

mortgage (FRM) and adjustable-rate mortgage (ARM) regimes using a two-period model with

time indexed by t = 0, 1.

V.1 Borrowers

A continuum of borrowers indexed by i is endowed with equal initial wealth w0 and have

preferences over t = 1 consumption, residual t = 1 wealth, and housing.

Borrowers allocate their initial wealth to deposits di, mortgages mi, houses hi, and Lucas

trees si to maximize E[u(c1,i, w1,i, hi)], the expectation of their t = 1 utility kernel given by:

U(c, w, h) = (1− β) log c+ β logw + βθ log h (IA.22)

subject to the t = 0 budget constraint:

w0 = ph0hi + ps0si + qdi − qm0 mi

Because ex-ante borrowers are identical in terms of their wealth and distributions of t = 1

shocks, they will make identical portfolio decisions, and so we will drop i subscripts on h, s, d,

and m.

t = 1 consists of two subperiods. In the first subperiod (“morning”), borrowers are exposed

to an idiosyncratic income shock ϵi ∈ {ϵL, ϵH} to the yield of their Lucas tree yi, such that

yi = 1 + ϵi.

Borrowers use their liquid assets – income and deposits – to make mortgage payments and

consume. Any excess liquid assets can be carried over into the second subperiod (“afternoon”)

and constitute remaining borrower wealth along with the value of their housing, trees, and
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mortgages.

Crucially, borrowers cannot trade these illiquid assets until the afternoon, meaning they

cannot obtain additional liquidity in the morning to finance their mortgage payments and

consumption. Their only way to increase liquid assets at t = 1 is to default on the mortgage

payment. To characterize the borrowers’ default decision, consider the two branches of their

decision tree.

If borrowers do not default, they solve a simple consumption-savings problem:

max
ai≥0

(1− β) log(ℓi − ai) + β log(ωi + ai)

where

ℓi = yis+ d− xm

is their stock of liquid assets after making the mortgage payment xmi, and

ω = ps1s+ ph1h− qm1 (1− δ)m

is their illiquid wealth, consisting of Lucas trees, houses, and remaining fraction 1− δ of their

mortgage balance, all at t = 1 prices.

The borrowers per-unit mortgage payment x is given by ι+ δ, where ι represents the interest

payment and δ represents the principal payment. In an FRM regime, ι is fixed, while in an

ARM regime, ι = r + ιa is a fixed spread over the prevailing short rate r. Therefore, shocks to

r constitute the second, aggregate, source of risk in the economy.

The optimal unconstrained choice of intraperiod savings equates the marginal utility of con-

sumption (1− β)/ci with the marginal utility of wealth β/wi, yielding the following expression

for intraperiod savings:
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a∗i = max {0, βℓi − (1− β)ω}

is increasing in liquid assets and decreasing in illiquid wealth, such that when liquid assets are

low – either because of a bad income realization or because ARM mortgage payments increase

due to a rate hike – the borrower is constrained. She would like to borrow from her illiquid

wealth to finance additional consumption at the expense of future wealth, but she cannot do so

directly. The only way to accomplish this is to default, gaining liquid assets xm at the expense

of losing housing wealth ph1 and a fraction of non-housing wealth λps1s, as well as extinguishing

the remaining principal (1− δ)qmi m. A positive value of λ represents pecuniary costs of default

in addition to foreclosure, e.g. partial recourse, costs of being locked out of the financial market

for some amount of time, etc.

Additionally, defaulting comes with a non-pecuniary stochastic default penalty ηi ∼ Fη, such

that a household defaults iff

u(cndi , wnd
i , h) < u(cdiw

d
i , h) + ηi

where the no-default consumption and wealth are given by

cndi = yis+ d− xm− a∗i

wnd
i = a∗i + ps1s+ ph1h− qm1 (1− δ)m

and the default consumption and wealth are given by

cdi = yis+ d

wd
i = (1− λ)ps1s

Borrowers optimally default if the realization of ηi is above a threshold value η∗i , which

depends on both idiosyncratic and aggregate shocks and is given by
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η∗i = (1− β) log
cndi
cdi

+ β log
wnd

i

wd
i

implying a survival probability Fi = F (η∗i ).

For a borrower with a large stock of liquid assets s and d, the ratio of no-default to default

consumption is close to 1, and so her default decision will be largely strategic, i.e. based on the

change in wealth due to default. When λ is low, such a borrower will “send in the keys” to a

property underwater.

But when the stock of liquid assets is smaller, the driver of default will be the liquidity

borrowers can unlock in high marginal utility states by foregoing the mortgage payment xm,

even if this default leads to lower future wealth. Empirical evidence, e.g., Ganong and Noel

(2022), suggests that this is the primary reason borrowers default. In our model, a rise in ARM

mortgage payments due to interest rate hikes together with interaction effects with drivers of

strategic default can lead to significant amplification.

