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Abstract

An organization is autonomous if it has the right or power of self-government. Self-

government implies that autonomous organizations cannot rely on outside parties for

contract enforcement; all contracts must be relational or self-executing. We present a

model in which an autonomous organization commits to a governance structure that

allocates managerial power to some members. We show that the organization faces

a trilemma: the goals of autonomy, decentralization, and efficiency conflict with one

another. Thus, the optimal governance structure of an autonomous organization is

centralized. Centralization implies inequality in power and payoffs among members

of autonomous organizations.
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1 Introduction

In his reappraisal of Coase’s (1937) “The Nature of Firm,” Steven N. S. Cheung illustrates
the team production problem with the following example:

My own favorite example is riverboat pulling in China before the communist

regime, when a large group of workers marched along the shore towing a good-

sized wooden boat. The unique interest of this example is that the collaborators

actually agreed to the hiring of a monitor to whip them. (Cheung (1983), p. 8).

Riverboat pulling is a collective endeavor in which each member would rather free-ride
on the efforts of others. This example illustrates that team members may benefit from the
existence of an outside party whose only role is to monitor them.

Third-party monitoring is efficient only if the third party is honest, competent, and
inexpensive. In the riverboat example, the whip holder may extract bribes from the workers
in exchange for lighter whipping. The monitor could also under-punish shirkers (perhaps
due to laziness) or punish the wrong workers. Finally, the monitor could demand too high
a fee to perform her duties. In any of these cases, the workers may prefer not to employ a
monitor.

This paper studies the problem of incentivizing team members when hiring a third-
party monitor is infeasible or undesirable. Specifically, we consider the optimal allocation
of power among the members of an autonomous organization. The Merriam-Webster Dic-
tionary defines “autonomous” as “having the right or power of self-government.” In the
riverboat pulling example, self-government means that power (i.e., the whip) must be as-
signed to a team member or no one.

We present a model of an autonomous organization that produces a common good with
individual inputs (i.e., effort) from its members. Members can write contracts specifying
effort provisions. However, crucially, the enforcement of such contracts must be carried
out by the organization members themselves. Some members have the power to punish
members who do not fulfill their contractual obligations. This power is, however, limited
by members’ right to exit the organization.

The model is as follows. Two ex-ante identical agents contribute individual inputs to the
production of a non-excludable good. Because inputs are costly, agents have incentives to
underprovide such inputs. External enforcement is not feasible, implying that contracts in
autonomous organizations must be relational. Because the game is infinitely repeated, the

2



efficient outcome can be sustained by the threat of exit only if agents are sufficiently patient.
If, instead, the discount factor is low, agents play the inefficient static Nash equilibrium.

We augment this canonical relational contract setup in two ways. First, we allow the
organization to designate one of the members as a manager. In each period, the manager
decides how much effort the other player (the subordinate) must provide. If the subordinate
does not follow the manager’s instructions, the manager can punish the subordinate. As in
the riverboat pulling example, the manager holds a “whip” that she can use to discipline the
subordinate. Because the subordinate always wants to avoid being whipped, when facing
an instruction from the manager, she has two options: follow the instruction or leave the
organization.

Second, we allow the organization members to agree upon and commit (through a self-
executing contract) to a governance structure: a set of rules that allocate power (i.e., the
whip) to different members contingent on the history of the game. Our problem is the
optimal design of such a governance structure. The organization may choose a fully decen-
tralized governance structure (power is spread evenly across members over time), a fully
centralized structure (power is assigned to one member forever), or any combination of
these polar cases.

We show that an optimal autonomous organization must be fully centralized: the same
agent must hold the whip in all periods. This power asymmetry leads to asymmetric payoffs
across members. In equilibrium, powerful members (i.e., managers) abuse their power and
enjoy higher ex-post payoffs than those without power (i.e., subordinates). This abuse of
power takes the form of asking subordinates to “overwork,” under the threat of punishment.
Because managers benefit from the extra effort that subordinates exert, managers must exert
effort themselves to prevent the subordinates from leaving the organization. This is the
Paradox of Power: by letting the strong party abuse his/her power, the weak party gains
power over the strong party via exiting. We show that, in optimal organizations, the strong
party does not benefit from becoming more powerful. In contrast, the Paradox of Power
implies that the weak party benefits from becoming weaker.1

Our main result is what we call the Organizational Trilemma: the goals of autonomy,
decentralization, and efficiency typically conflict with one another. If we insist on auton-
omy, there is a trade-off between efficiency and decentralization. If decentralization is a
goal in itself, efficiency or autonomy must be sacrificed. If efficiency is the goal, we cannot

1This is related to the idea of Judo Strategy: using the strength of your opponent to your own advantage
(see, e.g., Yoffie and Kwak (2001)). The Paradox of Power is an extreme example of this force.
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have both autonomy and decentralization.
Our model applies to organizations that cannot – or do not want to – rely on external

enforcement of contracts. Such organizations may be able to commit – at least partially
– to an allocation of power among its members. One such example is the so-called De-
centralized Autonomous Organizations (DAOs), which serve as our main motivation and
application. The typical DAO is a blockchain-based entity that raises funds from its mem-
bers and allocates such funds towards a common goal. Members decide on the allocation
of funds collectively, typically through voting. DAOs resemble the canonical notion of an
autonomous organization because they rely mostly on a combination of self-executing and
relational contracts, with little use of externally enforced contracts. DAOs typically seek
greater autonomy than traditional organizational forms for two reasons. First, blockchain
technology makes designing and implementing self-executing contracts (also called “smart
contracts”) easier. Second, contract enforcement by outside authorities is often infeasible
because they do not have the expertise, information, or recourse to a legal framework for
adjudicating disputes.

Self-executing contracts can be very powerful, but their application is limited to “on-
chain” actions, i.e., actions that occur on the blockchain where the DAO lives. Anything
that requires off-chain actions cannot be fully automated and is thus subject to governance
risk. Unlike the idealized vision of DAOs often found in Internet descriptions, real-world
DAOs govern off-chain transactions not by code but by relational contracts (i.e., reputation
and trust). For example, before an on-chain vote, DAO members often discuss proposals on
internet forums (in platforms such as Discord) and conduct rounds of off-chain votes (using
tools such as Snapshot).2 Thus, in real-world DAOs, autonomy is achieved by designing
self-executing contracts that complement relational contracts. Self-executing contracts are
thus a governance structure that supports relational contracts.3 In our model, the organiza-
tion uses self-executing contracts to commit to a history-contingent power allocation.

Our results suggest that DAOs face the Organizational Trilemma: A truly decentralized
autonomous organization will be inefficient. Our model thus helps us understand many of
the practical difficulties encountered by DAOs. As we discuss in the Internet Appendix,
real-world DAOs have been plagued by issues such as centralization (and often abuse) of
power, lack of contractual enforcement, and poor performance. Our model also shows

2Snapshot is a voting platform that allows DAOs built on Ethereum to vote off-chain. Off-chain voting
avoids Ethereum transaction fees (called gas fees). For more about off-chain discussion and voting, see
https://t.ly/dGISZ.

3This notion of governance structure is similar to that of Williamson (2002).
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that powerful actors have incentives to show restraint and behave benevolently in the early
days of an organization, only to abuse their power once the organization is sufficiently
mature. Thus, our model offers a cautionary note for participants of blockchain projects
with powerful players, such as founders, foundations, core developers, and companies.
Trust in blockchain “benevolent dictators” cannot be justified by observing their behavior
in the early stages of a project.

In an extension, we show that efficiency can be restored if the organization members
could commit to a different output division. Our main result is robust to this extension:
Efficiency typically requires the concentration of power in the hands of one player. In
addition, the powerful party must also be given most of the output. That is, the party
holding the “stick” must also be offered a “carrot.” In autonomous organizations, efficiency
requires inequality in both power and payoffs.

This paper is related to several strands of literature. Our basic model setup is one
of moral hazard in teams à la Alchian and Demsetz (1972), Holmström (1982), and the
extensive literature that ensued (see, for example, Bolton and Dewatripont (2004) for a
textbook treatment). Unlike Holmström (1982), we focus on solving the moral hazard
problem within the team rather than relying on an external enforcer.

This paper is also related to the literature on relational contracting, especially papers
that consider how to design relationships to foster cooperation; see, for example, Baker,
Gibbons, and Murphy (1994, 2002, 2023), Che and Yoo (2001), Halonen (2002), Kvaloy
and Olsen (2006, 2009), Rayo (2007), Mukherjee and Vasconcelos (2011), Deb et al.
(2016), Barron and Guo (2021), Fahn and Zanarone (2022), and Troya-Martinez and Wren-
Lewis (2023). Among these papers, the most related is Rayo (2007), which studies owner-
ship concentration, examining how ownership structure depends on the observability of the
effort. Rayo (2007) shows that when efforts are observable, dispersed ownership emerges
to minimize total discretionary bonuses. In contrast, we abstract from monetary transfers
and show that power and payoff should remain concentrated even with observable effort.
Power and payoff concentration motivate the manager to exert effort.

While the theoretical literature on blockchain economics is large, it mainly focuses on
the properties and limitations of specific blockchain protocols. In contrast, our paper fo-
cuses on a simple collective action problem, which may or may not live on a blockchain.
That is, our autonomous organization is not necessarily a blockchain organization. Despite
these fundamental differences, our paper shares similarities with blockchain economics pa-
pers that study the limits of decentralization. Biais et al. (2019) present an analysis of the
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proof-of-work protocol as a repeated game and show the existence of inefficient equilibria
with persistent forks. Budish (2023) shows that the cost of sustaining trust in blockchain
protocols is prohibitively high. His analysis casts doubt on the ability of autonomous
blockchains to deter dishonest behavior without the help of governments or other third
parties. Ferreira, Li, and Nikolowa (2023) show that the proof-of-work protocol creates
incentives for ownership concentration in the industries that support the mining ecosystem.
Han, Lee, and Li (2023) presents a theory of DAO governance based on conflicts between
small and large token-holders.

Our paper is also related to the extensive literature on power and authority in organiza-
tions; see, for example, Simon (1951), Chwe (1990), Aghion and Tirole (1997), Rajan and
Zingales (1998), Piccione and Rubinstein (2007), Van den Steen (2010), Acemoglu and
Wolitzky (2011), and Rantakari (2023) (see also Bolton and Dewatripont (2013) for a sur-
vey). Most works in this literature study static power allocations. Two notable exceptions
are Li, Matouschek, and Powell (2017) and Baker, Gibbons, and Murphy (1999), which,
like our paper, examine power in dynamic settings. Unlike our paper, these papers define
power as ownership of decision rights and show how informal power emerges persistently
from given formal rights. We define power as the ability to enforce behavior through pun-
ishment and study the optimal allocation of formal power itself. Our analysis reveals that
formal power – like informal power – should be persistent to effectively support relational
contracts.

2 Model

We present a model of an autonomous organization. The organization produces a non-
excludable good with inputs from its members. The model setup does not try to match the
workings of any particular real-world organization. Instead, the model aims to illustrate the
fundamental tension between decentralization and efficiency.

2.1 Setup

Consider an organization (to be formally defined later) with two members, called players,
i ∈ {1,2} (she and he), who interact repeatedly and share a common discount factor, δ .
In each period t ∈ {1,2, ...,∞}, if both players participate in the organization, they jointly
produce output yt , which is equally shared between them (in Subsection 3.3, we consider an
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extension with endogenous output shares).4 At each t, Player i chooses effort eit ∈ {0,1,2},
where the cost of effort is c(eit) = ceit , c > 0. Player i’s output is

yit =





0 if eit = 0
B if eit = 1
B+ b if eit = 2.

(1)

Total output is yt = y1t + y2t . All information is public. We assume the following:

Assumption 1. 2c > B > c > b > 0.

This assumption implies that the first-best effort levels are eFB
it = 1, for i ∈ {1,2}. How-

ever, B is not large enough, thus choosing eit = 1 is not a dominant strategy in the single-
stage game. Given this technology, players can shirk (eit = 0), work (eit = 1) or overwork

(eit = 2).5 For expositional simplicity only, we also assume:

Assumption 2. B+ 1
2b ≥ 2c.

This assumption implies that both players earn strictly positive payoffs when one player
works and the other overworks, thus making participation constraints easier to meet. As-
sumption 2 is unnecessary for our analysis and is made only to reduce the number of cases
to consider. We will keep it for most of the analysis but drop it for the extension in Subsec-
tion 3.3, where it is no longer needed.

We augment this standard relational contracts setup by introducing the concept of
power. We focus primarily on autonomous organizations: power must be allocated to
a member of the organization or no one. In Subsection 3.2.5, we also consider non-
autonomous organizations in which external contract enforcement is feasible. It is immedi-
ate that if external enforcement is costless, efficiency can be achieved. Thus, the interesting
case is when the organization must be autonomous, either because external enforcement is
costly or because the organization’s members derive direct utility from autonomy.

