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Abstract

We develop a framework to extract heterogeneous investors’ subjective beliefs by
combining option prices and portfolio holdings. We show how to recover investor-specific
expectations of returns and risk, consensus beliefs, and belief dispersion. Applying it to
S&P 500 options’ buy–sell order data, we find that subjective expected returns and Sharpe
ratios vary by investor type and depend on portfolio composition. Beliefs inferred from
prices alone display strong counter-cyclicality, whereas those incorporating holdings can
reverse sign, exhibit muted cyclicality, and align with professional survey expectations
under market-timing strategies. Our results highlight the value of holdings data in belief
recovery.
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1 Introduction

Canonical estimates of market expected returns derived from option prices tend

to rise during crisis periods and exhibit substantial variation over time. In contrast,

survey-based estimates are typically less volatile and may display pro-cyclical, counter-

cyclical, or a-cyclical patterns depending on the investor’s type and sophistication level

(see, e.g., Greenwood and Shleifer [2014], Nagel and Xu [2023], and Dahlquist and Ibert

[2024]). While price-based measures generally overlook investors’ actual holdings, a

growing body of research highlights the strong link between portfolio positions and

investor beliefs.1 Motivated by this literature, our paper emphasizes the importance of

incorporating investors’ holdings to better understand the heterogeneous nature of

subjective expected returns and perceived risks. Options holdings, in particular, offer

unique insights, as it is well established that investors have a “fundamental” need to

trade options (see, e.g., Ross [1976]; Hakansson [1979]).

In this paper, we present a simple theoretical framework for extracting investors’

heterogeneous subjective beliefs from option prices and holdings data under the

no-arbitrage assumption. Our approach allows for real-time inference of individual

investors’ expected market returns and perceived risks at a granular level and we show

how to aggregate these beliefs to obtain consensus expected returns and quantify

belief dispersion across market participants.

Empirically, we document significant heterogeneity in the resulting expected re-

turn estimates across different types of investors. More importantly, we find that

expected returns derived from holdings’ data can diverge in several intriguing ways

from those inferred from prices alone. Using transaction-level data on buy and sell

orders for S&P 500 index options, we show that the subjective expected returns of

retail and institutional investors are significantly smaller and less cyclical compared to

those inferred from price data alone. In contrast, expected returns of market makers

more closely follow price-based measures. Intuitively, institutional investors like hedge

funds often buy insurance in the option market via long-put positions, which lowers

their exposure to market downturns. Conversely, market makers are mostly net suppli-

ers of deep-out-of-the-money puts to public investors, see, e.g., Gârleanu, Pedersen,

and Poteshman [2008] and Chen, Joslin, and Ni [2019]. Increased market exposure via

1For example, Giglio et al. [2021] find a robust relationship between expected returns and portfolio
holdings using survey data. Beutel and Weber [2023] provide causal evidence on this connection through
experimental studies. Additionally, Egan, MacKay, and Yang [2024] show that belief heterogeneity
accounts for much of the variation in household portfolio choices.



the short put position leads to higher expected returns for market makers compared

to customers’ expected return. In line with the survey literature, we conclude that

the dynamic features of subjective measures of expected returns inferred jointly from

option prices and holdings can vary greatly across investors.

Our approach is based on the assumption of an arbitrage-free market, where prices

can be expressed as the expected value of future payoffs discounted by investor’s

stochastic discount factor (SDF) Mi. The expectation is taken under a probability

measure Pi, which represents the investor’s subjective belief, while the SDF reflects

the investor’s risk preferences. Existing methods typically extract agents’ beliefs from a

cross-section of option prices under certain assumptions about the SDF, overlooking

valuable information available at granular levels, such as portfolio holdings, trading

flows, or open interest. In contrast, our “demand-based” belief recovery extracts Pi

by leveraging investor-level data on option holdings, in addition to option prices.

Specifically, we consider investors with heterogeneous beliefs, who can hold different

portfolios invested in the aggregate market index and a family of options written on

the index.

Our main theoretical result asserts that subjective expectations under belief Pi,

such as subjective expected market returns, can be directly inferred from investors’

portfolio holdings and a cross-section of option prices, which fully determine the risk-

neutral probability measure Q (Breeden and Litzenberger [1978]). Since holdings are

observable at the investor level, we can derive measures of both subjective expected

returns and risks in real time for each investor type. Moreover, we demonstrate how to

recover a consensus belief and quantify belief dispersion across investors. For instance,

we show that when all agents are unconstrained and hold their own growth-optimal

portfolios, aggregate market clearing implies a consensus expected market return that

coincides with the risk-neutral variance.

Our model ties each investor’s stochastic discount factor to both index and option

returns, so inferred expected returns and risks vary with option-portfolio composition

and weight. By matching option prices with daily Open–Close buy/sell records from

the Chicago Board of Option Exchange (CBOE), we recover beliefs that align with

observed holdings.

Our empirical analysis produces the following main findings. First, variations

in option portfolio holdings influence investors’ ex-ante exposure to market risk,

resulting in significant differences in the expected market return characteristics across

investors and over time. Our findings reveal that the expected returns inferred for
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market makers are more correlated with price-based measures of expected returns

than with those for customers. Customers’ expected returns tend to be smaller and

may even turn negative in some cases. This difference can be partly attributed to the

fact that in our sample, customers are predominantly long puts, providing protection

against market downturns.

Second, our framework allows us to recover subjective measures of investors’ per-

ceived risk and their risk-return tradeoffs. Compared to expected returns, customers’

inferred risks show a stronger correlation with price-based measures, though they are

consistently slightly higher. In contrast, market makers’ inferred risks more closely

align with price-based measures. As a result, customers tend to exhibit significantly

lower and more volatile inferred Sharpe ratios compared to market makers.

Finally, we extend our empirical framework along two dimensions. First, we explore

the relationship between our demand-based expected return time-series and survey-

based measures of expected market returns. We find that demand-based expected

returns can be reconciled with survey expectations under economically plausible

market timing strategies and with only moderate aggregate option exposure relative

to investors’ market allocations. Second, we extend our theory and study the effect

of time-varying risk aversion. We find that in order to align demand-based expected

returns to the survey data, risk aversion coefficients do not have to deviate too much

from our benchmark case, where we set risk aversion equal to one (hence, log utility).

Related Literature. This paper is related to several important strands of the literature.

Starting from the seminal work of Ross [2015], a growing literature has studied how to

recover investors’ beliefs using information provided by the cross-section of option

prices; see, e.g., Borovička, Hansen, and Scheinkman [2016], Schneider and Trojani

[2019] and Jensen, Lando, and Pedersen [2019], among others, for recent refinements

of the Ross [2015] recovery theorem. Similarly, Pazarbasi, Schneider, and Vilkov [2024]

derive non-parametric bounds on belief dispersion from option prices. Our approach

is distinct, as we focus on incorporating demand- and price-based option information

in the empirical recovery of investor-specific beliefs.

Another strand of the literature investigates properties of investor beliefs that

are consistent with (i) a set of pricing constraints, and (ii) specific belief properties

inferred from survey data while assuming an initial physical probability, see, e.g., Chen,

Hansen, and Hansen [2020], Ghosh and Roussellet [2023], and Korsaye [2024], among

others. These approaches do not incorporate demand-based information and are
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not designed for granular, real-time applications since in practice, recovery involves

the joint estimation of transition probabilities under the physical belief, parametric

stochastic discount factor models of investor preferences, and minimal divergence

adjustments to match the target belief properties imposed by survey data.

Our paper is also related to the literature that examines the properties of option

demand among heterogeneous investors. Chen, Joslin, and Ni [2019] document how

variations in the net demand for deep OTM put options between intermediaries and

public investors may be partly driven by intermediaries’ constraints. Farago, Khapko,

and Ornthanalai [2021] propose a heterogeneous agent model to explain index put

trading volumes. Almeida and Freire [2022] link pricing kernel puzzles to various

option demand effects. We complement this literature by offering a simple framework

that enables us to estimate the beliefs of both intermediaries and end users using

price and holdings data.

A closely related body of literature uses option prices to recover proxies of expected

returns for a single investor without including demand-based information. For ex-

ample, Martin [2017] and Gao and Martin [2021] derive lower bounds on expected

market returns and expected log market returns. These bounds correspond to the

subjective expected return and expected log return, respectively, of an investor who

maximizes long-run growth, is fully invested in the market, and does not trade op-

tions. Both bounds can be directly computed in real time from option prices as two

distinct measures of risk-neutral variance. Extensions of these bounds, as discussed

in Schneider and Trojani [2019] and Chabi-Yo and Loudis [2020], among others, are

expressed as specific functions of multiple option-implied moments. Tetlock [2023]

examines an investor, who invests in the market and a set of synthetic higher-moment

payoffs created with option-replicating portfolios. He shows that the expected market

return and variance, according to this investor’s beliefs, can be expressed as linear

combinations of option-implied moments, with weights reflecting the investments in

each replicating portfolio. Since these weights are not directly observable, he estimates

them using a statistical approach that maximizes the predictive power of the investor’s

subjective variance for actual realized variance. Unlike this literature, we construct

subjective measures of investor expected return and risk that fully leverage real-time

information from option prices and holdings. We demonstrate that the dynamics

and statistical properties of the inferred expected returns depend on quantity data in

important ways. Specifically, we show that the properties of these inferred returns can

differ significantly from those derived using only option price information or price
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data combined with synthetic option portfolio weights estimated from time-series

market return data.

Our paper also contributes to the empirical literature examining the beliefs of

heterogeneous investors through survey data. Dahlquist and Ibert [2024] document

substantial heterogeneity in asset managers’ expectations, while Giglio et al. [2021] in-

vestigate the link between retail investors’ beliefs and their portfolio choices. Meeuwis

et al. [2022] further show that political orientation shapes households’ beliefs and their

allocations to risky assets. Our approach differs by inferring investor beliefs from a

combination of option prices and holdings data, available in real time and at a higher

frequency than traditional survey measures.

More broadly, our paper is motivated by the demand-based asset pricing literature,

initiated by the seminal work of Koijen and Yogo [2019]. Similar to our approach, asset

demand systems impose economic constraints that match holdings data with price

data, while also incorporating market-clearing equilibrium conditions. While that

literature primarily focuses on how heterogeneous investor demands influence asset

prices, our focus is on recovering subjective expected returns from observable option

price and demand patterns.

Outline. The remainder of the paper is organized as follows. The key intuition is that

holdings data provide valuable insight into investors’ beliefs. We begin by illustrating

this intuition in Section 2. Section 3 presents our theoretical framework, showing how

subjective expected returns and risks can be inferred from data on prices and holdings.

Section 4 reports and discusses our main empirical findings. All proofs and additional

mathematical details are provided in the Appendix, with further results available in an

Online Appendix.

