
Demand-Based Expected Returns

November 2024

Abstract

This paper proposes a theoretical framework for recovering investors’ subjective
beliefs using holdings data and option prices under the assumption of no-arbitrage. We
empirically document that the statistical properties of subjective expected returns and
Sharpe ratios differ wildly across investor type and depend crucially on their portfolio
composition. While expected returns estimated from price data alone suggest that
expected returns are highly volatile and countercyclical, including holdings data can
imply returns that are less volatile and procyclical. Using buy and sell orders on S&P500
options, we show that the expected returns inferred from retail and institutional investor
beliefs increase in bad times when they become the net suppliers of crash insurance
in option markets, mirroring price-based estimates. Market makers’ expected returns
decrease during bad times when they become the net buyers of crash protection when
their constraints bind. Finally, we show that market makers’ expected returns are highly
correlated with survey measures of expected returns by sophisticated agents, while
customers’ expected returns are not.
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1 Introduction

Canonical estimates of the expected return on the market inferred from asset prices suggest

that they increase significantly during crises periods and are highly volatile. Estimates of

expected returns from survey data, however, are less volatile and can be pro-, a-, or counter-

cyclical depending on investor type and level of sophistication, see, e.g., Greenwood and

Shleifer [2014], Nagel and Xu [2023], and Dahlquist and Ibert [2024], respectively. Price-based

measures of expected returns ignore information on investors’ holdings. Recent research,

however, highlights the strong link between holdings data and investors’ beliefs.1 In this paper,

we argue that including information about investors’ portfolios is crucial to understanding

the dynamics of subjective expected returns and risk.

To this end, we propose a theoretical framework for recovering beliefs of heterogeneous

investors from prices and holdings data jointly under the assumption of no-arbitrage. More

specifically, we theoretically show that investors’ subjective expected return on the market as

well as their perceived risk can be directly inferred from option prices and their corresponding

option holdings in real-time at granular levels. We empirically document substantial hetero-

geneity in expected return estimates across investor types. Most importantly, we find that

expected returns recovered from holdings data can deviate in interesting ways from price-

based measures. Using transaction-level data on buy and sell orders on S&P500 index options,

we show that the subjective expected return of financial intermediaries’ can drop in times of

distress, contrary to price-based measures, while customers’ expected returns increase.

In normal times, financial intermediaries are net suppliers of deep-out-of-the-money puts

to public investors, see, e.g., Gârleanu, Pedersen, and Poteshman [2008] and Chen, Joslin, and

Ni [2019]. However, during crises times when financial intermediaries’ constraints bind, public

investors provide crash insurance to intermediaries. As a consequence, estimates of customers’

subjective expected returns increase during bad times (due to their market exposure via the

short puts), while intermediaries’ expected returns decrease (due to their protection). We also

find that our measures of expected returns correlate highly with survey measures of expected

returns of professional investors while the correlation with households’ expected returns is

low. In line with a large literature that studies measures of expected returns inferred from

survey data, we conclude that the dynamics of subjective measures of expected returns can

vary greatly across (highly sophisticated) investors.

In arbitrage-free markets, prices are the expected value of future payoffs discounted by

1For example, Giglio et al. [2021] document a strong relationship between investors’ expected
returns and portfolio holdings using surveys. Beutel and Weber [2023] provide causal evidence for
the link between beliefs and portfolio decisions using experiments. And Egan, MacKay, and Yang
[2024] show that belief heterogeneity accounts for the majority of the variation in households’ portfolio
allocations.
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some stochastic discount factor (SDF) M . The expectation is computed under the probability

measure P supported by M . While P encodes the investor’s subjective belief, the SDF encodes

her risk preferences. Standard methods extract agents’ beliefs from asset prices under some

assumptions for M . These methods, however, ignore information about quantities (such as

portfolio holdings, trading flows, or open interest) which, different from prices, are available

on a granular level, that is, for each investor.

Our “demand-based” belief recovery extracts Pi for an investor i by leveraging investor-

level data on holdings together with option prices. More specifically, we assume that investors

with potentially heterogeneous beliefs can hold wealth shares in the market index and a family

of options written on the market index. Our main theoretical result posits that subjective

expected returns underP can be directly inferred from investors’ holdings and option prices. As

is well-known, the risk-neutral pricing measure Q can be fully determined by observed option

prices under no arbitrage (Breeden and Litzenberger [1978]). Since holdings are observable at

the investor level and payoffs under Q can be recovered from option prices directly, we obtain

not only measures of subjective expected returns in real-time for each investor type but it also

allows us to recover measures of subjective risk.

With this methodology, we obtain SDFs that are joint functions of the index and the options

returns. Therefore, the ensuing expected market returns and measures of risk may be less or

more volatile depending on portfolio composition, with sign and cyclicality properties that

depend on the contingent state of the economy. The shapes of the SDF projections also span

a large variety of functional forms. For instance, we can recover loss averse investors with

time-varying risk aversion, who expect a relatively stable market in the future and contribute

to a low premium. These agents take short positions on out-of-the-money options. Similar

intuition also allows us to recover SDF projections that are monotonically decreasing or

monotonically increasing. Earlier literature ignores options because it is assumed they are

in zero-net supply. Since in reality, options are non-redundant, we show that holdings in

option portfolios are informative about investors’ beliefs. For example, a larger investment

in deep-out-of-the-money puts corresponds to conservative investors that are progressively

more sensitive to higher-order risk factors and trade options to reallocate them profitably.

Moreover, we show that not only the sign, but also the cyclicality of the market risk premium

is endogenous to investor’s belief. In order to illustrate our theoretical framework, we merge

option price information with buy and sell orders of large investors in index option markets.

More specifically, we use our results to gain insights about the beliefs and subjective

expected returns of two groups of option market participants: public investors (retail and

institutional) and intermediaries. To this end, we leverage the CBOE Open-Close Database

which records daily buy and sell orders per investor category for every option. Real-time

holdings data allows us to recover each investor’s beliefs such that the solution to our recovery

problem is aligned with the observed portfolio positions.
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We summarize our empirical findings as follows. First, we find that customers and market

makers can have complementary patterns with regards to the shape of their SDFs. For example,

during normal times, market makers hold large short positions in calls and puts which exposes

them to changes in both the up- and downside. As a consequence, market makers’ SDFs are U-

shaped as a function of expected returns. Customers, on the other hand, who are net demander

of these options, have inverted patterns. These regularities, however, changed dramatically

during so-called crisis days when intermediaries’ constraints start to bind. For example, we

find that in November 2008, customers’ SDF projections are monotonically decreasing, while

market makers’ SDFs are flat for negative returns and increasing for positive returns. The

reason for this is that market makers become net demanders during this period for downside

protection.

Second, the changing portfolio holdings and exposures to downside risk during crisis

periods across the two investors has large effects on the time-series properties of expected

returns. We find that the ensuing expected returns are pro-cyclical and very volatile for market

makers. In fact, we observe that expected returns become negative during crises, up to -17%

per year in Fall 2008. Intuitively again, this happens because of the large long put positions that

they hold on their portfolios. Customers, on the other hand, have countercyclical expected

returns because they make the market for crash insurance during bad times. As a consequence,

we find the average correlation between the two expected return measures to be a mere 40%.

Third, we can also use our framework to recover subjective measures of risk, allowing us

to measure subjective risk and return trade-offs. We find that measures of perceived risk are

more highly correlated than their expected return measures while subjective Sharpe ratios are

basically uncorrelated (mostly due to the low correlation in expected returns).

Finally, we also study the relation of our expected return measures with survey measures of

expected market returns. We find that while the correlation with survey measures of expected

returns for individuals or retail investors is low (or even negative), the correlation of expected

return measures of professional investors with intermediaries’ expected return is over 70%.

Finally, we study determinants of our expected return measures. We find that standard predic-

tors of realized returns such as the dividend-price ratio, do not have any statistically significant

relation with expected returns. The only variable that loads significantly on expected returns

are past returns where the slope coefficient is negative. This implies that when returns are low,

both market makers and customers expected expected returns to be high. This is in contrast to

survey evidence which has shown that retail investors’ expected returns tend to be positively

correlated with past returns. We also do not find any statistically significant relation between

expected returns and measures of cyclicality.

Our measures of subjective expected returns and risk can be interpreted as the lower

bounds on expected returns and perceived risk by heterogeneous investors, offering intuition

for why some of the literature has documented different cyclicality patterns across various
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surveys. We emphasize that our approach does not recover the “true” beliefs of investors but

provides a sensible benchmark for the potential beliefs of large players in the option and index

market.

Related Literature. This paper is related to several strands of the literature. Starting from

the seminal work of Ross [2015] a growing literature has proposed ways to recover investors’

subjective beliefs, see, e.g., Borovička, Hansen, and Scheinkman [2016], Jensen, Lando, and

Pedersen [2019], among others for recent refinements of the Ross [2015] recovery theorem. Our

framework differs from these papers in at least two ways: First, we include demand-based data

instead of just asset pricing data to extract investor-specific beliefs. Second, our framework

allows us to recover conditional beliefs in real-time.