Our notion of power is similar to Simon’s (1951) notion of authority.6 At the beginning
4We believe that the case of non-excludable output (i.e., exogenous output shares) is the most relevant

in practice. For example, if the organization is a “layer-1” blockchain on which applications are built, any
improvements that lead to lower transaction costs will benefit all application developers and users on the
upper layers. Due to the public-good nature of such blockchains, it may not be feasible to contractually
exclude some parties from using them.

5A variation of this technology with continuous effort that delivers similar qualitative results is as follows:
yit = [B+ b(eit − 1)]1eit≥1 and c(eit) is a convex cost function where 2c(1) > B > c(1) and c′(e) > b for
e > 1.

6Simon (1951) defines authority in the context of an employment relation between a boss (B) and a worker
(W): “We will say that B exercises authority over W if B permits W to select x” (p. 294).
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of period t, one of the players is designated as the manager. If Player i is the manager,
she recommends an action ê−it ∈ {0,1,2} for the other player (the subordinate) and also
an action êit ∈ {0,1,2} for herself. The subordinate and the manager then decide whether
to exit or stay in the organization. We denote their participation decisions by dit ∈ {0,1},
where 0 indicates exit and 1 indicates staying. If the subordinate stays but chooses an
effort level different from ê−it , the manager can reduce the subordinate’s payoff by D > B.
If the manager reduces the subordinate’s payoff, she obtains a small incremental payoff
ε ∈ [0,D).7 For simplicity, we set ε = 0; all results are similar for ε positive but small.

Formally, the manager’s identity is given by gt ∈{0,1,2}, with gt = i designating Player
i ∈ {1,2} as the manager and gt = 0 denoting the case of no manager. We call gt the whip.8

The manager’s identity must be determined at the beginning of each period before other
actions are taken. This is because the subordinate must follow the manager’s orders. The
model’s implications would differ if the manager’s identity could be determined after the
effort decisions. In that case, it could be optimal to randomize the ownership of the whip.
However, in such a model, no one would give orders, and we could not interpret whip
ownership as managerial power. Thus, our model is relevant to practical situations where
the identity of a monitor must be known in advance.

Managerial power – here represented by the whip – is a scarce resource. Accordingly,
we assume that only one whip is available. In Subsection 3.2.6, we briefly discuss the case
of multiple whips. In reality, there are many practical reasons for managerial power to
be concentrated in the hands of a few. In the case of DAOs, the ability to ban or exclude
members requires special administrative rights for managing forums or editing the organi-
zation’s protocol (e.g., signatures). Even in large blockchain projects such as Bitcoin and
Ethereum, only a handful of core developers have the keys to modify the blockchain pro-
tocol. In addition, if punishment must be visible and sequential, the presence of a second
whip would not alter the equilibrium payoffs unless exit is restricted for more than one
period.

Whip assignment affects the set of feasible actions: The manager suggests actions for
both players (ê1t , ê2t), while the subordinate does not suggest actions. If no player is the

7For example, in proof-of-stake blockchains, a validator who detects some irregularity may seize some of
the tokens staked by a block producer.

8As in Van den Steen (2010), our notion of power is interpersonal. The manager can request the subordi-
nate to deliver a minimum level of performance. If the subordinate underperforms, the manager can punish
the subordinate ex-post. To avoid punishment, the subordinate must either perform according to expectations
or exit the organization before the punishment stage.
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manager (i.e., gt = 0), no one suggests any action. To keep the space of actions constant,
we define

ea
it :=

{
(ê1t , ê2t) if gt = i

∅ otherwise.
(2)

We use ea
t to denote the vector (ea

1t ,e
a
2t). Similarly, we define dt := (d1t ,d2t) and et :=

(e1t ,e2t). Player i’s end-of-the-period payoff is

uit(ea
t ,dt ,et) =





d1td2t

(
y1t+y2t

2 − ceit −D1eit ̸=êit

)
if gt = −i

d1td2t

(
y1t+y2t

2 − ceit

)
if gt ̸= −i,

(3)

where 1x is the indicator function. This payoff function assumes that the manager can
commit to punishing the subordinate in case of a deviation from expected play. This com-
mitment is trivially achieved because punishing the subordinate is payoff-neutral to the
manager. Our analysis would be qualitatively unchanged if the manager extracted some
small payoff ε > 0 from the punishment, perhaps because the manager could seize some
bond posted by the subordinate, or if the manager enjoys a psychological benefit from pun-
ishing a worker who shirks. Of course, if punishing were costly to the manager, the model
would work only if the manager had access to a commitment device.

Within each period t, there are five dates (players choose their actions simultaneously
within each date):
Date 1. The outcome of a public randomization device xt is realized.

Date 2. The whip gt is assigned to one player (gt = 1 or gt = 2) or no player (gt = 0).
Then, players choose ea

it .

Date 3. Players decide whether to exit (dit = 0) or stay (dit = 1).

Date 4. Players choose eit ∈ {0,1,2}.

Date 5. Output yt ∈ {0, ..,4} and payoffs (u1t ,u2t) are realized.
The role of xt is to allow the whip allocation and actions to depend on some publicly

observed external signal. The existence of a public randomization device is a common
assumption in the repeated games literature and is made to convexify the set of equilibrium
payoffs. Without loss of generality, we assume that xt is uniformly distributed on the unit
interval.9

We define the history at time t as ht =
{

x1,g1,ea
1,d1,e1, ...,xt−1,gt−1,ea

t−1,dt−1,et−1
}

.

9For clarity of exposition, we deviate from the literature and place the public signal at the beginning of
the period. The analysis is identical if the public signal is at the end of the period.
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We define a governance structure as G = {Gt}∞

t=1, where Gt : (ht ,xt) → (gt). A gover-
nance structure maps each history and signal realization to a whip allocation. That is, a
governance structure fully determines the allocation of managerial power among players.10

We interpret G as a commitment technology. For example, if a manager can take actions
that entrench herself in an organization, the governance structure allows this manager to
retain power for a long time. Note that gt can depend on past actions but not current ones.
The idea is that (ea

t ,dt ,et) are observable but not “contractible.” However, players can write
public reports on past actions, which then become part of future histories (these reports are
credible in equilibrium because players can leave the organization when they see a fake
report). Because et is not (immediately) contractible, punishment after a deviation cannot

be automated, thus creating a need for managerial power. Thus, the whip allocation at t is
the only meaningful decision that can be automated.11

We can also interpret G as a contingent self-executing contract. In the DAO interpreta-
tion, G completely specifies the conditions under which some DAO members would gain
special administrative rights. That is, G is implemented on-chain. Because past actions
(such as participation in forums) are off-chain, they cannot trigger automated punishment.
In a truly autonomous organization, the designated manager would observe off-chain be-
havior, record it, and then punish those who misbehave.12

Let Γ denote the set of all governance structures and G0 ∈ Γ denote the governance
structure such that gt = 0 for all t ∈ {1, ...,∞}. We call G0 the default governance structure.
Under the default governance structure, no player has power over the other player; i.e.,
there is no whip. Let γ0 denote the game associated with the default governance structure:
a set of members, action spaces for each member, and their payoff functions, for the case
where gt = 0 always. We call γ0 the primitive game. Because each G ̸= G0 is associated
with different action and payoff spaces, we can think of G as a particular modification of
the primitive game. We call the modified game, γ(G), the game induced by G.

For given γ(G), at each t, we denote player i’s (pure) actions by Sit = (ea
it ,dit(ea

t ),

10Our notion of governance structure relates to Williamson’s (2002) view of governance structure as a
set of mechanisms that support an ongoing contractual relationship. See also Baker, Gibbons, and Murphy
(2023).

11In our setup, the manager must initiate the punishment. That is, punishment does not automatically occur
given a state. This is in line with many blockchain projects. For example, in proof-of-stake protocols, block
producers and validators must “stake” some of their tokens, which remain frozen for a given period. If a node
discovers that some player broke the rules, it can punish that player by “slashing” their stake.

12In the DAO interpretation, managerial power is not voting, but instead the administrative rights that can
be used to monitor off-chain decisions. In that context, centralization or decentralization must refer to such
rights and not to the use of voting.
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eit(ea
t ,dt)), where subscript t indicates that the actions are conditional on (ht ,xt).13 Player

i’s strategy is an infinite sequence of such actions, Si = {Sit}∞

t=1. Let S = {St}∞

t=1 denote a
strategy profile, where St : (ht ,xt)→ (ea

t ,dt ,et) is a mapping from the history at time t to a
set of actions for both players. We define Ψ(G) as the set of Subgame Perfect Equilibrium
(SPE) strategy profiles for game γ(G).

We can now define an organization:

Definition (Organization). An organization is a triplet ⟨γ0,G,S⟩ consisting of a primitive

game γ0, a governance structure G ∈ Γ, and an equilibrium profile S ∈ Ψ(G).

That is, an organization consists of a primitive game, a governance structure that modi-
fies the rules of the primitive game, and a particular suggestion for how the members should
play the modified game. We include equilibrium strategies in the definition of organization
to allow for soft or intangible aspects, such as culture, to be part of the design of organi-
zations. Because we will keep the primitive game fixed for most of the analysis (the only
two exceptions are the non-autonomous organization described in Subsection 3.2.5 and the
extension to endogenous output shares in Subsection 3.3), to economize notation, we will
often denote an organization simply by r = ⟨G,S⟩ ∈ Γ×Ψ(G).

2.2 Benchmark: The First Best

Let S0 ∈ Ψ(G0) denote an equilibrium under the default governance structure (i.e., an equi-
librium of the primitive game). We denote this organization by r0 = ⟨G0,S0⟩. Under G0,
cooperation can be sustained only by the threat of exit. Assumption 1 implies that the first-
best effort levels are eFB

1t = eFB
2t = 1. Under the first-best, the normalized average payoff

of each player is B− c. We restrict attention to equilibria with grim-trigger strategies, in
which both players leave if any player deviates from the equilibrium play. That is, if at
time t, Player i chooses an off-the-equilibrium-path action, for all t ′ > t players choose
d1t ′ = d2t ′ = 0. This restriction to grim-trigger strategies is without loss of generality:
taking the outside option results in minimax payoffs – the harshest punishment possible –
thereby providing the strongest incentive against deviation and facilitating the sustainabil-
ity of any equilibrium. Under such strategies, the first-best payoffs can be sustained as an
SPE if and only if

B− c ≥ (1−δ )
B
2

. (4)

13Given public correlation, the restriction to pure actions is without loss of generality.
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The left-hand side of (4) is Player i’s (normalized) average payoff from working (eit =

1) forever, and the right-hand side is the (normalized) value of shirking (eit = 0) today
followed by the dissolution of the organization. Thus, the first-best can be sustained under
the default governance structure if δ ≥ 2c−B

B =: δ FB. As a result of the Folk Theorem,
any cooperative outcome can be sustained if the discount factor is sufficiently high. The
interesting case is δ < δ FB, which we now assume.

Assumption 3. δ < δ FB := 2c−B
B .

3 Organization Design

In this section, we consider the problem of designing an optimal organization. We start
from the primitive game γ0, which we modify by choosing a governance structure. We then
select an equilibrium strategy profile for the modified game. Formally, we consider the
problem of a (hypothetical) planner who chooses an organization to maximize the normal-
ized discounted sum of payoffs:

max
⟨G,S⟩∈Γ×Ψ(G)

(1−δ )E

[
∞

∑
t=1

δ t−1 (u1t + u2t) | G,S

]
. (5)

The economic interpretation is that the (benevolent) organization designer chooses a set
of immutable rules, here summarized by G. These rules are enforced automatically, e.g.,
they are embedded in the organization’s code. Our problem is to determine the set of
rules that maximizes the organization’s surplus, assuming that the designer also selects
the best SPE associated with such rules. Alternatively, we could assume that the designer
chooses only the governance structure while players coordinate on the surplus-maximizing
equilibrium.14

Our focus on optimal organizations allows us to simplify the setup without any loss of
generality. First, from now on, we restrict the space of feasible whip allocations to {1,2},
except for the case of the default governance structure, in which case we set gt = 0 al-
ways. To see that this restriction is without loss, consider an organization such that, for
some (ht ,xt), we have g(ht ,xt) = 0. Let e(ht ,xt) denote the associated equilibrium efforts.

14The existence of an “organization designer” should not be taken literally; it is just a metaphor for the
forces that drive an organization towards efficiency. It could be conscious design, efficient bargaining, com-
petition, or adaptation. Of course, if the organization’s founders design it to maximize their own payoffs, in
some cases, they might not solve (5). Thus, we interpret our results as an upper bound on the efficiency of an
organization.
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Suppose instead that we set g(ht ,xt) = 1. It is immediate that by setting the manager’s
announcement to ea

1(h
t ,xt) = e(ht ,xt), the effort vector e(ht ,xt) can be sustained as an

equilibrium under this new governance structure. Because nothing changes in all other
periods, this equilibrium is payoff-equivalent to the original one. Thus, from the organiza-
tion designer’s perspective, there is no reason to choose gt = 0 following any realization of
(ht ,xt).