2 Illustrative Example

The core idea of our paper is that portfolio holdings encode information about in-

vestors’ beliefs and perceptions of risk. To build intuition, we start with a simple

example showing how option positions relate to the shape of an investor’s stochas-

tic discount factor (SDF) as a function of market returns—and, by extension, to her

views about the market. In particular, we examine a set of investors with differing

beliefs, each of whom holds her growth-optimal portfolio—that is, the portfolio that

maximizes expected long-run wealth (see, e.g., Long [1990]).
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As is well-known, the return of the growth-optimal portfolio is the reciprocal of

investor’s stochastic discount factor: M⋆ = 1/R⋆, where R⋆ is the return of the optimal

portfolio according to the investor’s subjective view. Specifically, although investors

may share identical preferences, their optimal portfolios can differ due to differences

in their beliefs. To establish a benchmark, one might consider the setting in Martin

[2017], where an investor’s belief leads her to hold a growth-optimal portfolio fully

invested in the market. In this case, the SDF of the investor takes the simpler form

M0 := 1/R, where R is the return on the market index. This choice will serve as our

benchmark throughout the remainder of the paper. A-priori, however, there is no

reason to exclude other traded assets (such as options) from the optimal portfolio. For

example, it is well-known that options are non-redundant securities held for hedging

purposes.2 Therefore, the corresponding optimal portfolio will generally include non-

zero positions in index options, leading to R⋆ ̸= R, and in turn M⋆ ̸= M0.

Figure 1 visualizes the ratio M0/M⋆ as a function of the market return R, for an

investor invested in calls (left panel) and puts (right panel) of different moneyness.

For illustration purposes, we assume that the investor’s portfolio consists of a fixed

proportion of 90% invested in the index and 10% in an equally weighted portfolio of

calls or puts, with options having the same maturity but different strikes.3 Notice that

even with a relatively moderate investment in options and small variations of market

returns, the ratio M0/M⋆ can substantially depart from 1 for at-the-money (ATM) and

especially out-of-the-money (OTM) calls and puts. For example, for a market excess

return of +20% (-20%), M0/M⋆ increases to 6 (5) for OTM calls (puts).

Next, we illustrate in Figure 2 the potential implications of investors’ option de-

mand for the time-series properties of their subjective expected returns. To this end,

we plot the time-series of the expected market return of different investors with SDF

M⋆ from Figure 1, alongside the expected return of the benchmark investor with

SDF M0. Panel A plots the expected returns of investors who hold calls in addition

to the index. Not too surprisingly, given the relatively time-invariant nature of the

index and option investment in our illustrative example, different expected return

series exhibit a substantial degree of comovement, with expected returns that tend

2Theoretically, economies with heterogeneous beliefs typically lead to non-trivial net demands for
options. For example, Buraschi, Trojani, and Vedolin [2014] show that agents with more pessimistic
views about future economic growth demand out-of-the-money (OTM) puts from more optimistic
agents. In markets with trading frictions, Johnson, Liang, and Liu [2016] show that the high demand for
index options is primarily due to the transfer of unspanned crash risk.

3In later sections, we make use of transaction-level data from the CBOE to precisely track actual
option portfolio holdings in real-time.
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Figure 1. Ratio between Benchmark SDF M0 and M⋆

Notes: This figure plots M0/M⋆ as a function of the excess return on the market. M⋆ = 1/R⋆, where
R⋆ is the return of a portfolio investing 90% of the wealth in the underlying and 10% in an equally-
weighted portfolio of calls (left plot) and puts (right plot) with different moneyness. ATM options have
|∆| ∈ (0.4, 0.6]. OTM options have |∆| ∈ [0.1, 0.4].

to increase (decrease) in bad (good) times and are quite volatile. Consistent with our

previous evidence, the expected returns of investors who trade call options are also

considerably higher.

We can contrast the above patterns with the inferred expected returns of investors

who are long puts. As seen in Panel B, decreasing exposure to downside market risk

through long put positions lowers the corresponding expected return, turning neg-

ative for most of the sample. As discussed earlier, this feature reflects the fact that

put investors, ceteris paribus, have more left-skewed market beliefs, making their

subjective risk-return tradeoff for holding just the index suboptimal when put options

are available. Equivalently, their long put positions directly reflect their pessimistic

views about the market, and are therefore associated with lower expected returns.

To summarize, even moderate investments in put options can lead to partly pro-

cyclical expected return patterns. Overall, this suggests that both the magnitude and

cyclicality of investors’ expected returns can depend in complex ways on option

type, option moneyness, and the relative importance of option versus market index

allocations in an investor’s optimal portfolio.4 In the following, we develop a theory to

formalize our intuition.

4We study more complex option trading strategies such as collars and straddles in the appendix. In
general, the conclusion remains the same: the statistical properties of expected returns depend on the
composition of investors’ portfolios.
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A. Calls

B. Puts

Figure 2. Time-Series of Expected Market Return
Notes: This figure plots the expected market return recovered from different stochastic discount factors.
In each panel, we plot the expected return recovered by M0 = 1/R, as well as by M⋆ = 1/R⋆, where R⋆

is the return of a portfolio investing 90% in the index and 10% in an equally-weighted portfolio of either
ATM or OTM options for calls (Panel A) and puts (Panel B). Frequency is daily, horizon is monthly. Time
series are 30-days moving averages. Values are annualized. Grey areas indicate NBER recession periods.
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3 Theoretical Framework

We now introduce a simple theoretical framework to explain how (i) subjective ex-

pected returns can be empirically recovered from options prices and holdings data,

(ii) to aggregate heterogeneous beliefs into a consensus belief, and (iii) to measure the

associated belief heterogeneity.

Consider an investor, labeled i, with logarithmic preferences, who has access to

three types of assets: a risk-free asset, a risky asset with forward return R, and a cross-

section of options written on the risky asset. Let Ei[·] denote this investor’s subjective

conditional expectation over possible states of return R, under her subjective prob-

ability belief Pi. The investor’s subjective belief may or may not align with the true

underlying data-generating process. In this paper, we assume the risky asset is the

S&P 500 index and the options are European calls and puts on this index. Finally, we

denote by Re = R− 1 the vector of excess forward returns, which includes the excess

returns on both the index and the options, and by Q the (forward) pricing measure

such that EQ[Re] = 0.

3.1 Subjective Expected Returns

Our goal is to recover investor’s belief Pi, under the simple framework introduced

above, to infer moments of market returns, such as the expected return Ei[R] or per-

ceived market risk Vari(R). Since investors have logarithmic utility, an agent-specific

SDF that prices all assets from the perspective of agent i is given by:

Mi = (1 + θ′
iR

e)
−1

, (1)

where θi is the vector of (optimal) portfolio weights for investment in the market index

and the options by investor i; see, e.g., Long [1990]. Note that SDF Mi is the reciprocal

of the return of the growth-optimal portfolio, since it maximizes expected long-run

growth of the investor i’s wealth, and such that:

Ei[MiR
e] = 0.
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We can then define a change of measure, dPi

dQ = M−1
i and write the subjective expected

market return for investor i as:

Ei[R] = EQ[M−1
i R] = EQ [(1 + θ′

iR
e)R] = 1 + CovQ (θ′

iR, R) . (2)

Equation (2) is the central identity studied in this paper. It links investor-specific

beliefs about market returns to the risk-neutral expectation of a particular payoff,

which depends solely on the market return, option returns, and investor i’s holdings

of these assets. Furthermore, while equation (2) is derived under the assumption of a

log investor, we discuss below to what extent it can serve as a useful lower bound for

expected returns when this assumption does not hold.

Equation (2) nests the main result in Martin [2017], who derives a lower bound for

the expected return of an investor with risk aversion of at least one. In his setting, the

subjective expected return coincides with the risk-neutral variance (SVIX). The key

distinction from Martin [2017] is that we do not assume that the investor’s optimal

portfolio is fully allocated to the market, treating options as redundant assets. In our

paper, we argue that options are non-redundant securities often held for fundamental

trading purposes, such as crash insurance.

While identity (2) holds exactly for the expected market return of a log utility

investor, one may wonder how it is affected by a violation of this assumption. Following

Martin [2017], we can show that it provides in general a lower bound for expected

market returns if the following negative covariance condition (NCC) holds:

Covi(Mi(1 + θ′
iR

e), R) ≤ 0 , (3)

where the covariance is formed under agent’s belief Pi. Clearly, this NCC always holds

with equality for a log utility investor, as in this case Mi = (1 + θ′
iR

e)−1. Conversely, for

an investor with power utility and risk aversion γ, who is fully invested in the market

and not holding options, this NCC holds if and only if γ ≥ 1.5

The validity of the NCC when allowing for options can depend on various economic

factors, such as the characteristics of the market price of nonlinear risks or the relative

size of the optimal option investment compared to the index investment. Since this

quantity is not directly observable in the data, our empirical study bounds it to ensure

5Martin [2017] demonstrates that the NCC holds in various prominent macro-finance asset pricing
models and Back, Crotty, and Kazempour [2022] show that the bounds are valid also conditionally (but
can show slackness) in the data.
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it remains economically “small.” This approach implies that option trading ideally

leads to only moderate perturbations of the NCC relative to the benchmark case

studied in Martin [2017].

Given NCC (3), the following lower bound on investor’s expected market return

follows:

Ei[R] ≥ EQ[(1 + θ′
iR

e)R]

EQ[1 + θ′
iR

e]
= 1 + CovQ (θ′

iR, R) , (4)

since EQ[1 + θ′
iR

e] = 1. The right-hand side of inequality (4) represents the expected

return in equation (2), which is derived under the log utility assumption. Therefore,

the expected return in the log utility setting provides a lower bound for the expected

return of an agent who holds the same optimal portfolio θi but potentially has non-log

utility preferences that satisfy the NCC condition (3).

3.2 Subjective Risk

Our framework can easily be extended to study not only expected returns, but also

subjective higher moments of market returns such as investors’ perceived market risk,

allowing us to explore the properties of the subjective risk-return trade-off.6 Using the

same logic applied in the derivation of equation (2), we obtain the following expression

for the subjective second moment of market returns:

Ei[R2] = EQ [R2
]
+ CovQ(θ′

iR, R2) . (5)

In equation (5), the second moment of the market return is the sum of two terms:

the second risk-neutral moment of market returns and the risk-neutral covariance

between market returns and the investor’s optimal portfolio return. By definition, the

first term represents the price of a realized second-moment payoff, while the second

term captures the risk premium of realized second-moment payoffs. This premium

is given by a risk-neutral coskewness coefficient, which measures the covariance

between the investor’s optimal portfolio return and the squared market return. In the

special case where the investor is optimally invested only in the market, the investor’s

subjective risk coincides with risk-neutral market coskewness.

By combining formulas (2) and (5) for the first two subjective moments of market

6While the relationship between conventional measures of realized risk and returns is typically
ambiguous and weak, recent literature has consistently reported a stronger positive association when
using survey-based measures. For example, Couts, Goncalves, and Loudis [2023] find this in the context
of the aggregate stock and bond markets, while Jensen [2024] observes it for individual stocks.
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returns, we can decompose the investor’s subjective market variance as follows.

Proposition 1. Investor’s subjective variance can be decomposed as:

Vari(R) = VarQ(R) + CovQ(θ′
iR, V (R))− (Ei[R− 1])2, (6)

where V (R) := (R− 1)2 is the SVIX realized variance payoff.

Proposition 1 provides insight into the joint impact of an investor’s portfolio hold-

ings on subjective expected return and risk. For example, an investor who is fully

invested only in the market index has a subjective market variance given by:

Vari(R) = VarQ(R) + CovQ(R, V (R))− (VarQ(R))2 . (7)

Specifically, the investor’s subjective variance is lower than the implied variance when

the leverage effect, captured by the risk-neutral covariance term CovQ(R, V (R)), is not

larger than the squared implied variance. Since the leverage effect is typically negative

in the data, the subjective variance for these investors tends to be smaller than the

implied variance.