Chen, Hansen, and Hansen [2020], Ghosh and Roussellet [2023], and Korsaye [2024] use

survey data in addition to price data to recover the representative agent’s belief and study their

properties relative to a rational expectations framework. As we show, holdings data allows us to

recover beliefs on a much more granular level, that is at the investor level. More generally, our

theoretical framework also allows for the inclusion of survey data. However, long time-series

of granular survey data is hard to obtain.

Our paper is also related to the literature that studies the option demand of heterogeneous

investors. For example, Chen, Joslin, and Ni [2019] document how variation in the net de-

mand of deep OTM put options between intermediaries and public investors is driven by

intermediaries’ constraints. Almeida and Freire [2022] show how net option demand helps

explain the pricing kernel puzzle. And Farago, Khapko, and Ornthanalai [2021] study a hetero-

geneous agent economy to explain index put trading volumes. We complement this literature

by estimating intermediaries’ and public investors’ beliefs from observed option demand.

Our paper is most closely related to the literature that makes use of asset prices to recover

measures of the expected return. Even tough these papers do not explicitly recover hetero-

geneous investors’ beliefs, some of their results are nested in our framework. For example,

Martin [2017], Martin and Wagner [2019], and Gao and Martin [2021] derive lower bounds on

expected returns for stocks by assuming that the expected return of an asset can be inferred

from the allocation of a growth-optimal portfolio that maximizes an investor’s long-run growth.

Expected returns are shown to be functions of risk-neutral variance. Chabi-Yo and Loudis

[2020] use a Taylor series expansion of the inverse of the marginal utility to construct lower and

upper bounds on the conditional expected excess market return that are functions of higher-

order risk-neutral simple return moments. Gormsen and Jensen [2022] study physical (as

opposed to risk-neutral) moments as perceived by a power utility investor. Gandhi, Gormsen,

and Lazarus [2023] study the term structure of expected returns inferred from option prices

and find that long-term expected returns are (excessively) countercyclical and volatile. Tetlock

[2023] assumes that the SDF of a log investor is the reciprocal of a combination between the
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market return and the return of a portfolio of higher-order (risk-neutral) moments of R whose

weights come from regressing the variance premium on some risk-neutral moments to obtain

point estimates of the expected return. Our findings show that the dynamics and statistical

properties of measures of expected returns crucially depend on the weights allocated to the

basis assets. While Martin [2017] assumes that investors choose to hold 100% of their wealth

in the market (and none in the derivatives themselves), Tetlock [2023] allows for holdings in

both the market and power contracts on the market. In our setting, we do not need to make

any assumptions about the redundancy of option markets and optimal weights since our esti-

mation framework incorporates information from actual weights as provided by transaction

level data.

Our paper contributes to an empirical literature studying beliefs of heterogeneous in-

vestors using surveys. Dahlquist and Ibert [2024] document large heterogeneity in asset

managers’ beliefs, while Giglio et al. [2021] study the relationship between retail investors’

beliefs and portfolio holdings. Meeuwis et al. [2022] document that political orientation de-

termines households’ beliefs and portfolio allocation into risky assets. Ghosh, Korteweg, and

Xu [2022] recover heterogeneous beliefs from the cross-section of stock returns. Our paper

is different from these papers since we recover beliefs from price and holdings data jointly,

allowing us to measure beliefs for a long-time series at the daily frequency for large investors.

We document, however, that intermediaries’ subjective measure of returns is highly correlated

with survey data of sophisticated investors, while households’ expectations are not.

Finally, our paper contributes to the demand-based asset pricing literature starting with

the seminal work of Koijen and Yogo [2019]. Similar to our approach, asset-demand sys-

tems impose constraints such that holdings data is matched and market clearing holds in

equilibrium. While that literature is mainly interested in how heterogeneous investors affect

movements in asset prices, our focus is on recovering subjective expected returns.

Outline. The rest of the paper is organized as follows. The key idea of our paper is that

holdings data is informative about investors’ risk perceptions. We illustrate this idea in an

intuitive example in Section 2. Section 3 presents a general theoretical framework where we

show how to infer subjective expected returns and risk from holdings and price data. Section

4 contains our main empirical results. All proofs and some additional mathematical details

are provided in the Appendix. Additional results are gathered in an Online Appendix.

2 Illustrative Example

The key idea of our paper is that portfolio holdings are informative about risk perceptions of

market participants. To provide some intuition, we start with an example to illustrate how
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portfolio holdings affect beliefs/SDFs. Assume heterogeneous investors who hold a growth-

optimal portfolio, that is, investors maximize expected long-run wealth. As is well-known,

in this case, the growth-optimal return is the reciprocal of the stochastic discount factor,

i.e., M⋆ = 1/R⋆, where R⋆ is the return of the optimal portfolio according to the investor’s

subjective view, see, e.g., Long [1990]. Even though investors have the same preferences and

are subject to the same constraints, the optimal portfolio can vary across investors because

they may have different beliefs.

To set a benchmark, assume there exists a specific constrained utility-maximization prob-

lem whose solution is a portfolio fully invested in the market. In that case, the SDF takes

the following form: M0 := 1/R, where R is the return on the market index. This is the case

studied in Martin [2017]. As we argue in our paper, a priori, there is no reason to exclude other

traded assets (say, options) from the optimal portfolio. In fact, ample empirical evidence in

the literature shows that options are non-redundant securities and demand for options can

be in the order of trillions of dollars, especially following market crashes.2 In that case, the

corresponding optimal portfolio will have non-zero positions in the index options, and the

return R⋆ will be different from R (and in turn M⋆ ̸= M0).

Let M∗ be the SDF supported by a portfolio being long some calls or puts. Figure 1 com-

pares the value of M⋆ relative to M0, as a function of the only state variable R for calls

(left panel) and puts (right panel) across different moneyness. For illustrative purposes, we

assume that the investor holds a portfolio consisting of 85% in the index and 15% in an

equally-weighted portfolio of calls or puts with the same maturity but different strikes.3 As is

immediately evident, even for a small investment in options (with respect to the investment

in the underlying) and small changes in the market return, the ratio M0/M⋆ can wildly differ

from 1: M0/M⋆ rises significantly for at-the-money (ATM) and especially out-of-the-money

(OTM) calls and puts. For example, assuming the market excess return is +20% (-20%), the

ratio increases to 7 (5.5) for OTM calls (puts).

Intuitively, if we would like to recover the probability measure P⋆ (supported by SDF M⋆)

from the probability measure P0 of an investor fully invested in the market, we can interpret

the ratio M0/M⋆ as the corresponding probability distortion. For instance, the belief of an

investor who optimally chooses to be long in puts, is more left-skewed than the benchmark.

Investing in puts, shifts the probability mass uniformly from the region of positive market

return towards the region of negative returns proportional to the strikes and the moneyness.

2Theoretically, positive net demand for options can arise in settings with heterogeneous beliefs. For
example, Buraschi, Trojani, and Vedolin [2014] show that agents with more pessimistic views about
the future growth of the economy demand OTM puts from more optimistic agents. In a setting with
frictions and market incompleteness Johnson, Liang, and Liu [2016] show that the primary reason for
the high demand in index option is transfer of unspanned crash risk.

3In later sections, we will use transaction-level data from CBOE to track portfolio holdings in
real-time.
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Figure 1. Ratio between Benchmark SDF M0 and M⋆

Notes: This figure plots M0/M⋆ as a function of the excess return on the market. M⋆ = 1/R⋆, where
R⋆ is the return of a portfolio investing 85% of the wealth in the underlying and 15% in an equally-
weighted portfolio of calls (left plot) and puts (right plot) with different moneyness. ATM options have
|∆| ∈ (0.375, 0.625). OTM options have |∆| ∈ [0.125, 0.375].

More generally, investors who assign higher weights to extreme events have higher demand

for deep OTM puts. The reverse holds true when the investor is long calls.

In a next step, we study the effect of investors’ demand on the time-series properties of

subjective expected returns. In Figure 2, we plot the time-series of the expected market return

for different M⋆ implied by options (the same as in Figure 1) together with the benchmark log

investor case who is 100% invested in the index (M0).

Panel A plots the perceived expected returns for investors who hold call options in addition

to the index. Not very surprisingly, the patterns mirror the benchmark case almost one-for-one.

Expected returns increase in bad time, decrease in normal periods, and are highly volatile.

Notice that expected returns are considerably higher even with a small investment in options.

Intuitively, the size of the expected return increases relative to the benchmark since options

represent a levered trade on the underlying itself. The portfolio with ATM calls has the highest

premium, since ATM calls move one-for-one with the underlying market index.

We can juxtapose this pattern with inferred expected returns from investors’ who are long

in puts. As can be seen from the middle panel, being long in puts decreases the exposure to

market risk, and as a consequence, the corresponding expected return is lower. In fact, the

expected return even becomes negative. As discussed before, holding puts reflects the view of

investors holding more left-skewed beliefs, who expect higher (negative) market fluctuations.

