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Abstract

This paper investigates the financial stability consequences of banks’ interest rate risk
exposure and uninsured deposit funding share. We develop a model incorporating in-
sured and uninsured deposits, interest rate-sensitive securities, and credit-risky loans to
understand how banks respond to interest rate risk and the potential for deposit runs.
The model delivers the concentration of uninsured deposits in larger banks and examines
how banks’ portfolio- and funding choices impact financial stability. When banks antic-
ipate volatile bond returns, they seek exposure to this interest rate risk. We study the
effects of recent Federal Reserve rate hikes on banks and analyze micro-prudential policy
tools to enhance the banking sector’s resilience. Higher liquidity requirements that target
uninsured deposits are effective at curbing run risk of large banks, but cause misalloca-
tion in the lending market. Size-dependent capital requirements are equally effective at
mitigating run risk, with minimal unintended consequences.

JEL: G12, G15, F31.
Keywords: Uninsured Deposits, Interest Rate Risk, Financial Stability, Micro-prudential

Regulation, Bank Concentration, Bank Portfolio Choices
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1 Introduction

In 2022, the Federal Reserve (Fed) raised the policy rate to levels not seen since 2008 to combat

unprecedented levels of inflation, leading to a rare realization of an interest rate shock. When

rates go up, banks’ fixed income portfolio-like positions, such as loans and securities, decline in

market value.1 Coupled with a run on uninsured deposits, these declines led to the failure of

major banks like Silicon Valley Bank (SVB) and First Republic.2

This paper proposes a framework for analyzing banks’ portfolio- and funding choices across

the bank size distribution. It then evaluates how banking regulations can enhance financial

stability. By focusing on micro-prudential regulations and examining the cross-section of banks,

this study identifies and quantifies the characteristics of banks that choose higher exposure to

interest rate risk or susceptibility to run risk, and how various regulatory policies contribute to

their safety.

Our model setup is guided by three stylized facts about differences in banks’ portfolio choices

and funding characteristics. First, the banking sector is highly concentrated, with 50% of

aggregate assets owned by banks in the top 0.3th percentile in terms of asset size. Second,

larger banks choose a higher share of uninsured deposit funding. Together, these two facts

imply that uninsured deposit funding is also very concentrated. 90% of aggregate uninsured

deposits are issued by the top 10% of banks. Third, smaller banks have a higher share of cash

and securities holdings compared to large banks.

To parsimoniously analyze the economic drivers of differences in bond shares and uninsured

funding across banks, we build a two-period model with a cross-section of banks and a repre-

sentative household. The model matches these three stylized facts. Banks choose investments

into credit risky loans and interest rate sensitive bonds. We assume that banks are ex-ante

heterogeneous in their lending productivity, which scales a decreasing returns to scale produc-

tion technology. In the second period, bank lending is further exposed to an aggregate and

idiosyncratic productivity (credit) shock. Banks fund assets by issuing insured and uninsured

deposits as well as equity. A capital requirement and a liquidity requirement constrain bank

1E.g., Hirtle (1997); Landier, Sraer, and Thesmar (2013); Begenau, Piazzesi, and Schneider (2020); English,
Van den Heuvel, and Zakraǰsek (2018); Paul (2023)

2See Jiang, Matvos, Piskorski, and Seru (2024) for recent work on the drivers of bank failures during this
time.
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leverage and portfolio choices. Households derive utility from consumption in periods 0 and 1

and from liquidity services from banks. Banks differ in their liquidity service productivity levels

as well. We model liquidity services as a constant elasticity of substitution (CES) aggregator

over quantities of insured and uninsured deposits scaled by banks’ individual deposit produc-

tivity. Hence, households view deposits at different banks as differentiated products. Lastly,

banks have the option to default when they cannot repay depositors in the second period. Bank

default causes bankruptcy costs that lower aggregate consumption. While some deposits are

covered by deposit insurance, funded with lump-sum taxes on households, uninsured depositors

are not necessarily be repaid in full. As a result, they may choose to run. We model endogenous

run decisions as in Dávila and Goldstein (2023).

We calibrate the model to regulatory data for U.S. commercial banks, focusing on the post-

Great Financial Crisis (GFC) period after 2009. Our calibration uses data from bank regulatory

filings (FFIEC 031/041) on asset and uninsured deposit concentration, bond share, and realized

deposit rates. We jointly calibrate the three sets of parameters that govern loan productivity,

deposit productivity, and liquidity preferences. The production technology parameters are

crucial in capturing the concentration within the banking sector. Our model differentiates

between asset concentration and loan concentration, which is influenced by the curvature of the

loan production function and the parameter that governs ex-ante loan productivity differences

across banks. Calibration of these parameters targets the standard deviation of the loan and

asset distribution, and the aggregate loan return. We assume that a bank’s deposit productivity

perfectly correlates with its lending productivity with varying slope. To calibrate the parameter

governing banks’ deposit productivity, the model targets the bond share of the smallest 20%

and the top 1% of banks by asset size. The final set of parameters governs liquidity preferences.

Our calibration of these parameters targets the average transaction and time deposit rates, the

average uninsured deposit share, and the Gini coefficient of uninsured deposits.3

Our paper presents the following findings. First, our model rationalizes the cross-sectional

facts about banks’ security shares, uninsured deposit funding share, assets, and uninsured

deposit concentration as follows. A bank’s scale is optimally determined by its two production

technologies, each featuring decreasing returns in lending and liquidity services. How banks

3Due to data limitations, transaction and time deposit rates are used as proxies for insured and uninsured
deposit rates.
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fund themselves and how much banks invest in bonds depends on the relative strength of their

lending and deposit business. Banks can fund their assets with insured and uninsured deposits.

Our calibration implies that banks’ profit margins are higher in the insured deposit market.

When lending is relatively unprofitable given the bank’s lending productivity, it turns to bonds

to back its insured deposit business, the main source of value for small banks.4 In contrast,

banks with a highly productive lending technology must also tap into the uninsured deposit

market to fund their scale. This way, a high-loan-productive bank avoids giving away too

much profit margin in the insured market. In our model, small banks hold bonds to support a

relatively more profitable deposit business. Large banks hold bonds for precautionary reasons

to manage run risk, which uninsured deposits expose them to. As in the data, the largest banks

– with more uninsured deposit funding and hence higher run risk exposure– hold optimally more

bonds than mid-size banks.

Second, we use our framework to study the effects of an unanticipated interest rate shock on

the likelihood of bank failures. The model allows us to distinguish between solvency defaults

and run defaults. Solvency defaults are more common in less productive small banks. Run

defaults can occur only at banks that fund themselves with uninsured deposits, affecting the

largest banks. Yet, we show that in the baseline calibration, run defaults do not occur in

equilibrium because large banks hold enough bonds to hedge against run risk. But when banks

are hit by an unanticipated rate hike, small banks’ solvency default rates rise to over 10%, and

large banks are suddenly exposed to a 1% run default probability. These findings illustrate that

the combination of uninsured deposit funding and unexpectedly low bond return realizations

can significantly increase the financial fragility of large banks.

We then solve a version of the model in which banks anticipate highly volatile bond returns

to allow them to hedge against the effects of raising interest rates. Interestingly, we find

that, rather than choose a more conservative portfolio as a precaution, banks across the board

increase risk-taking in response to higher expected bond return volatility. While a riskier

portfolio of assets increases a bank’s uninsured deposit rate, it also delivers higher asset returns.

The increased asset risk is not perfectly reflected in a bank’s funding cost due the mispricing

of insured deposits. For small banks without uninsured deposits, the reach-for-yield motive

4Hanson, Shleifer, Stein, and Vishny (2015) argue that the traditional banks’ business model is well described
by this deposit-driven view.
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dominates, leading to them choosing a higher bond share. For large banks whose loans are very

productive and whose uninsured deposit rates reflect some asset risk, an increase in bond risk

makes bonds too unattractive both as an investment and as a means to hedge liquidity (run)

risk. Given the ex-ante much riskier portfolio choice across the board, an anticipated rate hike

leads to more default than an unanticipated one. Without the precautionary buffer of bonds,

the rate hike also leads to more run defaults at large banks, while small banks – having chosen

a higher bond share – are more likely to default for solvency reasons. Our third result suggests

that the rational anticipation of interest rate risk can increase banks’ portfolio risk.

Finally, we use the model as a laboratory to study the micro-prudential effects of several

policies. We find that unconditional increases in capital requirements reduce solvency default

risk of small banks, and run-based default risk of large banks. However, capital requirements

also restrict the supply of liquidity. For any significant reduction in default risk, the second

effect dominates and the unconditional policy does not improve aggregate welfare. The model

suggests other policies that are effective at curbing run risk of large banks. First, heightened

liquidity requirements that explicitly condition on uninsured deposits greatly reduce run risk

at the largest banks that have most of the uninsured deposits. Yet, this policy also causes

misallocation in the loan market by distorting the portfolio choices of large and small banks.

Second, a capital requirement that increases in bank size reduces leverage of large banks and

thus mitigates their run-induced default risk, while having minimal effects on other banks’

choices and the allocation of loans and bonds across banks. Thus, we find that size-dependent

capital regulation is a powerful tool for limiting run exposure of systemic banks.

Related Literature Our work is at the intersection of banking, asset pricing, and macro-

finance. Since the fall of Silicon Valley Bank, there has been renewed interest in the finan-

cial stability consequences of banks’ funding structure and interest rate risk exposure (e.g.,

Jiang et al., 2024; DeMarzo, Krishnamurthy, and Nagel, 2024; Drechsler et al., 2023; Haddad,

Hartman-Glaser, and Muir, 2023; Chang, Cheng, and Hong, 2023). Our focus is on building

a quantitative framework to jointly analyze banks’ funding and portfolio choices and their fi-

nancial stability consequences. Building on the insights from prior literature, we choose as key

features of our framework banks’ interest rate risk exposure (e.g., Landier, Sraer, and Thes-
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mar, 2013; Begenau, Piazzesi, and Schneider, 2020; English, Van den Heuvel, and Zakraǰsek,

2018; Paul, 2023), large concentration of the banking sector (e.g., Corbae and D’Erasmo, 2013;

Corbae and D’Erasmo, 2020), financial fragility through run risk (Robatto, 2019; Dávila and

Goldstein, 2023), and uninsured deposit funding share (e.g., Jiang et al., 2020, 2024). We con-

tribute to the literature by synthesizing these essential features of the modern banking system

into a tractable model with heterogeneous banks that can serve as a building block for larger-

scale macro-prudential analysis along the lines of Elenev, Landvoigt, and Van Nieuwerburgh

(2021). Relative to other recent heterogeneous banking models (e.g., Corbae and D’Erasmo,

2013; Egan, Hortaçsu, and Matvos, 2017; Corbae and D’Erasmo, 2021; Jamilov, 2021; Begenau

and Landvoigt, 2022; Begenau et al., 2024; Coimbra and Rey, 2024; d’Avernas et al., 2024) our

model jointly rationalizes the cross-sectional differences between banks’ funding choice–insured

vs. uninsured deposits–and portfolio choice–interest rate sensitive bonds vs. credit risky loans,

and focuses on micro-prudential policy analysis.