Second, we only consider organizations such that, in equilibrium, if i is the manager,
ea

i (h
t ,xt) = e(ht ,xt), for all (ht ,xt). In other words, the manager always recommends the

equilibrium effort levels. It is easy to see that any equilibrium in which ea
i (h

t ,xt) ̸= e(ht ,xt)

is payoff-equivalent to an equilibrium that differs from the original one only by setting
ea

i (h
t ,xt) = e(ht ,xt). This simplification implies that we can ignore ea

t when characterizing
an equilibrium.

Third, because we will consider only grim trigger strategies, the optimal participation
decision is dit = 1 unless a player has deviated in the previous period, in which case the
optimal decision is dit ′ = 0 for all t ′ ≥ t.

With these simplifications, we can think of the organization as an institution consisting
of a (possibly rotating) manager and a subordinate. The manager makes decisions con-
cerning productive efforts. The subordinate either carries out the manager’s instructions or
leaves the organization. The effort choices (or orders) depend only on (ht ,xt), where the
history is now more succinctly described as ht = (x1,e1, ...,xt−1,et−1). Any given strategy
Si for i ∈ {1,2} can now be described by a sequence of effort functions eit = ei(ht ,xt) and
participation decisions dit = di(ht ,xt).

3.1 Stationary Organizations

In this subsection, we consider the case of stationary autonomous organizations. Stationar-
ity helps with the intuition for the results. It also simplifies the analysis; the main results in
this subsection are useful for solving the general case of optimal nonstationary autonomous
organizations, which we present in the following subsection.

We first consider stationary organizations under the default governance structure. We
say that an organization ⟨G0,S0⟩ is stationary if the equilibrium actions (on the equilibrium
path) in period t are independent of the history, ht . Under the default governance structure,
we have the following result.
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Proposition 1 (Equilibrium under Default Governance). If S0 ∈ Ψ(G0) is a stationary

equilibrium, then e1t = e2t = 0 for all t.

Proposition 1 shows that (under Assumption 3) the unique stationary equilibrium of the
primitive game is such that both players shirk. That is, there is a unique default organization

r0 = ⟨G0,S0⟩ where e1t = e2t = 0 always.15

We now consider an autonomous organization with G ̸= G0. For this organization to be
stationary, we also require its governance structure to be i.i.d.:

gt = g(xt) :=

{
1
2

if xt ≤ p

if xt > p
, (6)

where p ∈ [0,1] is the probability that Player 1 has the whip at any given t (recall that
we have restricted the space of whip allocations for G ̸= G0 to {1,2}). Thus, under sta-
tionarity, we can fully describe a governance structure by p. In a stationary organiza-
tion, we can write Player i’s equilibrium effort decision as ei(ht ,xt) = ei(xt) and define
e(xt) := (e1(xt),e2(xt)). The formal definition of stationarity is as follows.

Definition (Stationarity). An organization is stationary if its governance structure is sta-

tionary and the equilibrium effort profile e(xt) is independent of ht .

Note that conditional on gt , effort can be stochastic through its dependence on xt . For
future use, we define µi(gt) as the probability distribution of eit over {0,1,2} conditional
on gt .

We define the centralization index of an organization with a stationary governance
structure as C(p) := |2p−1|. Stationarity implies that the centralization index is constant
across periods, histories, and strategy profiles. An organization with a stationary gover-
nance structure is fully decentralized if p = 0.5 and fully centralized if p = 1 or p = 0.
For brevity, when considering fully centralized organizations, we focus only on the case in
which Player 1 is the manager (p = 1); the case in which p = 0 is exactly symmetrical.

The following lemma shows a link between decentralization and shirking.

Lemma 1 (Shirking Lower Bound). In a stationary organization, the player with the

(weakly) lower payoff shirks when he is a manager.

Lemma 1 implies that if C(p) < 1 (i.e., the organization is not fully centralized),
some players will not work whenever they are managers. Specifically, the player with

15This result generalizes to nonstationary organizations as well, but the proof is rather tedious.
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the (weakly) lower payoff must shirk when he is the manager. To see why, assume that
Player 2 has a lower payoff than Player 1. Player 2’s payoff must be strictly lower than the
first-best payoff (B− c). Because δ < δ FB, Player 2’s loss in future payoff is smaller than
the gain from saving the cost of effort. It is thus impossible to induce Player 2 to exert effort
unless there is additional punishment for not doing so. But once Player 2 is the manager,
no further punishment can be imposed on him. As a result, Player 2 must shirk whenever
he is the manager.

For a stationary organization with governance p, Lemma 1 implies a shirking lower

bound: in any equilibrium, the probability that at least one player shirks at any given t is
no lower than min{p,1− p} ≡ 1−C(p)

2 . Note that the shirking lower bound is decreasing
in the centralization index. This result illustrates the cost of decentralization: in more
decentralized organizations, the shirking lower bound is tighter.

We now introduce two special organizational structures. First, we say that a station-
ary autonomous organization is identity-blind if effort levels do not depend on players’
identities:

Definition (Identity-blindness). A stationary organization is identity-blind if effort choices

are such that µi(1) = µ−i(2) for i ∈ {1,2}.

That is, the organization is identity-blind if the conditional effort distributions µ1(gt)

and µ2(gt) are symmetric. Second, we say that a stationary organization is power-blind if
a player’s identity alone determines his/her effort choice.

Definition (Power-blindness). A stationary organization is power-blind if effort choices

are such that µi(1) = µi(2) for i ∈ {1,2}.

Identity-blindness and power-blindness are different types of symmetry with respect
to the “flipping” of a power allocation. In an identity-blind organization, when the power
allocation flips, the effort choices of the players also flip. In a power-blind organization,
the effort choices remain unchanged when the power allocation flips. As the next result
shows, if a stationary autonomous organization is either power-blind or identity-blind, then
no player can be induced to work.

Proposition 2 (Symmetry leads to shirking). If a stationary autonomous organization

with C(p) < 1 is either power-blind or identity-blind, then e1(xt) = e2(xt) = 0 for all xt .

To see why this result holds, start with the power-blind case. Suppose Player 2 has a
(weakly) lower payoff than Player 1. Proposition 1 implies that Player 2 shirks when he
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has the whip. Power-blindness then implies that Player 2 always shirks. Thus, Player 1
also shirks when she has the whip because her continuation payoff is insufficient to induce
her to work. Again, power-blindness implies that Player 1 always shirks. Next, consider
the identity-blind case. Proposition 1 implies that (say) Player 2 shirks when he is the
manager. Identity-blindness then implies that both players shirk whenever they become
managers. When managers don’t work, the total payoff is lowered to such an extent that it
is impossible to induce any worker to work.

Proposition 2 implies that no one works unless changes in whip assignments differen-
tially affect players’ behavior. That is, at least one player must change behavior when the
whip changes hands, and if both players do so, such changes cannot be symmetric. In other
words, one player must work harder than the other, either as a manager or as a subordinate.

The next result establishes a necessary and sufficient condition for managers not to
shirk in equilibrium.

Lemma 2 (Managers’ Incentive Constraint). In a stationary organization in which g(xt)

= i for some xt , ei(xt) > 0 can be enforced if and only if Player i’s equilibrium payoff is

ui ≥
1−δ

δ

(
c− B

2

)
=: u. (7)

Lemma 2 implies that, in an equilibrium where some managers work, their payoff must
be at least u. From now on, we assume (without loss of generality) that Player 1 has the
(weakly) higher payoff in equilibrium. If Player 1 works when she is the manager, she must
obtain no less than u in equilibrium, which (from Assumption 3) implies that she should
receive more than half of the joint payoff created. Thus, in any stationary organization
where managers work, the equilibrium must be asymmetric: Player 1 must have a strictly
higher payoff than Player 2.

The next result shows that abuse of power must occur in any stationary organization
that improves upon the default organization.

Lemma 3 (Equilibrium Abuse of Power). Consider a stationary organization that im-

proves upon the default organization. Suppose Player 1 has the highest equilibrium payoff.

1. Whenever Player 1 shirks, Player 2 must also shirk.

2. Player 2 must overwork with strictly positive probability when he is a subordinate.

This result implies that optimality requires Player 1 to abuse her power as manager by
asking the subordinate to overwork with some probability. However, for that to happen,
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Player 1 must also exert some effort when she is the manager. That is, there is a nonzero-
measure set of public signals for which g(xt) = 1 and e(xt) = (e,2) with e > 0.

Let R(p) denote the set of all stationary organizations with governance p. An organi-
zation r ∈ R(p) is p-optimal if

r ∈ arg max
r∈R(p)

E [u1 + u2 | r] . (8)

That is, a p-optimal organization maximizes the total payoff for a given governance struc-
ture p. Let ui(p) denote Player i’s payoff and u(p) = u1(p)+u2(p) the total payoff under
a p-optimal organization. The next result constrains the set of enforceable effort profiles in
p-optimal organizations.

Lemma 4 (Enforceable Effort Profiles). In a p-optimal organization, the only effort pro-

files that can be played with positive probability are (0,0), (1,0), (1,1), and (1,2).

The next result shows how payoffs change as centralization increases.

Proposition 3 (The Paradox of Power). Suppose u(p)> 0 and let p′ > p. Then, u1(p′) =

u1(p) = u and u2(p′) > u2(p).

Proposition 3 shows that, in a p-optimal organization, Player 1 does not benefit from
increasing her power; only Player 2 does. We call this phenomenon the Paradox of Power.
Intuitively, if power is sufficiently centralized in Player 1’s hands, her continuation payoff
is high. Player 2 can thus use the threat of exiting to induce Player 1 to work. It is optimal
for Player 1 to work whenever possible. Thus, any increase in Player 1’s payoff above the
minimum required in (7) is used to induce her to work more often. All benefits of increased
centralization accrue to the weaker party.

Figure 1 illustrates the Paradox of Power. For expositional simplicity, we consider the
case in which the equilibrium involves effort profiles (1,2), (1,0) and (0,0) only. Assume
also (for expositional simplicity) that given gt , the players must play pure actions (i.e.,
mixing between actions is not allowed; the proof of Proposition 3 makes none of these
simplifying assumptions). The figure shows the three relevant payoff profiles on the u1×u2

plane, where ui = (1− δ )∑
∞
t=1 Eδ t−1uit . Suppose an equilibrium involves playing effort

profiles (1,2) and (1,0) with probabilities p and 1− p, where p > 0.5 is the probability
that Player 1 is the manager. If the expected payoff profile is at point I, Player 1’s expected
payoff is u1 = p(B+ b

2 −c)+(1− p)(B
2 −c) = 1−δ

δ (c− B
2 ) = u. Thus, for this p, Player 1

can be induced to work when she is a manager (see Lemma 2), and this is an equilibrium.
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Figure 1: The Paradox of Power

For the same p, consider another equilibrium that involves (1,2) and (0,0) instead.
For this equilibrium, the expected payoff profile is at point II. Player 1 is better off at
II. However, the sum of payoffs (u1 + u2) is higher at I. Note that Player 2 – the weaker
party – is also better off at I. If Player 1 were less powerful (i.e., lower p), point I would
not be enforceable, and the optimal organization (under the assumptions of this example)
would be (nearly) at point II, which gives Player 1 a higher utility. Thus, Player 1 can be
made worse off by having more power. Intuitively, because more power increases Player
1’s continuation payoff, it eventually becomes possible to coordinate on an equilibrium
where Player 1 always works. In that equilibrium, Player 2 gains power over Player 1 by
threatening to exit in case Player 1 does not work.

This example illustrates why Player 1 may not benefit from having more power. Be-
cause of the restriction to pure actions, the equilibrium in this example is not necessarily
p-optimal. Proposition 3 shows that, like the example, Player 1 does not benefit from
having more power in a p-optimal organization. Unlike the example, in a p-optimal or-
ganization, u1 is independent of p. In such an organization, it is optimal to randomize

18



between (1,2) and (1,1) when g(xt) = 1. In this case, an increase in p increases only u2.
Thus, the Paradox of Power is that making the strong party more powerful benefits only the
weaker party.

The following proposition characterizes optimal stationary organizations.

Proposition 4 (Optimal Stationary Organizations). A stationary organization that im-

proves upon the default organization exists if and only if δ ≥ δ1 := 2c−B
B+b and is unique.

The optimal stationary organization r∗ must be fully centralized (p = 1) and randomize

between effort profiles (1,2) and (1,1) with probabilities α∗ and 1−α∗, where

α∗ :=
2
b
(u− (B− c)) .

Proposition 4 shows that, for sufficiently high δ (but still lower than δ FB), one can
design an organization that improves upon the default organization. Furthermore, in this
case, the optimal organization is fully centralized. In equilibrium, Player 1’s “abuses her
power” with probability α∗ > 0. Thus, Player 1’s payoff is higher than Player 2’s payoff.
Despite this asymmetry, both players would agree that this equilibrium is preferable to the
default organization, which delivers zero payoff to both players. Player 2 is incentivized to
overwork due to fear of being whipped. Player 1 works only because of her continuation
value. Centralization is critical here because it efficiently delivers payoff asymmetry, which
is necessary for providing sufficient continuation value to Player 1.