From their perspective, the risk-return ratio given by holding the index alone is not profitable

- or equivalently, they find OTM puts to be under-priced. Buying puts leads to protection

which reflects a pessimistic view and negative expected return. Accordingly, the volatility of
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the expected return is higher with respect to what we recover under M0. Notice also that even

small investments in puts can lead to a pro-cyclical pattern of the expected return. Given

that, we conclude that the size and cyclicality properties of expected returns depend on the

moneyness, and on the amount of wealth invested in the options.

While instructive, the above examples maybe too stylized. To study a more realistic setting,

we now showcase two popular option strategies: collars and straddles. For example, some

investors are known to hold the underlying and add protection via longing puts and shorting

calls (collar); other investors bet on the underlying volatility by taking long positions in calls

and puts (straddle). Agents are also known to typically delta-hedge their option positions.

In Figure 2 Panel C, we plot the monthly time-series of expected returns recovered from

hypothetical delta-hedged collar and straddle strategies with OTM options, compared to the

benchmark case. Results align with our previous example: being long in calls/puts increases

the distortion in the tails, the reverse is true for short positions. Thus the option component

in a collar strategy significantly reduces the expected return.

We conclude that not only the size, but also the sign, cyclicality, and volatility of the subjec-

tive expected return depend on asset demand. While these results are based on hypothetical

portfolios that do not represent any specific investor, in our empirical section we will use

transaction level data on buy and sell orders to track investors’ beliefs over time.
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A. Calls

B. Puts

C. Collar and Straddle

Figure 2. Monthly Time-Series of Expected Market Return
Notes: This figure plots the expected market return recovered from different stochastic discount factors.
In each panel, we plot the expected return recovered by M0 = 1/R, where R is 100% invested in the
index, as well as by M⋆ = 1/R⋆, where R⋆ is the return of a portfolio investing 85% in the index and
15% in an equally-weighted portfolio of ATM (orange line) or OTM (red line) options for calls (Panel
A) and puts (Panel B). The bottom panel shows a delta-hedged «collar» which is long in the index and
in OTM puts, and short in OTM calls. The <delta-hedged <straddle» is long in OTM calls and OTM
puts. Frequency and horizon are monthly, values are annualized. Grey areas indicate NBER recession
periods.
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3 Theoretical Framework

We now present a simple theoretical framework to explain how to recover subjective expected

returns from options price and holdings data. Consider an investor, labeled i, with logarithmic

preferences who has access to three types of assets: a risk-free asset with return Rf , a risky

asset with forward return R, and an entire family of options written on the risky asset with

a continuum of strike prices. Let Ei[·] denote the subjective expectation of this investor over

possible states of the world. The investor’s subjective beliefs may or may not coincide with

the true underlying data-generating process. In this paper, we assume that the risky asset is

the S&P 500 index and the options are European calls and puts. Let Re = R− 1 be the excess

forward return of the index and options.

3.1 Subjective Expected Returns

Our goal is to recover the physical belief Pi for investor i under the minimal assumptions

stated above to infer the subjective expected return on the market, Ei[R]. Since investors have

logarithmic utility, it immediately implies that one can define an agent-specific SDF Mi that

prices all assets from the perspective of agent i as follows:

Mi =
(
1 + θ′

iR
e
)−1

, (1)

where θi are the portfolio weights in the market index and the options by investor i, see, e.g.,

Long [1990]. SDF Mi is the reciprocal of the return of the growth-optimal portfolio since it

maximizes expected long-run growth of the investor i’s wealth. No arbitrage implies that

Ei[MiR
e] = 0.

We can now define a change of measure, dQ
dPi

= Mi. The subjective expected return of the

market for investor i under the physical measure can hence be written as:

Ei[R] = EQ[M−1
i R] = EQ [(1 + θ′

iR
e
)
R
]

(2)

Equation (2) is the main identity studied in this paper. It relates investor-specific physical

beliefs to risk-neutral expectations about prices of assets that can be traded and investor

i’s holdings. Intuitively, we interpret equation (2) as the most conservative measure of the

expected return of a log investor. Two remarks are in order. First, notice that we do not need to

make any assumptions about whether investor i is constrained or not since the constraints are
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reflected in the portfolio holdings. Second, as we will show later on, even if we do not believe

that investors have log utility, identity (2) still provides us with a useful lower bound.

In the following, we will consider two different cases. First, the fact that portfolio holdings

are observable in the data at high frequency, allows us to directly recover agent i’s expected

return of the market as a function of holdings and option prices in real-time. Second, it is

reasonable to assume that holdings data is measured with some error. The intuition for this is

at least twofold. First, we only observe a subset of the “true” portfolio of investors. For example,

while we observe the open and close orders on calls and puts for the S&P500 (SPX), we do

not observe the holdings and neither the transactions on other derivatives with the same

underlying, such as SPY options (that is on the ETF tracking the S&P500).4 Since major market

makers provide liquidity in both SPX and SPY option markets, we only observe a fraction of

their true market exposure.5 Second, our data is sampled at high frequency (every 30 minutes),

however, we aggregate to the monthly frequency and across different types of customers (retail

and institutional) to calculate expected returns. This aggregation will likely lead to further

measurement error affecting our estimates. Given this, we consider a second case where we

assume that portfolio holdings are observed with measurement error leading to lower and

upper bounds on the subjective expected returns representing the most conservative and

most aggresive value, respectively.

3.1.1 Log Utility Assumption

Before explaining technical details on how to recover subjective beliefs from the data, one

might be worried that the log utility assumption used in equation (1) is unrealistic. Notice that

our framework still provides insights into the subjective expected return in the form of a lower

bound even if investors do not have log utility. To see this, suppose that the investor has some

other utility function, and potentially unknown belief P∗. We say that the negative covariance

condition (NCC) holds if:

Cov∗(M∗θ′
iR, R) ≤ 0 , (3)

where M∗ = dQ/dP∗ is the true stochastic discount factor of the non-log investor and θi is her

portfolio, as above. In the case where the portfolio is fully invested in the index, we get the

same NCC as in Martin [2017]. In particular, he shows that the NCC is likely to hold empirically

4While SPX options trade exclusively on the CBOE, SPY options trade across several exchanges.
Institutional public investors mainly trade SPX options (due to larger contract sizes, tax treatment, etc.)
while retail investors mostly trade in SPY options.

5Moussawi, Xu, and Zhou [2024] show that at least four market makers provide liquidity in both
markets simultaneously: Susquehanna Securities, Citadel Securities, Wolverine Trading, and IMC
Financial Markets.
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and also holds in several leading macro-finance models. If the NCC holds for any portfolio θi

of agent i, we get the following lower bound:

E∗[R] ≥ EQ[(1 + θ′
iR

e)R]

EQ[1 + θ′
iR

e]
= Ei[R] , (4)

where we formally recognize (1 + θ′
iR

e)/EQ[1 + θ′
iR

e] as the change of measure from Q to

belief Pi.6 This change of measure has the functional form of a log-type SDF as in (1). The

right-hand side of inequality (4) is the recovered expected return in (2). Therefore, the Ei[R] we

extract under the log-utility assumption additionally provides a lower bound for the subjective

moment of the agent holding the same portfolio but with non-log utility.

3.2 Recovering Subjective Expected Returns

We can now discuss how to recover subjective beliefs from options. As is well-known, an

arbitrage-free cross-section of options suffices for the existence of a probability measure

Q, which determines the price of any payoff that is replicable by a delta-hedged option

portfolio (see, e.g., Acciaio et al. [2016]). In our application, the pricing measure Q is a forward

probability between times t and t+ 1. This trivially implies that EQ[Re] = 0.

Given this, we can directly compute equation (2) from the data, since we observe the

portfolio holdings θi and we can calculate the risk-neutral expectation of (1 + θ′
iR

e)R using

the Carr and Madan [2001] formula.

Before delving into details about implementation, several remarks are in order. Our set-up

is similar to Martin [2017], who derives a lower bound on the expected return assuming an

unconstrained rational investor who’s risk aversion is at least one. The crucial difference to

Martin [2017] is that he imposes that the optimal portfolio held by the investor consists of a

100% investment in the market return. A consequence of this assumption is that all options

are redundant. As we argue in this paper, there are at least two reasons why this assumption

seems too restrictive. First, several papers show that options are non-redundant assets since

they allow to hedge crash risk and demand for OTM puts options is significant. Second, in

the data, we find that the SDF defined as the inverse of the market return induces significant

pricing errors when pricing options. For example, we find that for the 1996 to 2020 period, the

average pricing error is: 30% for OTM puts, 20% for ATM puts, 23% for OTM calls, and 1% for

ATM calls, respectively.