More generally, given equation (6), the overall effect on subjective variance de-

pends on the combined impact of the investor’s optimal portfolio on the squared

subjective equity premium, as well as the co-leverage effect between the investor’s

portfolio return and the market’s realized variance, as reflected by the covariance term

CovQ(θ′
iR, V (R)).

3.3 Consensus Belief and Belief Disagreement

Thus far, we have explored how to recover the expected returns of heterogeneous

individual investors. A natural next step is to define a consensus belief within such a

cross-section of heterogeneous investors. To this end, let’s assume that we observe

the portfolios of all investors when both the index (in positive net supply) and the

option market (in zero net supply) clear.7 For brevity, we denote by Ri = 1 + θ′
iR

e the

(forward) return on the i-th investor’s wealth over the given horizon, where the wealth

of investor i at time t = 0, T is indicated by Wit. Given the market index value It at time

t, the index and option market clearing condition yield that It = Wt :=
∑

i Wit and

and R = IT
I0

= WT

W0
=
∑

i
Wi0

W0
Ri =:

∑
i wiRi with wi being the i−th investor’s share of the

7We study a second case, when only a subset of portfolios is observable in the Internet Appendix.
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aggregate wealth. The consensus market expected return among all investors is then

defined by:

Ē[R] :=
∑
i

wiEi[R] . (8)

The next proposition characterizes the consensus belief in an economy where markets

clear and all investors optimally allocate their wealth between the index and option

markets.

Proposition 2. Let investor j be a log investor optimally invested in the index and in

the option market. Investor j’s expected market return is then given by:

Ej[R] = 1 + CovQ(Rj, R) . (9)

If both index and option markets clear, then

Ej[R] = 1 + wjVarQ(Rj) +
∑
i ̸=j

wiCovQ(Rj, Ri) . (10)

Finally, if index and option markets clear and all investors are log investors optimally

invested in both markets, then the consensus belief is given by:

Ē[R] = 1 + VarQ(R) . (11)

The first two identities in Proposition 2 demonstrate that the expected return

perceived by each investor is a wealth-weighted average of all risk-neutral covariances

between the return on her optimally allocated wealth and the returns of all other

investors in the economy. An obvious special case of Proposition 2 occurs when all

investors have identical beliefs. In this case, the market equity premium as perceived

by all agents is given by the SVIX, see equation (11). Intuitively, the consensus expected

return aligns with the risk-neutral implied variance because, as the option market

clears, the impact of option holdings disappears in aggregate, leading investors to

collectively hold the market.

In addition to the consensus belief, we can also calculate the associated degree of
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(scaled) belief disagreement:8

D(R) =
1

Ē[R]

∑
i

wi

∣∣Ei[R]− Ē[R]
∣∣ . (12)

4 Empirical Analysis

This section outlines the data used and the empirical implementation of our main

theoretical results. We begin with an arbitrage-free cross-section of options and a

forward probability measure Q, which reproduces as an expected payoff the price of

any payoff replicable through a delta-hedged option portfolio; see, e.g., Acciaio et al.

[2016].9

4.1 Data

To empirically implement our theory, we utilize the CBOE Open-Close dataset, which

provides daily buy and sell volumes of SPX options since 1996, separated by position

type (opening/closing) and origin: (i) customer, (ii) broker-dealer, (iii) firm, and (iv)

market maker. Following common practice, we aggregate the daily volumes for the

last three categories into cumulative positions and label them as “market makers.”10

Customers include both retail and institutional investors.11 Our dataset spans January

1996 to December 2020. The "broker-dealer" label is available only from 2011 and

represents less than 3% of the trades.

The volume data does not include pricing information. To address this, we obtain

end-of-day bid-ask prices from the OptionMetrics database and use the best closing

bid and ask prices to compute mid-point prices. We then merge the CBOE Open-

Close dataset with the price data and apply standard filters from Bakshi, Cao, and

Chen [1997]. Specifically, we exclude option contracts that: (i) have a price below 3/8,

(ii) have an implied volatility smaller than 0.1% or greater than 1, (iii) exhibit a bid

8We scale D(R) by the consensus expected market return to isolate belief heterogeneity shocks from
the mechanical effects of shocks to consensus market return expectations.

9Specifically, this also implies EQ[Re] = 0.
10According to the CBOE Regulatory Circular, firms are defined as "OCC clearing member firm

proprietary accounts". Therefore, we aggregate firms and broker-dealers with market makers, as they
predominantly trade against public customers, despite not being formally designated as intermediaries.

11It is not possible to determine the exact fraction of trades originating from retail investors, as all
orders sent to the CBOE are routed through intermediaries, meaning even the CBOE cannot identify
end-user investors. However, estimates suggest that retail investor trading volume was less than 10%
before the COVID-19 pandemic, see, e.g., Han [2024].
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Table 1. Summary statistics monthly options data.

Calls Puts

K/St Holdings K/St Holdings

All OTM All OTM All OTM All OTM

mean 1.02 1.04 -20,607 -9,133 0.89 0.95 65,696 21,890
std 0.09 0.03 57,496 21,140 0.14 0.03 94,310 41,301
min 0.19 1.00 -675,460 -153,762 0.11 0.71 -534,099 -203,685
median 1.02 1.03 -14,879 -5,688 0.92 0.96 46,813 12,862
max 1.82 1.57 494,353 132,687 2.67 1.00 1,282,355 358,137

Notes: This table reports summary statistics for the options data with 30 days maturity. The relative
moneyness K/St is computed over the single option contracts that are traded on every date. «Holdings»
are defined as the total customers’ opening/closing buy orders minus sell orders cumulated for every
option from the issuance to every trading date, and it is aggregated over all the traded options on a
single day. For each variable, the first column refers to the full dataset, while the second to OTM options
(with 0.1 ≤ |∆| ≤ 0.4) only. Data runs from January 1996 to December 2020.

price greater than the ask price, (iv) have a relative bid-ask spread larger than 1/2,

or (v) are traded in fewer than 5 units. We also filter out instances where the sum

of transactions across investors is not zero, which occurs in less than 2% of cases.

Additionally, no-arbitrage filters are applied.

We use monthly horizons, as the most liquid options in the full sample expire

approximately thirty days from the observation date.12 We compute all quantities at a

daily frequency, then aggregate them into monthly moving averages to account for

the high turnover in option holdings.13 On each day, we separately interpolate the

implied volatility, option delta, and investor holdings for calls and puts, using a grid of

strike prices for the required maturity.14 The grid points consist of the different strikes

actively traded at that time.

Table 1 presents summary statistics of our option data, specifically for customers’

net demand for calls and puts. Holdings are defined as the total buy orders minus

the total sell orders, aggregated daily and cumulated over time from the option’s

issuance (for further details, see Section 4.2). On average, customers are net sellers

of call options and net buyers of put options. In our empirical analysis, we focus on

out-of-the-money (OTM) options with |∆| ∈ [0.1, 0.4], as these account for the largest

12Additional details on option volumes and trading can be found in Appendix B.
13This aggregation reflects, among other things, the diversity within the "Customer" label, which

encompasses various individual agents.
14When extrapolation is necessary, we use the nearest value outside the convex hull in terms of

strikes and maturities.
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share of trading volume (57%, see Appendix B). Notice that we exclude very deep-OTM

options (with |∆| < 0.1) because they are more likely to be affected by interpolation

errors.

4.2 Implementation with Option Holdings

We implement equation (2) using the Carr and Madan [2001] formula. Specifically,

note that

fi(R) := (1 + θ′
iR

e)R ,

depends only on R and θi, because Re only depends on R. Denoting by k an option’s

relative moneyness and by x(k) the option’s normalized payoff relative to the index

forward price, we then compute equation (2) as follows from our option price and

holding data:

Ei[R] = EQ[fi(R)]

≈ EQ

[
fi(1) + f ′

i(1)(R− 1) +
∑
k

f ′′
i (k) x(k) ∆k

]
= fi(1) +

∑
k

f ′′
i (k)EQ [ x(k) ]∆k

The computation of this expected return proxy relies on the vector θi of investor’s i

portfolio weights, which defines the investor’s total holdings of the index and each

available option as a fraction of the investor’s wealth. In contrast, our database reports

the total daily opening and closing positions on every option contract for a corre-

sponding fixed maturity. Daily opening and closing positions represent shocks to total

option demand and their sum reproduces the daily changes (flows) in the holdings of

each option contract. In order to recover total daily portfolio holdings of each option

contract for a corresponding maturity, we aggregate over time its opening and closing

positions from issuance up to the current date. To this end, we exploit the fact that the

CBOE Open-Close Database explicitly assigns a unique identification number to every

option contract, which can be used to track it day-by-day from issuance to expiration.

Figure 3 displays the monthly time series of total holdings by customers in OTM put

and call options with one month to expiration.15 Since options are in zero net supply,

15We present a more granular breakdown across moneyness in the appendix.
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Figure 3. Customers’ Holdings of monthly OTM options

Notes: This figure plots the 30-day moving average of customers’ portfolio holdings of OTM calls and
puts from 1996 to 2020. Options holdings are the sum of opening and closing positions on the same
contract that customers enter from issuance. Grey areas indicate NBER recession periods.

market makers’ holdings simply mirror those of the customers, and we do not report

them separately.16 We observe that customers are typically long OTM puts and short

OTM calls, with the number of put positions generally exceeding the number of call

positions (on average +2.2× 104 contracts/day for puts and −0.9× 104 contracts/day

for calls). The dynamics of option holdings show heteroskedasticity and significant

persistence, which are closely linked to periods of market distress. For example, in

the lead-up to the 2008 financial crisis, we observe a spike in customers’ aggregate

holdings of OTM puts in September 2007, followed by a temporary drop, and then

another increase in August 2008 before declining again. The total number of call

and put contracts held is positively correlated, with an unconditional correlation of

approximately 24%. These patterns suggest that the aggregate option portfolio held

by customers may function as insurance against a long position in the market index,

with long OTM puts providing protection and short OTM calls used to finance the

portfolio’s insurance.

Notice that the patterns uncovered in our holdings data contrast with daily option

flows which typically display large variations with both positive and negative signs.

For example, Chen, Joslin, and Ni [2019] document that during the Great Financial

Crisis of 2008, market makers shifted from being daily net sellers of deep OTM options

to daily net buyers, based on daily option opening positions aggregated across all

maturities. In contrast to their study which studies flows, our paper focuses on options

16Additional information on option holdings, including details along the moneyness and time to
maturity dimensions, as well as a comparison with opening positions, is provided in Appendix B.
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with a 30-day time to maturity in order to construct coherent SDFs and expected

return proxies with price and holdings data of sufficiently liquid options.17

4.3 Subjective Expected Returns

Next, we examine the properties of investors expected returns, as inferred from equa-

tion (2). To do this, recall that the portfolio vector θi represents the investor’s portfolio

weights in both the market index and each available option. Although we have data

on option holdings, we lack information regarding index holdings. Consequently, we

investigate the properties of the investor’s subjective expected returns under different

assumptions about the unobserved index holdings. To this end, we parameterize

investor’s portfolio holdings as a fraction of her total wealth as follows:

θi :=

(
θiI

(1− θiI)ωi

)
, (13)

where ωi is a vector of option portfolio holdings expressed in percentage of the total

investor’s wealth that is not allocated to the index investment. Denoting by Oe (O) the

subvector of option excess returns (gross returns), equation (2) reads:

Ei[R] = 1 + θiIEQ[(R− 1)R] + (1− θiI)E[ω′
iO

eR]

= 1 + θiIVarQ(R) + (1− θiI)CovQ(ω′
iO, R) . (14)

If all wealth is invested in the index (θiI = 1), the investor’s market equity premium is

equal to the SVIX. More generally, if an investor’s wealth is not fully allocated to the

market index, the equity premium is given by a linear combination of the SVIX and

the risk-neutral covariance between market returns and the return of the optimally

invested option portfolio.