Figure 2 illustrates Proposition 4. Suppose that δ ∈ [δ1,δ FB). Let p = 1 and suppose
an equilibrium randomizes between action profiles (1,2) and (1,1) with probabilities α
and 1 − α . If the expected payoff profile is at point IV , Player 1’s expected payoff is
u1 = α(B+ b

2 − c) + (1−α)(B− c) = 1−δ
δ (c− B

2 ), which is the expression that defines
α∗. Any payoff profile on the III − IV line can be sustained for some α ≥ α∗. Note that
the total sum of the payoffs is maximized at point IV , implying that a fully centralized
organization (i.e., p = 1) where the manager works in every period, and the subordinate
randomizes between “work” and “overwork” with probabilities α∗ and 1−α∗ is an optimal
stationary organization.

Discussion. Proposition 4 shows that under full centralization, for sufficiently high δ <

δ FB, there exist equilibria in which neither player shirks. In such equilibria, the manager
works in every period, while the subordinate alternates between working and overworking.
By overworking, the subordinate increases the value of the relationship for the manager and
induces her to work. One key feature of Proposition 4 is that, even if the players are ex-ante
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Figure 2: Implementable payoffs under full centralization

identical, the optimal stationary organization involves a hierarchical division of labor. At
the top is the manager, who commands and controls the subordinate. Notably, there is no
switching between roles: Once a player becomes manager, she holds the whip forever and
becomes a designated enforcer.

It is a foundational feature of organizations to have designated managers – someone
specializing in observing and enforcing the behavior of others. In their seminal article,
Alchian and Demsetz’s (1972) explain this feature by highlighting the role of the owner-
manager in measuring the workers’ effort. Holmström (1982) formalizes this idea and
shows how moral hazard in teams can be solved by employing an external enforcer. How-
ever, few models endogenize the choice of internal enforcers. In all prominent relational
contracting models that consider internal enforcers, enforcement happens via exit: The
manager can only enforce the behavior by threatening to leave the relationship (see, e.g.,
Rayo (2007)). Because all players can threaten to leave, in a sense, every player is an
enforcer.

In our model, a manager enforces behavior by using her power, not the threat of exiting.
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In his classic study of industrial bureaucracy, Gouldner (1954) presents an example of how
a foreman controls the behavior of his subordinates: “If I catch a man goofing off, I tell him

in an a,b,c, way exactly what he has to do, and I watch him like a hawk ‘til he’s done it”
(Gouldner (1954), p. 159). While it is unclear why “watch him like a hawk” does the job,
this managerial activity enforces behavior. Our model innovates by explicitly introduc-
ing this managerial activity in team-production problems, using the whip as a metaphor.
Whoever carries out the managerial activity can enforce the other player’s behavior.

Our model does not assume that the same person always acts as a manager. In principle,
democratizing managerial activity could be a good idea. However, Lemma 1 shows that
rotating managerial responsibilities is suboptimal because at least one of the managers
will shirk. To maximize the organization’s performance, the optimal governance structure
requires the same player to carry out the managerial activity in each period. This creates a
managerial position.

Another feature of the optimal organization is that the manager has more than half of
the surplus. Therefore, the possession of power also gives the manager a higher payoff
level. This payoff asymmetry arises because, without a high enough payoff to the manager,
she will not put in the effort. In other words, because managers hold the “stick,” “carrots”
must also be offered to motivate them.

One may think that by rotating power, players could potentially discipline those who
abuse their power when managers. Thus, why doesn’t power rotation improve efficiency?
The reason is that the only way of motivating a whip holder is to offer them sufficient
continuation value. With equal output shares, abuse of power is necessary for providing
sufficient continuation value to a manager. In other words, while power rotation can prevent
abuse of power, it is not efficient to do so. Similarly, rotating the whip to punish those who
shirked in previous periods does not work because players may leave between periods.

3.2 Optimal Organizations: The General Case

We now consider the general organization design problem without imposing stationarity. In
a nonstationary organization, the equilibrium payoffs may change as play evolves, implying
that following some history, the joint payoff may be lower than the ex-ante maximal joint
payoff. In other words, the optimal equilibrium is not necessarily sequentially optimal.
Consequently, knowledge about suboptimal equilibrium play can be useful in solving for
the optimal organization.
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We solve this problem using the recursive method developed by Abreu, Pearce, and
Stacchetti (1990). This method focuses on characterizing the set of equilibrium payoffs
rather than the equilibrium actions. Once the equilibrium payoff set is known, we can use
it to derive the optimal equilibrium strategies and governance structures. This is done as
a step-by-step process. For each equilibrium payoff, we find the equilibrium actions and
governance structures associated with it. We then find the continuation payoffs associ-
ated with the equilibrium actions and, for the continuation payoffs, we find the associated
governance structure and the equilibrium actions, and so on.

3.2.1 Preliminary Results

Here we generalize several of the results from the stationary case. Because the proofs in
this subsection are straightforward variations of those for the parent results, for brevity we
present them in the Internet Appendix. The next result generalizes Lemma 1.

Lemma 5 (Shirking Lower Bound: General). At any (ht ,xt), the player with the (weakly)

lower continuation payoff shirks when he is a manager.

Note that Lemma 5 implies Lemma 1: in stationary organizations, payoffs are indepen-
dent of time, thus the continuation payoffs are the same as the equilibrium payoffs. The
intuition is the same as before: a manager needs sufficient continuation payoff to work.
This result implies that, unless an organization is fully centralized, shirking will occur with
a strictly positive probability in equilibrium. The next result generalizes Lemma 2.

Lemma 6 (Managers’ Incentive Constraint: General). In an organization in which

g(ht ,xt) = i for some (ht ,xt), effort ei(ht ,xt) > 0 can be enforced if and only if Player

i’s continuation payoff is ui(ht ,xt) ≥ u.

This result implies that, at any history and public signal realization, the designated
manager must expect to receive more than half of the future total payoffs if she is to exert
positive effort. Note that Lemmas 5 and 6 apply to any organization, not just to optimal
ones. The next result shows the necessity of overworking.

Lemma 7 (Equilibrium Abuse of Power: General). Consider an organization that im-

proves upon the default organization.

1. If the player with the highest continuation payoff at (ht ,xt) shirks, then the other

player also shirks at (ht ,xt).

2. At least one player must overwork with positive probability in equilibrium.
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3.2.2 Equilibrium Payoff Frontier

To solve for the optimal equilibrium, it suffices to characterize the equilibrium payoff fron-
tier: Player 2’s maximal equilibrium payoff for a given Player 1’s payoff. Specifically,
let u1 denote Player 1’s equilibrium (normalized) payoff. The equilibrium payoff frontier,
which we denote as f (u1), is the value function of the following constrained maximization
problem:

f (u1) = max
⟨G,S⟩∈Γ×Ψ(G)

(1−δ )E

[
∞

∑
t=1

δ t−1u2t | G,S

]
(9)

s.t. (1−δ )E

[
∞

∑
t=1

δ t−1u1t | G,S

]
= u1. (10)

We need to characterize only the equilibrium payoff frontier because it has a “self-
generating” property: for any payoff pair on the frontier, its continuation payoff pair (the
expected discounted payoffs of the players in the next period) will again stay on the frontier
along the equilibrium play. Applying the self-generating property repeatedly shows that
the continuation payoffs of the optimal equilibrium play remain on the frontier forever.
Therefore, knowledge about the equilibrium payoff frontier is sufficient to describe the
optimal governance structure and the equilibrium play.16

The standard method to characterize the equilibrium payoff frontier is to solve a func-
tional equation (the Bellman equation). Doing so, however, is unwieldy in our setting
because the equation would include many possible actions and governance structures. In-
stead, we solve for the equilibrium payoff frontier by deriving an upper bound and then
showing that this upper bound can be supported as an equilibrium payoff. It thus follows
that the upper bound is the equilibrium payoff frontier.

In this subsection, we restrict the analysis to discount factors in [δ1,δ FB). We show
that this restriction is without loss of generality in Subsection 3.2.4. We have the following
result:

Proposition 5 (Equilibrium Payoff Frontier). For δ ∈ [δ1,δ FB), the following holds.

1. f (u1) is symmetric along the 45-degree line.

16The self-generating property arises because the players can publicly observe the subordinate’s actions.
When it is publicly known that the subordinate has carried out the equilibrium action, there’s no need to
punish him by reducing his payoff below the equilibrium payoff frontier. Therefore, the continuation payoffs
associated with the optimal equilibrium play will stay on the frontier again.
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Figure 3: Equilibrium Payoff Frontier

2. For u1 ≥ 1
2(1− δ )B, (u1, f (u1)) is on the line segment between (B− c,B− c) and

(B+ 1
2b− c,B+ 1

2b−2c).

3. For u1 ∈ ( f (1
2(1−δ )B), 1

2(1−δ )B), f (u1) is a negative 45-degree line.

Figure 3 illustrates the equilibrium payoff frontier. Part 1 of Proposition 5 shows that
the payoff frontier is symmetric along the 45-degree line. This arises naturally because
the roles of Player 1 and Player 2 are identical in our setup. Part 2 shows that for u1 ≥
1
2(1− δ )B, the equilibrium payoff frontier is the line segment III −V . Point V is given
by 1

2(1− δ )B on the x-axis and f (1
2(1− δ )B) = B− c− λ (c− b

2) on the y-axis, where
λ = 2c−(1+δ )B

b (point V I is the mirror image of V ). That is, point V can be reached by
requiring both players to work (B−c,B−c) with probability 1−λ and, with probability λ ,
Player 1 to work and Player 2 to overwork (B+ b

2 −c,B+ b
2 −2c). This line segment is also

part of the feasible payoff frontier of the stage game. As a result, it is an upper bound for
all equilibrium payoffs. Part 2 then shows that the equilibrium frontier reaches this upper
bound.
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Notice that part of the line segment III −V can also be reached under the optimal sta-
tionary organization (Proposition 4). Figure 2 illustrates that the optimal stationary equilib-
rium (under full centralization) can reach the feasible payoff frontier for u1 ≥ 1−δ

δ (c− B
2 ),

which is the line segment III − IV . Part 2 of Proposition 5 shows that the feasible pay-
off frontier can be further extended to the left of IV to u1 = 1

2(1 − δ )B, which is the
minimal payoff Player 1 must receive to sustain the first-best outcome under the default
governance structure. This extension increases the total payoff. The further Player 1’s
payoff is to the left, the more often both players choose to work (rather than Player 1 work-
ing and Player 2 overworking), increasing the joint payoff. Part 2 then implies that, for
u1 ∈ [1

2(1−δ )B, 1−δ
δ (c− B

2 )], the efficiency of the relationship can be improved by using
a nonstationary equilibrium strategy, as we will show below.

Part 3 shows that when u1 ∈ ( f (1
2(1− δ )B), 1

2(1− δ )B), the equilibrium payoff fron-
tier is a negative 45-degree line (the line segment V −V I). The joint payoff is the same
anywhere on the frontier, and it is sustained by randomization between points V and V I.
The necessity of randomization in this region has the same logic as that in stationary or-
ganization design. To induce both players to work, asymmetry in the payoffs is needed:
one player must receive at least 1

2(1−δ )B. It is immediate from Figure 3 that the optimal
organization must implement payoffs on the line segment V −V I. Such points can only be
reached through randomization at t = 1, when one of the players is chosen to receive payoff
1
2(1− δ )B. Without loss of generality, let this player be Player 1, so that u∗1 =

1
2(1− δ )B

and u∗2 = f (1
2(1−δ )B).

3.2.3 Centralization in Nonstationary Environments

So far, we have only defined centralization in stationary environments. In nonstationary
environments, centralization may depend on patience. For example, an organization that
alternates the whip between the two players every period is, intuitively, very decentralized.
However, if the whip allocation rotates, say, every thousand periods, the extent to which
this organization is decentralized is unclear. In such an organization, the player who has
the whip earlier may use their power to extract more valuable benefits. Thus, we need
some form of discounting power allocations over time. For organization r, we define the
centralization index at (ht ,xt) as

C (ht ,xt ,r) = (1−η)
∣∣∣∣

∞

∑
j=t

η j−tE
[
1g j+1=1 −1g j+1=2 | ht ,xt ,r

]∣∣∣∣, (11)

25



where η ∈ (0,1) is an (arbitrary) “power discount factor.” Function (11) is a generalization
of our centralization index to nonstationary organizations. The centralization index ranges
from zero (full decentralization) to one (full centralization), and it may vary across histories
for the same organization. Note that, if gt = 1 (or gt = 2) always, the centralization index
is 1. Conversely, if gt is either 1 or 2 with equal probabilities for all t, the centralization
index is zero. Thus, even without knowledge of η , we can use the centralization index to
determine whether an organization is fully centralized or decentralized. For all other gov-
ernance structures, the centralization index depends on the power discount factor. Lower η
implies a lower tolerance to the “persistence of power:” governance structures with infre-
quent whip alternations are deemed to be more centralized. We treat η as an exogenously
given parameter reflecting a commonly agreed definition of centralization. None of our
results depends on η .17

3.2.4 Optimal Organizations

We now describe the optimal governance structures and equilibrium strategies. Our first
result establishes the necessary conditions for an organization to improve upon the default
organization.