In our paper, we do not assume such redundancy. However, notice that our setting nests

Martin [2017]’s case if one assumes a log investor and θi equals one for the market and zero

6But EQ[1 + θ′
iR

e] = 1.
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otherwise. In that case, the expected return of investor i is equal to EQ[R2] which is the risk-

neutral variance measured under the forward-measure Q.7

Another related paper is Tetlock [2023] who assumes that the investor can hold (integer)

power-contracts written on the market index. The paper again makes an assumption about

the redundancy of certain option contracts such as non-integer power contracts. In general,

however, we do not observe holdings of power-contracts. To circumvent this issue, Tetlock

[2023] estimates “hypothetical” portfolio holdings from expanding window regressions pre-

dicting risk-neutral (power) moments with physical counterparts. Our approach is different

since we directly observe holdings on plain vanilla calls and puts.

3.3 Bounds on Subjective Expected Returns

Under the assumption that we observe holdings with no error, subjective expected returns

can be recovered via the exact identity in equation (2). For the reasons discussed earlier, when

holdings θi are observed with error, we can provide lower and upper bounds on the subjective

return on the market. Since in that case, we want to constrain the amount by which the optimal

portfolio weights can deviate from the observed weights, we impose some constraint such

that

d(θi,θ
⋆) ≤ δ , (5)

where θ⋆ are the growth-optimal portfolio weights and for some convex discrepancy function

d(·, ·) ≥ 0 such that d(x,y) = 0 if and only if x = y. Intuitively, δ measures the amount that

optimal weights can deviate from the observed weights. To be concrete, in the following, we

assume a L2-norm.8

In that case, d(θi,θ⋆) = 1
2 ||θ

⋆ − θi||22. To solve for the subjective expected return, we now

have to solve the following optimization problem:

inf
θ⋆∈RN

{
EQ[(1 + θ⋆′Re)R] + λ

(
1

2
||θ⋆ − θi||22 − δ

)}
. (6)

This leads us to our second main result which are closed-form solutions on the bounds of

subjective expected returns.

7If the investor has log utility, Martin [2017]’s lower bound becomes an exact identity since
Cov(MiR,R) = 0 in that case.

8The main reason we use an L2-norm (as opposed to other norms) is for tractability, as in this case,
we get closed-form solutions.
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Proposition 1 (Bounds on Subjective Expected Returns). Assume that portfolio weights θi are

observed with error, in that case, the lower bound for the subjective return on the market for

investor i is:

Ei[R] ≥ EQ[(1 + θ′
iR

e)R]−
√
2δ||EQ[ReR]||2 . (7)

The upper bound for the subjective return on the market for investor i is given by:

Ei[R] ≤ EQ[(1 + θ′
iR

e)R] +
√
2δ||EQ[ReR]||2 (8)

It is obvious that if the measurement error is assumed to be zero, i.e., δ = 0, that equations

(7) and (8) coincide with equation (2). Intuitively, we can interpret the lower bound as the most

conservative assessment of the subjective expected return for any investor who’s portfolios

align in a neighborhood around the observed portfolios, θ.

3.4 Subjective Risk

Our theoretical framework also allows us to study subjective expectations of higher-order

moments beyond returns. To this end, we next study the subjective risk-return trade-off.

While the relationship between measures of realized risk and returns is normally weak, recent

literature generally reports a strong positive relationship using survey based measures, see,

e.g., Couts, Goncalves, and Loudis [2023] for the aggregate stock and bond markets and

Jensen [2024] for individual stocks. Our theoretical framework can be trivially extended to

study measures of subjective risk from prices and holdings using equation (2). It follows

immediately, that subjective risk for investor i is given by:

Ei[R
2] = EQ[M−1

i R2] = EQ [(1 + θ′
iR

e
)
R2
]
, (9)

and the subjective volatility reads as Ei[R
2]− Ei[R]2. In the following section, we explain how

we recover subjective expected returns and risk using equations (2) and (9).

4 Empirical Analysis

This section describes the data used and how we empirically implement our main theoretical

results.
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4.1 Data

To empirically implement our theory, we make use of the CBOE Open-Close dataset that

provides daily buy and sell volumes of SPX options since 1996 separately for type of position

(opening/closing) and origin: (i) customer; (ii) brokers-dealer; (iii) firm; and (iv) market maker.

As is common practice, we aggregate these daily volumes to cumulative positions for the last

three categories9 and label them “market makers”. Customers include retail and institutional

investors. Our data starts in January 1996 and ends in December 2020. The label “broker-

dealer” is available only from 2011 and accounts for less than 3% of the trades.

The volume data comes without pricing information. To this end, we obtain end-of-day

bid-ask prices from the OptionMetrics database and use best closing bid- and ask-prices to

compute mid-point prices. We merge the CBOE Open-Close database with price data and

apply standard filters from Bakshi, Cao, and Chen [1997]. That is, we remove option contracts:

with a price less than $3/8; with implied volatility smaller than 0.1% or greater than 1; with bid

price exceeding ask price; with relative bid-ask spread larger than 1/2; that are traded for less

than 5 units. We also filter out events where the sum of the transactions across investors is not

zero, which happens for less than 2% of the times. No-arbitrage filters apply as well.

Throughout our empirical analysis, we use monthly frequency and horizons. We compute

every quantity at daily frequency, then we aggregate to monthly averages. On each day t,

separately for calls and puts, we linearly interpolate options volatility, options delta, and

investors’ holdings, on a grid of strike prices, for the required maturity (30 days if not explicitly

stated otherwise).10 The grid consists of n uniformly distributed values between the smallest

and the largest available strike in t, where n is the number of calls/puts actively traded in t.

Table 1 reports summary statistics on the option sample for customers’ net demand for

calls (top panel) and puts (lower panel). Net demand is defined as total buy minus total sell

orders aggregated over a day. On average, customers are net sellers for call options and net

buyers for put options with an average maturity of 60 days. Traded options on average are

out-of-the-money. In our empirical analysis, we focus on OTM options given that trading is

mostly concentrated in these options.11

Portfolios investing in the risk-free asset, S&P 500, and OTM options with the same maturity

are assembled at date t with options having the same expiration (30 days if not explicitly

stated). Since we only observe option holdings but not holdings in the underlying, we follow

the literature and assume that investors build delta-hedged strategies in which the investment

9The CBOE Regulatory Circular defines firms as «OCC clearing member firm proprietary accounts».
Thus we aggregate firms and brokers-dealers with market makers because they mainly trade against
public customers, although they are not designated as intermediaries.

10When extrapolation is required, we look for the nearest value outside the convex hull in strikes and
maturities.

11The results do not change qualitatively if we include all options.
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Table 1. Summary statistics options data.

K/St Net demand Maturity (days)

Calls All OTM All OTM All OTM
mean 1.02 1.06 -2,127 -625 59.9 59.6
std 0.06 0.05 11,127 10,980 76.3 71.7
min 0.08 1.00 -112,908 -123,146 2 2
max 2.03 2.03 61,835 71,017 473 473

Puts
mean 0.92 0.89 2,093 795 63.9 64.0
std 0.11 0.10 14,689 15,208 77.8 76.5
min 0.10 0.10 -140,275 -140,639 2 2
max 2.72 1.02 92,694 92,408 473 473

Notes: This table reports summary statistics for the options data. The relative moneyness and the
maturity are computed over single option contracts that are traded on every date. Customers’ net
demand is instead aggregated over all the options traded on a single day; net demand is defined as the
total opening/closing buy orders minus sell orders. For each variable, the first column refers to the full
dataset, while the second to OTM options only. Data runs from January 1996 to December 2020.

in the index is the negative of the delta of the portfolio at time t, see, e.g., Gayda, Grünthaler,

and Harren [2023] and Baltussen, Jerstegge, and Whelan [2024].

4.2 Implementation

In order to implement the expression in equation (2), we apply the Carr and Madan [2001]

formula to approximate EQ[(1+θ′Re)R]. More specifically, let X(K) be the payoff of an option

with strike K, and let’s define f(R) := (1 + θ′Re)R, then the subjective expected return is

given by:

Ei[R] = EQ[f(R)],

≈ EQ

[
f(1) + f ′(1)(R− 1) +

∑
k

f ′′(k) x(k) ∆k

]
,

where x(k) := X(K)
F with F being the forward price of the market index, and k = K

F the relative

moneyness.
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4.2.1 Constructing Option Holdings

Subjective expected returns depend on portfolio holdings, θi, where θi are the total portfolio

holdings of investor i as opposed to her portfolio flows. This distinguishes our approach from

the more standard demand-based literature that exploits opening positions at time t, that is,

e.g., daily buy and sell orders on new contracts. To get a measure of total portfolio holdings,

notice that our database reports the total daily opening and closing positions on every option

contract. Opening orders represent shocks to demand (flows), while aggregate opening and

closing positions represent changes to the holdings. In order to get a measure of investors’

holdings, we aggregate opening and closing positions from issuance of a contract until date

t.12

Figure 3 and Figure 4 compare our monthly holdings proxy with flows for customers for

aggregated OTM options.13 On aggregate, customers’ are long OTM put options but short

OTM call options echoing the summary statistics in Table 1. In the run-up to the 2008 crisis,

aggregate holdings for OTM put options spike in September 2007, then rapidly drop and then

spike up again in August 2008.