The simple decomposition in equation (14) provides an intuitive understanding

of how the investor’s expected return can deviate from the benchmark when θiI = 1.

First, deleveraging relative to a full market investment (e.g. θiI ∈ (0, 1)) reduces the

direct market exposure in the optimal portfolio, thus lowering the contribution of the

SVIX to the equity premium. Second, the nature of the optimal option investment

can further reduce the expected return or offset this reduction, depending on the sign

17We also include a broader range of moneyness, excluding only the very deep-OTM options (with
|∆| < 0.1). Appendix B reports more details on the properties of the time series of daily option opening
positions built with our data following the methodology in Chen, Joslin, and Ni [2019].
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of the covariance term CovQ(ω′
iO, R): A negative (positive) covariance contributes

negatively (positively) to the premium. This is intuitive, as a negative (positive) covari-

ance suggests that the option investment is hedging (leveraging) the existing market

investment, reflecting a more pessimistic (optimistic) view about future market re-

turns. Specifically, if the investor’s option portfolio consists only of long put (call)

positions, the covariance is negative (positive), and the option’s contribution to the

equity premium is negative (positive), consistent with the illustrative examples of

Section 2.

We gather from Figure 4 Panel A, that the covariance term is almost always neg-

ative, with a few exceptions (mostly between 2017 and 2019).18 This suggests that

customers’ option portfolios act as a natural hedge against a positive market index

exposure. Consequently, the term CovQ(ω′
cO, R) also represents in equation (14) the

lowest possible equity premium across customers’ index investments θcI ∈ [0, 1]. This

term also exhibits significant time-varying behavior and negative skewness, marked

by occasional large negative spikes, especially during periods of market distress and at

disruptive market events, such as, e.g., the Bank of America rescue. Two key drivers

explain this variability: (i) changes in the option positions within customers’ portfolio

weights ωc and (ii) fluctuations in the valuations of OTM options, which are encapsu-

lated in the evolving risk-neutral distribution Q. When compared to the contribution

of variance term VarQ(R), these fluctuations introduce greater volatility and reduce

the persistence of the associated expected return component in equation (14). For

example, the covariance term exhibits a standard deviation of 0.66, compared to 0.06

for VarQ(R), and no first-order autocorrelation. As a consequence, these properties

naturally affect not only the level, but also the cyclicality properties of investors’ overall

expected returns inferred from equation (14).

4.3.1 Customers’ Expected Returns

Recall that the condition for equation (14) to be compatible with an arbitrage-free

market is strict positivity of investor’s optimal portfolio return:

1 + θ′
cR

e = 1 + θcI(R− 1) + (1− θcI)ω
′
cO

e > 0 ,

Q−almost surely, using investor’s SDF Mc = 1/(1 + θ′
cR

e), and the fact that in an

arbitrage-free market probabilities Pc and Q are equivalent. We can use this fact to

18To save space, we relegate detailed summary statistics to Appendix ??.
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discipline the choice of the unobservable market index investment θcI , by imposing

the no-arbitrage condition θcI ∈ Θ(Q,ωc), where:

Θ(Q,ωc) := {θI : Q(1 + θI(R− 1) + (1− θI)ω
′
cO

e) > 0) = 1} . (15)

Specifically, given the smallest nonnegative fraction of customers’ index investment

compatible with an arbitrage-free market:

θ̄cI := inf{θcI : θcI ≥ 0 and θcI ∈ Θ(Q,ωc)} ,

we parameterize admissible customers’ index investments θcI ∈ [θ̄cI , 1] as:19

θcI(α) = θ̄cI + α (1− θ̄cI) ; α ∈ [0, 1] . (16)

We examine how different values of the parameter α, that is, different levels of index

investment, affect expected returns and shape the resulting time-varying effective

index investments, denoted by θcI(α). The time-series of customers’ inferred expected

market returns is displayed in Figure 4 Panel B, while Table 2 (Panel A) provides

summary statistics.

Given the typically negative covariance term CovQ(ω′
cO, R) for customers, Figure

4 documents that greater investments in options, or lower α, are usually associated

with a lower expected return. The most significant expected return corrections relative

to the benchmark case θcI = 1 occur during periods when either the belief distortion

Cov(ω′
cO, R) is large (such as during market distress) or when the minimal market

investment θ̄cI is low (e.g. between 2003 and 2006). While the benchmark average

expected return is around 8% per year, we observe that it is already reduced by half

for an investor holding on average only about 3% of her wealth in options (α = 0.9).

Moreover, it should be noted that the conditional expected return of investors with

a relatively moderate average investment in options of about 1% can even become

negative (α = 0.95).

Finally, as the proportion of option investments increases, the volatility of cus-

tomers’ expected returns rises, leading to less persistent estimates of expected returns.

For example, while the first autocorrelation coefficient for the benchmark expected

return series is 0.82, it drops to 0.58 when α = 0.8. This suggests that the associated

19Since investor’s SDF Mi may not necessarily be monotonic in R, there may also exist a maximum in-
dex investment threshold compatible with an arbitrage-free market. However, in our data this threshold
is always greater than 1. In contrast, minimum threshold θiI is always strictly positive.
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Table 2. Summary statistics of expected returns Ei[R].

α mean std min q25 q50 q75 max corr (%) AR(1) θcI (avg.)

1 1.082 0.058 1.017 1.042 1.069 1.114 1.521 100 0.82 1

Panel A: Customers

95% 1.061 0.056 0.977 1.024 1.049 1.080 1.472 96 0.77 0.99

90% 1.041 0.058 0.911 1.011 1.032 1.062 1.433 85 0.69 0.97

80% 1.004 0.071 0.792 0.970 1.006 1.038 1.366 59 0.58 0.94

50% 0.913 0.124 0.520 0.838 0.933 1.001 1.337 20 0.51 0.86

0 0.810 0.194 0.258 0.679 0.838 0.960 1.345 5 0.49 0.72

Panel B: Market Makers

95% 1.077 0.062 0.986 1.032 1.068 1.112 1.527 98 0.86 0.99

90% 1.071 0.067 0.949 1.023 1.066 1.113 1.539 94 0.87 0.98

80% 1.062 0.081 0.880 1.008 1.063 1.116 1.568 85 0.85 0.96

50% 1.044 0.128 0.639 0.966 1.060 1.125 1.661 69 0.76 0.90

0 1.039 0.208 0.397 0.919 1.065 1.148 1.867 62 0.62 0.81

Notes: This table reports summary statistics for the 30-day moving average of annualized expected
returns recovered by different portfolios built on customers’ (Panel A) and market makers’ (Panel B)
options positions. «corr» is the correlation with the SVIX. «θcI (avg.)» is the average investment in the
index for each time-series. Portfolios differ across the amount of wealth invested in the index, expressed
as a function of α. The case α = 1 is the benchmark recovered by M0 (θcI(1) = 1). The case α = 0
corresponds to the minimum investment in the index compatible with the no-arbitrage condition
(θcI(0) = θ̄cI ). Data is daily and values are annualized. Data runs from January 1996 to December 2020.

measure of Ec[R] becomes more volatile and less persistent, reflecting shocks from

both option prices and option demands. Importantly, this second effect is absent in

benchmark expected return proxies that rely solely on the SVIX. Furthermore, while

the correlation with this benchmark expected return is still positive, it is already only

0.58 for average option investments of about 6% (α = 0.8), indicating a expected return

cyclicality that may differ considerably in the presence of option investments.
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A. Belief Distortion

B. Subjective Expected Returns

Figure 4. Customers’ Belief Distortion and Expected Return
Notes: Panel 4A plots the time-series of the monthly covariance term CovQ(ω′

cO, R), where ωc are
customers’ option holdings. Major events marked: Asian financial crisis (Oct. ’97), Russian financial
crisis (Nov. ’98), first Fed rate cut (Jan. ’01), Nasdaq low (Oct. ’02), quant-fund crisis (Aug. ’07), Lehman
bankruptcy (Sep. ’08), BoA rescue (Jan. ’09), Greek bailout installment (Apr. ’10), Greek referendum
call (Oct. ’11), Flash crisis (Feb. ’18), repo spike (Sept. ’19), COVID-19 peak (Apr. ’20). Panel 4B plots
the time-series of the expected market return implied by customers’ options holdings for different
levels of index investment θcI(α). α = 1 corresponds to the monthly expected return recovered by the
benchmark M0 = 1/R (θcI(α) = 1). Frequency is daily, horizon is monthly, values are annualized. Data
are 30-day moving averages. Gray bars indicate NBER recessions.
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4.3.2 Market Makers’ Expected Returns

To recover market makers’ expected return, Em[R], we follow a similar approach to that

used in the previous section, with the added refinement of incorporating empirical

evidence that intermediaries typically manage their risk-return tradeoff using delta-

hedged derivative strategies; see, for example, Baltussen, Jerstegge, and Whelan [2024]

for S&P 500 options, and Amayaa et al. [2024] and Dim, Eraker, and Vilkov [2025] for

0DTE options. Consequently, we model market makers’ option portfolios as delta-

hedged and parameterize their return on optimally invested wealth as follows:

1 + θ′
mR

e = 1 + θmI(R− 1) + (1− θmI)ω
′
m(O

e −∆(R− 1))

= 1 + (θmI − (1− θmI)ω
′
m∆)(R− 1) + (1− θmI)ω

′
mO

e ,

where θmI now represents the market maker’s fraction of wealth invested in the index,

excluding the portion allocated for delta-hedging purposes, and ∆ is the vector of

option deltas corresponding to the option return vector O. Similar to the previous

section, we discipline the choice of the market makers’ index investment with the

no-arbitrage condition θmI ∈ Θ(Q,ωm,∆), where:

Θ(Q,ωm,∆) := {θI : Q(1 + (θI − (1− θI)ω
′
m∆))(R− 1) + (1− θI)ω

′
mO

e) > 0) = 1} .

Given the smallest nonnegative fraction of market makers’ index investment compati-

ble with an arbitrage-free market:

θ̄mI := inf{θmI : θmI ≥ 0 and θmI ∈ Θ(Q,ωm,∆)} ,

we finally parameterize admissible market makers’ index investments θmI ∈ [θ̄mI , 1] as:

θmI(α) = θ̄mI + α (1− θ̄mI) ; α ∈ [0, 1] . (17)

Similar to the previous section, we study the implications of various index investment

configurations θmI(α). The time series of market makers’ inferred expected market

returns is displayed in Figure 5, while Table 2 (Panel B) provides summary descriptive

statistics for these variables.