The next section presents key stylized facts that guide our modeling choices. Section 3

presents our two period model of the bank size distribution. We discuss the model’s calibration

in Section 4. Section 5 analyzes the model mechanism and discusses policy experiments.

2 Stylized Facts

This section presents facts about the cross-section of US commercial bank securities and unin-

sured deposit funding that are central to our modeling framework. We use bank call report

data from 2010Q1 to 2022Q4 to capture the post-GFC era changes in banks’ regulatory envi-

ronment.5

Securities Share We study differences in banks’ portfolio choices over the size distribution.

Smaller banks hold more cash and securities on their balance sheet compared to larger banks.

Figure 1 presents a binned scatter plot of the securities and cash shares over bank size as

measured by logged assets. To construct this plot, we compute each bank’s asset share in

securities, cash, and federal funds sold and repo assets for each quarter between 2010Q1 and

5The data are from bank level call forms FFIEC 031 and FFIEC 041.
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2022Q4. For each log asset percentile, we calculate the average cash and securities share. The

security share is generally declining in size, but increases slightly for the largest banks.

Figure 1: Stylized Facts of the Cross-Section of Banks

Security and Cash Share Across Bank Size
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Notes: This figure presents average securities share (Panel A) and the average maturity of securities as a

binscatter plot, with 100 bins. The securities share is the ratio of the sum of cash, federal funds sold, repo

assets, and securities over assets. The data are from bank call reports, filing forms FFIEC 031/041 using a

bank-quarter panel from 2010Q1 to 2022Q4.

Asset and Uninsured Deposits Concentration The banking sector is highly concentrated

(Panel A of Figure 2. Most assets and uninsured deposits are held by a small fraction of banks.

In addition, Panel B of Figure 2 shows that uninsured deposits represent a larger fraction of large

banks’ domestic deposit funding. The average uninsured deposit share of deposits increases

from about 10% for the smallest banks to about 40% for the largest banks. Since the banking

sector is very concentrated, uninsured deposits dollars are disproportionately concentrated in

the largest banks (Panel A).

Deposit Rates Figure 3 presents a scatter plot of transaction deposit rates in Panel A

and time deposit rates in Panel B. The largest banks pay higher deposit rates compared to the

smallest banks, but the largest banks pay less than large mid-size banks. We choose transaction

and time deposit rates as data on realized interest expenses on insured and uninsured deposits

are unfortunately not available for transaction accounts and are very limited for time deposits.
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Figure 2:

Panel A: Concentration of Uninsured Deposits and Assets
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Notes: Panel A shows the concentration of unsecured deposits and assets. We compute the cumulative aggregate

share of each held by a given share of banks and plot the curves. Panel B presents the uninsured share over the

bank size distribution as a binscatter plot, with 100 bins. The uninsured share is the ratio of uninsured domestic

deposits over domestic deposits. Uninsured deposits are deposit accounts with more than $250 thousands. The

data are from bank call filing forms FFIEC 031/041 using a bank-quarter panel from 2010Q1 to 2022Q4.

Mark-to-Market Losses and Bank Equity It is rare for interest rate risk to be visibly

realized in bank portfolios since they are mainly unmarked. The interest rate hike period after

the pandemic has allowed a rare glimpse into the interest rate sensitivity of bank portfolios. For

securities, bank call reports require banks to fill in the fair value of their unmarked securities

(hold-to-maturity securities). When we revalue assets by just subtracting the book value of

securities adding back their fair value, we can recalculate an implied market value of equity.
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Figure 3:

Panel A: Transaction Deposit Rates
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Notes: This figure shows binned scatter plots of deposit rates in percentage points over bank size as measured

by log assets. The data are from bank call reports, filing forms FFIEC 031/041 using a bank-quarter panel

from 2010Q1 to 2022Q4. Transaction deposit rates (Panel A) are computed as the sum of domestic deposit

interest rate expense less domestic time deposit expense divided by transaction deposits at the beginning of the

period. Transaction deposits are domestic deposits less domestic time deposits. Time deposit rates (Panel B)

are computed as the interest expense on time deposits divided by the beginning of period time deposits.

Panel A of Figure 4 shows the aggregate market value of equity normalized by the aggregate

book equity since 2010. The rate hike period led to large unrealized losses in banks’ securities

portfolio, leading to a drop in equity due to security losses alone of nearly 20%.

Panel B shows the mark-to-market losses of the 50 largest banks in 2022 Q3, calculated

similarly to for Panel A but expressed as a share of assets. For comparison, we also plot the
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Figure 4:

Panel A: Security Revaluation at Market Prices: Time Series
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2010Q1 to 2022Q4.

regulatory book value of equity as a fraction of assets. Most of the large banks sustained losses

on their securities portfolios, leading to large unrealized losses in equity.

In the next section, we build a model that is consistent with the concentration of assets and

uninsured deposits and the cross-sectional differences in the security share and deposit rates.
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3 Model of the Cross-section of Banks

3.1 Environment and Timing

There are two types of agents, households and banks. Households are identical, and we solve the

problem of a representative household. Banks are heterogeneous in their productivity of lending

and providing deposits to households. Banks are indexed by i on the continuum [0, 1]. The

model has two dates, 0 and 1. At date 0, households invest in bank liabilities, and banks decide

on lending and capital structure. At date 1, there are two subperiods. First, aggregate and

idiosyncratic bank productivity shocks are realized, and uninsured depositors decide whether

to “run” on the bank and demand their balances to be paid. In case of a run, banks have to

liquidate assets to pay out these early withdrawals.

Thereafter, banks can decide to default, in which case they are liquidated by the deposit

insurance agency. Insured deposit payoffs are safe and backed by taxation. Uninsured deposits

are risky and only receive a stochastic recovery value depending on bank assets.

3.2 Households

There is a unit mass of identical households. Households maximize utility over consumption

Ct in both periods t ∈ {0, 1}, and over liquidity services at time 0 that are provided by bank

deposits. They maximize the utility function

U(C0, C1, {DI
i }, {DU

i }) = log(C0) + ψlog
(
H

(
{DI

i }, {DU
i }

))
+ βlog

(
E
[
C1−φ

1

]1/(1−φ)
)

(1)

with the liquidity preference function

H
(
{DI

i }, {DU
i }

)
=

[
α

(∫ 1

0

(AD
i D

I
i )

ρIdi

)η/ρI

+ (1− α)

(∫ 1

0

(AD
i D

U
i )

ρUdi

)η/ρU
]1/η

, (2)

where {DI
i }i∈[0,1] are insured, and {DU

i }i∈[0,1] are uninsured deposits. Household enjoy liquidity

services provided by both types of deposits, with α being the relative weight on insured deposits

and η governing the elasticity of substitution between types. Banks have different productivity
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in liquidity services provision given by AD
i . Further, banks have local monopolies in deposit

markets, implying that their deposits are not perfect substitutes within the insured and unin-

sured categories. The degree of substitutability in each type is governed by ρj, for j ∈ {I, U},

respectively.

At date 0, households are endowed with initial wealth W0, and they choose how much of

this wealth to consume and how much to invest in equity {Si} and deposits {DI
i }, {DU

i } of all

banks. The household budget constraint at date 0 is

C0 = W0 − T +

∫
i

Πidi−
∫
i

piSidi−
∫
i

qIiD
I
i di−

∫
i

qUi D
U
i di, (3)

where pi is the price of equity and qji for j ∈ {I, U} is the price of insured and uninsured

deposits of bank i. Households pay lump-sum taxes T that are needed to pay for bailouts of

insured deposits. They further receive time-0 profits of all banks Πi. Consumption at time 1

consists of the payoff of all securities bought at time 0:

C1 =

∫
i

DI
i di+

∫
i

IndiSiDividi+

∫
i

DU
i PU

i di. (4)

Insured deposits pay off with certainty, while only non-defaulting banks, indicated by the binary

variable Indi , pay dividends to equity holders. The payoff of uninsured deposits depends on both

aggregate and idiosyncratic risk through banks’ default decision and the potential realization of

runs. These factors are encapsulated in PU
i defined in equation (18) below. Time-1 consumption

is exposed to aggregate risk and hence a random variable at time 0.

3.3 Banks

There is a continuum of banks of mass one, indexed by i. Banks are ex-ante heterogeneous

in their cost of producing deposits and in their lending productivity, denoted by the pair of

parameters (AD
i , A

K
i ) ∼ G. Banks can invest in two types of assets, bonds and loans (=

capital). The capital price at time 0 is normalized to 1 and the aggregate return to capital

RK is risky: RK ∈ {RK,1, . . . , RK,nK
} with probability vector πK . Bonds are also exposed to

aggregate risk, with bond return realizations RB ∈ {RB,1, . . . , RB,nB
} and probability vector
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πB, analogous to capital. The aggregate payoffs of both assets are independent. Banks further

receive multiplicative i.i.d. shocks ϵi to their loan production at time 1. A bank that extends

Ki loans at time zero therefore receives total loan payoff

RKA
K
i ϵiK

1−κ
i , (5)

where κ governs the degree of decreasing returns in lending.

Banks can decide to default. If a bank defaults, its pays out a dividend of zero and a fraction

ξ of its output is lost in the bankruptcy proceedings. The remaining output (1−ξ)AK
i ϵiK

1−κ
i is

allocated proportionally to the recovery of insured and uninsured deposits. Uninsured deposits

pay out this recovery value to households, while insured deposits pay out 1. Payouts of insured

deposits for defaulting banks are funded by the government, which raises lump-sum taxes on

households at date 0 to cover the shortfall between recovery and full payout in expectation.

Banks’ uninsured deposits are subject to runs. In particular, we assume that fraction 1−ϕ of

uninsured deposits is “runnable,” while remaining fraction ϕ is not.6 Banks can pay out early

withdrawals by liquidating bonds or loans to outside investors. Bonds can always be liquidated

at par, i.e. at value RB. However, capital can only be liquidated with fire-sale discount δ < 1.

To summarize, the timing of events is

0. Time 0: Banks choose portfolio {Ki, Bi, D
U
i , D

I
i }. Households choose portfolio of bank

securities.

1a. Time 1: Aggregate and idiosyncratic productivity shocks are realized and observed. Unin-

sured depositors decide whether to run. Banks subject to runs choose quantity of capital

and bonds to sell in order to cover deposit outflow DU
i .

1b. Bank default decision. All assets pay out.

6The non-runnable fraction ϕ represents other bank liabilities that are junior to deposits. This share of
uninsured deposits is only senior to bank equity and will receive the residual recovery value of bank assets in
bankruptcy. We will also consider too-big-too-fail guarantees for these deposits.
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3.4 Bank Problem

We will solve the bank problem backwards, starting at the run stage 1a. in the time line above.