Notice that holdings and flows exhibit different patterns. For example, holdings tend to re-

main positive on aggregate for puts and negative for calls, while trading flows are more erratic,

oscillating between positive and negative values both for calls and puts. During periods of

crisis such as in 2008, customers’ option demand drops and becomes negative. This property

lines up with the intuition of constrained arbitrageurs during the financial crisis when cus-

tomers become net sellers, see, e.g., Chen, Joslin, and Ni [2019]. However, this pattern is much

more muted when looking at aggregate portfolios, because investors buy or sell options to

close previous contracts in their portfolios. Intuitively that explains why holdings and shocks

not always co-move together: the correlation between the two monthly time-series is 28% for

calls and 55% for puts.14

12The CBOE Open-Close Database explicitly assigns a unique identification number to every option
contract which can be used to track it day-by-day from issuance to expiration.

13Since options are in zero net supply, market makers’ aggregated holdings are just the mirror image.
14Notice that our measure of option holdings may differ also in sign with trading flows because

they are not always large enough to offset the overall investors’ positions: Figure C.1 in the Appendix
shows that it is quite common to have negative changes in the option demand while holdings remain
positive. The total traded volume is increasing in the recent years (see Figure C.2), while net holdings
are decreasing as investors’ portfolios reflect a mix of positive and negative positions.
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Figure 3. Customers’ holdings of monthly OTM options
Notes: This figure plots the time-series of our proxy for customers’ portfolio holdings of OTM calls and
puts, expiring in 30 days, from 1996 to 2020. Options holdings are the sum of opening and closing
positions on the same contract that customers enter from issuance. Daily data are averaged on a
monthly basis. Gray bars indicate NBER recessions.

Figure 4. Customers’ demand shocks of monthly OTM options
Notes: This figure plots the time-series of our proxy for customers’ demand shocks of OTM calls and
puts, expiring in 30 days, from 1996 to 2020. Options demand shocks are the sum of opening and closing
positions on the same contract traded every day. Daily data are averaged on a monthly basis. Gray bars
indicate NBER recessions.
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4.3 Subjective Expected Returns

We now have all the ingredients to calculate subjective expected returns for the two investor

types. We again stress that our theoretical framework does not allow us to recover the “true”

beliefs of a particular investor, say market makers. Instead, we interpret our measure as a

conservative lower bound on subjective expectations of heterogeneous agents. We start from

our main identity (2): the variation of expected returns over time as perceived by different

agents, assuming that the portfolio weights are observed without error.

Although we do not know the true real-time investment in the index, empirical evidence

suggests that people hold the underlying and adjust their positions with delta-hedged port-

folios of OTM options. Thus, we build agents’ portfolios with the observed option positions

from the data and we perfectly delta-hedge them. In addition, we assume that each investor

allocates 50% of their wealth in the underlying. The rest of the wealth is invested in the risk-free

asset. We find that customers typically take large and positive position in the index, mainly

stemming from hedging their long positions in OTM puts and short positions in OTM calls

(see Figure C.3).

Figure 5 plots expected returns for customers and market makers over time, in comparison

with the benchmark case.15 Table 2 lists their summary statistics. There are several interesting

observations. First, we notice strikingly different dynamics of the expected return measures

across investors and in comparison to the benchmark, both in size and comovement. For

example, in terms of size, the expected excess market return under M0 is 6.6% per year,

while it is 4.1% for customers, and 2.9% for market makers. Investors’ expected returns are

systematically smaller than the case of Martin [2017] and often negative. Also, we notice that

they are more similar in size and trends before the 2008 Great Financial Crisis; after that, they

tend to be more erratic and differ more starkly from the benchmark. Intuitively, this results

from the larger trading volume in the options and as a consequence, larger option leverage

with respect to the underlying. Customers reach their highest expectation during Covid (excess

return of 26% in March 2020); conversely, this is the lowest expectation for market makers

(-15%). Between 2002 and 2008, market makers’ expected returns are higher than customers;

the reverse holds after the crisis almost everywhere. The correlation between customers’ and

market makers’ time-series is 59%, while it is 86% between customers and the benchmark

(60% for market makers). In the post-2008 period, correlations decrease to 33% for market

makers and 48% for customers, respectively.

Our evidence can be explained by the holdings effects. We have already discussed the

typical portfolio compositions of the two investor categories. Customers are long in the

index and they buy protection, potentially selling OTM calls to finance their long (and costly)

15Notice that our recovery can lead to violations of the no-arbitrage condition in which case we drop
the corresponding observation.
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Figure 5. Lower Bound Subjective Expected Market Return
Notes: This figure plots the time-series of the expected market return implied by customers’ and market
markers’ holdings. The black dashed line displays the monthly expected return recovered by M0 = 1/R.
Frequency and horizon are monthly, values are annualized. Data runs from January 1996 to December
2020. Gray bars indicate NBER recessions.

Table 2. Summary statistics of Ei[R].

mean std min median max counts AR(1)

Customers 1.041 0.041 0.925 1.032 1.265 300 0.72
Market Makers 1.029 0.048 0.854 1.033 1.185 294 0.78
Benchmark 1.066 0.045 1.013 1.057 1.340 300 0.84

Notes: This table reports summary statistics for the monthly averaged time-series of annualized ex-
pected return recovered by the benchmark M0, and by the observed positions of customers and market
makers (as depicted in Figure 5). Data is monthly and runs from January 1996 to December 2020.

positions in OTM puts. Market makers take opposite positions, resulting in a long call/short

put portfolio mimicking the underlying; but because of the negative delta-hedging, this

reduces the exposition to the index. As a consequence, both investors’ exposures to market

risk are more mitigated, coherently with having more pessimistic belief (than the guy who is

fully invested in the market) and formulating lower expectations on future market returns.

Notice also that the time-series recovered by M0 is by construction counter-cyclical only.

Although the investors’ expected returns have high correlations with that, they do not perfectly

move together. This suggests that the cyclicality of subjective expected returns is not perfectly

aligned with M0, being contingent on the state of the economy and depending on the option

demand.

Subjective expected returns are less persistent than those from M0, as the last column in

Table 2 shows. Our measure of Ei[R] is noisy because it absorbs shocks both to option prices

and to portfolio rebalancing (i.e. option demand). This second effect is absent in E0[R].
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4.4 Bounds on Subjective Expected Returns

We now turn to the case when portfolio holdings contain some measurement error. We solve

the linear optimization problem in equation (6) to determine the most conservative and the

maximum expected market return compatible with investors’ observed positions. We set δ

equal to half of the average bid-ask spread in the options cross-section at every date t. As

before, we average daily data to get monthly averages.

Figures 6 and 7 plot the resulting time-series of subjective expected returns, in comparison

with the benchmark case. Summary statistics are reported in Table 3. More specifically, the

upper plots show the most conservative subjective expected return for each investor, while the

lower plots show all the admissible values that lie between the minimum and the maximum.

These act as lower and upper bounds for the subjective expected return perceived by all the

possible investors whose portfolios are aligned (to some degree) with the observed positions

of customers and market makers. Intuitively, the lower bound represents the expectation of

the “most pessimistic” investor in the group - or, equivalently, it represents the “worst-case”

expectation that customers and market makers may formulate.

Both lower bounds are mostly positive before 2008 and negative afterwards, when the

option leverage gets higher and the optimized bounds become wider. Between 2008 and 2020,

customers’ lower bound is mostly pro-cyclical, with a huge negative peak during Covid (-24%).

Conversely, market makers’ lower bound is more aligned to Figure 5 in sign and cyclicality;

it is just smaller in size, reaching a minimum of -39% in Covid (vs. -15% in the case with no

measurement error).

From our illustrative example discussed before, we expect that the lower bound is attained

with a portfolio that hedges volatility risk with long positions in calls and puts. The upper

bound, however, is most likely supported by portfolios which tend to have short positions in

calls and puts. Therefore they will be more sensitive to periods of high volatility. Indeed the

degree of belief heterogeneity in the market results larger during times of increasing volatility.

This explains why the lower bound is largely pro-cyclical (after 2008, correlation with the M0

time-series is -12% for customers and -31% for market makers) and the upper bound is mostly

counter-cyclical (correlations 70% for customers and 83% for market makers).

By construction, optimized portfolio weights tend to assign more mass to the option

components supporting the lowest and the largest expected returns on each date (compatible

with the delta-hedging and the δ-constraint). That’s why the lower bounds are more correlated

across investors than in the case without measurement errors (70% vs. 59%).