Since during most of our sample period market makers take opposite positions

in options relative to customers (ωm = −ωc), they often maintain short positions in

OTM puts and long positions in OTM calls. This evidence is especially pronounced
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until around 2013 and results in negative delta hedged positions that contribute

negatively to market makers’ expected returns. Conversely, the positive covariance

term CovQ(ω′
mO, R) for market makers contributes positively to expected market

returns during these periods, producing a positive net contribution of the delta-hedged

option portfolio to market makers’ expected returns.20 Despite this evidence, we find

that the total impact on market makers’ expected returns relative to the benchmark

case θmI = 1 remains relatively modest until around 2013, as illustrated in Figure 5.21

More pronounced negative deviations from the benchmark expected return emerge

between 2014 and 2020. During this period, the expected return contribution from

the delta-hedged option portfolio can become negative. Relative to the benchmark,

this leads to lower overall expected returns for market makers, which exhibit a declin-

ing trend until around 2018, followed by an upward trend until approximately 2020.

Interestingly, while the overall impact on the average expected return relative to the

benchmark is moderate across the full sample, we find that after 2014, market makers’

expected return can turn negative for average option holdings as low as 1% of the

invested wealth (α = 0.95). Furthermore, Table 2 (Panel B) highlights that significant

differences in market makers’ equity premium persistence (as measured by the first-

order autocorrelation coefficient) and its correlation with the benchmark expected

return emerge when the average index allocation is below 90% over the entire sample

period (α ≤ 0.5).

20Recall that CovQ(ω′
mO, R) = −CovQ(ω′

cO, R) since ωm = −ωc.
21This is primarily due to the fact that the minimal index investment θmI necessary to maintain

an optimal portfolio in line with no-arbitrage conditions during these periods is typically quite large.
Consequently, the admissible parametric index investment θmI(α) can only deviate modestly from the
benchmark value θmI = 1. Relative to the benchmark, this feature results in small negative expected
return contributions, which are largely offset by the positive contributions due to the delta-hedged
option portfolio.
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Figure 5. Market Makers subjective expected returns

Notes: This figure the time-series of the expected market return implied by market makers’ options
holdings for different levels of index investment θmI(α). α = 1 corresponds to the monthly expected
return recovered by the benchmark M0 = 1/R (θmI(1) = 1). Frequency is daily, horizon is monthly,
values are annualized. Data are 30-days moving averages. Gray bars indicate NBER recessions.

4.4 Subjective Risk-Return Tradeoff

Using Proposition 1, the investor’s subjective market variance is given by:

Vari(R) = VarQ(R) + θiICovQ(R, V (R)) + (1− θiI)CovQ(ω′
iO, V (R))− (Ei[R− 1])2 .(18)

It follows that the composition of an investor’s portfolio influences subjective variance

through two primary channels. First, it affects the squared subjective market equity

premium. Second, it shapes the risk-neutral co-leverage characteristics of the optimal

portfolio return with respect to the realized market variance, as captured by the term:

CovQ(θ′
iR, V (R)) = θiICovQ(R, V (R)) + (1− θiI)CovQ(ω′

iO, V (R)) . (19)

As shown in Table 3 and Figures 6A–6C, the contribution of the first channel to subjec-

tive variance is an order of magnitude smaller than that of the second. Consequently,

for practical purposes, the co-leverage term in equation (19) usually drives the devi-

ation of subjective variance from implied variance. This term is determined by two

components: the market leverage coefficient CovQ(R, V (R)) and the co-leverage coef-

ficient CovQ(ω′
iO, V (R)), which captures the comovement between the returns of the

option portfolio and realized market variance.

Empirically, the first leverage component is negative, as expected, and an order of
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magnitude smaller than the implied variance, as shown in Figure 6B. Conversely, the

sign and magnitude of the second co-leverage component depend on the structure

of the option portfolio. For instance, a portfolio that replicates a long (short) position

in realized market variance V (R) will exhibit a positive (negative) covariance. Con-

sequently, the overall impact on subjective variance remains ambiguous ex-ante, as

it is determined by the relative strength and direction of both the market leverage

component and the option portfolio’s co-leverage component.

As shown in Figure 6A, the customers’ co-leverage component CovQ(ω′
cO, V (R))

is largely positive, with rare exceptions, and typically an order of magnitude greater

than the market implied variance, especially prior to 2013. As a result – even for

quite small allocations to options – customers’ subjective variance in Figure 7A is

generally higher than the benchmark variance perceived by an investor fully invested

in the market alone (α = 1). This feature is more pronounced in the sample period

before 2013, because there customers’ index allocations more easily deviate from

the benchmark. Symmetrically, the co-leverage component CovQ(ω′
mO, V (R)), which

does not incorporate delta hedging effects, is usually negative and large before 2013, a

period in which market makers’ index allocations only moderately deviate from the

benchmark. Instead, it can become positive after 2013, when makers’ index allocations

more substantially deviate from the benchmark. In such instances, the contribution

of the delta hedging portfolio to the subjective variance, embedded in co-leverage

component CovQ (−ω′
m∆R, V (R)) is also small. Therefore, as shown in Figure 8A,

the market makers’ subjective variance is also generally larger than the benchmark

variance of an investor fully invested in the market, especially after 2013.

Finally, the joint effects of a generally lower expected market return and higher

market volatility typically result in uniformly lower and substantially more volatile

Sharpe ratios, as shown in Figures 7B and 8B, compared to those of an investor fully

invested in the market. This pattern is particularly pronounced for customers before

2013 and for market makers after 2013.
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Table 3. Components subjective variance.

mean std min q25 q50 q75 max corr (%)

VarQ(R) .0044 .0038 .0010 .0021 .0035 .0055 .0332 100

CovQ(R, V (R)) -.0006 .0005 -.0049 -.0007 -.0004 -.0003 .0004 -63

CovQ(ω′
cO, V (R)) .0520 .1828 -.3634 -.0148 .0358 .0883 2.225 4

CovQ(−ω′
m∆R, V (R)) .0007 .0017 -.0014 .0000 .0002 .0006 .0158 34

(Ec[R]− 1)2 .0029 .0031 .0000 .0006 .0019 .0041 .0152 12

(Em[R]− 1)2 .0013 .0018 .0000 .0001 .0006 .0019 .0192 27

Notes: This table reports summary statistics for the main components of the subjective variance as in
eq. (18). For both Customers and Market Makers, Ei[R] is the perceived expected return when α = 0
(θcI = θ̄cI and θmI = θ̄mI ). «corr» is the correlation with the SVIX. Data are the 30-days moving averages,
values are monthly. Data runs from January 1996 to December 2020.
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A. Customers’ Option Leverage coefficient

B. Market Leverage Coefficient, Risk neutral Variance and squared Customers’ Equity Premium

C. Market Makers’ Leverage Coefficient from ∆-hedging and squared Market Makers’ Equity Premium

Figure 6. Components of the subjective variance Vari(R)
Notes: Panel 6A plots the time series of the co-leverage CovQ(ω′

cO, V (R)) implied by the Customers’ option holdings. Panel 6B
plots the co-leverage CovQ(R, V (R)) implied by a zero investment in options, the Customers’ risk premium (Ec[R] − 1)2 for
α = 0, and the risk neutral variance VarQ(R). Panel 6C plots the co-leverage CovQ(−ω′

m∆R, V (R)) implied by Market Makers’
delta-hedging, and the Market Makers’ risk premium (Em[R] − 1)2 for α = 0. Data are 30-days moving averages. Values are
monthly. Gray bars indicate NBER recessions. Some major events are highlighted in the graph: the Asian financial crisis (Oct. ‘97);
the Russian financial crisis (Nov. ‘98); the first Fed rate cut (Jan. ’01); Nasdaq lowest value («dot-com», Oct. ’02); quant-strategy
hedge fund crisis (Aug. ’07); the Lehman bankruptcy (Sep. ‘08); the Bank of America rescue («BoA», Jan. ‘09); Greek bailout
installment («GB1», Apr. ‘10); call for Referendum about financial aid in Greece («Ref», Oct. ‘11); a Flash crisis (Feb. ‘18); sharp
repo rate increase (Sept. ‘19); Covid-19 pandemic (Apr. ‘20).
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A. Customers’ Subjective Volatility

B. Customers’ Subjective Sharpe Ratio

Figure 7. Subjective Volatility and Sharpe Ratio of Customers
Notes: This figure plots the time-series of the subjective volatility (Panel 7A) and the subjective Sharpe
Ratio (Panel 7B) as recovered through the SDF supported by the observed option positions of Customers,
for different levels of the underlying investment indexed by α. α = 1 corresponds to θcI = 1. Frequency
is daily, horizon is monthly, values are annualized 30-days moving averages. Gray bars indicate NBER
recessions.
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Table 4. Summary statistics of subjective volatility and Sharpe ratio.

α mean std min q25 q50 q75 max corr (%)

Panel A: Customers

Volatility 1 0.199 0.074 0.092 0.142 0.178 0.238 0.583 90

95% 0.221 0.075 0.091 0.166 0.216 0.258 0.602 87

90% 0.238 0.080 0.090 0.178 0.237 0.284 0.621 81

80% 0.265 0.091 0.089 0.196 0.265 0.322 0.654 70

50% 0.322 0.124 0.084 0.229 0.319 0.401 0.727 52

0 0.381 0.165 0.074 0.263 0.369 0.478 0.902 39

Sharpe Ratio 1 0.237 0.081 0.124 0.176 0.225 0.279 0.678 84

95% 0.136 0.109 -0.165 0.073 0.135 0.190 0.613 61

90% 0.067 0.141 -0.338 -0.023 0.082 0.151 0.581 43

80% -0.040 0.199 -0.792 -0.183 -0.008 0.109 0.580 23

50% -0.271 0.335 -1.196 -0.546 -0.226 0.014 0.580 0

0 -0.575 0.540 -1.985 -1.003 -0.518 -0.106 0.591 -13

Panel B: Market Makers

Volatility 1 0.199 0.074 0.092 0.142 0.178 0.238 0.583 90

95% 0.213 0.070 0.115 0.165 0.198 0.244 0.586 86

90% 0.223 0.071 0.113 0.176 0.215 0.253 0.589 78

80% 0.240 0.078 0.111 0.189 0.234 0.276 0.605 64

50% 0.273 0.106 0.100 0.197 0.258 0.334 0.727 35

0 0.306 0.148 0.081 0.192 0.271 0.402 0.843 15

Sharpe Ratio 1 0.237 0.081 0.124 0.176 0.225 0.279 0.678 84

95% 0.203 0.111 -0.106 0.136 0.213 0.276 0.689 79

90% 0.188 0.135 -0.208 0.104 0.213 0.282 0.700 72

80% 0.171 0.175 -0.380 0.061 0.206 0.297 0.726 63

50% 0.159 0.273 -0.734 -0.014 0.251 0.358 0.811 50

0 0.188 0.422 -1.484 -0.075 0.346 0.492 0.994 40

Notes: This table reports summary statistics for the 30-day moving average of annualized volatility and
Sharpe ratio recovered by different portfolios built on customers’ (Panel A) and market markers’ (Panel
B) options positions. «corr» is the correlation with the SVIX. Portfolios differ with respect to the fraction
of wealth invested in the index, expressed as a function of α. The case α = 1 is the benchmark case
recovered by M0 (θcI(1) = 1). The case α = 0 corresponds to the minimum investment in the index
compatible with the no-arbitrage condition (θcI(0) = θ̄cI). Data is daily, values are annualized. Data
runs from January 1996 to December 2020.
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A. Market Makers’ Subjective Volatility

B. Market Makers’ Subjective Sharpe Ratio

Figure 8. Subjective Volatility and Sharpe Ratio of Market Makers
Notes: This figure plots the time-series of the subjective volatility (Panel 8A) and the subjective Sharpe
Ratio (Panel 8B) as recovered through the SDF supported by the observed option positions of Market
Makers, for different levels of the underlying investment indexed by α. α = 1 corresponds to θmI = 1.
Frequency is daily, horizon is monthly, values are annualized 30-days moving averages. Gray bars
indicate NBER recessions.
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4.5 Consensus Beliefs and Disagreement

We now turn to constructing a consensus belief from the time series of expected

returns for customers and market makers. As defined in equation (8), the consensus

belief is a wealth-weighted average of the agents’ individual expected returns:

Ē[R] =
∑
i=c,m

wiEi[R].