Problem with run. We consider the problem of a bank that experiences a run. The bank

needs to decide on the quantities of loans K̂i and bonds B̂i to liquidate in order to pay out

running depositors. We summarize the portfolio of the bank by Ai = (Bi, Ki, D
I
i , D

U
i ). The

aggregate state R = (RK , RB) consists of the realized loan and bond returns. The bank solves

the optimization problem

V (Ai, ϵi,R) = max
0≤K̂i≤Ki,0≤B̂i≤Bi

max{0, AK
i ϵiRK(Ki − K̂i)

1−κ +RB(Bi − B̂i)−DI
i − ϕDU

i } (6)

subject to

δRKK̂i +RBB̂i ≥ (1− ϕ)DU
i . (7)

The bank maximizes its post-run dividend to shareholders in (6). However, if this dividend

is negative, banks take advantage of limited liability and go into bankruptcy. The constraint

in (7) states that the bank must pay out balances of running depositors (1 − ϕ)DU
i by selling

capital or bonds. We assume that banks always choose portfolios such that they can fully pay

out running depositors, i.e. the constraint (7) can always be met.

Assumption 1. All banks choose portfolios Ai that satisfy constraint (7).

This assumption is not restrictive. If κ > 0, banks have decreasing returns in loan payoffs

with an Inada condition in the production function. For a hypothetical bank that has sold

off its complete loan portfolio in a fire sale such that Ki − K̂i = 0, the inframarginal unit of

loans has an infinite marginal payoff. This is not compatible with optimality for fairly general

conditions, implying that banks will have enough assets to avoid selling all capital. To simplify

the solution to the problem given by (6) – (7), we further make the following assumption.

Assumption 2. Conditional on a run, banks first liquidate their bond holdings to pay out

running depositors. Only if bond holdings are insufficient to cover deposit withdrawals, banks

also liquidate capital holdings.
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This assumption implies that banks will choose B̂i = min
{

(1−ϕ)DU
i

RB
, Bi

}
and only resort to

selling capital at fire sale discount δ if (1 − ϕ)DU
i > RBBi. While we outright assume this

liquidation pecking order for simplicity, we should note that it is also optimal for banks for a

wide range of parameters.7

A key property of our model is that banks choose their exposure to run risk by issuing

uninsured deposits. A bank that issues only insured deposits does not experience any runs.

Furthermore, it is important to note that even though banks have sufficient assets to pay out

running uninsured depositors, the remaining assets after these payouts may be insufficient to pay

out the bank’s remaining debts. These consist of non-running uninsured and insured deposits,

ϕDU
i +DI

i . We define optimal policy functions B̂∗
i = B̂i(Ai, ϵi,R) and K̂∗

i = K̂i(Ai, ϵi,R) for

fire sale quantities characterized in Appendix B.2. Inserting these optimal choices into the bank

dividend in (6) implies the existence of the default threshold

ϵi =
DI

i + ϕDU
i − (Bi − B̂∗

i )

AK
i RK(Ki − K̂∗

i )
1−κ

, (8)

such that banks with ϵi > ϵi do not default even conditional on experiencing a run.

Problem without run. Now we consider a bank that does not experience a run. This bank’s

dividend payment to households is

max{0, AK
i ϵiRKK

1−κ
i +Bi −DU

i −DI
i },

which implies a threshold

ϵi =
DU

i +DI
i −Bi

AK
i RKK

1−κ
i

. (9)

Banks with idiosyncratic shocks ϵi < ϵi will default even if they do not experience a run.

Run coordination. Consistent with the thresholds for idiosyncratic productivity in (8) and

(9), we assume that uninsured depositors do not run on banks with ϵi > ϵi, since these banks

are always solvent. Further, we assume that the regulator shuts down banks with ϵi < ϵi before

7For a given δ, deviations from this pecking order can arise for banks with large capital holdings Ki, but
low loan productivity realizations ϵi. For such banks, the effective marginal product of loans after the run,
AK

i ϵi(1− κ)K−κ
i , can be lower than the fire sale price δ.
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Figure 5: Endogenous run-prone region as function of idiosyncratic risk
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depositors can run. This leaves banks in the interval ϵi ≥ ϵi ≥ ϵi vulnerable to runs. These

banks will default if they experience a run, but not otherwise. We assume that depositors

choose to run on such banks conditional on realization of a bank-specific Bernoulli variable ςi

that takes on value 1 with probability π (a sunspot).8

Time-0 Problem. Define the household SDF M , derived in Appendix B.1. Then at time 0,

bank i solves

max
Ki,Bi,DU

i ,DI
i

Πi + E
[
M

(
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

) (
AK

i ϵiRKK
1−κ
i +Bi −DU

i −DI
i

)]
(10)

subject to the budget constraint

pi + qIi (D
I
i )D

I
i + qUi (Ai)D

U
i = Ki + pBi +Πi, (11)

the leverage constraint

DI
i +DU

i ≤ θKKi + θBBi, (12)

and the liquidity constraint

θD(DI
i +DU

i ) ≤ Bi. (13)

Banks choose their portfolio of assets to maximize the sum of time-0 profits and the present

value of time-1 dividends to their shareholders, the households. The bank maximizes dividends

for states of the world in which the bank does not default, which are selected by the indicator

functions based on the thresholds in (8) and (9). The objective (10) highlights that banks

suffering a run, always default. The buget constraint in (11) states that banks raise funds

8The run game follows the structure laid out in Dávila and Goldstein (2023).
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through sales of equity pi and both types of deposits. Deposit prices are bank-specific, since

banks have market power and idiosyncratic default risk. Banks internalize the effects of their

portfolio choice on these bond prices, a key mechanism the shapes their optimal choices. Banks

spend the funds raised on purchases of loans and bonds, and on profit payouts. The model

contains two features giving rise to non-zero economic profits, which are decreasing returns to

scale in lending and market power in deposit markets. The leverage constraint in (12) captures

real-world bank equity capital requirements, allowing for different risk weights on loans and

bonds. Finally, constraint (13) reflects liquidity regulation such as the liquidity coverage ratio

(LCR) that requires banks to hold a fraction of their assets in liquid assets (bonds).

3.4.1 Recovery Value

When a bank defaults, creditors have a claim on the remaining value of bank assets. A fraction

ξ of assets is lost in the bankruptcy process. The remainder is allocated proportionally to

insured and uninsured deposits. The recovery value for insured deposits is used by the insurance

fund to partially cover its expenses for paying out insured depositors. The recovery value of

uninsured deposits is paid out to uninsured deposit holders. We separately derive recovery

values conditional on whether a bank experienced a run.

No Run. In this case, assets after bankruptcy are (1 − ξ)(ϵiRKA
K
i K

1−κ
i + Bi). Fractions

DI
i /(D

I
i +DU

i ) and D
U
i /(D

I
i +DU

i ), respectively, are allocated to the recovery value of insured

and uninsured bonds. The recovery value per dollar of deposits is thus for both insured and

uninsured deposits

rnri =
(1− ξ)(ϵiRKA

K
i K

1−κ
i +Bi)

DI
i +DU

i

. (14)

Run. If there is a run, assets after bankruptcy are

(1− ξ)(ϵiA
K
i RK(Ki − K̂i)

1−κ +Bi − B̂i).
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Since fraction 1 − ϕ of uninsured deposit holders have been paid out already after a run, the

recovery value applies to insured deposits and the non-running uninsured deposits:

rri =
(1− ξ)

(
ϵiA

K
i RK(Ki − K̂i)

1−κ +Bi − B̂i

)
DI

i + ϕDU
i

. (15)

3.5 Equilibrium

Expected insurance payouts for insured deposits are for each bank

Ti = DI
iE [F (ϵi)(1− E(rnri )) + π (F (ϵi)− F (ϵi)) (1− E(rri ))] .

Total taxes are T =
∫
i
Tidi. The government raises the amount of revenue needed to pay for

bailouts in expectation.9

Bonds are supplied elastically by the government at price p. Loans are supplied by borrowers

elastically at a price of 1. Insured deposit, uninsured deposit, and equity markets clear for each

bank: supply of these securities by banks must equal demand by households at prices qIi , q
U
i ,

and pi, respectively.

3.6 Equilibrium Conditions

We provide a full derivation of all equilibrium conditions in the model appendix. Below we

summarize the model’s implications for the choices of insured and uninsured deposits, and the

sources of bank profits.

9Depending on the aggregate state, actual bailout expenses may deviate from this expected expenditure.
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3.6.1 Household and Bank Deposit Choices

Households. Households purchase insured and uninsured deposits of all banks. In Appendix

B.1, we derive household first-order conditions for deposits of bank i as

qIi = ψHI(DI
i )C0 + E[M ], (16)

qUi = ψHU(DU
i )C0 + E

[
MPU(Ai)

]
, (17)

where the payoff to uninsured deposits is

PU(Ai) =1− F (ϵi) + F (ϵi)E[r
nr
i |ϵi < ϵi]

+ (1− π) (F (ϵi)− F (ϵi)) + π (F (ϵi)− F (ϵi)) (1− ϕ+ ϕE[rri |ϵi ≤ ϵi ≤ ϵi]) ,
(18)

with F being the c.d.f. of ϵi. Insured deposit prices in (16) have a certain payoff of 1 at time

1. In addition, they deliver a liquidity benefit HI(DI
i ) given in equation (25) in Appendix B.1

to households that depends on their quantity – deposits have diminishing marginal benefits.

Uninsured deposits in (17) deliver an analogous liquidity benefit HU(DU
i ) contained in equation

(24) in the appendix. Furthermore, uninsured deposits have a stochastic payoff at date 1 given

in equation (18) that depends on aggregate risk and banks’ idiosyncratic shock ϵi. The first

line of (18) accounts for banks that are either run-proof with a shock realization ϵi > ϵi, or

fundamentally insolvent even absent a run ϵi < ϵi. In the former case, uninsured deposits pay

out in full, and in the latter case they pay the no-run recovery value in (14). The second

line of (18) accounts for banks in the run-prone region with ϵi ∈ [ϵi, ϵi]: these banks do not

experience a run with probability 1−π, in which case uninsured deposits pay out in full. A run

occurs with probability π, in which case the fraction 1 − ϕ of running uninsured depositors is

paid out in full, but fraction ϕ of inactive depositors only receives the post-run recovery value

from (15). Equation (18) clarifies that the uninsured payoff depends on the complete portfolio

Ai = (Ki, Bi, D
I
i , D

U
i ) of the bank, since these choices impact default thresholds and recovery

values.

Banks. When banks choose their portfolios, they internalize the effects of their choices on the

prices of insured and uninsured deposits. Taking bank first-order conditions for (Ki, Bi, D
I
i , D

U
i )
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therefore involves differentiating (16) and (17). For example, the the FOC of bank i for insured

deposits is

qIi = µi + θDλi −
∂qI(DI

i )

∂DI
i

DI
i −

∂qU(Ai)

∂DI
i

DU
i + E [M(1− F (ϵi)− π(F (ϵi)− F (ϵi))] . (19)

In this expression, µi is the Lagrange multiplier on the bank’s leverage constraint and λi is the

multiplier on the liquidity constraint. The rightmost term reflects that bank equity owners only

care about payoffs in states without bank default. The two partial derivatives in the middle

arise as banks take into account the effect of their insured deposit issuance on the household

valuation of insured and uninsured deposits – these terms differentiate the household demand

functions in (16) and (17). Specifically, each bank internalizes that issuing more insured deposits

will decrease households’ marginal liquidity benefit and thus raise the interest rate it has to pay

on insured deposits (
∂qI(DI

i )

∂DI
i

< 0). Further, each bank internalizes that issuing more insured

deposits will raise its leverage and default risk, which in turn means that it must pay higher

interest on its uninsured deposits (∂q
U (Ai)

∂DI
i

< 0). All other bank first-order conditions and the

derivatives of household demand functions are in Appendix B.2.