Proposition 6 (Optimal Organization: Existence). An organization that improves upon

the default organization exists if only if δ ≥ δ1.

This result shows that dropping the stationarity constraint does not increase the range
of discount factors that sustain organizations with positive total payoff. The reason for
this surprising result is that stationarity in subgames at t > 1 is not a binding constraint on
the designer’s maximization problem. Because the condition that determines δ1 depends
on Player 1’s continuation payoff, imposing stationarity in the continuation game does not
affect this condition.

Proposition 6 also implies that the restriction to δ ∈ [δ1,δ FB) in Proposition 5 is without
loss of generality; if δ < δ1, it is not possible to improve upon the default organization and
the payoff frontier collapses into a single point, (0,0). The next result shows that optimality
requires centralization.

17We condition the centralization index on (ht ,xt) and measure centralization one period ahead. If we
instead conditioned it on ht only and measured centralization from time t, we could make any nonstationary
organization fully decentralized at t = 1 by flipping a fair coin to decide who is the inaugural manager at
t = 1. This is true even if this manager holds on to power forever.
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Proposition 7 (Optimality Requires Centralization). If δ ∈ [δ1,δ FB), an optimal orga-

nization must be fully centralized: If g(h1,x1) = 1, then g(ht ,xt) = 1 for all (ht ,xt).

This proposition shows that full centralization is necessary for optimality. The intuition
is the same as in the stationary case: Because Player 1 has the largest equilibrium payoff,
Player 2 would shirk as manager, which implies that Player 1 should always have the whip.
Thus, optimal organizations – stationary or nonstationary – must be fully centralized at any

point (ht ,xt).
The optimality of centralization is more surprising for nonstationary organizations. In

principle, there could be an additional force to discipline a manager – the threat of losing
the whip in the future if she shirks today. However, this threat is moot because the threat of
exit by the subordinate is immediate and, thus, more effective.

Another generalizable result is the Paradox of Power. Here we present a version of this
paradox that is independent of η (the power discount factor). Similar to the stationary case,
we say that an organization is G-optimal if it maximizes the total payoff for governance
structure G. Let ui(G) denote Player i’s payoff and u(G) = u1(G)+u2(G) the total payoff
under a G-optimal organization. Define R(h1,x1) as the set of all organizations for which
g(h1,x1) = 1 and e(h1,x1) = (1,1). The next proposition shows that moving from a not-
fully-centralized organization to full centralization benefits only the weaker party.

Proposition 8 (The Paradox of Power, Revisited). Consider two G-optimal organiza-

tions, rc and rd , with governance structures Gc and Gd , respectively. Let rc,rd ∈ R(h1,x1),

and suppose C(h1,x1,rc) = 1 and C(h1,x1,rd)< 1. Then, u1(Gc)≤ u1(Gd), and u2(Gc)>

u2(Gd).

As in the stationary case, the Paradox of Power follows from the payoff asymmetry
implied by Lemma 6. Because condition (7) is a constraint on the maximization problem,
it must be binding whenever possible. Because this constraint binds when the organization
is fully centralized, only the weaker party (the one with the lowest equilibrium payoff) can
benefit from a move to full centralization.

How do optimal nonstationary organizations look like? There are multiple equilibrium
profiles that maximize the joint payoff. Thus, there are multiple optimal organizations.
Despite this multiplicity, all optimal organizations share similar economic properties: they
are fully centralized, deliver the same payoffs, begin with effort profile (1,1), and play
profile (1,2) with positive probability for some t > 1. The next proposition characterizes
one of these organizations.
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Proposition 9 (Populist Dictator). For δ ∈ [δ1,δ FB), the following organization is opti-

mal:

1. Player 1 is the manager in each period.

2. Both players choose to work in the first period until some (random) period T . From

period T+1 on, Player 1 works, and Player 2 overworks.

The structure of the optimal equilibrium play in Proposition 9 is akin to that of de-
ferred compensation in optimal dynamic contract design. The payoff structure backloads
the payoff of Player 1, and this avoids inefficient actions at the beginning of the relation-
ship. Despite this similarity, the reason for backloading is somewhat different. The logic
here is that of rent extraction because, for any stationary relational contract that requires
overworking with positive probability, we can increase its efficiency by reducing the man-
ager’s payoff.

The optimal backloading of Player 1’s payoffs is a property of all optimal organizations,
and not just that described in Proposition 9. In particular, take any optimal stationary
equilibrium. We can modify it by asking Player 2 to work with probability 1 in the first
period and keep the rest of the equilibrium play unchanged. This modification remains an
equilibrium. It increases the joint payoff of the players while reducing Player 1’s payoff.

The rent-extraction logic implies that the relationship dynamics in this model differ
from similar models of perfect information in the literature. When there is perfect informa-
tion, the efficiency of the relationship improves over time (see Albuquerque and Hopenhayn
(2004), Thomas and Worrall (2018), and Barron et al. (2022)). In contrast, the efficiency
of the relationship in this model decreases over time.18 To sustain efficiency in the earlier
periods of the relationship, Player 2 overworks in the long run. As a result, while the man-
ager’s payoff increases over time, the worker’s payoff decreases, and the efficiency of the
relationship deteriorates.

The equilibrium described in Proposition 9 implies that the powerful party will refrain
from abusing her power until time T . That is, the powerful party behaves as if she had
no power in the early days of an organization. Such an apparent benevolence eventually
disappears; after T , the powerful party begins asking the subordinate to overwork. The

18The performance of the relationship can decrease over time or cycle when there is private information;
see, for example, Clementi and Hopenhayn (2006), Padro i Miquel and Yared (2012), Li and Matouschek
(2013), Li et al. (2017), and Li et al. (2023). When the players can discover new production possibilities,
however, it is possible that the performance of the relationship improves over time (Chassang (2010)).
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equilibrium thus displays a form of “populism:” power is centralized in the hands of one
agent, who initially behaves like a benevolent dictator, only to eventually show her true
colors and abuse her power by forcing the subordinate to undertake inefficient actions. As
the populist’s mask comes off, the organization becomes less efficient.

The next corollary shows how E[T ] – the expected period of transitioning from man-
agerial benevolence to abuse of power – depends on δ .

Corollary 1 (Patience and Abuse of Power). In the equilibrium described in Proposition

9, E[T ] is increasing in δ .

This result is very intuitive: If the manager is patient, she will work early in the game
even if the opportunity to abuse her power comes only in the distant future.

3.2.5 The Organizational Trilemma

Autonomous organizations must enforce contracts or promises internally by allocating
power to some members. By contrast, a non-autonomous organization may choose (or
be forced) to allocate the whip to a third party, such as courts, regulators, or independent
arbitrators. Suppose now that an unbiased third party exists; call it Player 3. Player 3 is not
a member of the organization; thus, she cannot exert effort or enjoy a share of the output.
If Player 3 observes the output, she can still play an essential role by promising to punish
those players who shirk. We interpret Player 3 as an unbiased arbitrator (or court) that
enforces the formal contracts written between Players 1 and 2.

Formally, consider an alternative primitive game, γ ′0, that is identical to γ0 except for a
third player with no productive actions and constant zero payoff. Let the governance struc-
ture be g(ht ,xt) = 3 for all (ht ,xt). That is, the third party always has the whip. Consider
an equilibrium where the third party expects both other players to exert the first-best effort
level. The third party punishes any deviation by reducing the payoff of the deviating party
by D (players can still avoid punishment by exiting at Date 3). It is easily seen that the first-
best payoffs can be sustained as an SPE for any discount factor δ . Thus, a non-autonomous
organization finds it easier to deliver efficient outcomes than an autonomous organization.
Note that, in this example, the non-autonomous organization is also decentralized, in the
sense that no organization member has power over one another. Thus, a non-autonomous
organization can achieve efficiency under full decentralization.

One issue with this analysis is the assumption that the third party is honest, competent
and inexpensive. A primary motivation for autonomy is a lack of trust in institutions. To
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capture this idea, suppose that, with probability ρ , the third party destroys the output yt .
This output destruction could be due to corruption (e.g., it is paid as a bribe), incompetence
(e.g., excessive regulation), or the cost of the system (e.g., taxes to pay for the legal system).
Now, a non-autonomous organization can sustain the first-best effort profile only if (1−
ρ)B ≥ c. Even in that case, the first-best payoffs can no longer be attained. We have the
following result.

Proposition 10 (Non-autonomous Organization). A non-autonomous organization where

an external monitor holds the whip and destroys the output with probability ρ is optimal if

and only if 2ρB < min
¶

2(B− c), B
2 (1−δ )− c−λ (c− b

2)
©

, where λ = 2c−(1+δ )B
b .

The following corollary – implied by Propositions 7 and 10 – summarizes the trilemma
of decentralization, autonomy, and efficiency.

Corollary 2 (The Organizational Trilemma). For δ ∈
[
δ1,δ FB), we have the following

tradeoffs.

1. (Decentralization + Autonomy → Inefficiency). A fully decentralized autonomous

organization is suboptimal.

2. (Autonomy + Efficiency → Centralization). An optimal autonomous organization is

fully centralized.

3. (Decentralization + Efficiency → Non-autonomy). An optimal organization is de-

centralized only if it is non-autonomous.

The Organizational Trilemma implies that decentralized autonomous organizations must
be inefficient unless players are sufficiently patient (i.e., Assumption 3 does not hold). To
maximize the joint surplus, the organization must either become fully centralized or give
up its autonomy. The latter option may also be inefficient because a third-party monitor
may be expensive, dishonest or incompetent.

3.2.6 When Power is Not a Scarce Resource

In our analysis so far, we have assumed that power is a scarce resource, in the sense that
only one player can have the whip at any point in time. This assumption is reasonable in
many institutional settings. Here, we briefly consider the case in which the organization
can assign whips to several players simultaneously. The case of multiple whips has a very
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simple solution if players can punish each other simultaneously. It is easy to see that, if
both players have whips, the first-best effort profile can be implemented, even in a one-shot
game. Having multiple whips is akin to decreasing the players’ outside payoffs or their
effort costs, so that cooperation is always achieved. In such a case, the optimal governance
structure is trivially decentralized. Thus, our model is relevant in situations where power
must be allocated only to a subset of the members of an organization. That is, power must
be a scarce resource because of technological, institutional, or incentive constraints.

3.2.7 When There are n > 2 Players

While our analysis focuses on two players (n = 2), our findings readily generalize to set-
tings with multiple players (n> 2). In the larger group, when the discount factor falls below
the first-best threshold, a symmetric allocation of power and payoff results in the shirking
of the manager (who has the whip). To induce the manager to work, she must receive a
higher payoff and more power, reinforcing the idea that total payoff increases in power and
payoff asymmetry. This higher payoff of the manager takes the form of abuse of power, yet
with n > 2, there is greater flexibility in deciding which subordinates overwork. Applying
the same reasoning, we can also establish the paradox of power and that centralization of
power is optimal when n > 2.

3.3 Centralization and Pay Inequality: Endogenous Output Shares

In this section, we consider an extension of the model in which players can ex ante agree
on a division of output such that Player i receives output shares ωit at t, where ωit ∈ [0,1]
and ω1t +ω2t = 1. As with the whip allocation, players can commit to a contingent share
rule Ω = {Ωt}∞

t=1, where Ωt : (ht ,xt)→ (ωt). We keep the timing within each period as
before: the output shares at t must be determined by (ht ,xt); they cannot depend on et or
yt .19 Because the organization is autonomous, Ω must be self-executing (i.e., hard-wired
in the organization’s technology). An organization is now defined as ⟨γ0,G,Ω,S⟩.

Under the default governance structure, it is easy to see that ωit = 0.5 for all t is weakly
optimal. That is, if the whip is not available, the ability to choose an asymmetric share
rule does not improve the organization’s surplus. Things are different when the designer

19Allowing output shares to depend on yt or et is identical to automating punishment, which amounts to
solving the problem of autonomy by assumption, rendering the problem trivial and uninteresting. G and Ω
may still depend on past effort levels indirectly, because players may “write reports” about the past actions
they observed and feed these to the self-executing contracts that govern G and Ω.
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can optimally choose a governance structure. The combination of an asymmetric output
division and a whip allocation significantly expands the set of enforceable effort profiles.
The next result describes the optimal organization (the proof is long and thus shown in the
Internet Appendix).20

Proposition 11 (Optimal Organization with Endogenous Shares). If 2B ≥ 3c, for any

δ , an optimal organization sustains the first-best effort levels (e1,e2) = (1,1). If 2B < 3c,

there exists δ c ∈ (0,δ FB) such that an optimal organization sustains the first-best effort

levels (e1,e2) = (1,1) if and only if δ ≥ δ c. In addition,

1. A fully centralized optimal organization exists for any δ ≥ δ c.

2. A fully decentralized optimal organization exists only if δ ≥ δ d > δ c.

Proposition 11shows that, if 2B ≥ 3c, the first-best can be sustained regardless of the
continuation payoffs. In that case, the organization can assign the whip and a higher output
share to one player, so that this player works even in a one-shot game, while the subordi-
nate works to avoid being whipped. When this is possible, we can implement the first-best
with an organization that is fully decentralized, fully centralized, or anything in between.