As is well recognized in heterogeneous-agent models, speculative behavior arising

from divergent beliefs can significantly alter the endogenous wealth distribution.

In extreme cases, one group may be driven out of the market altogether, and an

equilibrium may not exist; see, e.g., Yan and Xiong [2010]. In our earlier analysis, we

did not explicitly prevent such divergence. To ensure a stable wealth distribution across

both agents, we impose a constraint that equalizes total wealth between customers

and market makers.22

In addition to the consensus belief, we also calculate a measure of belief disagree-

ment as in equation (12). The resulting time series for Ē[R] and D(R) are presented in

Figure 9, with summary statistics provided in Table 5, for the benchmark case where

θcI = θmI = θ̄I , a choice that ensures that the total wealth is equally shared between

customers and market makers. The consensus belief shown in Figure 9A is typically

22More specifically, we first define the market index allocation that satisfies the no-arbitrage condi-
tion for both customers and market makers as:

θ̄I := max(θ̄cI , θ̄mI). (20)

Second, we parameterize a common admissible index allocation for both customers and market makers
as:

θI(α) = θ̄I + α(1− θ̄I), α ∈ [0, 1]. (21)

Finally, we constrain differences between the index allocations of customers and market makers,
denoted by θiI(α) (i = c,m), by imposing the following constraint:∣∣∣∣θI(α)− θiI(α)

1− θI(α)

∣∣∣∣ ≤ ϵi, (22)

where ϵi > 0 is a small constant. This constraint ensures that the fractions of wealth not allocated to
index investment, given by 1− θI(α) and 1− θiI(α), remain sufficiently similar:

1− ϵi ≤
1− θiI(α)

1− θI(α)
≤ 1 + ϵi, (23)

guaranteeing that the actual wealth of both investors under their optimal allocation can be made
economically comparable.
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Table 5. Summary statistics of consensus belief and belief disagreement for θcI = θmI = θ̄I

mean std min q25 q50 q75 max corr (%)

Ē[R] 1.075 0.052 1.015 1.039 1.065 1.105 1.488 99
D(R) 0.024 0.021 0 0.008 0.018 0.035 0.134 72

Notes: This table reports summary statistics for the consensus belief Ē[R] and the belief disagreement
D(R) as defined in the main text, computed when the wealth fraction invested in the index is equal to
θ̄I = max(θ̄cI , θ̄mI) for both customers and market makers. Data are annualized daily values. «corr» is
the correlation with the SVIX. Data runs from January 1996 to December 2020.

slightly smaller than the SVIX, because, customers and market makers have in aggre-

gate a net zero allocation to options and they are also slightly under-invested in the

index:

Ē(R) = 1 + θ̄IVar(R), (24)

under parameterization θcI = θmI = θ̄I ≤ 1. Specifically, since the underlying no-

arbitrage condition for both customers and market makers requires that θ̄ remains

within a narrow range around 1, this economy is designed to produce a consensus be-

lief that mirrors the cyclical properties of the SVIX, as confirmed also by the summary

statistics in Table 5.

The belief disagreement index, shown in Figure 9B, exhibits in part countercyclical

dynamics, with the two largest spikes occurring during the first two recessions in our

sample. Interestingly, under the given parameterization, the disagreement between

customers and market makers is not particularly large during the COVID-19 pandemic.

However, it is notably larger earlier in the sample, especially before the burst of the

Nasdaq bubble. Table 5 further highlights that D(R) is partially positively correlated

with the consensus belief, and thus with SVIX, but may also experience large spikes at

different time points than these variables.
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A. Consensus Belief among investors

B. Belief Disagreement among investors

Figure 9. Consensus belief and disagreement between Customers and Market Makers, θcI = θmI = θ̄I
Notes: This figure plots the consensus belief (Panel 9A) and the belief disagreement (Panel 9B) as defined
in the main text. Frequency is daily, horizon is monthly. Values are annualized 30-day moving averages.
Gray bars indicate NBER recessions.

5 Extensions

In this section, we study two possible extensions of our framework. We first show how

to use survey data to infer optimal holdings and then study the effect of time-varying

risk aversion.

5.1 Survey Data

Up to this point, our empirical approach has relied on assumptions about investors’

optimal index allocations. We now extend the analysis by incorporating survey data to
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infer hypothetical optimal index holdings for log-utility investors that are consistent

with both (i) the observed dynamics of option prices and positions, and (ii) the evolu-

tion of survey-based expectations. This allows us to evaluate whether demand-based

expected returns—when aligned with survey expectations—can be rationalized by

economically plausible optimal portfolios that also satisfy key constraints, such as the

no-arbitrage conditions outlined in equation (15).

Figure 10 presents expected return time series from three survey sources we con-

sider: the Livingston Survey (Federal Reserve Bank of Philadelphia), the Graham and

Harvey CFO Survey [Ben-David, Graham, and Harvey 2013], and the individual in-

vestor series compiled by Nagel and Xu [2023].23 The Livingston Survey is conducted

semi-annually, in June and December, and polls a broad group of economists from

financial and non-financial institutions, academia, labor organizations, government

agencies, and insurance companies. The Graham and Harvey survey collects quarterly

data from corporate financial officers regarding their expectations for S&P 500 returns.

The series by Nagel and Xu [2023] is also available at a quarterly frequency. It extends

the UBS/Gallup investor survey both backward and forward in time by integrating

data from other sources, including the Conference Board Survey and the Michigan

Survey of Consumers.24

23We do not know the identities of market makers and customers but since they most likely represent
a mix between highly sophisticated as well as less sophisticated investors we rely on the three surveys
that best represent these groups.

24These data were obtained from Zhengyang Xu’s website.
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Figure 10. Subjective market equity premia from Survey data

Notes: This figure plots the time-series of survey market equity premia (in percentage) as in the survey
data from Livingston, Ben-David, Graham, and Harvey [2013] and Nagel and Xu [2023]. Frequency is
quarterly (semi-annual for Livingston), horizon is yearly, values are annualized. Data runs from January
1996 to December 2020. Gray bars indicate NBER recessions.

5.1.1 Holdings Implied by Survey Expected Returns

The surveys we consider are conducted at a lower frequency than our monthly option

price and holdings data, and they provide estimates of the one-year-ahead expected

return on the S&P 500 index. Since one-year-maturity options suffer from insufficient

liquidity to reliably construct demand-based expected returns at that horizon, we

adopt a simpler approach. Specifically, we compute the average monthly demand-

based expected returns over the sampling window of each survey – i.e., over a semi-

annual window for the Livingston survey and a quarterly window for both the Nagel

and Xu [2023] series and the Graham and Harvey survey. These average expected

returns depend on a single unknown parameter—the index allocation θiI—which

can be calibrated to align the demand-based expected return with the corresponding

survey-based expected return.

More specifically, given a survey-implied expected returnEs[R], we exploit equation

(14) to solve for the index allocation θiI such that:

Es[R] = 1 + θiIVar
Q
(R) + (1− θiI)Cov

Q
(ω′

iO, R) , (25)

where VarQ(R) and CovQ(ω′
iO, R) denote the average risk-neutral variance of market

returns and the average risk-neutral covariance between the investor’s option position

and the market return, respectively, computed over the survey’s sampling window.
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We solve equation (25) under two different scenarios: (i) one that imposes zero net

investment in options, i.e., a pure allocation between the index and the risk-free

asset (ωi = 0), and (ii) another that incorporates observed option holdings into

the construction of demand-based expected returns. In both cases, we report the

corresponding no-arbitrage bounds on index allocations, as defined by the set in

equation (15).25

Figure 11 presents the time series of index allocations for both cases. Two key

findings emerge. First, in the absence of option investments, aligning demand-based

expected returns with survey-based expectations requires highly volatile index allo-

cations that often imply extreme leverage—reaching levels of approximately 250%

across all surveys. Second, these allocations frequently hit the theoretical upper bound

on index investment required to ensure consistency with no-arbitrage conditions—a

phenomenon observed in 44%, 12%, and 29% of the cases for the Livingston, CFO,

and NX surveys, respectively. When this constraint binds, a perfect alignment with

survey-based expected returns becomes infeasible.

Second, once option holdings are incorporated, aligning demand-based expected

returns with survey-based expectations yields index allocations that are smoother

over time and remain close to a 100% investment in the index. The resulting demand-

based expected returns are also more consistent with no-arbitrage conditions: the

no-arbitrage bounds are violated in only 4%, 5%, and 8% of cases for the Livingston,

CFO, and NX surveys, respectively.

Overall, the evidence indicates that incorporating option holdings enhances the

consistency between survey-based and model-implied expected returns, doing so in

a manner that is more readily justified by economically plausible index allocation

dynamics and no-arbitrage conditions.

25Apart from these no-arbitrage bounds, we do not impose additional constraints on the admissible
index allocations required to align demand-based and survey-expected returns, meaning that leveraged
index positions with θiI > 1 are permitted in principle. In such cases, the investor’s option holdings
relative to total wealth are represented by a weight vector (1− θiI)ωi with 1− θiI < 0.
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A. Index investment for Livingston survey

B. Index investment for CFO survey

C. Index investment for NX survey

Figure 11. Survey-data implied index investment

Notes: This figure plots the index investment θiI that is necessary to match the expected market return from the Livingston survey
(Panel 11A), the CFO survey (Panel 11B) and NX survey data (Panel 11C). The index investment is computed for the investor with
option holdings ωc (left scale, in red) and for the investor who takes no position in options (right scale, in black). Whenever the
optimal θiI violates the no-arbitrage bounds, we replace the value with the bound itself. Frequency is quarterly (semi-annual for
Livingston). Gray bars indicate NBER recessions.
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5.1.2 Subjective Risk-Return Tradeoff and Survey Data

Figure 12 plots the time series of subjective expected returns, market return variances,

and risk-return tradeoffs, measured by Sharpe ratios.26 For comparison, we also report

these quantities for a log investor fully invested in the index (θiI = 1).

Overall, we find that the demand-based subjective variances implied by survey

expected returns exhibit remarkably similar levels and cyclicality across the different

surveys, quite closely matching the subjective variance of a log-utility investor fully

invested in the index (θiI = 1). As a result, the documented differences in survey

expected returns translate into a corresponding heterogeneity in both the levels and

dynamics of the resulting subjective Sharpe ratios.