4 Calibration

We calibrate the model to bank-level data from regulatory filings (FFIEC 031/041) from 2010q1

to 2022q4. We jointly calibrate the key parameters in Panel A of Table 1 as they shape how bank

productivity and size distribution interact with households’ liquidity demand. We can structure

this description around how and which parameters affect (1) banks’ production technology, (2)

banks’ deposit productivity, (3) and households’ liquidity preference.

The production technology parameters are helpful for capturing the concentration of the

banking sector. Our model allows for a distinction between asset concentration and loan con-

centration. Both the loan production function curvature κ and the parameter Zshape, which

governs the loan productivity distribution across banks, influence how concentrated the bank-

ing sector is. We target both the standard deviation of log loans (1.521) and log assets (1.427).

The parameter µRK determines the average aggregate return on capital RK , which scales the
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average aggregate loan return. Note that given the concentration in the banking sector and

decreasing returns to scale, the average loan return is distinct from the average aggregate return

on capital RK . We compute a value-weighted loan return in the data as the ratio of the sum of

aggregate interest income on loans and leases and loan sale income minus provisions for loan

losses and the loan operating expense share over the beginning of period aggregate loans.

The second set of parameters governs heterogeneity in banks’ deposit productivity. Our

baseline model assumes that a bank’s deposit productivity is perfectly correlated with its lending

productivity, with a higher sensitivity for below-median and a lower sensitivity for above-median

loan productivity. A higher deposit productivity sensitivity for below-median productive banks

in terms of lending means that these banks would want to hold a higher bond share to back

their deposit franchise. To calibrate AD
− and AD

+ , we target the bond share of the bottom 20%

smallest banks by asset size and the bond share of the top 1% of banks. We define the bond

share as the ratio of the sum of cash, federal funds sold, repo assets, and securities over assets.

Bank size is determined by assets.

The final set of jointly calibrated parameters governs liquidity preferences. The parameter

ψ is the weight of liquidity in the household utility function. As such, it scales the liquidity

premium that drives a wedge between the risk-free rate and deposit rates. The CES elasticity of

substitution parameter ρ, which governs the degree to which insured deposits are differentiated

products, also matters for the level of deposit rates (ceteris paribus). When insured deposits

are relatively more differentiated relative to uninsured deposits, households accept a lower

interest rate on insured deposits relative to uninsured deposits. The ideal empirical targets for

ψ and ρ would, therefore, be the insured and uninsured deposit rates. Unfortunately, rates

by insurance status are only available for time deposits and only before 2009 or after 2016

when bank call reports reported the interest expense on time deposits broken out by deposit

insurance limit.10 Given the data limitation, we choose to target the transaction deposit rates

and time deposit rates to roughly capture insured and uninsured deposit rates. We compute the

transaction deposit rate as interest expenses on domestic deposits less domestic time deposit

10Between 2009 and 2016, interest expenses were reported for time deposits with balances above and below
$100,000, but the deposit insurance limit had increased to $250,000 at the end of 2008. In addition, large
demand or savings deposits accounts may also exceed the deposit insurance limit. RateWatch reports banks
offer rates by deposit products, but offer rates on select products are not informative about what banks actually
pay overall on their deposit accounts.
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Table 1: Key Parameters

Panel A: Jointly Calibrated Parameters
Name Description Value Data Model

Production technology
κ Production fct curvature 0.123 Std(Log Loans) = 1.521
µRK Mean capital return 1.085 Agg Loan Return = 2.742%
Zshape Shape of loan prd dist 0.13 Std(Assets) =1.427

std = shape × scale

Deposit technology
AD

− Slope of Deposit Productivity − 1.1 Bottom 20% bond share= 0.410
AD

+ Slope of Deposit Productivity + 0.275 Top 1% bond share = 0.328

Liquidity preference
ψ Weight on liquidity 0.1 Time deposit rate = 1.228%
α Weight on insured deposits 0.8 Uninsured deposit share = 0.419
ρ EoS b/w insured deposits 0.855 Transaction deposit rate =0.312%
ρU EoS b/w uninsured deposits 0.96 Gini uninsured = 0.963

Panel B: Externally Calibrated Parameters
Name Description Value Data Source

β Discount factor 0.99 1% risk-free return
γ Risk aversion 2 Standard value in literature
r Bond return 0.0123 Avg. bond return

Zmean Mean loan productivity 1 Normalization
Zloc Minimum loan productivity 0.6 ELS implied 0.48
Zscale Max - min loan productivity 1.55 ELS implied 1.54
µRB Mean bond return 1 Normalization
σRB Deviation of bond return 0.035 Vol of 5-year UST
σRK Deviation of capital return 0.045 Vol of corporate bond portfolio
σϵ ln Volatility of idio. capital shocks 0.12 Vol of idio. bank equity return
ϕ Uninsured deposit haircut in runs 0.1 Long term debt share = 0.074
δ 1 - Firesale costs of capital 0.675 Moody’s
ξ Share lost in recovery 0.25 Moody’s

Notes: This table presents the internally (jointly) calibrated model parameters (Panel A) and the parameters

set directly to external moments in the data (Panel B). Uninsured share is the share of uninsured deposits in

total domestic deposits. ELS stands for Egan, Lewellen, and Sunderam (2022). Details on Panel A parameters

are in the text. The sample period is from 2010 to 2022 unless otherwise stated. Data sources are bank call

report filings. Details on Panel B parameters are in Appendix Section A1.
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interest expense over beginning of period transaction deposit accounts, which are domestic non-

time deposit accounts. The time deposit rate is the interest expense on domestic time deposits

divided by the beginning of period domestic time deposit accounts. Both rates are annualized.

The parameter α is the weight on insured deposits in the liquidity aggregator, and therefore

determines the insured deposit share, and likewise our target the uninsured deposit share. We

compute the uninsured share as the share of uninsured domestic deposits over total domestic

deposits. Uninsured deposits deposit account values with balances over $250,000 minus the

number of uninsured accounts times $250,000. We choose the Gini coefficient of uninsured

deposits as a target for the elasticity of substitution parameter for uninsured deposits ρU . When

households perceive uninsured deposits as relatively undifferentiated, only the most productive

banks will find it profitable to issue uninsured deposits. As a result, uninsured deposits will be

only issued by the largest banks since large banks are the most productive banks in our model,

leading to the Gini coefficient as a natural target for ρU .

We discuss the externally calibrated parameters listed in Panel B in Appendix Section A.

5 Results

In this section, we first describe the model mechanism, then discuss how an unanticipated

interest rate shock and a partial bailout guarantee affect the banking system, and finally, we

discuss policy implications.

5.1 Key Model Mechanisms

We now describe the key mechanisms that allow the model to match the empirically observed

high concentration of uninsured deposits among the largest banks. High shares of uninsured

deposits expose the largest banks to the possibility of runs.

5.1.1 The Role of Runs

We first analyze how run risk affects bank choices and the industry equilibrium, both ex-ante

and in terms of realized risks. To do so, we consider a counterfactual version of the model
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where capital can be sold without a firesale discount during runs (δ = 1), allowing banks to

fully repay depositors in case of a run. In this special case, runs do not induce banks to realize

losses. Thus, with δ = 1, depositors have no reason to run in the first place, and runs will not

occur in equilibrium irrespective of banks’ portfolio composition.11

Figure 6: Equilibrium in Baseline and Without Runs

Notes: Top row: “log Assets” is the logarithm of the sum of capital and bonds, “Bond Share” is the fraction

of bonds in the asset portfolio, and “Uninsured Share” is the fraction of uninsured deposits in all deposits.

Bottom row: “Total Leverage” is the sum of insured and uninsured deposits divided by assets, “P(Run Def.)”

is the unconditional probability of banks experiencing a run and defaulting as a result, and “P(Default)” is the

unconditional probability of default across all aggregate payoff states.

Figure 6 shows six outcome variables in the cross-section of banks, indexed by asset pro-

ductivity Zi on the x-axis. The blue line shows the calibrated model “Baseline,” while the red

dotted line shows a counterfactual model with no fire sale discount, δ = 1. Banks choose similar

scales in terms of total assets, although the largest, most productive banks are slightly smaller

in the baseline model with run risk. The presence of run risk has a noticeable effect on banks’

bond share: absent this risk, small banks choose to hold more bonds, while large banks only

hold bonds mandated by liquidity regulation. This is contrary to the baseline model, where

11Alternatively, we could set the probability of the sunspot for runs π to zero. Results look almost identical
to the ones for δ = 1. Varying δ is computationally more convenient.
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the largest banks voluntarily hold more bonds than required. The share of uninsured bonds is

most strongly affected by the presence of run risk. While the least productive banks do not

issue any uninsured deposits in either model, the uninsured share is more steeply increasing

in the δ = 1 equilibrium, and it is higher for the largest banks. Without run risk, all banks

are at a binding leverage constraint. In the baseline model, the largest banks leave a buffer to

the constraint – this is despite the fact that their greater bond share would allow them higher

leverage compared to the δ = 1 model. These effects on bond holdings, uninsured deposits, and

leverage reflect precautionary portfolio decisions of banks to insure against the risk of runs.

The mid panel of the bottom row shows that runs do not occur in equilibrium of either

economy. With δ = 1, the absence of runs is an immediate consequence of the fundamental

lack of a run motive. However, δ = 0.665 in the baseline model implies substantial fire sale

losses in case of a run. The fact that no runs occur even in this model is exactly due to banks’

precautionary behavior: they issue fewer uninsured deposits (to reduce run exposure), hold

more bonds (to hedge fire sale losses in capital), and reduce leverage (to limit default risk).

Since run-induced defaults do not occur in either model, all realized defaults shown in the

bottom right panel are purely solvency driven. Interestingly, small differences in scale and

portfolio composition of large banks cause fewer solvency defaults in the high delta economy.

This is a general equilibrium effect: with δ = 1, relatively less productive banks have more

uninsured deposits, making it less profitable for the largest banks to scale up their assets. As

a result, the largest banks in the no-firesale loss (δ = 1) economy are roughly 3% smaller than

in the baseline. Their smaller scale, combined with diminishing returns in capital, is sufficient

to lower solvency defaults to zero for the largest banks.

5.1.2 Differential Market Power in Insured versus Uninsured

The model generates a realistic concentration of uninsured deposits among the largest banks. As

in the data, the uninsured share is strongly increasing in bank size. To isolate the role of product

differentiation in generating this cross-sectional pattern, we consider a simple counterfactual

economy in which the degree of production differentiation is identical in both deposit types, i.e.

ρU = ρI = 0.855.