We are now ready to characterize the borrowers’ t = 0 problem. Denoting the Lagrange

multiplier on (shadow value of relaxing) the budget constraint by µ, we can write the Euler

equation for deposits as:

qµ = E

[
(1− Fi)

1− β

cndi
+ Fi

1− β

cdi

]

The marginal cost of deposits is given by qµ, while the marginal benefit is given by the

expected marginal utility of consumption, with the expectation taken over aggregate interest

rate shocks, idiosyncratic income shocks, and idiosyncratic default penalty shocks, which enter

the problem exclusively through the default probabilities Fi that they imply.

The Euler equation for houses equates the marginal cost of housing ph0µ against the marginal

benefit, which consists of the user cost βθ/h and the marginal contribution of housing to wealth,

which borrowers receive only if they do not default:

40



ph0µ = E

[
βθ

h
+ β(1− Fi)

ph1
wnd

i

]

By obtaining a mortgage, borrowers relax their budget constraint by qm0 (worth qm0 µ to them)

at t = 0. The marginal cost at t = 1 consists of the two terms. First, mortgage payments

enter the marginal utility of consumption. Second, the remaining mortgage balance enters the

marginal utility of wealth. Both terms apply only if the borrower does not default:

qm0 µ = E

[
(1− Fi)

(
1− β

cndi
x+

β

wnd
i

(1− δ)qmi

)]

Finally, Lucas trees have a utility cost of ps0µ and yield marginal benefits of all four types –

consumption and wealth in both no-default and default branches:

ps0µ = E

[
(1− Fi)

(
1− β

cndi
yi +

β

wnd
i

ps1

)
+ Fi

(
1− β

cdi
yi +

β

wd
i

(1− λ)ps1

)]

To close the borrower side of the model, we assume that houses and Lucas trees are in fixed

unit supply H =
∫
hdi = S =

∫
sdi = 1.

V.2 Lenders

Lenders are perfectly competitive and risk-neutral financial intermediaries (an assumption we

will relax in the fully dynamic model). They raise funds in the form of deposits DI at price

q from borrower households as well as in wholesale markets. They use these funds to make

mortgage loans M I at price qm to households.

Each performing mortgage yields a t = 1 cash flow of x to the lender, as well as having a

remaining ex-payment value of (1 − δ)qm1 . When borrowers default, lenders foreclose on the

house, yielding a per-house value ph1(1 − ζ) net of foreclosure costs ζ ≥ 0. The remaining

mortgage balance is extinguished.
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Let FI =
∫
Fidi denote the aggregate default rate (taking an expectation over idiosyncratic

income realizations of borrowers). Then the total t = 1 of the lenders mortgage portfolio is:

XM I = (1− ν)
[
(1− FI)(x+ (1− δ)qm1 )M

I + FIp
h
1H(1− ζ)

]
where ν ≥ 0 denotes the lenders’ operating costs as a fraction of the mortgage portfolio. The

lender’s t = 0 problem is to maximize their profit:

max
DI ,MI

E[(1− ν)XM I −DI ]

subject to the budget constraint qDI = qm0 M
I .

Competition between lenders yields a zero-profit condition:

q(1− ν)E[X ] = qm0

V.3 Equilibrium

To close the model, we assume that outside investors supply short-term funding elastically at

exogenous price q. We also assume exogenous t = 1 asset prices ph1 , p
s
1 and qm1 . This allows us

to directly vary the sensitivity of these prices to interest rate shocks r and thus to decompose

the effects of these rate shocks onto default rates and lender profits into cash flow effects on

mortgage payments x and valuation effects through asset prices.

Given these prices and initial endowment w0, the competitive equilibrium is defined as a set

of time 0 portfolio choices s, h, d,m,DI ,M I , time 0 prices qm0 , p
h
0 , p

s
0, time 1 consumption and

intraperiod savings decisions {cndi , ai, c
d
i }, and time 1 default decisions 1i for each realization of

idiosyncratic and aggregate shocks such that households solve their optimization problems as

characterized by the optimality conditions above, lenders satisfy the zero-profit condition and

budget constraint, and markets clear: h = 1, s = 1, m = M I .

To discipline our characterization, we proceed in two steps. First, we solve a “steady state”
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of the model, in which we assume constant interest rates, i.e. r̄ = 1
q
− 1, and constant prices

qm0 = qm1 , p
h
0 = ph1 , p

s
0 = ps1. Second, we solve four different models with interest rate shocks.