Among the subjective demand-based Sharpe ratios of investors holding options,

the CFO survey typically yields the most pessimistic values, while the Livingston and

NX surveys tend to produce the most optimistic ratios—during the periods 2001–2013

and 2013–2020, respectively. Notably, the cyclicality of these Sharpe ratios appears

largely unrelated to recessions, with the exception of the Livingston survey, whose

Sharpe ratios show some alignment with recessionary periods. In contrast, the sub-

jective Sharpe ratios of a log-utility investor fully invested in the index are generally

lower—often substantially so—and exhibit much less volatility over time. These bench-

mark Sharpe ratios display more pronounced countercyclicality, consistent with the

countercyclical behavior of the corresponding expected returns.

In summary, our findings suggest that the dynamic behavior of expected returns

and Sharpe ratios—when inferred under the assumption that investors are fully in-

vested in the market—may be fragile. Even moderate option exposure can significantly

influence both the level and the cyclicality of these measures, potentially aligning them

more closely with patterns observed in survey data and consistent with economically

plausible market-timing behavior.

26We report the corresponding SDFs in the Appendix.
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A. Demand-based subjective expected returns aligned from survey expected returns

B. Demand-based subjective volatility aligned from survey expected returns

C. Demand-based subjective Sharpe ratio aligned from survey expected returns

Figure 12. Demand-based moments Ei[R], Voli(R), and Sharpe ratio SRi(R) aligned from survey data

Notes: This figure plots the demand-based market expected return (Panel 12A), market volatility (Panel 12B) and market Sharpe
ratio (Panel 12C) as reconstructed from survey data, considering investors with the same option holdings as the customers in
our data and associated index investment from Figure 11 satisfying no-arbitrage constraints. The benchmark case reproduced
under a log utility investor fully invested in the market index (SVIX) is also displayed for comparison. Frequency is quarterly
(semi-annual for Livingston), values are annualized. Gray bars indicate NBER recessions.
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5.2 Time-Varying Risk Aversion

Our basic framework can be naturally extended to accommodate SDF specifications

that do not assume a log-utility investor. For example, consider a power utility SDF of

the form:

Mi ∝ (1 + θ′
iR

e)−γ , (26)

where γ denotes the relative risk aversion parameter. The corresponding subjective

expectation of a generic payoff f(R) is given by:

Ei[f(R)] =
EQ[(1 + θ′

iR
e)γf(R)]

EQ[(1 + θ′
iR

e)γ]
, (27)

where the change of measure from the risk-neutral probability to the investor’s subjec-

tive belief now reads:

dPi

dQ
=

(1 + θ′
iR

e)γ

EQ[(1 + θ′
iR

e)γ]
. (28)

The subjective expected market return takes the following form:

Ei[R] = 1 +
CovQ((1 + θ′

iR
e)γ, R)

EQ[(1 + θ′
iR

e)γ]
. (29)

This extended framework allows us to more broadly investigate the economic im-

plications of key modeling assumptions needed to recover theory-based subjective

expected returns that are consistent with survey data. To study the effect of including

holdings data, we consider two different settings: (i) Price-based expected returns

for investors with time-varying risk aversion who are fully invested in the market,

(ii) demand-based expected returns for investors with constant risk aversion who

dynamically allocate across both the index and option markets. Using our earlier

parameterizations of portfolio weights, setting (i) yields the following expected return:

Ei[R] = 1 +
CovQ(Rγ, R)

EQ[Rγ]
, (30)

which depends solely on the risk aversion parameter γ. In this setting, γ is the only free

parameter available to align survey-based expectations with model-implied expected

returns, which are constrained to be strictly positive and monotonically increasing
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in the risk aversion parameter. Figure 13 presents the time series of time-varying risk

aversion parameters needed to reconcile model-implied expected returns with survey

data under the assumptions of setting (i). By construction, the negative expected

returns reported in the Livingston survey prior to 2000 cannot be matched within this

framework, even under very low values of risk aversion. Furthermore, while for all

surveys the median implied risk aversion parameter is not too different from γ = 1,

consistent with logarithmic utility preferences, the recovered values of γ are often sub-

stantially higher and exhibit pronounced time variation during the second half of the

sample. This pattern is especially evident in the NX and partly the Livingston surveys,

which report relatively high and volatile expected returns over the same period. Finally,

the implied risk aversion parameters tend to be lower during recessions—especially in

the CFO and NX surveys—indicating a counter-cyclical pattern in risk tolerance that

may appear economically counterintuitive.

Based on the earlier parameterizations of portfolio weights, setting (ii) yields the

following expected return:

Ei[R] = 1 +
CovQ ((1 + θiI(R− 1) + (1− θiI)ω

′Oe)γ, R)

EQ [(1 + θiI(R− 1) + (1− θiI)ω′Oe)γ]
, (31)

which in principle permits an alignment with survey-based expected returns through a

time-varying index exposure θiI , even under the assumption of a constant risk aversion

parameter γ. This formulation allows us to analyze the behavior of the time-varying

index exposures θiI across different values of the constant risk aversion parameter γ.

Unlike the benchmark case of γ = 1, where expected returns exhibit a relatively

straightforward dependence on portfolio weights, the model-implied expected returns

for γ ̸= 1 are highly nonlinear functions of the index allocation θiI , for which there is no

a priori guarantee of monotonicity with respect to either θiI or γ.27 This nonlinearity

poses additional challenges for aligning demand-based expected returns with survey

data under general risk preferences. In particular, when the risk aversion parameter

satisfies γ ̸= 1, even substantial deviations from the benchmark index allocation

θiI = 1—which corresponds to zero investment in options—can preclude an exact

reconciliation between demand-based and survey-implied expected returns.

Figure 14 summarizes the characteristics of index allocations and demand-based

expected returns that result from an alignment with survey-based expected returns

under general risk preferences. First, we find that even for general levels of risk aversion

27Lemma 1 and its proof in Appendix A characterize these nonlinearities more precisely.
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(γ ̸= 1), violations of the no-arbitrage bounds on index allocations are less frequent

than those reported in Section 5.2 using time-varying risk aversions and fixed index

allocations θiI = 1.28

Second, across the considered broad range of admissible index allocations θiI ∈
[0.5, 1.5] and levels of risk aversion in Figure 14, the allocations that minimize the

discrepancy between survey- and demand-based expected returns tend to cluster

around the benchmark value θiI = 1, exhibiting both a median close to this benchmark

and low dispersion. The exception is the case γ = 1.5, which shows a lower median

allocation and notably higher variability.

Third, with the exception of the benchmark log-utility case – and, to a lesser extent,

the case of γ = 1.25 – all other settings generally exhibit a substantial misalignment

between survey- and demand-based expected returns. This misalignment is reflected

in consistently sizable relative errors with respect to the survey-implied equity premia

and is economically undesirable, as these represent the smallest achievable discrepan-

cies over a wide range of admissible index allocations, θiI ∈ [0.5, 1.5].29

Overall, the evidence in this section reinforces the conclusion that demand-based

expected returns generated under the benchmark log-utility specification can be

reconciled with survey-based beliefs through an economically plausible market timing

behavior and relatively modest option exposures.

28On average, no-arbitrage violations occurred in less than 6% of cases across surveys and considered
values of risk aversion, except for γ = 1.25, where violations arose in 24% (Livingston), 17% (CFO), and
22% (NX) of the cases, respectively.

29Unreported results for higher levels of risk aversion show even larger discrepancies.
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A. Time Series B. Statistics

Figure 13. Time-varying Risk Aversion based on Survey Data
Notes: This figure plots the risk aversion γ that is necessary to match the expected market return from
the survey data, assuming a full investment in the index (no options nor risk-free investment). We
consider a discrete range of admissible values for γ ∈ [0, 8]. Expected returns are matched with a
(numerical) relative error of less than 2%. Gray bars indicate NBER recessions.
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A. θiI Livingston Survey B. Relative error Livingston Survey

C. θiI CFO Survey D. Relative error CFO Survey

E. θiI NX Survey F. Relative error NX Survey

Figure 14. Relative error when matching survey data risk premia for different risk aversions

Notes: The left panels of the figure display the distribution of index allocations θiI required – together with customers’ option
positions (ωi) – to match the survey-implied risk premia across different levels of risk aversion γ. The right panels show the
corresponding distributions of the relative errors in these risk premia, which arise due to imperfect matching. The optimal index
allocation θiI is selected from a discrete grid of 1,000 points over the interval [0.5, 1.5]. Observations that violate the no-arbitrage
condition are excluded from the analysis.
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6 Conclusion

A well-established literature has documented the pronounced counter-cyclicality and

high variability of expected market return proxies implied by option prices. More

recently, a growing body of research has emphasized systematic differences in survey-

based return expectations, particularly in dependence of investor sophistication.

This paper develops a simple framework that leverages demand-side data to re-

cover investor beliefs. By jointly analyzing option holdings and prevailing market

prices, we provide a unified approach to inferring individual, demand-based expected

returns and subjective risk assessments. Among sophisticated investors acting as

liquidity providers or demanders, we find that both expected returns and subjec-

tive Sharpe ratios can vary substantially—differing in magnitude, dynamics, and

cyclicality—even with moderate option exposures relative to overall market alloca-

tions. Moreover, these demand-based expected returns can be further reconciled with

survey-based beliefs under economically plausible market timing strategies.

In general, we conclude that expected return proxies derived exclusively from mar-

ket prices may overlook substantial heterogeneity in investor beliefs and impose overly

restrictive assumptions on the dynamics of those beliefs. While our current framework

abstracts from trading frictions, such frictions likely play a central role in shaping how

portfolio holdings respond to investor expectations. Prior research (e.g., Giglio et al.

[2021]) shows that this responsiveness tends to increase as trading costs decline. In

future work, we plan to extend our demand-based framework to incorporate trading

frictions, enabling a more comprehensive analysis of how expectations are formed

and reflected in investor portfolios.
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A Proofs

Proof of Proposition 1. From equation (2) and equation (5), we obtain:

Vari(R) = EQ [R2
]
+ CovQ(θ′

iR, R2)− (1 + CovQ(θ′
iR, R))2

= VarQ(R) + CovQ(θ′
iR, R2 − 2R)− (Ei[R− 1])2

= VarQ(R) + CovQ(θ′
iR, R2 − 1− 2(R− 1))− (Ei[R− 1])2

= VarQ(R) + CovQ(θ′
iR, V (R))− (Ei[R− 1])2 .

This concludes the proof. ■

Proof of Proposition 2. We first obtain, using investor j optimality conditions for in-

vestment in the index and in the option market:

Ej[R] = EQ[RjR] = 1 + Cov(Rj, R) .

Therefore,

Ē[R]− 1 =
∑
j

wjEj[R− 1] =
∑
j

wjCovQ(Rj, R) = CovQ
(∑

j

wjRj, R

)
.

Since under the given market clearing condition R =
∑

i wiRi, we finally obtain:

Ej[R] = 1 + Cov(Rj, R) = 1 + wjVarQ(Rj) +
∑
i ̸=j

wiCovQ(Rj, Ri) ,

and

Ē[R]− 1 = VarQ (R) .