Figure 7 shows the effects of this parameter change. As we can see in the top left panel, the
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Figure 7: Equilibrium With Symmetric Deposit Market Power

Notes: ‘Uninsured Share” is the fraction of uninsured deposits in all deposits. “Bond Share” is the fraction of

bonds in the asset portfolio. “log Assets” is the logarithm of the sum of capital and bonds.

uninsured share is flat at 20% across the size distribution when ρU = ρI . The different nature

of competition in the uninsured market, in turn, affects bond shares, leverage, profits, and

default rates. The top right panel shows log assets in the δ = 1 baseline minus log assets of the

model with equal ρj. This difference shows that with symmetric market power in both deposit

types, the bank size distribution is more equal: low-productivity banks are relatively larger,

and high-productivity banks are smaller compared to the baseline with more differentiation

in insured deposits. This comparison highlights that the cross-sectional pattern in uninsured

deposits generated by the model is not due to run risk or bailout guarantees, since neither of

these channels are present in the δ = 1 economy. Rather by comparing the one-parameter

change in ρU relative to the high-delta economy, we can clearly see that the differential degree

of market power in markets for insured and uninsured deposits is at the core of the model’s

ability to create the right cross-sectional allocation of uninsured deposits.

5.1.3 Deposit Productivity Heterogeneity

The baseline model features heterogeneity in deposit productivity that is perfectly correlated

with loan productivity. However, the loading of deposits on loan productivity is asymmetric

above and below the median. Deposit productivity of below-median banks is Ā− = 1.1 times

their loan productivity, while for above-median banks the loading is Ā+ = 0.25.

Figure 8 compares the baseline calibration to a model in which the deposit productivity

loading is symmetric below and above the mean at Ā− = Ā+ = 0.25. The direct consequence
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Figure 8: Equilibrium With Symmetric Deposit Productivity

Notes: ‘Uninsured Share” is the fraction of uninsured deposits in all deposits. “Bond Share” is the fraction of

bonds in the asset portfolio. “log Assets” is the logarithm of the sum of capital and bonds.

of this parameter change is that the deposit productivity of banks below the median is now

declining much less rapidly in loan productivity than in the baseline. The rightmost plot in

Figure 8 shows that low-productivity banks are much smaller in the baseline economy as a

result. In the counterfactual economy with Ā− = 0.25, banks with low loan productivity have

relatively much higher deposit productivity. It is optimal for them to issue larger quantities

of insured deposits to exploit their market power. Since these banks only have access to low

productivity loans, they instead rely on bonds to scale up their balance sheet, resulting in a

much higher bond share as can be seen in the middle panel of Figure 8. The main effect of

lower Ā− on large banks is in the uninsured deposit share depicted in the left panel. Even

though the above-median banks are not directly affected by the parameter change, general

equilibrium forces cause them to increase their uninsured deposit share. In the symmetric Āj

model, low-productivity banks are much larger, and they supply substantially more insured

deposits in total. Since insured and uninsured deposits are imperfect substitutes in aggregate,

greater insured supply from small banks creates demand for greater uninsured supply from

large banks.

5.2 Effects of An Unanticipated Rate Hike

We next analyze the role of interest rate risk on the fragility of the banking sector. Agents in

the model anticipate substantial interest rate return risk: the return on bonds has a standard

deviation of 3.5%. What if bond returns drop lower than agents anticipate, for example,
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following a surprising interest rate hike by the central bank? To answer this question, we study

how default risk across the bank size distribution is affected by an unanticipated low return

realization of 10% below the mean.12

Figure 9: Default Probabilities After Rate Hike

Notes: “P(Solvency Def.)” is the default rate due to insolvency (ϵi < ϵi). “P(Run Default)” is the default rate

caused by runs. “P(Default)” is the sum of insolvency and run-induced defaults.

Figure 9 displays bank default rates across the size distribution for different realizations of

aggregate returns on loans and bonds. The left panel shows defaults purely based on solvency

risk, i.e. when ϵi < ϵi. When the loan return is high, and the bond payoff is low, as shown by

the solid blue line, solvency defaults are small and slightly declining in size. When both returns

are low, as depicted by the red line, solvency default rates are around 3% for the smallest banks

and decline to around 0.5% for the largest banks. When interest rates unexpectedly increase

such that the return on bonds is -10% (dashed green line), solvency defaults for the smallest

banks jump significantly to over 10%; solvency defaults for banks above the 25th percentile

of the asset distribution, however, are hardly changed relative to the low anticipated value of

bond returns. This is because smaller banks hold a substantially larger fraction of their assets

in interest-rate-sensitive bonds.

Run defaults in the middle panel are zero even for low realizations of both returns (red line).

The low unexpected return of -10%, however, causes run risk among the largest banks, where

most of the uninsured deposits have been issued. Consequently, the run default rate jumps to

1% for these banks. Total defaults in the right panel are the sum of both components. After a

12The numerical implementation discretizes the bond return with two equal-probability realizations. The
lowest return realization in the expectation set is thus 3.5% below the mean.
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rate hike, defaults are higher at all points in the size distribution. However, the model predicts

the largest increase among small banks that are most exposed to bond returns due to their high

bond portfolio share. The model also generates positive default rates among the largest banks,

which are exposed to run risk due to their high uninsured share. These results demonstrate

that the combination of uninsured deposits and low bond returns can amplify the default risk

of large banks.

5.3 Were Banks “Surprised” By Rate Hikes?

Do these results hold up if banks anticipate greater bond return risk, or more technically, if

lower (and higher) bond return realizations are in the expectation set of banks, rather than

arriving as “MIT shocks?”

Symmetric Bond Return Risk. We explore this question in Figure 10, which compares

the baseline economy to one in which bond returns are much more volatile at 8.5% standard

deviation (compared to 3.5% in the baseline), in the red line labeled “High Bond Risk.” The

middle and right panels of the top row show default rates conditional on an anticipated low

loan/low bond return shock. In the baseline model, this shock does not cause run defaults. In

the economy with high bond risk, however, even this anticipated shock causes a 3% spike in run

defaults for large banks. This rise in run-induced defaults is, of course, partially due to a much

lower realization of bond returns, but it is also caused by different ex-ante portfolio choices of

banks. In particular, large banks in the high bond risk economy do not have voluntary bond

holdings (top left) and do not keep a precautionary buffer to their maximum allowed leverage

(bottom left). Furthermore, small banks in the high-risk economy choose to increase their bond

share. This risk-seeking behavior results in substantially higher solvency default rates for small

banks.

The middle and right panels in the bottom row show how these different portfolio choices

play out when the unanticipated rate hike occurs. Run and solvency default rates in the high

bond risk economy look similar to those in the row above, which displays the anticipated shock.

They are much higher compared to the baseline economy, where agents expect bond return

volatility to be just 3.5%.
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Figure 10: Default Probabilities After Rate Hike With Higher Bond Risk

Notes: “Bond Share” is the fraction of bonds in the asset portfolio. “Total Leverage” is the sum of insured and

uninsured deposits divided by assets.“P(Run Default)” is the default rate caused by runs. “P(Default)” is the

sum of insolvency and run-induced defaults.

These results highlight that rational anticipation of higher symmetric bond return risk by

banks does not necessarily lead to safer portfolios that can absorb greater interest rate fluc-

tuations without incurring solvency and run risk. Banks in the model have several competing

motives governing their portfolio choice. On the one hand, banks internalize that risky portfolio

choices affect the interest rates they have to pay on uninsured deposits – a mechanism that

on its own creates a precautionary motive. On the other hand, banks enjoy government insur-

ance on a large fraction of their deposit base, which, combined with limited liability, creates

a motive for seeking risky returns. The fact that banks choose to tolerate higher default risk

in the high-bond risk economy indicates that, as the volatility of asset returns increases, the

risk-seeking channel partially offsets the precautionary motive.

Downside Bond Return Risk. What if banks instead anticipate the actual rate hike with

a 5% probability? The green dashed line labeled “Pr(Rate Hike)=5%” shows this scenario.

Relative to the high bond risk economy, banks now anticipate asymmetric downside risk in
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bond returns that is equal in size to the realized rate hike. This change in expectations shifts

the mean bond return, causing both small and large banks to downscale their bond shares.

Especially large banks reduce leverage substantially in this economy, which works to reduce

run and overall default risk. Since bonds are no longer useful as insurance for runs, banks

instead use leverage to manage their risk.

Taken together, both scenarios imply that bank exposure to interest rate risk is consistent

with rational portfolio choice that anticipates high bond return volatility. Only if banks have

expectations of asymmetric downside (but not upside) bond return risk, our model implies that

they would optimally choose safer portfolios.

5.4 Partial Guarantees for Uninsured Deposits

Implicit bailout guarantees for large banks that are deemed “too big too fail” (TBTF), are

commonly considered as explanation for uninsured deposit concentration at these large banks

(O’Hara and Shaw, 1990). The intuition is straightforward: if the “uninsured” deposits of large

banks also enjoy significant government guarantees, then depositors should be more willing to

hold them. As we established in Section 5.1.2, the baseline version of our model does not rely

on this explanation. However, we can easily incorporate probabilistic bailout guarantees of

uninsured deposits that are increasing in bank size.

Figure 11: Size-dependent Bailout Probability

Notes: Left panel: size-dependent bailout probability for uninsured deposits by bank productivity Zi. Right

panel: size-dependent bailout probability for uninsured deposits by bank asset distribution percentile.

In Figure 11, we show the size-dependent bailout probability that we feed into the model.

The probability is zero for banks below the asset median and then increases in balance sheet
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size until topping out at 70% for the largest banks. In Figure 12, we see how this bailout

probability affects bank choices and outcomes. Most strikingly, too-big-too-fail bailouts raise

the run risk of large banks significantly, as the bottom mid-panel shows. This is despite large

banks choosing fewer uninsured deposits – the increase in risk happens as a result of a lower

bond share and higher leverage. While bailout guarantees do not explain the allocation of

uninsured deposits, they are a powerful source of risk-taking for large banks.

Figure 12: Equilibrium in Baseline and With Bailouts

Notes: Top row: “log Assets” is the logarithm of the sum of capital and bonds, “Bond Share” is the fraction

of bonds in the asset portfolio, and “Uninsured Share” is the fraction of uninsured deposits in all deposits.

Bottom row: “Total Leverage” is the sum of insured and uninsured deposits divided by assets, “P(Run Def.)”

is the unconditional probability of banks experiencing a run and defaulting as a result, and “P(Default)” is the

unconditional probability of default across all aggregate payoff states.

We further decompose the increase in default risk in Figure 13, which also displays the effect

of an unanticipated rate hike combined with too-big-to-fail guarantees. The red and blue solid

lines in the graph show the default probability in the baseline and TBTF versions of the model,

respectively, for the worst possible aggregate payoff state. As we know from previous results,

even low aggregate return realization for loans and bonds does not cause run-based defaults in

the baseline model. However, in the model with bailout guarantees, the run default rate in the
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bad (expected) state is close to 7.5%. The dashed green line shows default probabilities to the

unanticipated rate hike in the model with bailouts. Run-default rates for the largest banks go

above 10% in this model; from Figure 9, we recall that this default rate only rises to 1% in the

baseline model. Thus, TBTF bailout guarantees amplify the run risk of big banks by factor 10

in case of a large surprise rate increase.