21



Table 3. Descriptive statistics of Ei[R] with measurement errors.

mean std min median max counts

Lower Bound
Customers 1.013 0.040 0.762 1.009 1.097 300
Market Makers 1.005 0.053 0.605 1.010 1.109 300

Upper Bound
Customers 1.091 0.117 0.943 1.074 2.735 300
Market Makers 1.079 0.076 0.950 1.073 1.919 300

Notes: This table reports summary statistics for the time-series of lower bound and upper bound
on Ei[R], as recovered by solving the optimization problem on the customers’ and market makers’
positions. Data is monthly and runs from January 1996 to December 2020.
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A. Lower Bound on Subjective Market Expected Return

B. Admissible Values for Subjective Market Expected Return

Figure 6. Subjective Expected Market Return with measurement errors
Notes: This figure plots the time-series of the lower bound on the subjective expected market return
(panel A) and all the possible values for the expected market return (panel B) as recovered by SDFs
compatible with customers’ positions in delta-hedged options. Frequency and horizon are monthly,
values are annualized. Data runs from January 1996 to December 2020. Gray bars indicate NBER
recessions.
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A. Lower Bound on Subjective Market Expected Return

B. Admissible Values for Subjective Market Expected Return

Figure 7. Subjective Expected Market Return with measurement errors
Notes: This figure plots the time-series of the lower bound on the subjective expected market return
(panel A) and all the possible values for the expected market return (panel B) as recovered by SDFs
compatible with market makers’ positions in delta-hedged options. Frequency and horizon are monthly,
values are annualized. Data runs from January 1996 to December 2020. Gray bars indicate NBER
recessions.
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4.5 Survey Data and Time-Series Properties

We now want to investigate the relation of our expected return measures with survey measures

and study their cyclicality properties in more detail. To make our measures comparable

with survey measures, we construct excess returns and subtract the one-month Treasury Bill

rate.16 We use the following three surveys about expected market returns: The individual

investor series by Nagel and Xu [2023], the Graham and Harvey CFO survey [Ben-David,

Graham, and Harvey 2013], and the Livingston Survey available from the Federal Reserve

Bank of Philadelphia. Nagel and Xu [2023] extend the UBS/Gallup survey backward and

forward using other surveys such as the Conference Board survey, and the Michigan Survey of

Consumers and is available at the quarterly frequency.17 The Graham and Harvey survey polls

financial officers about the one-year expected return on the S&P500 and is also available at

the quarterly frequency. Finally, the Livingston Survey is released in June and December every

year and polls economists at financial, non-financial, and academic institutions, as well as

labor organizations, government, and insurance companies.

Figure 8 plots expected return measures for market makers and customers together with

three survey measures. As with regards to the overall co-movement, we find that the correlation

between market makers’ expected (excess) return and the Livingston Survey is -22% (-8%

for customers’ expected return), -35% with the CFO survey (same for customers’ expected

returns), and -60% with the Nagel and Xu [2023] measure of expected returns (-40% for

customers’ expected return). Our findings echo Dahlquist and Ibert [2024] who study surveys

from asset managers and find that their expectations behave quite different from those of

retail investors. Similarly, market makers and their customers in the SPX market are highly

sophisticated hedge funds and banks and their expectations about the market’s return are

highly negatively correlated.

We now turn to studying market makers’ and customers’ expected return determinants.

A large literature has studied drivers of investors’ expectations by estimating time-series

regressions from expected returns on standard predictors of realized returns. Interestingly,

most survey measures do not load significantly on standard predictors, see, e.g., Nagel and

Xu [2023]. We follow this literature and regress the expected return measures on the S&P500

P/D ratio, the consumption wealth ratio (CAY) of Lettau and Ludvigson [2001], as well as net

equity expansion (NTIS) from Welch and Goyal [2008], calculated as the ratio of twelve-month

moving sums of net issues by NYSE-listed stocks divided by the total market capitalization of

NYSE stocks at the end of the twelve-month window. In all of our regressions, we also include

past realized returns as in Greenwood and Shleifer [2014]. Panel A of Table 4 reports the results.

16Notice that most surveys measure expected stock returns over a one-year horizon. We do not
observe many options with maturity of one year. We therefore use a one-month horizon (as before).

17We download data from Zhengyang Xu’s webpage.
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Figure 8. Subjective Expected Market Return from Survey Data, Customers and Market Makers
Notes: This figure plots the time-series of the expected market premium (p.a. in %) for market makers
and customers together with survey data from Nagel and Xu [2023] (NX), the Graham and Harvey survey
(CFO), and the Livingston Survey. Data runs from January 1996 to December 2020. Gray bars indicate
NBER recessions.

None of the standard realized return predictor coefficients are statistically significant. This

result is inline with Nagel and Xu [2023] who also find that subjective risk premia do not load

on standard predictors. Past realized returns, however, load highly statistically significantly on

subjective returns of market makers and customers with coefficients of similar size.

The negative slope coefficient is interesting, because most survey measures load positively

on past realized returns. For example, Greenwood and Shleifer [2014] show that when past

realized returns are high, investors expect higher returns going forward. The authors interpret

this finding as evidence for extrapolation. Using subjective expected returns of market makers

and customers, we find that they actually expect lower expected returns.

As discussed earlier, the cyclicality properties of expected returns of market makers’ and

customers may depend on the composition of their portfolios. To study this relation more

formally, we run time-series regressions of expected returns on measures of cyclicality. To

proxy for cyclicality, we take industrial production growth (IP), the 10-year minus 3-month

Treasury term spread (TERM), the default spread defined as the difference between Moody’s

BAA and AAA corporate bond yields (DEFAULT), and the real factor of Ludvigson and Ng

[2009] (F1). Moving to Panel B in Table 4, we find that with the exception of the term spread,

none of the regression coefficients is statistically significant when controlling for past realized

returns. We therefore conclude that the cyclicality properties of subjective expected returns of

market makers and customers is muted.
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Table 4. Determinants and Cyclicality Expected Returns

Panel A: Determinants Panel B: Cyclicality
CAY DP NTIS IP TERM DEFAULT F1

Expected Returns: Market Makers
Const 0.03 0.03 0.02 0.02 0.04 0.05 0.03 0.04 0.04 0.04 0.03 0.03 0.03 0.03

(p-value) (0.00) (0.00) (0.18) (0.05) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00)
Coeff 1.77 1.76 -2.05 -2.51 1.51 2.26 -1.63 -3.87 -1.44 -1.52 0.34 -1.22 0.48 -0.32

(p-value) (0.11) (0.12) (0.08) (0.01) (0.30) (0.07) (0.37) (0.02) (0.09) (0.05) (0.81) (0.39) (0.49) (0.59)
Re

past -1.15 -1.93 -1.90 -2.38 -1.32 -1.78 -1.39
(p-value) (0.04) (0.04) (0.01) (0.00) (0.11) (0.00) (0.07)

Adj. R2 0.21 0.25 0.16 0.26 0.05 0.15 0.02 0.14 0.08 0.13 -0.00 0.05 0.00 0.04

Expected Returns: Customers
Const 0.04 0.05 0.04 0.04 0.04 0.06 0.04 0.05 0.05 0.06 0.04 0.05 0.04 0.05

(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Coeff 0.98 0.95 -0.80 -1.32 0.41 1.24 -0.27 -2.70 -1.38 -1.51 1.48 -0.21 0.98 -0.11

(p-value) (0.15) (0.18) (0.47) (0.11) (0.74) (0.20) (0.85) (0.03) (0.04) (0.01) (0.25) (0.89) (0.17) (0.85)
Re

past -1.77 -2.19 -2.18 -2.61 -1.94 -1.91 -1.87
(p-value) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

Adj. R2 0.08 0.21 0.03 0.21 0.00 0.17 -0.00 0.20 0.10 0.25 0.05 0.13 0.04 0.13

Notes: This table reports estimated coefficients from regressing market makers’ and customers’ expected
returns on determinants and measures of cyclicality. Data runs from January 1996 to December 2020.

5 Subjective Measures of Risk

We can now study subjective risk as outlined in equation (9). Table 5 presents summary

statistics for subjective risk and the subjective Sharpe ratio, that is the subjective expected

excess return divided by the subjective volatility. The average volatility for both customers and

market makers is around 25%. However, in terms of Sharpe ratios, customers exhibit slightly

larger value (5.9% vs. 3.7%), because after 2008 the subjective return of market makers turns

negative systematically. In general, both low Sharpe ratios reflect the investors’ conservative

view about the market.

The time-series of subjective volatility and Sharpe ratios for customers and market makers

are plotted in Figure 9. The subjective risks of both customers and market makers are highly

similar and clearly countercyclical, high in bad times and low in good times. Significant

differences arise only in the huge peaks during crisis, where volatility perceived by customers

gets much higher than the other.
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Table 5. Summary statistics of subjective volatility and Sharpe Ratio

mean std. min median max counts

Volatility
Customers 0.251 0.110 0.089 0.232 0.935 300
Market Makers 0.248 0.100 0.099 0.226 0.747 294

Sharpe Ratio
Customers 0.059 0.071 -0.215 0.054 0.301 300
Market Makers 0.037 0.100 -0.300 0.058 0.230 294

Notes: This table reports summary statistics for the time-series of monthly averaged subjective volatility
and Sharpe Ratio recovered from the observed positions of customers and market makers (showed in
Figure 9). Values are annualized. Data runs from January 1996 to December 2020.
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A. Subjective Volatility

B. Subjective Sharpe Ratio

Figure 9. Subjective Volatility and Sharpe Ratio with no measurement errors
Notes: This figure plots the time-series of the subjective volatility (panel A) and the subjective Sharpe
Ratio (panel B) as recovered through the SDF supported by the observed positions of customers and
market makers, as described in the main text. Frequency and horizon are monthly, values are annualized.
Gray bars indicate NBER recessions.
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6 Demand-Based SDFs

As our final exercise, we now recover the SDFs of our two investors groups and we show how

they depend on their portfolio compositions. To this end, we show the SDF shapes and the

customers’ portfolio weights18 on options in two complementary situations, summarized in

Figure 10 and Figure 11.