1. FRM (Constant Prices): Mortgage payment x is fixed at r̄ + ι + δ, with ι normalized

such that time 0 mortgage price qm0 = 1. Since FRMs are a long duration asset, time 1

mortgage prices are inversely proportional to interest rates: qm1 = r̄+ι+δ
r+ι+δ

, with δ governing

the duration and hence sensitivitity of mortgage prices to rate shocks. Unlike mortgage

prices, house prices ph1 and Lucas tree price ps1 remain fixed at ph0 and ps0, respectively,

i.e., in this economy we assume no pass-through of rate shocks to real asset prices. With

payments and real asset prices remaining fixed, the only effect of interest rate shocks in

this economy is on the market value of mortgages.

2. FRM: The mortgage market is the same as in (1). However, we now allow house and Lucas

tree prices to vary with interest rates. Both assets can be thought of as perpetuities, and

hence a risk-neutral expectation of their cash flows can be written as pj0r̄ for j ∈ {h, s}.

After a change in interest rates, the new present value of these cash flows is pj0
r̄
rj
, where

rj = (1 − ϕj)r̄ + ϕjr is the discount rate appropriate for asset j. Here, the parameter

ϕj governs the degree of interest rate pass-through to asset j. ϕj = 0 corresponds to the

economy described in (1), while ϕj > 0 implies that asset prices fall when interest rates

rise. Because asset prices may affect default rates and lender profits, we renormalize the

mortgage rate spread ι to ensure that qm0 remains at 1.

3. ARM (Constant Prices): Mortgage payment x is now a spread over the short rate, x =

r + ι + δ. As in (1), we assume no pass-through of rate shocks to real asset prices.

Moreover, because mortgage coupons adjust with rates, the mortgage duration is now 0,

so qm1 = qm0 for all realizations of r. The only effect of interest rate shocks in this economy

is on the mortgage payment. Like in (2), we renormalize ι to ensure qm0 = 1.

4. ARM: The mortgage market is the same as in (3) and real asset prices respond as in (2).

As in the other economies, ι is renormalized to ensure qm0 = 1.
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V.4 Numerical Example Parametrization

The effect of interest rates on mortgage markets and financial stability depends on the mortgage

regime and the degree to which rate shocks are passed through to the prices of real assets.

To illustrate this, we consider a numerical example. For most parameters, we choose values

consistent with the calibration of the dynamic model in the subsequent section. For other

parameters for which the two-period model provides clearer guidance, we provide a rough

calibration as follows:

Interest Rates The time 0 interest rate is r̄ = 0.01, implying a bond price q of approximately

0.99. Time 1 interest rates are normally distributed with a mean of r̄ and a standard deviation

of 0.01.

Households Household discount factor β is 0.985. Setting it to a value below q implies

that absent liquidity constraints, household would not hold deposits. Borrowers value housing

services at 10% of their non-housing consumption. A negative income shock leads to a 3/4

drop in income and occurs with probability of 5%. This unlikely but sharp decline in income

represents the liquidity consequences of losing a job or, e.g., incurring a large medical expense.

In a two-period model with CRRA preferences, initial wealth w0 is a key determinant of portfolio

choices. We set w0 to produce a mortgage loan-to-value ratio of 80% in the FRM (Fixed Prices)

economy, keeping it constant across our experiments so that results can be comparable.

Default The pecuniary penalty of default λ is 0.1, meaning that households’ future income

declines by 10% as a result of default. Utility costs of default are normally distributed with

mean 0 and standard deviation of 0.2125. Together, these parameters imply default rates of

1.6%-2.2% in line with recent empirical estimates.

Lenders Lenders’ operating costs ν are set to 0.06, and foreclosure costs ζ are 0.5. These

parameters directly effect mortgage rates and losses given default. The mortgage duration δ is

set to 0.07. At mortgage rates implied by ν, this value of δ yields a FRM mortgage duration

of approximately 7 years, consistent with the effective duration of mortgages in the US.
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V.5 Two-Period Model Results

Figures IA.11 and IA.12 highlight the key intuition from the model, by showing how selected

outcome variables in t = 1 respond to interest rate shocks. Figure IA.11 plots the responses for

the two FRM economies (1) with constant asset prices and (2) with asset prices responding to

rate shocks, while Figure IA.12 shows the results for the two ARM economies (3) and (4).

Figure IA.11: One-Period Outcomes in Response to Interest Rate Shock: FRM
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Notes: This figure shows the t = 1 responses to a range of interest rate realizations, for mortgage payments

(“Payment”), losses given default (“LGD”), mortgage default rates (“Default Rate”), and lender return on

assets (“Lender ROA”). The vertical dashed line represents the mean interest rate r̄.