Figure 13: Bank Default Risk With Bailouts

Notes: “P(Solvency Def.)” is the default rate due to insolvency (ϵi < ϵi). “P(Run Default)” is the default rate

caused by runs. “P(Default)” is the sum of insolvency and run-induced defaults.

5.5 Policy Implications

We use the model as a laboratory for evaluating various policy proposals. In the following

subsections, we will consider standard size-independent regulation and policies that explicitly

condition on bank size. For all policy counterfactuals, we use the model with TBTF guarantees

as baseline.

Unconditional capital requirements. Equity capital requirements for risky assets are

widely regarded as a powerful tool for mitigating risk-taking by banks and have been stud-

ied extensively in the literature. We begin our policy analysis by studying variations in the

equity capital requirement for loans, which is captured by the maximum leverage parameter θ

in the model. Table 2 shows different aggregate outcomes for different values of θ around the

baseline value of 0.88 (corresponding to a 12% risk-weighted capital charge on loans).

In line with other studies, capital requirements govern a trade-off between consumption and
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Table 2: Varying the capital requirement on loans

Outcome θ

86% 86.5% 87% 87.7% 88% 88.5% 89%

1. Loans -1.052 -0.818 -0.565 -0.293 1.613 0.316 0.655
2. C0 0.013 0.012 0.009 0.005 2.072 -0.007 -0.017
3. E(C1) 0.097 0.075 0.052 0.027 2.201 -0.029 -0.061
4. E(DWL) -52.177 -42.007 -29.992 -16.020 0.004 18.149 38.502
5. SD(MPK) -12.525 -9.684 -6.694 -3.492 0.003 3.874 8.229
6. Liquidity -1.520 -1.133 -0.750 -0.372 1.020 0.365 0.723
7. Welfare -0.026 -0.016 -0.008 -0.003 1.518 -0.001 -0.005

8. C1 (Rate Hike) 0.108 0.083 0.058 0.032 2.122 -0.052 -0.109
9. Welfare (Rate Hike) -0.020 -0.012 -0.005 0.000 1.483 -0.016 -0.037

Notes: This table shows changes in aggregate model outcomes as the maximum allowed leverage on loans θ is

varied around its baseline value of 88%. The levels of listed outcomes for the baseline model are shown in the

θ = 88% column of the table. The columns to the left and right show percentage changes of the same moments

relative to baseline. Moments: 1. Loans – aggregate lending Ei[K], 2. C0 – time-0 consumption, 3. E[C1]

– time-1 expected consumption, 4. E[DWL] – time-1 aggregate expected DWL, including default bankruptcy

costs and firesale losses during runs, 5. SD[MPK] – expected standard deviation in marginal product of capital

across banks at time 1, 6. Liquidity – liquidity utility H, 7. Welfare – total time-0 expected utility, 8. C1 (Rate

Hike) – Time-1 consumption conditional on unanticipated rate hike. 9. Welfare (Rate Hike) – Time-0 welfare

conditional on unanticipated rate hike at time 1.

liquidity provision. Row 1 shows that tightening the capital requirement by 2% (to θ = 86%)

restricts lending by 1%, while relaxing the requirement by 1% (to θ = 89%) increases lending

by 0.65%. At the same time, a tighter requirement reduces bankruptcy-induced deadweight

losses by 52% (row 4), while a relaxation by 1% causes deadweight losses to rise by 38.5%.

These changes in bankruptcy losses affect consumption in an intuitive way – lower losses mean

higher consumption; see rows 2 and 3 of the table. However, since baseline losses are small, so

are the corresponding changes in consumption. The benefit of a tighter capital requirement is

thus higher consumption, which is traded off against lower liquidity provision. Row 6 displays

this effect on utility from liquidity services, which declines by 1.5% with a 2% tighter capital

requirement. In row 5, which shows the dispersion in the marginal product of lending, we can

see how capital requirements affect the efficiency of capital allocation in the banking sector. In

a frictionless model, the marginal product of capital should be equalized across banks. Row 5

shows that dispersion in MPK declines with a tighter capital requirement in the model, which
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is an additional source of welfare gain from tighter regulation that is not directly linked to

avoiding bankruptcy losses.13

Row 7 shows that overall welfare is roughly maximized at the baseline value of θ at 88%, im-

plying a 12% risk-weighted capital charge on loans. A tighter capital requirement increases con-

sumption in both periods but also lowers liquidity services, with the second effect dominating.

Looser capital requirements, in turn, cause an increase in liquidity utility but simultaneously

reduce consumption through greater defaults and misallocation, with the latter effect dominat-

ing. As a result, welfare decreases almost symmetrically as θ deviates from its baseline value.

Note that our model only captures the micro-prudential effects of bank capital requirements

and that macro-prudential considerations such as larger consumption losses during a systemic

crisis may warrant a tighter capital charge on loans.

Liquidity requirements. Liquidity requirements are meant to ensure that banks have liq-

uid assets which can be sold without loss in case of large deposit withdrawals or runs. Our

model captures both runs and the heterogeneous exposure of banks to run risk through their

endogenous choice of uninsured deposits. A natural policy to mitigate the risk stemming from

runs are liquidity requirements tied to uninsured deposits. We implement this policy in the

model through a modified liquidity constraint (see equation (13)):

θDDI
i + (θD + θU)DU

i ≤ Bi, (20)

where θU is a new parameter that requires banks to hold bonds in proportion to their uninsured

deposits. In our baseline model, large banks hold portfolios such that runs only play a minor

quantitative role. Therefore, to give heightened liquidity requirements the best shot at reducing

run risk, we use the model with TBTF (bailout) guarantees as baseline in this section.

Table 3 shows how the same aggregate outcomes studies in Table 2 respond to an increase

in θU relative to its baseline value of 0% in the first column. The run risk of the largest banks

is listed in row 8 of the table, and one can see that the additional liquidity requirements work

as intended: they reduce this risk by almost 50% at the 8% value for θU . It follows that

13Better loan allocation measured by lower dispersion in MPK materializes in higher consumption, same as
lower bankruptcy losses.
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Table 3: Varying liquidity requirements for uninsured deposits

Outcome θU

0% 2% 4% 6% 8%

1. Loans 1.613 -0.137 -0.275 -0.416 -0.557
2. C0 2.072 -0.006 -0.012 -0.018 -0.025
3. E[C1] 2.201 0.006 0.011 0.017 0.023
4. E[DWL] 0.004 -4.496 -8.660 -12.427 -15.731
5. SD[MPK] 0.003 1.592 3.271 5.041 6.900
6. Liquidity 1.020 -0.033 -0.069 -0.106 -0.145
7. Welfare 1.518 -0.002 -0.005 -0.007 -0.010

8. Run Def. top 0.1% 0.027 -11.295 -22.782 -34.347 -45.811

Notes: This table shows changes in aggregate model outcomes as the additional liquidity requirement for

uninsured deposits θU is raised from its baseline value of 0%. The levels of listed outcomes for the baseline

model with TBTF guarantees are shown in the θU = 0% column of the table. The columns to the right show

percentage changes of the same moments relative to baseline. Moments: 1. Loans – aggregate lending Ei[K],

2. C0 – time-0 consumption, 3. E[C1] – time-1 expected consumption, 4. E[DWL] – time-1 aggregate expected

DWL, including default bankruptcy costs and firesale losses during runs, 5. SD[MPK] – expected standard

deviation in marginal product of capital across banks at time 1, 6. Liquidity – liquidity utility H, 7. Welfare

– total time-0 expected utility, 8. Run Def. top 0.1% – Run-induced default rate of top 0.1% largest banks in

worst aggregate payoff state.

deadweight losses from defaults are reduced considerably as the liquidity requirement is raised,

as can be seen in row 4. At the same time, these higher bond holding requirements only reduce

liquidity provision (row 6) and lending (row 1) slightly. However, the policy fails to achieve

a welfare improvement, with aggregate welfare almost unchanged across columns of the table.

The reason for this missing welfare improvement is increased dispersion in the marginal product

of capital listed in row 5. While the liquidity requirement makes large banks less vulnerable

to runs, it also distorts their asset portfolio away from loans and towards bonds. This causes

capital misallocation and offsets the benefits of lower deadweight losses from defaults. Higher

liquidity requirements are effective at reducing run risk, but they do this at the expense of

lending efficiency.

Size-dependent capital requirements. Size-dependent capital requirements that explicitly

condition on assets are designed to account for the systemic importance of large banks. Since

the model captures the cross-sectional distribution of banks, we can use it to evaluate size-
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dependent policies.

Figure 14: Size-dependent Capital Requirements

Notes: Effects of size dependent capital requirements in an economy with bailout guarantees.

Figure 14 compares the baseline model with TBTF guarantees, to the same model with a

tighter unconditional capital requirement (red line), and a third model in which the capital

requirement is increasing in bank size (green line). The resulting level of maximum leverage

θ is plotted in the middle panel of the top row. The bottom row displays how this policy

affects leverage, run-driven defaults, and total defaults. The size-dependent requirement is as

effective in curbing run-driven defaults among the largest banks as the unconditionally tighter

requirement.

However, as we can see in Table 4, the unconditional increase in θ in the 2nd column causes

a decline in welfare, since it reduces bank leverage throughout the whole distribution, and

causes a decline in liquidity supply by 2.3%. The size-dependent requirement in column 3,

on the other hand, only reduces leverage of the largest banks and leads to a much smaller

reduction in liquidity supply. The overall welfare impact of an unconditional tightening of θ is

negative, while the size-dependent requirement is roughly welfare-neutral. Thus, like liquidity

requirements, size-dependent capital requirements are an effective tool to reduce run exposure

of large banks. At the same time, they have a minimal negative impact on other aspects of
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Table 4: Size-dependent capital requirements

Outcome

TBTF θ = 85% θ(size)

1. Loans 1.613 -1.493 -0.062
2. C0 2.072 0.012 0.004
3. E[C1] 2.201 0.134 0.006
4. E[DWL] 0.004 -67.696 -6.953
5. SD[MPK] 0.003 -17.938 0.261
6. Liquidity 1.02 -2.296 -0.069
7. Welfare 1.518 -0.053 0.002

Notes: This table shows the effects of size-dependent capital requirements. The baseline economy for the

capital requirement experiment is the case with too-big-to-fail (TBTF) guarantees from Figure 11. The levels

of listed outcomes are shown in the baseline column of the table. The columns to the right show percentage

changes of the same moments relative to baseline. Moments: 1. Loans – aggregate lending Ei[K], 2. C0 –

time-0 consumption, 3. E[C1] – time-1 expected consumption, 4. E[DWL] – time-1 aggregate expected DWL,

including default bankruptcy costs and firesale losses during runs, 5. SD[MPK] – expected standard deviation

in marginal product of capital across banks at time 1, 6. Liquidity – liquidity utility H, 7. Welfare – total

time-0 expected utility.

bank portfolios. We conclude that size-contingent capital requirements are an effective targeted

regulation to address run risk caused by concentration of uninsured deposits.

6 Conclusion

In this study, we developed a model to investigate the complex interplay between banks’ port-

folio and funding choices–particularly the reliance on uninsured deposits and investment in

interest rate sensitive securities–and the resulting in cross-sectional differences between banks.