On both dates, we find that the investment in puts is larger than in calls, but the type of

investment is opposite. Figure 10 depicts a day in October 2012 where customers are long in

puts and short in calls. We already know that on average this is the typical customers’ portfolio

of monthly OTM options. Then, their usual SDF is not monotonically decreasing (as M0). In

the downside region, it is increasing because the risk has been hedged by buying protection

through the OTM puts. The market makers’ SDF has a complementary form, being almost

U-shaped as they have taken larger exposition to the index volatility.

Despite this is the most frequent observation in our data, many interesting deviations are

allowed depending on the contingent portfolio structure. Figure 11 is a prime example of the

case where customers have taken overall negative positions in both calls and puts. The picture

refers to March 10, 2020 during Covid crisis. This echoes earlier findings in Chen, Joslin, and

Ni [2019] who argue that while market makers are net suppliers of insurance in normal times,

they become net demanders in bad times when their financial constraints bind. Although

this effect is not evident on average on a monthly scale, it can be registered when looking at

the daily level. The regime is switched from Figure 10: customers’ SDF is now increasing in

the upside and the downside risk, exhibiting a clear U-shaped form. Market makers’ SDF is

conversely peaked in the middle, and decreasing towards extreme values in both directions.

The different compositions in the portfolios have significant effects on the ensuing ex-

pected returns. When investors increase their exposure to the index volatility, they perceive

larger risk premia: for instance, for customers it is 1% in October 22, 2012 and 21% in March

10, 2020.

18Since options are in zero net supply, market makers’ aggregated holdings are just the mirror image.

30



A. SDF B. Customers’ Option Investment

Figure 10. Recovered SDF and Option Portfolio Weights
Notes: This Figure plots the stochastic discount factor recovered from customers and market makers’
observed positions in 30-days expiring options on October 22, 2012 (left panel), and the corresponding
distribution of the portfolio weights for OTM calls and puts across different levels of moneyness (right
panel). Portfolio weights are summed in every bin.

A. SDF B. Customers’ Option Investment

Figure 11. Recovered SDF and Option Portfolio Weights
Notes: This Figure plots the stochastic discount factor recovered from customers and market makers’
observed positions in 30-days expiring options on March 10, 2020 (left panel), and the corresponding
distribution of the portfolio weights for OTM calls and puts across different levels of moneyness (right
panel). Portfolio weights are summed in every bin.
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7 Conclusion

A large literature has documented different time-series properties of survey measures of

expected returns depending on the level of sophistication. Our findings show that even across

investors with very high levels of sophistication such as hedge funds (who act both as market

makers and customers), expected returns can differ wildly. Measures of expected returns that

uniquely rely on pricing information are ill-suited to explain such large heterogeneity.

In this paper, we propose a theoretical framework for recovering investors’ beliefs using

demand-based data. Information about investors’ holdings allows us to recover possible

beliefs of individual investors when observing a cross-section of option prices. Our main

empirical result is that the size, dynamics, and cyclicality properties of belief-implied expected

returns and subjective Sharpe ratios vary significantly across investor types. Using granular

transaction data on buy and sell orders of financial intermediaries and public investors, we

show that beliefs are heterogeneous and the implied expected returns may vary considerably

across the two investors as they depend on the structure of the underlying portfolio and on

the state of the economy.

While market makers’ expected returns are highly correlated with survey measures of

sophisticated agents, they are not correlated with households’ expectations. The opposite

holds true for customers. Finally, we find that the cyclicality properties of subjective expected

returns are muted.

Our setting abstracts from frictions such as trading costs. The sensitivity of portfolio

holdings to expectations depends, however, on such costs. For example, Giglio et al. [2021]

show that such sensitivity increases as investors face lower costs. In future work, we plan to

jointly model survey data, holdings, and prices in the presence of frictions.
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A Proofs and Derivations

Proposition 2 (Upper and lower bounds on expected payoffs of a log investor). Suppose

θ ∈ Θ, where Θ is some closed convex set, indexes a log investor holding an optimal portfolio θ,

with return R, and having belief P. Further let f(R) be some payoff depending on R. Then, the

following upper and lower bounds hold:

U(f) := sup
θ∈Θ

EQ[Rf(R)] ≥ Ei[f(R)] , (10)

and

L(f) := inf
θ∈Θ

EQ[Rf(R)] ≤ Ei[f(R)] . (11)

Proof. Since portfolio θ is optimal for the log utility investor and the associated belief P, we

get:

Ei[f(R)] = EQ[Rf(R)] , (12)

where by construction EQ[R] = 1. Given convex set Θ of admissible portfolio weights, the

worst case expected payoff across admissible maximum growth portfolios is:

L(f) := inf
θ∈Θ

Ei[f(R)] = inf
θ∈Θ

EQ[Rf(R)] . (13)

Analogously, the best case expected payoff across admissible maximum growth portfolios is:

U(f) := sup
θ∈Θ

Ei[f(R)] = sup
θ∈Θ

EQ[Rf(R)] . (14)

This concludes the proof. ■

Corollary 1 (Upper and lower bounds on expected payoffs from observed investor’s holding).

In the context of Proposition 2, suppose that θ⋆
0 is the optimal portfolio of a log investor with

beliefP, which is however not observable. Assume further that there exists an observable portfolio

θ0 such that

d(θ0,θ
⋆
0) ≤ δ , (15)
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for some convex discrepancy function d(·, ·) ≥ 0 such that d(x, y) = 0 if and only if x = y. Then,

the upper and lower bounds in Proposition 2 are such that:

L(f) = inf
d(θ,θ0)≤δ

EQ[Rf(R) ≤ Ei[Rf(R)] ≤ U(f) = sup
d(θ,θ0)≤δ

EQ[R(θ)f(R)] . (16)

In the case where δ = 0, i.e., there is no portfolio measurement error, then

L(f) = Ei[f(R)] = U(f) .

Example 1. If d(θ,θ0) = 1
2 ||θ − θ0||22, then:

gL(f)(λ) = inf
θ∈RN

{
EQ[R(θ)f(R)] + λ

(
1

2
||θ − θ0||22 − δ

)}
. (17)

This gives the optimality condition:

0 = ∇gL(f)(λ) = EQ[Ref(R)] + λ(θ − θ0) , (18)

and, whenever the constraint is binding:

1

2
||EQ[Ref(R)]||22 =

1

2
λ2||θ − θ0||22 = λ2δ , (19)

i.e., an optimal Lagrange multiplier given by:

λ⋆ =
1√
2δ

||EQ[Ref(R)]||2 . (20)

Therefore, the optimal portfolio supporting the lower bound is such that:

θ⋆ = θ0 −
1

λ⋆
EQ[Ref(R)] = θ0 −

√
2δ

||EQ[Ref(R)]||2
EQ[Ref(R)] . (21)

This gives the closed-form lower bound:

L(f) = gL(f)(λ
⋆) = EQ[R(θ⋆)f(R)] = EQ[f(R)] + EQ[θ′

0R
ef(R)]−

√
2δ||EQ[Ref(R)]||2 . (22)
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In an analogous vein, we obtain:

U(f) = gU(f)(λ
⋆) = EQ[f(R)] + EQ[θ′

0R
ef(R)] +

√
2δ||EQ[Ref(R)]||2 . (23)

Proposition 3 (Lower bound on expected log return of optimally invested wealth). Suppose

θ ∈ Θ indexes a log investor holding an optimal portfolio θ, with return R, and having belief P.