First, consider the FRM economies in Figure IA.11. Intuitively, payments do not respond

to rate shocks as a key feature of fixed-rate mortgage contracts, and so borrowers’ liquidity

is unaffected. Default rates respond to interest rate shocks only to the extent the borrower’s

strategic incentives are altered. A drop in the mortgage price due to higher rates makes default

less attractive — prevailing mortgage rates are higher, making the borrower’s existing mortgage

with a lower fixed-rate more valuable, which the borrower would have to give up in case of

default. In the FRM economy with constant house and Lucas tree prices, this leads to lower

default rates as interest rates rise. Loss given default (LGD) remains unchanged, leading to

lower credit losses for lenders. Fixed-rate mortgages are a long-duration asset, and so the value

of surviving mortgages decreases with interest rates. The increase in discount rates offsets

the increase in cash flows coming from slightly lower defaults, leading to a lower return on
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the lender’s mortgage portfolio when rates increase. The reverse is true based on the same

mechanisms in the case of a rate cut.

In the FRM economy where asset prices are flexible, house and Lucas tree prices fall when

rates rise. Thus there are two forces affecting default incentives. A rise in morgage rates still

makes it valuable to hold on to a below-market-rate mortgage. But now, higher discount rates

mean that the price of assets lost in default — the house, and a fraction of future income —

are lower, making default more attractive. The two forces largely offset each other. In our

numerical example, on net, the latter force prevails, leading to a small increase in default rates

due to rate hikes.

What does this mean for lenders? Consider losses given default. With fixed prices, LGD

is unchanged by rate shocks. When prices are flexible, rate hikes lower the value of collateral

and thus increase losses given default. Rather than hedging interest rate risk in long-duration

FRMs, credit risk now amplifies it, leading to a steeper relationship between interest rate risk

and lenders ROA.

Figure IA.12: One-Period Outcomes in Response to Interest Rate Shock: ARM
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Notes: This figure shows the t = 1 responses to a range of interest rate realizations, for mortgage payments

(“Payment”), losses given default (“LGD”), mortgage default rates (“Default Rate”), and lender return on

assets (“Lender ROA”). The vertical dashed line represents the mean interest rate r̄.

The economies with ARMs look considerably different in Figure IA.12. Even if asset prices

stay fixed at t=1, the rate hike-driven increase in mortgage payments causes an increase in

defaults as a larger fraction of households cannot afford the higher payments. In contrast, from
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the lender’s perspective, the value of now short-duration surviving mortgages remains constant,

as does LGD, since prices are fixed. Their total return responds to rates entirely through cash

flows. Higher payments collected on performing loans outweigh the increase in defaults, and

returns increase in rates.

Comparing FRMs with ARMs holding prices fixed conveys the traditional FRM vs. ARM

intuition. Under the FRM regime, rate hikes benefit households who are protected from rate

rises, at the expense of lenders, while this is reversed in the ARM economy.

However, this simple intuition becomes more nuanced when we allow prices to adjust in the

economy. In the ARM economy where prices respond to shocks, in response to a rate hike,

not only do borrower payments go up, but the cost of default also goes down in present value

terms. Moreover, there is no offsetting mortgage rate value channel, i.e. unlike with fixed-rate

mortgages, existing borrowers do not benefit from holding a low-rate mortgage in a high-rate

environment. As a result, default rates increase substantially, as do losses-given default.

While the lender still benefits from higher payments collected on performing loans, the in-

crease in losses due to higher default rates and LGD leads to a lower net return if the rate hike

is large enough. However, the source of these losses is markedly different: while FRM lenders

experience losses stemming from interest rate risk, ARM lenders experience losses primarily

stemming from credit risk induced by rate rises. The magnitude of these losses depend both

on the size of the interest rate shock but also on the level of household debt. An alternative

parametrization in which the t = 0 LTVs are closer to 100% than to 80% can generate loss-

driven low returns on mortgages of the same magnitude as the rate-driven low returns in the

FRM economy. In work going forward, we will quantitatively evaluate under what conditions

one force dominates the other from a financial stability perspective.

The discussion above also abstracts away from lenders’ funding costs. The change in ROA

is an upper bound on their unlevered return on equity (ROE) because it represents the case

where funding costs are unchanged (e.g., because lenders have a high degree of market power

in deposits). The increase in interest income collected by ARM lenders gives them a negative

exposure to interest rate risk, i.e. negative duration. Were their funding costs to increase one

for one with rates, the asset and liability effects would offset each other, and their portfolio

would be immunized, leaving borrowers to bear all the interest rate risk. However, the last
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set of results makes it clear that even as ARMs immunize lenders from interest rate risk, they

increase their exposure to credit risk.

The quantitative model we develop in the paper allows us to explore these trade-offs in a

more realistic setting, where lenders face funding costs and households face a broader set of

risks. We will also be able to evaluate the implications of these trade-offs for optimal monetary

policy.
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