We then examine their impact on financial stability in the face of interest rate- and run risk.

Our analysis reveals that large banks’ reliance on uninsured deposit funding exposes them to

greater financial instability, especially during periods of rising interest rates. The model shows

that large banks–while benefiting from greater loan and deposit productivity–face heightened

run-risk, while small banks are more vulnerable to solvency risk.

Our model underscores the importance of considering the heterogeneous impact of regulatory

policies. Uniform regulations may not adequately address the unique challenges faced by banks
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of varying sizes and risk profiles. Therefore, a more nuanced regulatory approach that differen-

tiates between the risks posed by smaller versus larger institutions is essential for maintaining

financial stability in a dynamic economic environment.
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A Calibration

Section 4 discusses the calibration of the main parameters. Table A1 lists all parameters used

in the model.

Table A1: Model Calibration Parameters

Name Description Value
κ Production function curvature 0.123
r Bond return 0.0123
β Discount factor 0.99
µRK Mean capital return 1.07
σRK Deviation of capital return 0.05
πK Probability of high capital return 0.5
µRB Mean bond return 1
σRB Deviation of bond return 0.035
πB Probability of high bond return 0.5
ψ Liquidity preference 0.12
α Insured deposit share 0.8
ρ Elasticity of substitution between insured deposits 0.855
ρU Elasticity of substitution between uninsured deposits 0.96
θ Leverage constraint 0.88
θB Leverage constraint for bonds 0.97
θD Liquidity constraint (θD ×DU ≤ B) 0.1
θDU Liquidity constraint (θD ×DU ≤ B) 0
π Run probability 0.25
ϕ Uninsured deposit haircut in runs 0.1
δ 1 - Firesale costs of capital 0.5
δZ Firesale value = (1-δZ) ×δ + δZ × δ × Z 0
γ Risk aversion 2
σϵ ln Volatility of idiosyncratic capital shocks 0.12
Zmean Mean loan productivity 1
Zloc Minimum loan productivity 0.6
Zscale Max - min loan productivity 1.55
Zshape Shape of loan productivity distribution std = shape × scale 0.13
Ahigh Deposit productivity high type 1
πhigh Deposit productivity high type probability 1
Zhigh Increase in mean loan productivity for high deposit types 0
ξ Share lost in recovery 0.25

scaleAnd− Slope of Deposit Productivity − 1.1
scaleAnd+ Slope of Deposit Productivity + 0.5

W0 Initial wealth set to ensure Kagg = 1 4
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B Derivations

B.1 Household Problem

Denoting equity shares of bank i that are in unit supply as Si, households solve

max
{Si},{DI

i },{DU
i },C0,C1

log(C0) + ψlog
(
H

(
{DI

i }, {DU
i }

))
+ βlog

(
E
[
C1−φ

1

]1/(1−φ)
)

(21)

subject to

C0 = W0 +

∫
i

Πidi− T −
∫
i

piSidi−
∫
i

qIiD
I
i di−

∫
i

qUi D
U
i di, (22)

C1 =

∫
i

DI
i di+

∫
i

(
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

)
SiDividi+

∫
i

DU
i PU

i di. (23)

At time 0, households purchase all securities issued by banks: debt of both types and equity.

Household funds consist of initial wealth W0 and bank profits, net of taxes raised to cover

expected deposit insurance payouts. At time 1, households receive insured deposit payouts.

They also receive the dividend payouts of non-defaulting banks, with the survival rate being

1− F̂ (ϵi, ϵi) ≡ E
[
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

]
= 1− F (ϵi)− π (F (ϵi)− F (ϵi)) .

The payoff on uninsured deposits depends on the realization of banks’ idiosyncratic productivity

shocks ϵi. As explained in the main text, the payoff to uninsured deposits is given in (18):

PU
i =1− F (ϵi) + F (ϵi)E[r

nr
i |ϵi < ϵi]

+ (1− π) (F (ϵi)− F (ϵi)) + π (F (ϵi)− F (ϵi)) (1− ϕ+ ϕE[rri |ϵi ≤ ϵi ≤ ϵi]) .

Marginal liquidity value. First, we compute marginal value of liquidity of each type.

HU
i =

∂log
(
H

(
{DI

i }, {DU}
))

∂DU
i

= (1− α)

(
AD

i D
U
i

DU

)ρU (
DU

H

)η
1

DU
i

(24)

HI
i =

∂log
(
H

(
{DI

i }, {DU}
))

∂DI
i

= α

(
AD

i D
I
i

DI

)ρI (DI

H

)η
1

DI
i

(25)

where Dj =
(∫

i
(AD

i D
j
i )

ρjdi
)1/ρj

, for j = I, U .

Consumption-savings choice. Denote total household wealth at time 0 as W = W0 +∫
i
Πidi − T , and the total value of the household portfolio for time 0 (=savings) as Z =∫

i
piSidi+

∫
i
qIiD

I
i di+

∫
i
qUi D

U
i di. The return on this portfolio is

R1 = C1/Z =

∫
i

dIi di+

∫
i

IndisiDividi+
∫
i

dUi PU
i di,
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where dIi = DI
i /Z, d

U
i = DU

i /Z, and si = Si/Z. We can rewrite the HH problem as

max
{si},{dIi },{dUi },Z

log(W − Z) + ψlog
(
ZH

(
{dIi }, {dUi }

))
+ βlog

(
E
[
(R1Z)

1−φ
]1/(1−φ)

)
.

The FOC for Z is

1

W − Z
=
ψ

Z
+

β

E [(R1Z)1−φ]1/(1−φ)

1

1− φ

(
E
[
(R1Z)

1−φ
]1/(1−φ)−1

)
E
[
R1−φ

1 (1− φ)Z−φ
]

which reduces to

Z =
β + ψ

1 + β + ψ
W,

and therefore

C0 =
1

1 + β + ψ
W.

SDF. To derive the representative household’s stochastic discount factor, we consider the

first-order condition for a hypothetical riskfree bond without any liquidity benefits, with price

q̃. The FOC would be

q̃

C0

=
β

E
[
C1−φ

1

]1/(1−φ)

1

1− φ

(
E
[
C1−φ

1

]1/(1−φ)−1
)
E
[
(1− φ)C−φ

1

]
.

Canceling and multiplying by C0

q̃ = β
C1−φ

0

E
[
C1−φ

1

]E[(
C1

C0

)−φ
]
.

We can thus define

M = β
C1−φ

0

E
[
C1−φ

1

] (C1

C0

)−φ

, (26)

such that q̃ = E[M ].

Deposits. Then HH FOCs for deposits are

qIi = ψHI
iC0 + E[M ], (27)

qUi = ψHU
i C0 + E

[
MPU

i

]
. (28)

Bank equity. The FOC for bank equity shares is

pi = E {M ((1− F (ϵi))Eϵ[Divi|ϵi > ϵi] + (1− π)(F (ϵi)− F (ϵi))Eϵ[Divi|ϵi > ϵi > ϵi])} . (29)
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B.2 Bank Problem

Stage 1a. We start with the optimization problem at the run stage 1a. Given Assumptions

1 and 2, banks will sell bonds at market price RB until they have either paid out all running

depositors, or they have liquidated all bonds

B̂i = min

{
Bi,

(1− ϕ)DU
i

RB

}
.

Banks do not want to sell more capital than necessary at fire sale prices, and the constraint

(7) is always binding. Thus capital fire sales are

K̂i =
(1− ϕ)DU

i −RBB̂i

RKδ
.

We can write the post-run dividend more compactly defining the function

x(Bi, D
U
i ) = min

{
1,

RBBi

(1− ϕ)DU
i

}
. (30)

We can express parts of the dividend using this function, namely

RB(Bi − B̂i)− (1− ϕ)DU
i = RBBi − (1− ϕ)DU

i x(Bi, D
U
i ),

and

(1− ϕ)DU
i −RBB̂i = (1− ϕ)DU

i (1− x(Bi, D
U
i )).

This in turn allows us to write the upper default threshold as

ϵi =
DI

i + ϕDU
i + (1− ϕ)DU

i x(Bi, D
U
i )−RBBi

AK
i RK

(
Ki − (1−ϕ)DU

i (1−x(Bi,DU
i ))

RKδ

)1−κ . (31)

Recall that the lower default threshold is

ϵi =
DI

i +DU
i −RBBi

AK
i RKK

1−κ
i

. (32)

Note that for RBBi ≥ (1 − ϕ)DU
i , we have x(Bi, D

U
i ) = 1 and the default thresholds become

identical.
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Stage 0. The dividend for the time-0 problem becomes

E[Mmax{0,Div∗i }] = E
[
M

(
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

) (
AK

i RKϵiK
1−κ
i +Bi −DI

i −DU
i

)]
,

which we can write as

E
[
M(1− F (ϵi))

(
AK

i RKϵ
+
i K

1−κ
i +Bi −DI

i −DU
i

)]
+E

[
M(1− π)(F (ϵi)− F (ϵi))

(
AK

i RKϵ
+
i K

1−κ
i +Bi −DI

i −DU
i

)]
with the the conditional expectations

ϵ+i = E[ϵi|ϵi > ϵi],

ϵ+i = E[ϵi|ϵi > ϵi > ϵi].

Given this definition of the bank dividend, the optimization problem in (10) only needs to

be solved at time 0, with the function (30) reflecting optimal choices at the run stage, and the

default thresholds (31) and (32) capturing the optimal default decision.

In problem (10), x(Bi, D
U
i ) is a non-differentiable function of Bi and D

U
i . For the numerical

implementation, we define

Q(z) =

∫
min {ν, z} dF (ν) = Fν (z) E [ν | ν < z] + (1− Fν (z)) z.

where ν is a random variable with positive support, c.d.f Fν , and E[ν] = 1. We then define the

function

x̃(Bi, D
U
i ) = Q

(
RBBi

(1− ϕ)DU
i

)
and approximate

x(Bi, D
U
i ) ≈ x̃(Bi, D

U
i ).

First-order conditions. We attach multiplier µi to the leverage constraint (12) and λi to

the liquidity constraint (13). The bank FOC for capital is

1 = µiθ
K+

∂qUi (Ai)

∂Ki

DU
i +E

[
M

(
(1− F (ϵi)) ϵ

+
i + (1− π)(F (ϵi)− F (ϵi))ϵ

+
i

)
(1− κ)RKA

K
i K

−κ
i

]
.

(33)
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The bank FOC for bonds Bi is

p =µiθ
B + λi +

∂qU(Ai)

∂Bi

DU
i + E

[
M(1− F̂ (ϵi, ϵi))RB

]
. (34)

The FOCs for deposits are

qIi =µi + λiθ
D − ∂qI(DI

i )

∂DI
i

DI
i −

∂qU(Ai)

∂DI
i

DU
i + E

[
M(1− F̂ (ϵi, ϵi))

]
, (35)

qUi =µi + λiθ
D − ∂qU(Ai)

∂DU
i

DU
i + E

[
M(1− F̂ (ϵi, ϵi))

]
. (36)

The FOCs in (33) – (36) contain derivatives of the deposit demand functions from households

in (16) and (17). In the next section, we provide expressions for these terms.