Then, the following lower bound holds:

L := inf
θ∈Θ

EQ[R logR] ≤ Ei[logR] . (24)

Proof. Since portfolio θ is optimal for the log utility investor and the associated belief P, we

get:

Ei[logR] = EQ[R logR] , (25)

where by construction EQ[R] = 1. Given convex set Θ of admissible portfolio weights, the

worst case expected log utility over maximum growth portfolios is:

L := inf
θ∈Θ

Ei[logR(θ)] = inf
θ∈Θ

EQ[R(θ) logR(θ)] . (26)

This problem is convex, with solution obtained using standard duality methods. This con-

cludes the proof. ■

Corollary 2 (Lower bound extracted from observed investor’s holdings). In the context of

Proposition 3, suppose that θ⋆
0 is the optimal portfolio of a log investor with belief P, which is

however not observable. Assume further that there exists and observable portfolio θ0 such that

d(θ0,θ
⋆
0) ≤ δ , (27)

for some convex discrepancy function d(·, ·) ≥ 0 such that d(x, y) = 0 if and only if x = y. Then,

the lower bound in Proposition 3 becomes:

L = inf
θ

EQ[R logR(θ)] s.t. d(θ,θ0) ≤ δ . (28)

In the case where δ = 0, i.e., there is no portfolio measurement error, then

L = Ei[logR(θ⋆
0)] .
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Proof. The lower bound follows from Proposition 3 once we define Θ := {θ | d(θ,θ0) ≤ δ}. In

the case where there is no measurement error, δ = 0 and Θ = {θ⋆
0}, i.e.:

L = EQ[R logR] = Ei[logR] . (29)

This concludes the proof. ■

Corollary 3 (Dual formulation). In the context of Proposition 3, for any λ ≥ 0 it follows:

L ≥ g(λ) := inf
θ∈RN

{
EQ[R(θ) logR(θ)] + λ(d(θ,θ0)− δ)

}
. (30)

Therefore, L ≥ supλ≥0 g(λ). Moreover, when suitable Constraints Qualification conditions hold,

then L = supλ≥0 g(λ). In particular, if there exists 0 < δ′ < δ such that EQ[R(θ) logR(θ)] < ∞
for all θ such that d(θ,θ0) < δ′ then Slater’s Constraint Qualification conditions hold.

Proof. The proof follows with standard Lagrangian duality arguments. ■

Example 2. If d(θ,θ0) = 1
2 ||θ − θ0||22, then:

g(λ) = inf
θ∈RN

{
EQ[R(θ) logR(θ)] + λ

(
1

2
||θ − θ0||22

)}
. (31)
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B Demand-based expected returns in economies with

heterogenous beliefs

We explore expected returns and their relation to option-implied moments in a simple econ-

omy with n investors, who may allocate their wealth to the aggregate market index (assumed

in positive net supply) and a set of options (assumed in zero net supply).

We denote by Ri the (forward) return on i-th investor’s wealth over horizon [0, T ], and by R

the (forward) return on the market index. Investor’s i wealth at time t is denoted by Wit. Given

the market index value It at time t, the market clearing condition yields:

It = Wt =
∑
i

Wit , (32)

and

R =
IT
I0

=
WT

W0
=
∑
i

Wi0

W0
Ri =:

∑
i

wiRi , (33)

with i−th investor’s share wi of the aggregate wealth. Let further Pi denote i−th investor’s

subjective probability belief and Ei[·] expectations under this belief. The consensus market

expected return among all investors is then defined by:

Ē[R] :=
∑
i

wiEi[R] . (34)

The next proposition gives a first characterization of the consensus belief in an economy

where all investors are optimally investing in the index and option markets.

Proposition 4. Let investor j be a log investor optimally investing in the index market and the

(complete) option market. It then follows:

Ej [R] = 1 + Cov(Rj , R) = 1 + wjVarQ[Rj ] +
∑
i ̸=j

wiCovQ[Rj , Ri] . (35)

If all investors are log investors optimally investing in the index market and the (complete)

option market, then:

Ē[R] = 1 + VarQ(R) (36)
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If all index weights wi are positive, there exists a consensus belief P̄ :=
∑

iwiPi such that:

Ē[R] = EP̄[R] . (37)

Proof. We first obtain, using investor j optimality conditions for investment in the index and

the (complete) option markets:

Ej [R] = EQ[RjR] = EQ[Rj

∑
i

wiRi] =
∑
i

wiEQ[RjRi] .

The market clearing condition in the option market further implies
∑

iwi = 1, which gives:

Ej [R− 1] =
∑
i

wiEQ[RjRi − 1] =
∑
i

wiCovQ(Rj , Ri) = 1 + Cov(Rj , R) .

Furthermore,

Ē[R]− 1 =
∑
j

wjEj [R− 1] =
∑
j

wjCovQ(Rj , R) = VarQ
(∑

i

wiRi

)
= VarQ(R) .

Finally, if all index weights are positive, then:

Ē[R] =
∑
i

wiEi[R] = EP̄[R] .

This concludes the proof. ■

One obvious special case of Proposition 4 arises when all investors have identical beliefs,

in which case P̄ is the common belief of each investor in the economy. A key requirement for

the validity of formula (36) in Proposition 4 – which is based on a consensus belief aggregated

across all investors – is that all investors in the economy are unconstrained in their investment

to the index and the option market. This ensures that all their associated returns on optimally

invested wealth are the inverse of a stochastic discount factor for jointly pricing the index

and all options. Therefore, whenever an investor exists who (i) invests in the market and (ii) is

constrained in her investment in some options, a consensus belief cannot be identified via

formula (36). This situation trivially arises, e.g., when an investor exists who can only invest in

the index.

While formula (36) can be expected to fail in general, it is still possible to identify a con-

sensus belief aggregated only among all investors who can optimally invest in both the index

and the option market. To this end, let I be the index set indexing the subset of such investors
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having a non zero optimal wealth allocation to the index and option markets. For each investor

i ∈ I it then follows:

Ei[R] = 1 + Cov(Ri, R) . (38)

The associated consensus belief across such investors is analogously defined as:

ĒJ[R] :=
∑
i∈I

wI
iEi[R] , (39)

with the wealth shares

wI
i =

Wi0∑
i∈IWi0

(40)

The following corollary then yields the corresponding consensus belief characterization.

Corollary 4. In the setting of Proposition 4, if there is a subset I of investors optimally investing

in the index market and the (complete) option market, then:

ĒI[R] = 1 + CovQ(RI, R) , (41)

where

RI :=
∑
i∈I

wI
iRi . (42)

If all weights wI
i are positive, then:

ĒI[R] = EP̄J [R] , (43)

for a consensus belief P̄J :=
∑

i∈I Pi.

It follows form Corollary 4 that the consensus equity premium among investors optimally

trading in the index and option markets is positive if and only if return RJ correlates positively

with the market index return under pricing measure Q. This feature is more likely to emerge,

e.g., when the average index holding across these investors is positive. For instance, whenever
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the net aggregate wealth allocated to options by investors i ∈ I is nil, then:19

ĒI[R] = Ē[R] = 1 + VarQ(R) > 1 .

Conversely, when these investors additionally have on aggregate a zero exposure to market

risk, then RI = 0 and ĒI[R] = 1.

Given consensus belief ĒI[R], the belief dispersion about index returns of investors opti-

mally investing in the index and options markets is conveniently defined by:

DI[R] :=
∑
i∈I

wi|Ei[R]− ĒI[R]| . (44)

The next corollary gives the corresponding characterization of the belief dispersion.

Corollary 5. In the setting of Proposition 4, if there is a subset I of investors optimally investing

in the index market and the (complete) option market, then:

D̄I[R] =
∑
i∈I

wi|CovQ(Ri −RI, R)| . (45)

Proof. Given equation (38), we have:

Ei[R] = 1 + CovQ(Ri, R) ,

ĒI[R] = 1 + CovQ(RI, R) .

Therefore,

DI[R] =
∑
i∈I

wi|CovQ(Ri, R)− CovQ(RJ, R)| =
∑
i∈I

wi|CovQ(Ri −RJ, R)| .

This concludes the proof. ■

According to Corollary 5, belief dispersion is large when on average individual excess

return Ri −RI has a large forward-neutral covariance with index returns. Therefore, the belief

dispersion increases, ceteris paribus, with the forward variance of the index, the average

forward variance of excess return Ri − RI, and the average absolute forward correlation

betweenRi−RI and index returns. In particular, following scaled definition of belief dispersion

19Because of the option market clearing condition, this identity holds, e.g., when set J contains all
option investors in the conomy.
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isolates the belief heterogeneity implications of the latter two effects from the mechanical

effect of the index forward variance:

SD̄I[R] :=
D̄I[R]√
VarQ(R)

=
∑
i∈I

wi|CorrQ(Ri −RI, R)|
√

VarQ(Ri −RI) . (46)
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C Additional Figures

A. Calls B. Puts

Figure C.1. Customers’ demand changes vs. holdings on monthly OTM options
Notes: This figure plots the holdings and the demand shocks in the customers’ portfolios for OTM calls
(left panel) and puts (right panel) expiring in 30 days. Data are computed daily from 1996 to 2020, then
aggregated to monthly frequency.

Figure C.2. Trading Volume in OTM options
Notes: This figure plots the time-series of the trading volume in OTM calls and puts, expiring in 30 days,
from 1996 to 2020. Trading volume is the sum of the absolute value of opening and closing positions
recorded every day. Data are monthly averages. Gray bars indicate NBER recessions.
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Figure C.3. Investment in the Index
Notes: This figure plots the time-series of the wealth fraction (in percentage) invested in the S&P500
index by customers. Data are monthly averages. Gray bars indicate NBER recessions.

Figure C.4. SVIX
Notes: This figure plots the time-series of E0[R], i.e. the expected return recovered by M = 1/R. The
graph shows the monthly average of daily recovered expected returns, over the horizon of one month.
Gray bars indicate NBER recessions.
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