Proposition 11 also shows that the optimality of centralized governance is robust to
making output shares endogenous. It applies to all cases, stationary or not. It shows that
whenever the first-best can be sustained, it can be sustained by a fully centralized organi-
zation. In contrast, the conditions for the optimality of fully decentralized organizations
are more stringent than those for fully centralized ones, implying that centralization strictly
dominates decentralization for some parameters, but not vice versa. The intuition here is
the same as in the case of exogenous shares. An optimal organization must have asym-
metric payoffs. The whip allocation helps with this goal. With endogenous shares, payoff
inequality can also be created by an asymmetric share rule. Thus, for sufficiently high
discount factors, it might be possible to implement the first-best with a fully decentralized
organization. But governance decentralization is always an obstacle to payoff asymmetry.

We have the following result.

Corollary 3 (Asymmetric Share Rules). Consider a fully centralized organization where

Player i is the manager. If this organization implements the first-best effort levels (1,1), it

must have an asymmetric share rule: ωit ≥ c
(1+δ )B > 1

2 for all t.

20Here we no longer restrict the parameter set by Assumption 2. We made that assumption for simplicity
of exposition only; it is unnecessarily too restrictive in the current application.
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Corollary 3 shows that, in fully centralized organizations, managers should always be
given a greater share of the profit. That is, to achieve efficiency, the organization needs to
offer one of the players more power and a larger share of the output. This result echoes
the famous monitor-as-owner result in Alchian and Demsetz (1972), formalized elegantly
by Holmström (1982, 1999) in a moral hazard in teams model, and by Rayo (2007), who
incorporates relational contracts in the model. In Holmström (1982, 1999), the owner is
an external enforcer of contracts. In Rayo (2007), the owner also contributes to production
and needs to be motivated.21 In these models, the emergence of the owner requires the
workers’ efforts to be private information. When the efforts are publicly observed, Holm-
ström (1999) shows that an external enforcer is unnecessary. And Rayo (2007) shows that
dispersed ownership is optimal. The dispersed ownership result also arises in our model:
equal output sharing is optimal under the default governance structure.

Proposition 11 shows that a single player typically arises as the owner-manager, even
if efforts are publicly observable. We depart from existing relational contracting models
by introducing a managerial activity: using the whip to enforce desired behaviors. Our
model then shows that the optimal governance structure is to put this managerial activity
in the hands of a single player. To motivate this designated manager, a larger share of the
output should also go to her, making her the “owner.” As mentioned earlier,“carrots” must
be given to the player who holds the “sticks.”

We end this section by connecting our model to the property rights theory of the firm
à la Grossman and Hart (1986). This connection is inspired by Holmström (2016), which
views Grossman and Hart (1986) as a theory of markets. Holmström writes

“...unlike Marx, who thought the primary purpose of the firm’s concentrated

power was to exploit the workers, in the logic of the (extended) property rights

theory the purpose is to allow the firm to design more efficient organizational

structures, in situations where markets function poorly, because of external-

ities (such as excessive hold-ups). Firms are far from democratic, but they

are kept in check by the fact that workers, who own their human capital, can

go elsewhere if they are unhappy—another illustration of the effectiveness of

property rights.”

21The emergence of the owner-manager in Rayo (2007) also depends on the heterogeneity in the observ-
ability of effort across the players. In his model, the ownership choice reduces the total (non-enforceable)
bonus by taking advantage of the differences in the marginal rates of substitution between using the con-
tractible output and the non-contractible signals of efforts to motivate the players.
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Grossman and Hart (1986) shows how asset allocation keeps firms in check. However,
firms also design organizational structures on top of the asset allocation. Our model shows
that the way to keep the owner/manager in check is by giving her a higher share of the
surplus. This, of course, enriches and creates inequality. However, without doing so, the
threat of the worker’s exit would not be effective.

4 Conclusion

In a relational contracts setup, we consider the optimal allocation of power among the
members of an autonomous organization. We show that the goals of autonomy, decen-
tralization, and efficiency conflict. This organizational trilemma results from the need for
payoff asymmetry to incentivize the member who holds power.

Our model shows that, in the absence of external enforcement, self-executing contracts
can be used to support relational incentives. Thus, the availability of self-executing con-
tracts improves the performance of autonomous organizations. The flip side is that to real-
ize such gains, an autonomous organization must use self-executing contracts as a tool for
centralizing power. Centralization implies inequality in power and payoffs among members
of autonomous organizations.

While centralization suggests that power rests solely with the manager, this isn’t the
case, as subordinates hold power through their right to exit. If the manager fails to perform,
a subordinate may choose his outside option in the future. Giving more power to the man-
ager enhances the credibility of the subordinate’s exit threat and, paradoxically, strengthens
the subordinate’s influence over her behavior.

Our model connects naturally to Alchian and Demsetz’s (1972) famous statement that
power in firms and markets is fundamentally the same, as it stems from the ability to exit
and withhold future business. Our analysis shows that the effectiveness of exit threats in
providing incentives depends crucially on the proper allocation of power within firms. As
Holmström (2016) points out, firms frequently adjust these power distributions through
changes in job descriptions, reporting structures, and task assignments. These organiza-
tional adjustments not only serve strategic purposes but also influence broader incentive
systems, shaping the behavior of both those who wield formal authority and those subject
to it. Our paper provides a simple framework that serves as a foundation for understanding
changes in organizational design.
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A Proofs

Proof of Proposition 1. Denote the players’ expected equilibrium payoffs as ui for i ∈
{1,2}. Without loss of generality, assume that u1 ≥ u2. Then, because u1 + u2 ≤ 2(B− c),
we know that u2 ≤ B− c. Stationarity implies that e2t = e2, i.e., effort is independent of
t. There are two cases to consider: either e2 = 1 or e2 = 2. When e2 = 1, the incen-
tive constraint is (1− δ )

(
c− B

2

)
≤ δu2. Because u2 ≤ B− c, the constraint implies that

δ ≥ (2c−B)/B = δ FB, which contradicts Assumption 3, implying e2 ̸= 1. Assumption 1
implies that the payoff from a deviation is larger when e2 = 2, thus Player 2 also deviates
if he is required to choose e2 = 2. Thus, e2 = 0. Trivially, e1 = 0 because B

2 − c < 0 and
B+b

2 −2c < 0.

Proof of Lemma 1. Without loss of generality, assume that u1 ≥ u2. Consider a period in
which Player 2 has the whip. Using the same arguments as in the proof Proposition 1, we
can show that Player 2 shirks. Thus, Player 2 always shirks when gt = 2.

Proof of Proposition 2. Without loss of generality, assume u2 ≤ u1. Then, by Lemma 1,
Player 2 shirks whenever he has the whip. Suppose a stationary organization is power-
blind. Power-blindness implies that Player 2 must also shirk when he does not have the
whip. Because Player 2 always chooses e2 = 0, and B/2 < c, Player 1 will never choose
e1 = 1. Similarly, because (B+ b)/2 < 2c, she will never choose e1 = 2. It follows that
e1 = 0.

Next, suppose a stationary autonomous organization is identity-blind. Recall that Player
2 shirks when he has the whip (because u2 ≤ u1). Now, suppose that he does not have the
whip. If he is forced to put in e2 = 1, his participation constraint is given by

(1−δ )
(

B
2
− c

)
+ δuc ≥ 0,

where uc is Player 2’s continuation payoff. Because u2 ≤ u1 implies uc ≤ B− c, this con-
straint requires δ ≥ (2c−B)/B = δ FB, which is a contradiction. If she is forced to put in
e2 = 2, his participation constraint is given by

(1−δ )
(

B+ b
2

−2c
)
+ δuc ≥ 0.

Because we must have uc ≤B+b−2c, this constraint requires δ ≥ (4c−B−b)/(B+b)>

δ FB. This, again, is a contradiction. Because Player 2 shirks, identity-blindness implies
that Player 1 also shirks.
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Proof of Lemma 2. Player i’s IC constraint for working when xt is

(1−δ )
(

B
2
+

y−it

2
− c

)
+ δui ≥ (1−δ )

y−it

2
. (A.1)

where y−it is the output of Player −i (i.e., not i). Rearranging yields (7). Thus, if (7) holds,
ei(xt) = 1 can be enforced when g(xt) = i. Because the IC constraint for ei(xt) = 2 implies
(A.1), if either ei(xt) = 1 or ei(xt) = 2 is enforceable, (7) must hold.

Proof of Lemma 3. Consider a stationary equilibrium and let (u1,u2) be the expected pay-
offs. Let u1 ≥ u2. Then, by Lemma 1, Player 2 does not exert effort when he has the whip,
i.e., if g(xt) = 2, then e2(xt) = 0. Suppose Player 2 exerts positive effort at some xt , where
g(xt) = 1, but Player 1 shirks. Player 2’s participation constraint requires (1− δ )( y2t

2 −
ce2) + δu2 ≥ 0, which doesn’t hold because u2 < B− c (Player 2 has the lowest payoff,
and the maximum joint payoff is less than 2(B− c)). Thus, we conclude that when Player
2 exerts nonzero effort, Player 1 must also exert nonzero effort ⇒ if Player 1 shirks, Player
2 must also shirk (Part 1).

If Player 2 never exerts effort, Player 1 can obtain a maximum surplus of B
2 − c < 0.

Thus, Player 1 does not exert effort if Player 2 always shirks. For the organization to
improve upon r0, Player 1 must then exert nonzero effort for some (nonzero measure) set
of public signals H ∈ [0,1], and Player 2 must exert nonzero effort for some (non-zero
measure) subset of H. Because Player 2 shirks as manager, Player 2 must exert nonzero
effort for some xt ∈ H where g(xt) = 1.

Suppose g(xt) = 1 and e1(xt) > 0 for some xt ∈ H. Then, (7) implies that Player 1
must have u1 > B− c (using Assumption 3). Given that Player 2 shirks when manager, if
Player 2 chooses e2(xt) ≤ 1 for all xt , the maximum payoff Player 1 can get is p(B− c),
where p is the probability that Player 1 is the manager in a stationary organization. Thus,
(7) is violated, implying that Player 1 shirks. We conclude that Player 2 must overwork
with strictly positive probability when subordinate (Part 2).

Proof of Lemma 4. If Player 1 works when g(xt) = 1, Player 2 participation constraint for
working is (1− δ )(B− c)+ δu2 ≥ 0, which holds because B > c. If Player 2 overworks
instead of working, his participation constraint is (1−δ )(B+b/2−2c)+δu2 ≥ 0, which
again holds because of Assumption 2. Thus, there is no need for Player 1 to choose the
inefficient action (overwork) when g(xt) = 1, because Player 2’s behavior can be enforced
if Player 1 works instead. There is also no need for Player 1 to overwork when g(xt) = 2
because Player 2 cannot be induced to work when manager and, when subordinate, his
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continuation payoff is irrelevant for his participation constraints. Thus, we conclude that
effort profiles of the type (2,e) are not part of a stationary equilibrium that maximizes the
total payoff for a given p. Lemma 3 rules out profiles (0,1) and (0,2). Thus, the only
remaining profiles are (0,0), (1,0), (1,1), and (1,2).

Proof of Proposition 3. Lemma 4 implies that there are only four effort profiles that can be
enforced by a p-optimal organization that improves upon r0. Of these, Lemma 1 implies
that profiles (1,2) and (1,1) can only be played if g(xt) = 1, and (1,2) must be played
with some positive probability.

Clearly, it is not optimal to play profiles (0,0) or (1,0) with positive probability when
g(xt) = 1 because they can be replaced with (1,1), which increases total payoffs and slacks
Player 1’s incentive constraints without affecting Player 2’s participation constraints, as
these are not binding when (1,1) is played. Thus, let α denote the probability that profile
(1,2) is played when g(xt) = 1, and 1−α the probability of (1,1). When g(xt) = 2, let
(1,0) be played with probability β and (0,0) with probability 1−β . We can then write the
payoffs as

u1 = p
(

B− c+α
b
2

)
+(1− p)β

(
B
2
− c

)

u2 = p
(

B− c+α(
b
2
− c)

)
+(1− p)β

B
2

u = u1 + u2 = p (2(B− c)+α(b− c))+ (1− p)β (B− c) .

Note that u decreases with α and increases with β , but u1 increases with α and decreases
with β . Player 2’s participation constraints hold for any α and β (because B+ b

2 −2c > 0
by Assumption 2). Thus, in a p-optimal organization, α and β are chosen to maximize u

subject to Player 1’s incentive constraint in (7). A solution must exist because the objective
function is continuous in α and β and the set of (α ,β ) defined by (7) is compact. Because
u1 is linear in both α and β , (7) must bind. This implies that, in a p-optimal organization,
u1(p) = u and, thus, independent of p. Because u is strictly increasing in p ∈ (0.5,1] for
any α ,β ∈ [0,1], (by the Envelope Theorem) u(p) strictly increases with p. Thus, since
u1(p) = u, u2(p) must strictly increase with p.