This concludes the proof. ■

Lemma 1. The subjective expected return

Ei[R] =
EQ[(1 + θ′

iR
e)γR]

EQ[(1 + θ′
iR

e)γ]
, (32)
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can be approximated to the first order in 1− θiI as:

Ei[R] ≈ EQ[Rγ+1]

EQ[Rγ]
+ γ(1− θiI)

(
EQ[RγX]

EQ[Rγ]
− EQ[Rγ+1]EQ[Rγ−1X]

(EQ[Rγ])2

)
, (33)

where X := ω′
iO

e − (R− 1). Up to the second order in 1− θiI , it can be approximated as:

Ei[R] ≈
EQ[Rγ+1] + γ(1− θiI)EQ[RγX] + γ(γ−1)(1−θiI)

2

2
EQ[Rγ−1X2]

EQ[Rγ] + γ(1− θiI)EQ[Rγ−1X] + γ(γ−1)(1−θiI)2

2
EQ[Rγ−2X2]

. (34)

Proof. We expand around θiI = 1 the subjective expected return:

Ei[R] =
EQ[(1 + θ′

iR
e)γR]

EQ[(1 + θ′
iR

e)γ]
. (35)

To this end, we write:

(1 + θ′
iR

e)γ = (R + (1− θiI)(ω
′
iO

e − (R− 1)))γ =: (R + (1− θiI)X)γ ,

and make use of the binomial expansion:

(1 + θ′
iR

e)γ = Rγ

(
1 + γ(1− θiI)

X

R
+

γ(γ − 1)(1− θiI)
2

2

(
X

R

)2

+ . . .

)
.

The denominator in equation (35) can then be written as:

EQ[(1 + θ′
iR

e)γ] = EQ[Rγ] + γ(1− θiI)EQ[Rγ−1X] +
γ(γ − 1)(1− θiI)

2

2
EQ[Rγ−2X2] + . . .

Analogously, the numerator can be written as:

EQ[(1 + θ′
iR

e)γR] = EQ[Rγ+1] + γ(1− θiI)EQ[RγX] +
γ(γ − 1)(1− θiI)

2

2
EQ[Rγ−1X2] + . . .

To the first-order in 1− θiI , we thus obtain:

1

EQ[(1 + θ′
iR

e)γ]
≈ 1

EQ[Rγ]
− γ(1− θiI)

EQ[Rγ−1X]

(EQ[Rγ])2
.

Therefore, to the first-order in 1− θiI it also follows:

Ei[R] ≈ EQ[Rγ+1]

EQ[Rγ]
+ γ(1− θiI)

(
EQ[RγX]

E[Rγ]
− EQ[Rγ+1]EQ[Rγ−1X]

(E[Rγ])2

)
.
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This concludes the proof. ■

B Data Appendix

This section provides additional information on the properties of option holdings

in our data, and a comparison with daily demand flows computed as daily opening

positions.

B.1 Options Trading Volume

Figure B.1 plots the times series of the benchmark expected return E0[R] in the data.

Figure B.2 plots the time series of the total trading volume for 30-day put and call OTM

options, respectively. Figure B.3 depicts the empirical unconditional distribution of

options’ trading volume across moneyness, as measured by the option’s Delta. As is

evident from the figure, most trading is concentrated in out-of-the-money options.

Figure B.4 depicts the empirical unconditional distribution of options’ trading volume

across times to maturity. It shows that over 50% of all trading happens in options with

expiry less than 45 days.

Figure B.1. Expected return E0[R]

Notes: This figure plots the time-series of expected return E0[R], i.e., the expected return recovered with
SDF M0 = 1/R. The graph shows the 30-days moving average of daily recovered expected returns for
the horizon of one month. Gray bars indicate NBER recessions.
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Figure B.2. Trading Volume in 30-days OTM options across time

Notes: This figure plots the time-series of the trading volume in OTM calls and puts, expiring in 30 days,
from 1996 to 2020. Data are thirty-days moving average of daily observations. Gray bars indicate NBER
recessions.

Figure B.3. Trading Volume in 30-days OTM options across moneyness
Notes: This figure plots the distribution of the trading volume in calls and puts expiring in 30 days,
across different levels of moneyness identified by their |∆|. Each value is reported as fraction of the
total trading volume. Data runs from 1996 to 2020.
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Figure B.4. Trading Volume in OTM options across maturity
Notes: This figure plots the distribution of the trading volume in OTM calls and OTM puts, across
different times to maturity. Each value is reported as fraction of the total trading volume. Data runs
from 1996 to 2020.
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B.2 Option Holdings By Moneyness

Figures B.5A–B.5B provide a more granular look by stratifying the data along the

moneyness dimension. Specifically, they distinguish between mild-OTM options with

|∆| ∈ (0.2, 0.4] and deep-OTM options with |∆| ∈ [0.1, 0.2]. Customers generally hold

long positions in both mild-OTM and deep-OTM puts, with the number of mild-OTM

puts typically exceeding the number of deep-OTM puts. Similarly, customers were

often short on both mild-OTM and deep-OTM calls, with mild-OTM calls outnum-

bering deep-OTM calls. However, an interesting pattern emerges at the end of 2007,

when customers held larger long positions in deep-OTM calls than short positions in

mild-OTM calls.
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A. OTM Calls

B. OTM Puts

Figure B.5. Customers’ Holdings of monthly OTM options

Notes: This figure plots the 30-day moving average of customers’ portfolio holdings of OTM calls and
puts from 1996 to 2020. Options holdings are the sum of opening and closing positions on the same
contract that customers enter from issuance. Mild-OTM options («MOTM») have |∆| ∈ (0.2, 0.4]. Deep-
OTM options («DOTM») have |∆| ∈ [0.1, 0.2]. Grey areas indicate NBER recession periods.

B.3 Options Demand Flows

We can compare the time-series of our option holding proxies, shown in Figure 3,

with the time series of daily opening option positions, i.e., demand flows. Figure B.6

illustrates this time series by aggregating demand flows from all deep-out-of-the-

money options with maturities ranging between 7 to 500 days, as outlined in Chen,

Joslin, and Ni [2019]. Unlike the holding proxies in Figure 3, demand flows more often

switch signs. While customers generally display positive demand flows – indicating

an increase in holdings of OTM options – there are instances where negative demand

flows emerge, particularly during crisis events such as the Lehman Brothers default
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or the Euro and Repo crises. Chen, Joslin, and Ni [2019] attribute this behavior to

market makers’ constraints becoming more binding during such periods, compelling

them to act as net buyers of market insurance. These patterns are largely absent in our

aggregated option holdings, which encompass all moneyness and are restricted to a

30-day time to maturity.

Figure B.6. Customers’ demand flows for deep-OTM options at any maturity
Notes: This figure plots the time-series of our proxy for customers’ demand flows on deep-OTM calls
and puts (with K/St ≤ 0.85 for puts and K/St ≥ 1.15 for calls), at any maturity between 7 and 500
days. Option demand flows are the sum of opening positions on the same contract recorded every day.
Daily data are summed over monthly basis. Gray bars indicate NBER recessions. Some major events
are highlighted in the graph: the Asian financial crisis (Oct. ‘97); the Russian financial crisis (Nov. ‘98);
Iraq war (Apr. ‘03); the quant-strategy hedge fund crisis (Aug. ’07); the Lehman bankruptcy (Sep. ‘08);
creation of TALF (Nov. ‘08); the Bank of America rescue («BoA», Jan. ‘09); the Euro crisis induced by
Greek debt crisis (Dec. ‘09); Greek bailout installments («GB1», Apr. ‘10; «EFSF», May ‘10; «GB2», Sept.
‘10); agreement to Voluntary Greece bondholder role (Jun. ‘11); call for Referendum about financial aid
in Greece (Oct. ‘11); two Flash crisis (Apr. ‘15 and Feb. ‘18); sharp repo rate increase (Sept. ‘19); Covid-19
pandemic (Apr. ‘20).

B.4 Option Holdings During the Financial Crisis

Here we analyze customers’ option holdings across various maturities during the

Great Financial Crisis. We focus on options with expirations of 15, 30, 60, and 90 days,

and examine data separately for mild- and deep-OTM puts.

Figure B.7 presents the time series of these holdings. Our findings show that, gener-

ally, customers maintain long positions in mild-OTM options at all maturities, except

for a brief period following the Lehman default. During this time, they sold shorter-

term puts and increased their holdings in three-month options. Prior to and immedi-
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ately after the crisis, the different series exhibit a notrivial positive co-movement, with

seasonality effects being especially pronounced for longer-term options.

The holdings of deep-OTM puts show a distinct pattern. On certain dates, such

as right before the Lehman bankruptcy, customers were long on short-term puts and

short on long-term ones, suggesting they anticipated imminent market turbulence.

During the height of the crisis, they took negative positions in options of all maturities

through the end of 2008. Afterward, they resumed holding long-term puts, maintaining

this position until about April 2009.
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A. Mild-OTM Puts

B. Deep-OTM Puts

Figure B.7. Customers’ Holdings of monthly OTM puts during the Great Financial Crisis
Notes: This figure plots the time-series of our proxy for customers’ portfolio holdings of OTM puts
during the period around the Financial Crisis in 2008. Options expire in 15, 30, 60 or 90 days. Options
holdings are the sum of opening and closing positions on the same contract that customers enter from
issuance. Mild-OTM options have |∆| ∈ (0.2, 0.4]. Deep-OTM options have |∆| ∈ [0.1, 0.2]. The plots
display the thirty-days moving average of the holdings. Grey areas indicate NBER recession periods.
Some important events are highlighted: the Fed. Market Open Committee lower the fed fund rate (Jan.
22, ‘08); Bear Stearns acquired by JP Morgan (Mar. 16, ‘08); Lehman default (Sept. 15, ‘08); creation of
TARP (Oct. 3, ‘08); creation of TALF (Nov. 25, ‘08); rescue of Bank of America (Jan. 16, ‘09); Fed suggests
the worst of recession is over (Aug. 12, ‘09).

56



References

Acciaio, B., M. Beiglböck, F. Penkner, and W. Schachermayer. 2016. “A Model-Free Version of the
Fundamental Theorem of Asset Pricing and the Super-Replication Theorem.” Mathematical
Finance 26 (2): 233–251.

Almeida, Caio, and Gustavo Freire. 2022. “Demand in the Option Market and the Pricing
Kernel.” Working Paper, Princeton University.

Amayaa, Diego, Pedro A. Garcia-Aresb, Neil D. Pearson, and Aurelio Vasquez. 2024. “0DTE
Index Options and Market Volatility: How Large is Their Impact?” Working Paper, UIUC.

Back, Kerry, Kevin Crotty, and Seyed Mohammad Kazempour. 2022. “Validity, Tightness, and
Forecasting Power of Risk Premium Bounds.” Journal of Financial Economics 144 (3):
732–760.

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen. 1997. “Empirical Performance of Alternative
Option Pricing Models.” Journal of Finance 52 (5): 2003–2049.

Baltussen, Guido, Julian Jerstegge, and Paul Whelan. 2024. “The Derivative Payoff Bias.” Work-
ing Paper, Erasmus University.

Ben-David, Itzhak, John R. Graham, and Campbell R. Harvey. 2013. “Managerial Miscalibra-
tion.” Quarterly Journal of Economics 128: 1547–1584.

Beutel, Johannes, and Michael Weber. 2023. “Beliefs and Portfolios: Causal Evidence.” Working
Paper, Deutsche Bundesbank.
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