Proof of Proposition 4. Continuing from the proof of Proposition 3, note that u1 is maxi-
mized at p = α = 1. Thus, from Lemma 2, a necessary condition for Player 1 to work as
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manager is

B− c+
b
2
≥ 1−δ

δ

(
c− B

2

)
= u,

which requires δ ≥ δ1 := 2c−B
B+b , proving the necessity part.

To prove sufficiency, we first characterize the optimal stationary organization when
δ ≥ δ1. The total payoff is

u1 + u2 = p (2(B− c)+α(b− c))+ (1− p)β (B− c) ,

which is strictly increasing in p for any α ,β ∈ [0,1]. Player 1’s payoff u1 is also increasing
in p for any α ,β ∈ [0,1], which makes the incentive condition (7) easier to meet. Thus,
increasing p increases total payoffs while slacking Player 1’s incentive constraint (Player
2’s participation constraints are unaffected), which implies that the optimal organization
must be fully centralized, i.e., p∗ = 1.

Setting p∗ = 1, the total payoff decreases with α (β is irrelevant in this case). Thus, the
optimal α is the lowest level that meets Player 1’s incentive constraint:

B− c+α
b
2
≥ 1−δ

δ

(
c− B

2

)
= u, (A.2)

which then leads to

α∗ =
2
b

[
1−δ

δ

(
c− B

2

)
− (B− c)

]
=

2
b
(u− (B− c)) . (A.3)

Because (1− δ )/δ decreases in δ and 2c > B, α∗ decreases in δ . To see that α∗ ≤ 1,
evaluate (A.3) at δ1 to find that it is 1. To see that α∗ ≥ 0, evaluate (A.3) at δ FB to find that
it is 0. Thus, if δ ≥ δ1, we can always choose the (unique) organization r∗ where p = 1 and
α = α∗, so that the organization improves upon r0. By construction, r∗ is the stationary
organization with the highest total payoff.

Proof of Proposition 5. Part 1 is straightforward due to the symmetric structure of the
game.

For Part 2, notice that the line segment between (B− c,B− c) and (B+ 1
2b− c,B+

1
2b−2c) is a subset of the feasible payoff frontier of the stage game. Therefore, if a payoff
pair on this line segment is attainable, it must coincide with (u1, f (u1)).

The proof of Proposition 4 shows that any payoff pair (u1, f (u1)) such that u1 ≥ u can
be enforced by a stationary SPE. Consider the point on the line segment where u1 = u (this
is point IV in Figures 2 and 3). Proposition 4 implies that IV is sustained by the following
equilibrium: Player 1 always holds the whip, and the effort profile randomizes between
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(1,2) and (1,1) with probabilities α∗ and 1−α∗. Thus, all payoff profiles on the line
between points III and IV are part of the equilibrium payoff frontier.

The equilibrium payoff frontier can be extended to the left of point IV on the line
segment between (B − c,B − c) and (B + 1

2b − c,B + 1
2b − 2c). Without loss, suppose

Player 1 is the manager at (ht ,xt) and the equilibrium payoffs at (ht ,xt) are on the line
segment between (B−c,B−c) and (B+ 1

2b−c,B+ 1
2b−2c). To be on that line, no Player

can shirk at (ht ,xt).22 Thus, Lemma 6 implies that Player 1’s continuation payoff u1(ht ,xt)

must be weakly greater than u (otherwise she would shirk).
Let umin denote the minimum equilibrium payoff to Player 1 at (ht ,xt), conditional on:

(i) her being the manager, (ii) nobody shirking, and (iii) her continuation payoff being on
the line segment between (B− c,B− c) and (B+ 1

2b− c,B+ 1
2b− 2c). Because nobody

shirks, the minimum payoff to Player 1 happens when e(ht ,xt) = (1,1) and her continua-
tion payoff is u1(ht ,xt) = u. Thus,

umin = (1−δ )(B− c)+ δ · 1−δ
δ

(c− B
2
) =

1
2
(1−δ )B.

Note that (umin, f (umin)) is on the line segment between (B− c,B− c) and (B+ 1
2b−

c,B + 1
2b − 2c), because (umin, f (umin)) is a convex combination of (B − c,B − c) and

(u, f (u)), with weights 1− δ and δ , respectively. Using Proposition 4, we can see that
(umin, f (umin)) can be sustained by the following nonstationary SPE: Player 1 always holds
the whip, and the action profile is (1,1) in period 1 and then it randomizes between (1,2)
and (1,1) with probabilities α∗ and 1−α∗ from period 2 on. Player 1’s IC constraint at
t = 1 is satisfied with equality and Player 2’s participation constraint at t = 1 also trivially
holds. Thus, (umin, f (umin)) is on the frontier (this is point V in Figure 3, which is to the
left of IV ).

We now show that the frontier cannot be extended to the left of point V on the line
segment between (B−c,B−c) and (B+ 1

2b−c,B+ 1
2b−2c). By construction, umin is the

minimum equilibrium payoff to a working manager if no one shirks. Thus, to the left of
point V on the line segment between (B−c,B−c) and (B+ 1

2b−c,B+ 1
2b−2c), we either

need (i) at least one shirking player or (ii) Player 2 to be the manager. If (i), the equilibrium
payoff must place some weight on payoffs where at least one of u1 or u2 is zero or negative.
But then the equilibrium payoff cannot be on the line segment between (B− c,B− c) and
(B+ 1

2b− c,B+ 1
2b−2c), which is a contradiction. If (ii), Player 2’s continuation payoff

22More rigorously, players cannot shirk for a set of (ht ,xt) that occurs with strictly positive probability in
equilibrium.
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must be at least umin, implying that u2 ≥ umin > B− c. But the maximum u2 on the line
segment between (B−c,B−c) and (B+ 1

2b−c,B+ 1
2b−2c) is B−c, implying u2 ≤ B−c,

which is a contradiction. We conclude that the frontier cannot be extended to the left of
point V . This completes the proof of Part 2.

Note: The equilibrium payoff frontier may extend to the right of point III (as shown in
Figure 3). We note that this region is irrelevant for finding the optimal organization because
it is dominated by point III.

To prove Part 3, it is sufficient to show that no payoff pair can achieve a joint surplus
greater than 1

2(1− δ )B+ f (1
2(1− δ )B). Suppose to the contrary that this is not the case.

Let (u′1,u′2) denote a payoff pair that maximizes the joint surplus. Without loss of general-
ity, we assume that (u′1,u′2) is sustained by a pure action profile. We first show that (u′1,u′2)
must be sustained by action profile (1,1). To see this, decomposing u′1 and u′2 into current
payoffs and continuation payoffs leads to

u′1 = (1−δ )u1(e′1,e′2)+ δu′1,c, and u′2 = (1−δ )u2(e′1,e′2)+ δu′2,c,

where (e′1,e′2) is the action profile in period 1, and u′1,c and u′2,c denote the continuation
payoffs. Notice that, because (u′1,u′2) maximizes the joint surplus, we have u′1,c + u′2,c ≤
u′1 + u′2. Therefore,

u1(e′1,e′2)+ u2(e′1,e′2) ≥ u′1 + u′2.

Also note that, because playing the effort profile (1,2) forever is an equilibrium, we have
u′1 + u′2 > 2B+ b− 3c, where the latter is the payoff sustained by the effort profile (1,2).
Since only effort profile (1,1) gives a higher payoff than (1,2), we then must have (e′1,e′2) =
(1,1).

However, because (u′1,u′2) is between points VI and V in Figure 3, we know that both
u′1 and u′2 must be smaller than 1

2(1− δ )B. In this case, regardless of how the whip is
allocated, one of the two players would prefer to shirk. This is a contradiction.

Proof of Proposition 6. Suppose first that all managers shirk. The maximum total payoff is
then B−c (which happens only when all subordinates work). A subordinate’s participation
constraint when he works implies (1−δ )

(
c− B

2

)
≤ δui(ht ,xt). Because ui(ht ,xt)≤ B−c,

the constraint implies that δ ≥ (2c−B)/B = δ FB, which contradicts Assumption 3. Thus,
in equilibrium, subordinates would also shirk if managers always shirk. It follows that to
improve upon r0, there must exist (ht ,xt) where the manager does not shirk.

At any given (ht ,xt), to obtain the maximum continuation payoff for the manager (say,
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Player i), the other player must overwork with probability 1 for all t ′ > t. But then Player i

will always have the highest continuation payoff for all t ′ > t, and from Lemma 7, Player
i must at least work in t ′ > t for the other player to overwork in t ′ > t. Thus, the highest
possible continuation payoff for a manager is B+ b

2 − c (that is, Player i works and Player
−i overworks). From Lemma 6, a necessary condition for a manager not to shirk is

B− c+
b
2
≥ 1−δ

δ

(
c− B

2

)
= u,

which requires δ ≥ δ1 := 2c−B
B+b , proving the necessity part. Sufficiency is implied by Propo-

sition 4.

Proof of Proposition 7. An optimal organization must deliver total payoff u1 + u2 = (1−
δ )B

2 + f ((1−δ )B
2 ), which is the total payoff at frontier points V or V I (or a convex combi-

nation of both). Without loss of generality, suppose that Player 1 is the manager at (h1,x1).
Because all players must not shirk at any time to sustain equilibrium payoffs at points V or
V I, Player 1 must not shirk at (h1,x1). For Player 1 not to shirk, her continuation payoff
must be at least u (see Lemma 6). That is, the continuation payoff profiles at (h1,x1) must
lie on the frontier points between III and IV . Such continuation payoff profiles require
that only effort profiles (1,1) and (1,2) are played with positive probability at t > 1. In
such a case, we must have u1(ht ,xt) > u2(ht ,xt) for all t > 1. Lemma 5 then implies that
Player 2 would shirk if he is a manager at any (ht ,xt) for all t > 1. To avoid shirking,
the whip should then be given to Player 1 for all t > 1. That is, optimality requires full
centralization.

Proof of Proposition 8. Write the total payoff of a G-optimal organization r ∈ R(h1,x1) as

u(G) = (1−δ )2(B− c)+ δ (u1(h1,x1,G)+ u2(h1,x1,G)), (A.4)

where ui(h1,x1,G) is Player i’s continuation payoff. Because rc is fully centralized and
Gc-optimal, Proposition 7 implies that rc must also be unconstrained optimal, implying it
must sustain the payoffs at point V in Figure 3. Thus, we must have u1(h1,x1,Gc) = (1−
δ )B

2 . Lemma 6 implies that u1(h1,x1,Gd)≥ (1−δ )B
2 , thus we must have u1(h1,x1,Gd)≥

u1(h1,x1,Gc). Proposition 7 implies u(Gc) > u(Gd), so we must have u2(h1,x1,Gd) <

u2(h1,x1,Gc), implying u2(Gc) > u2(Gd).

Proof of Proposition 9. Consider the following strategy profile in which Player 1 always
holds the whip. In period 1, the state of the dynamics is given by (u1,u2) = (1

2(1 −
δ )B, f (1

2(1− δ )B)), the action is fixed as (1,1), and the continuation payoff is given by
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(u1,u2) = (1−δ
δ (c− B

2 ), f (1−δ
δ (c− B

2 )). In period 2, the state of the dynamics randomizes
between (u1,u2) = (1

2(1−δ )B, f (1
2(1−δ )B)) and (u1,u2) = (B+ b

2 − c,B+ b
2 −2c). If

the former realizes, the state of the dynamics gets back to what happens in period 1. If the
latter realizes, the state of the dynamics is absorbed by (u1,u2) = (B+ b

2 − c,B+ b
2 −2c).

This strategy profile constitutes an SPE because the proof of Proposition 5 has shown that
in period 1, action (1,1) can be enforced with continuation payoffs (u1,u2) = (1−δ

δ (c−
B
2 ), f (1−δ

δ (c− B
2 )), and action (1,2) with (u1,u2) = (B + b

2 − c,B + b
2 − 2c) is an SPE

due to Assumption 2. Following the SPE we construct, the dynamics in the long run fall
into (u1,u2) = (B + b

2 − c,B + b
2 − 2c) with probability one, where the action is (1,2)

forever.

Proof of Corollary 1. For any t ∈ (1,T ), let θ denote the probability that the effort profile
(1,1) is played. We must have

1−δ
δ

(
c− B

2

)
= θ

(
1−δ

2
B
)
+(1−θ )(B+

b
2
− c).

Implicit differentiation gives

∂θ
∂δ

= −
− 1

δ 2
2c−B

2 + θB
2

B+ b
2 − c− 1−δ

2 B
= −

− 1
δ 2

δ FBB
2 + θB

2

B+ b
2 − c− 1−δ

2 B
> 0

because δ ≤ δ FB and θ < 1. Thus, higher δ increases the probability of (1,1), delaying
the expected realization of T .

Proof of Proposition 10. If the organization is non-autonomous, it can implement the first-
best effort profile if (1−ρ)B ≥ c. In this case, the joint surplus is 2(1−ρ)B−2c. To be an
optimal organization, this surplus must be greater than that in point V in Figure 3, which is
1
2(1−δ )B+B−c−λ (c− b

2), where λ = 2c−(1+δ )B
b . These two inequalities jointly imply

2ρB < min
¶

2(B− c), B
2 (1−δ )− c−λ (c− b

2)
©

.

Proof of Corollary 3. In a stationary organization with p = 1, let ω denote Player 1’s out-
put share. To sustain (e1,e2) = (1,1), we need ω ≥ c

(1+δ )B to satisfy Player 1’s IC con-
straint. Note that, for δ < δ FB, c

(1+δ )B > 1
2 .
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Governance and Management of Autonomous
Organizations: Internet Appendix
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1 Management and Governance Issues in DAOs

While Decentralized Autonomous Organizations can take many different forms, the typical
example is an organization that raises funds from its members to pursue some collective
goals. A famous example is ConstitutionDAO, which raised over $40 million in an (ul-
timately unsuccessful) attempt to buy a copy of the U.S. Constitution in an auction. A
DAO usually raises funds by selling tokens created on a “smart contract” platform such
as Ethereum.1 “Decentralization” means that all members have the right to participate
directly in decision-making, such as how to spend treasury funds and how to govern the
organization. Typically, decision-making rights are distributed as governance tokens. Most
decisions are voted on by members who own the governance tokens.

DAOs face a traditional collective action problem: To achieve a common goal, the in-
dividual members must exert costly effort. For example, a DAO must often decide how to
allocate its funds across multiple projects. Individual members must gather information to
decide which projects to support. Because information acquisition is costly, members have
an incentive to free-ride on the effort of others.2 Because most DAOs are not legal entities,
DAO members usually cannot resort to the legal system to enforce contracts among mem-

*London School of Economics, CEPR and ECGI, d.ferreira@lse.ac.uk.
†HKU Business School, jli1@hku.hk.
1A smart contract is a piece of code that automatically executes a transaction once prompted by a message.

A famous analogy is that of a vending machine, in which a product is dispensed automatically once coins are
inserted. Smart contracts can be “state-dependent,” in the sense that a transaction is executed automatically
if a particular state occurs.

2See, e.g., Hall and Oak (2023): “Users of online systems expect convenience and are generally uninter-
ested in participating in governing the platforms that they use. Rates of voting in online communities in the
web3 space are generally quite low” (p.1).
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bers.3 Thus, contract enforcement is mainly based on code (i.e., self-executing contracts)
and relational incentives (i.e., trust and reputation).

While the ability to write code that automates contract execution is touted as the greatest
strength of DAOs, in reality, only some transactions can be automated. Most DAOs depend
on “off-chain” actions, which require human execution. In the example of Constitution-
DAO, someone must convert digital coins into fiat money, save them in a bank account,
and physically bid in the auction. After a failed bid, there is also the non-trivial issue of
returning (some of) the money to members and paying for operation costs. As a matter of
fact, ConstitutionDAO never held a single vote using its token.4 Because of these off-chain
actions, most DAOs have a core team (or a foundation), who often have discretion over
many decisions. These are essentially (in all but name) “managers.”5

The existence of managers implies that real-world DAOs are not as decentralized as the-
oretical DAOs.6 Examples of abuse of power by DAO managers abound. The foundation
that manages the blockchain Arbitrum allegedly started to spend its funds even though its
nearly $ 1 billion budget had not yet been approved by governance token holders.7 The core
team that runs Aragon—a DAO that builds tools for managing DAOs—banned some DAO
members from its governance discussion forums. Commenting on the ban, CoinDesk con-
tributor Danny Nelson concludes that “their banishment from Aragon’s Discord for asking

‘probing questions’ and using ‘inappropriate language’ highlights the disconnect between

the censorship-resistant ideals of crypto governance and the reality that insiders hold con-

siderable sway.”8 In November 2023, without holding a vote, the Aragon team decided
to dissolve the DAO’s governing body and return most of its assets to tokenholders. DAO
members voted to sue the Aragon Team, which shows that full autonomy is often a myth.9

DAO managers’ power is not absolute. DAO members who are unhappy with manage-
ment may leave the organization. A prominent example is Nouns, a DAO that invests in
several projects that promote their branded NFTs. Unhappy with management decisions,

3See https://t.ly/Mf806
4https://www.vice.com/en/article/bvnze5/constitutiondao-is-shutting-down-after-unrelenting-chaos
5DAO founders and key players understandably avoid using titles such as CEOs, executives, and man-

agers. Instead, they often refer to themselves as “core developers,” “heads” and “leads.”
6Ethereum—the “Layer-1” blockchain on which most DAOs are built—is also fairly centralized. For

example, Fracassi, Khoja, and Schär (2024) show that ten individual developers contributed 68% of all im-
plemented core Ethereum Improvement Proposals.

7https://t.ly/y2T6n.
8https://t.ly/A5Ru9. Note that, although notionally decentralized, Aragon has a “Head of Communica-

tions.”
9https://cointelegraph.com/news/aragon-dao-lawsuit-founders-patagon-management
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56% of Nouns NFT holders voted to leave the organization, taking about $27 million worth
of treasury funds along with them. The defectors created a new DAO, with the same NFT
artwork as the original, where each holder is allowed to “ragequit” and take some of the
funds with them.10

In contrast to these examples, an example of a high-performing autonomous organiza-
tion is the Ethereum network. Unlike most of the DAOs built on its blockchain, the gover-
nance of Ethereum is entirely off-chain. Ethereum has no governance tokens and holds no
“on-chain” votes to decide on changes and upgrades. Instead, changes are adopted when
some key players in the network agree, in a process often dubbed “rough consensus.” In
practice, this means that the Ethereum Foundation, particularly its effective controller, Vi-
talik Buterin, has most of the real decision-making authority. Thus, Ethereum’s governance
is highly centralized.

As these examples illustrate, real-world DAOs (as opposed to idealized DAOs) are rife
with governance, management, and performance problems. Because of their alleged auton-
omy, external enforcement of contracts is limited. DAOs are typically centralized due to the
power of core teams and foundations. These managers may be able to punish bad behavior,
for example, by banning some members or canceling their tokens. However, they can also
abuse their power and have discretion over the use of funds. Non-managing members have
the option to quit, thus imposing costs on those who stay.

2 Omitted Proofs

Proof of Lemma 5. Let ui(ht ,xt) denote Player i’s normalized continuation payoff at (ht ,xt)

under equilibrium play. Suppose u1(ht ,xt) ≥ u2(ht ,xt) for some (ht ,xt). If g(ht ,xt) = 2
and e2(ht ,xt) = 1, Player 2’s incentive constraint implies (1− δ )

(
c− B

2

)
≤ δu2(ht ,xt).

Because u2(ht ,xt) ≤ B− c, the constraint implies that δ ≥ (2c−B)/B = δ FB, which con-
tradicts Assumption 3. Thus, if g(ht ,xt) = 2, we must have e2(ht ,xt) = 0 (notice that it if
e2(ht ,xt) = 1 is not incentive compatible, e2(ht ,xt) = 2 also is not) . We conclude that if
Player i is the manager and is expected to work at (ht ,xt), this player must have the higher
continuation payoff at (ht ,xt).

10https://decrypt.co/197400/nouns-fork-disgruntled-nft-holders-exit-27-million-from-treasury
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Proof of Lemma 6. Player i’s IC constraint for ei(ht ,xt) = 1 is

(1−δ )
(

B
2
+

y−i(ht ,xt)

2
− c

)
+ δui(ht ,xt) ≥ (1−δ )

y−i(ht ,xt)

2
, (IA.1)

where y−i(ht ,xt) is the output of Player −i (i.e., not i). Rearranging implies ui(ht ,xt) ≥ u.
Thus, if ui(ht ,xt) ≥ u holds, ei(ht ,xt) = 1 can be enforced when g(ht ,xt) = i. Because
the IC constraint for ei(ht ,xt) = 2 implies (IA.1), if either ei(ht ,xt) = 1 or ei(ht ,xt) = 2 is
enforceable, (IA.1) must hold.

Proof of Lemma 7. Suppose u1(ht ,xt) ≥ u2(ht ,xt) for some (ht ,xt). Then, by Lemma 5,
Player 2 does not exert effort if g(ht ,xt) = 2. Suppose Player 2 exerts positive effort at some
(ht ,xt), where g(ht ,xt) = 1, but Player 1 shirks. Player 2’s participation constraint requires
(1− δ )( y2(ht ,xt)

2 − ce2(ht ,xt)) + δu2(ht ,xt) ≥ 0, which doesn’t hold because u2(ht ,xt) <

B− c (Player 2 has the lowest payoff, and the maximum joint payoff is less than 2(B−
c)). Thus, we conclude that when Player 2 exerts nonzero effort, Player 1 must also exert
nonzero effort ⇒ if Player 1 shirks, Player 2 must also shirk (Part 1).

For the organization to improve upon r0, at least one player must exert nonzero effort
for some (nonzero measure) set (ht ,xt). Suppose no one ever overworks. Then, Lemma 6
implies that managers would always choose zero effort. Part 1 then implies that subordi-
nates always choose zero effort. Thus, to improve upon r0, some players must overwork
with positive probability in equilibrium (Part 2).

Proof of Proposition 11. Consider an organization where at (ht ,xt) Player i has whip. Let
ωi denote Player i’s output share and ui(ht ,xt) denote Player i’s normalized continuation
payoff. To sustain (e1,e2) = (1,1) at this period, we need to find ωi that satisfies both
Player i’s incentive constraint and Player −i’s participation constraint. Player i’s incentive
constraint implies

ωi ≥
c
B
− 1

B
δ

1−δ
ui(ht ,xt), (IA.2)

and Player −i’s participation constraint implies

ωi ≤ 1− c
2B

+
1

2B
δ

1−δ
u−i(ht ,xt). (IA.3)

These constraints imply

2B−3c+
δ

1−δ
(2ui(ht ,xt)+ u−i(ht ,xt))≥ 0. (IA.4)

Note that, if 2B−3c ≥ 0, condition (IA.4) holds independently of ui(ht ,xt) and u−i(ht ,xt).
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For example, if we set ω = c
B , both (IA.2) and (IA.3) are satisfied for any δ , ui(ht ,xt) and

u−i(ht ,xt). Thus, in such a case, (1,1) can be implemented for any δ . Suppose 2B−3c< 0.
For a given δ , Condition (IA.4) is maximally slack by setting ui(ht ,xt) = 2(B− c), that
is, by implementing effort profile (1,1) in all future dates and giving all future surplus
to Player i. This requires setting ωi = 1− c

2B , which is greater than 0.5. The minimum
discount factor for which the first best can be implemented in this case is δ c := 3c−2B

2B−c . Thus,
a necessary condition for an optimal organization to implement the first-best is δ ≥ δ c.

If δ ≥ δ c, the first-best can always be implemented by a fully centralized organization.
To show this, note that for an organization that implements the first-best, we can rewrite
(IA.4) as 2B−3c+ δ

1−δ (2(B− c)+ ui(ht ,xt)) ≥ 0. Increasing ui(ht ,xt) always slacks this
condition. Let u(δ ) denote the minimum ui(ht ,xt) such that (IA.4) holds with equality. We
then have

u(δ ) =
3c−2B

δ
− c.

Because u(δ ) ≤ 2(B− c) (the maximum feasible payoff), we obtain δ ≥ δ c. Thus, the
first-best can be implemented by an organization where Player i holds the whip at every
period and receives normalized payoff u(δ ) if and only if δ ≥ δ c.

We now find a necessary condition for a fully decentralized organization to be optimal.
Suppose that, at (ht ,xt), Player 1 has the whip. Thus, the minimum continuation value for
Player 1 so that both players work at t is u(δ ). Suppose the equilibrium is fully decentral-
ized. Thus, Player 1 will retain the whip in period t + 1 with probability 0.5. If gt+1 = 1,
Player 1’s maximal payoff is 2(B− c) (i.e., the full joint payoff). If gt+1 = 2, Player 1’s
normalized payoff at that time is (1− δ )(1−ω2)2B− (1− δ )c+ δu1, where u1 is her
continuation value. For given u1, the maximum payoff Player 1 can expect is when (IA.2)
binds, which implies her payoff will be

(1−δ )(1− c
B
+

1
B

δ
1−δ

(2(B− c)−u1))2B− (1−δ )c+ δu1.

Player 1’s payoff when subordinate at t + 1 is maximal when u1 = 0, which then gives

(1−δ )(2B−2c+
δ

1−δ
4(B− c)− (1−δ )c = 2B−3c+ δ (2B− c),

which is positive if and only if δ ≥ δ c. Thus, at best, Player 1’s continuation value at time
t is

1
2

2(B− c)+
1
2
(2B−3c+ δ (2B− c)),

5



Thus, for providing u(δ ) to Player 1 at t we need

1
2

2(B− c)+
1
2
(2B−3c+ δ (2B− c))≥ u(δ )

which requires

4B−3c ≥ 2(3c−2B)
δ

−δ (2B− c).

Solving it for the root, we find that

δ̃ =
3c−4B+

√
40Bc−16B2 −15c2

2(2B− c)
.

It is easily verified that δ̃ ∈ (δ c, 3c−2B
B ). Thus, a fully decentralized organization cannot

implement the first-best if δ < δ̃ .
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