B.3 Derivatives of qI and qU

B.3.1 Insured

To compute the derivative of qI(DI
i ) given by (16) with respect to DI

i , we apply the same

assumptions as in the usual monopolistic competition setup. Banks internalize the effect on DI
i

in household demand, but not the effect on the aggregate DI .

∂qI(DI
i )

∂DI
i

= C0ψ(ρI − 1)α
(AD

i )
ρI

(DI
i )

2

(
DI

DI
i

)−ρI ( H

DI

)−η

= −C0ψ
1− ρI
DI

i

HI
i . (37)

B.3.2 Uninsured

Recall the household FOC for uninsured deposits

qU(Ai) = ψHU
i C0 + E

[
MPU(Ai)

]
,

with the payoff PU(Ai) provided in (18),

PU
i =1− F (ϵi) + F (ϵi)E[r

nr
i |ϵi < ϵi]

+ (1− π) (F (ϵi)− F (ϵi)) + π (F (ϵi)− F (ϵi)) (1− ϕ+ ϕE[rri |ϵi ≤ ϵi ≤ ϵi]) .

We want to calculate the derivative of this function with respect to bank choices in Ai. The
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derivatives of the deposit demand function are

∂qU(Ai)

∂DU
i

= −ψ1− ρU
DU

i

HU
i + E

[
M
∂PU(Ai)

∂DU
i

]
,

∂qU(Ai)

∂DI
i

= E

[
M
∂PU(Ai)

∂DI
i

]
,

∂qU(Ai)

∂Bi

= E

[
M
∂PU(Ai)

∂Bi

]
,

∂qU(Ai)

∂Ki

= E

[
M
∂PU(Ai)

∂Ki

]
.

Computing the derivatives of qU therefore comes down to computing the derivatives of PU for

each Zi ∈ {DI
i , D

U
i , Ki, Bi}. In what follows, denote the derivatives of the default probability

weighted recovery values as

RZ,nr
i =

∂(F (ϵi)E[r
nr
i |ϵi < ϵi])

∂Zi

for the no-run states, and

RZ,r
i =

∂((F (ϵi)− F (ϵi)) E[r
r
i |ϵi ≤ ϵi ≤ ϵi])

∂Zi

for run states. The derivative of the payoff PU(Ai) takes the general form

∂PU(Ai)

∂Zi

= −
(
πϕf(ϵi)

∂ϵi
∂Zi

+ (1− πϕ)f(ϵi)
∂ϵi
∂Zi

)
+RZ,nr

i + πϕRZ,r
i .

We thus need to calculate the derivatives of both default thresholds with respect to all bank

choices. To do so, we define the marginal product of capital for bank i, conditional on the

outcome of the run game as

MPKnr
i = (1− κ)RKA

K
i K

−κ
i , (38)

MPKr
i = (1− κ)RKA

K
i

(
Ki −

(1− ϕ)DU
i (1− x̃i)

δRK

)−κ

. (39)

Solvency default threshold. First, for ϵi given in (32) we get

∂ϵi
∂DU

i

=
1

Di

,
∂ϵi
∂DI

i

=
1

Di

,
∂ϵi
∂Ki

= −MPKnr
i ϵi

Di

,
∂ϵi
∂Bi

= −RB

Di

where

Di = RKA
K
i K

1−κ
i .
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Run default threshold. For the threshold ϵi provided in (31), we obtain similar expressions

for capital and insured deposits

∂ϵi
∂DI

i

=
1

Di

,
∂ϵi
∂Ki

= −MPKr
i ϵi

Di

,

where

Di = AK
i RK

(
Ki −

(1− ϕ)DU
i (1− xi)

δRK

)1−κ

.

For the derivative w.r.t. DU
i , we get

∂ϵi
∂DU

i

=
(ϕ+ (1− ϕ)Fν,iν

−
i )Di +

1−κ
δ
AK

i

(
Ki − (1−ϕ)DU

i (1−x̃i)

δRK

)−κ

(1− Fν,iν
−
i )Ni

(Di)2

Ni = DI
i + x̃iD

U
i −Bi,

and we have further defined the conditional expectations ν−i = E
[
ν | ν < RBBi

(1−ϕ)DU
i

]
. To calculate

the expression above we have used the fact that

∂x̃(Bi, D
U
i )

∂DU
i

= −(1− Fν,i)RBBi

(1− ϕ)(DU
i )

2
.

We can simplify the expression to get

∂ϵi
∂DU

i

=
ϕ+ (1− ϕ)

(
Fν,iν

−
i + (1− Fν,iν

−
i )

MPKr
i

δRK
ϵi

)
Di

. (40)

Similarly, we take the derivative w.r.t. Bi

∂ϵi
∂Bi

=
(−RB +RB(1− Fν , i))Di − 1−κ

δ
AK

i

(
Ki − (1−ϕ)DU

i (1−x̃i)

δRK

)−κ

RB(1− Fν,i)Ni

(Di)2

where we use the fact that
∂x(Bi, D

U
i )

∂Bi

=
1− Fν,i

ϕ̄DU
i

.

This reduces to

∂ϵi
∂Bi

= −
RB

(
Fν,i + (1− Fν,i)

MPKr
i

δRK
ϵi

)
Di

. (41)
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Combining. We can now combine the expressions above to obtain the complete derivatives.

First, for DU
i

∂qUi
∂DU

i

= − ψ
1− ρU
DU

i

HU
i − E

[
M

(
(1− πϕ)f(ϵi)

1

Di

−RDU ,nr
i

)]

− πϕE

M
ϕ+ (1− ϕ)

(
Fν,iν

−
i + (1− Fν,iν

−
i )

MPKr
i

δRK
ϵi

)
Di

−RDU ,r
i

 . (42)

For insured deposits we get

∂qUi
∂DI

i

= − E

[
M

(
(1− πϕ)f(ϵi)

1

Di

−RDI ,nr
i + πϕf(ϵi)

1

Di

− πϕRDI ,r
i

)]
. (43)

For capital, the derivative is

∂qUi
∂Ki

= E

[
M

(
(1− πϕ)f(ϵi)

MPKnr
i ϵi

Di

+RK,nr
i + πϕf(ϵi)

MPKr
i ϵi

Di

+ πϕRK,r
i

)]
. (44)

Finally, for bonds we calculate

∂qUi
∂Bi

= E

[
M

(
(1− πϕ)f(ϵi)

RB

Di

+RB,nr
i

)]

+ πϕE

M
f(ϵi)RB

(
Fν,i + (1− Fν,i)

MPKr
i

δRK
ϵi

)
Di

+RB,r
i

 . (45)

Inserting the derivatives in (42) – (45) into the first-order conditions in (33) – (36) completes the

bank’s optimality conditions. Note that the expressions above contain unresolved derivatives

of the recovery values, RZi,j
i , for Zi ∈ {DU

i , D
I
i , Ki, Bi} and j ∈ {nr, r}. Calculating these

derivatives explicitly requires substantial algebra, but provides little additional insight. The

derivatives can be signed unambiguously, with

RDU
i ,j

i < 0, RDI
i ,j

i < 0

and

RKi,j
i > 0, RBi,j

i > 0,

for j ∈ {nr, r}. This in turn implies that we can sign the derivatives as

∂qUi
∂DU

i

< 0,
∂qUi
∂DI

i

< 0,
∂qUi
∂Ki

> 0,
∂qUi
∂Bi

> 0.

These signs are intuitive: on the margin, issuing more deposits of either kind increases the

bank’s default risk and thus the required interest paid to households, equivalent to a lower

issuance price at time 0. By the same logic, holding more assets either in the shape of loans or

bonds reduces the bank’s default risk and the interest rate required on uninsured deposits.
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B.4 Bank Profit

[TO DO]

Starting from the bank budget constraint

pi + qIi (D
I
i )D

I
i + qUi (Ki, Bi, D

U
i , D

I
i )D

U
i = Ki + pBi +Πi +Q(DI

i , D
U
i , Ai),

we can solve for profit

Πi = pi + qIi (D
I
i )D

I
i + qUi (Ki, D

U
i , D

I
i )D

U
i −Ki − pBi −Q(DI

i , D
U
i , Ai).

First, define the payoff function of the bank

P(Ki, Bi, D
I
i , D

U
i ) = E[Mmax{0,Divi}].

This function is homogeneous of degree 1:

P(Ki, Bi, D
I
i , D

U
i ) = (1− π)E

[
Mnr (1− F (ϵ̂nri ))

(
ϵ+,nr
i RKKi +Bi −DI

i −DU
i

)]
+πE

[
M r (1− F (ϵ̂ri ))

(
ϵ+,r
i RK

(
Ki −

ϕ̄DU
i (1− xi)

δ

)
+Bi −DI

i − (1− ϕ̄(1− xi))D
U
i

)]
.

Note: the default thresholds ϵ̂ji and the run function xi are homogeneous of degree 0. Thus we

have

P(Ki, Bi, D
I
i , D

U
i ) = KiPK() +BiPB() +DI

iPI() +DU
i PU().

Next, we write the bank’s FOC in general form

qIi +
∂qIi
∂DI

i

DI
i +

∂qUi
∂DI

i

DU
i =µi − PI(Ki, Bi, D

I
i , D

U
i ) + Ai(D

I
i +DU

i ),

qUi +
∂qUi
∂DU

i

DU
i =µi − PU(Ki, Bi, D

I
i , D

U
i ) + Ai(D

I
i +DU

i )

1− ∂qUi
∂Ki

DU
i =µiθ − PK(Ki, Bi, D

I
i , D

U
i )

p− ∂qUi
∂Bi

DU
i =µi + λBi − PB(Ki, Bi, D

I
i , D

U
i ).

Further note that the HH FOC for bank equity implies

pi = P(Ki, Bi, D
I
i , D

U
i ).
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Inserting these FOC into the definition of bank profit gives, after cancelling,

Πi = −(DI
i )

2 ∂q
I
i

∂DI
i

−DU
i

(
DI

i

∂qUi
∂DI

i

+DU
i

∂qUi
∂DU

i

+Ki
∂qUi
∂Ki

+Bi
∂qUi
∂Bi

)
−Ai

2
(DU

i +D
I
i )

2+Ai(D
U
i +D

I
i )

2.

The HH FOC for uninsured deposits is

qUi (Ki, Bi, D
I
i , D

U
i ) = ψHU

i C0+E
[
M

(
ϕ+ (1− ϕ)

(
1− F (ϵ̂i) + F (ϵ̂i)π

B(Ki) + F (ϵ̂i)(1− πB(Ki))r
U
i

))]
.

We break the RHS into three terms

qUi (Ki, Bi, D
I
i , D

U
i ) = ψHU

i C0 + πB(Ki)E
[
M(1− ϕ)F (ϵ̂i)(1− rUi )

]
+ q̃Ui (Ki, Bi, D

I
i , D

U
i ),

where

q̃Ui (Ki, Bi, D
I
i , D

U
i ) = E

[
M

(
ϕ+ (1− ϕ)

(
1− F (ϵ̂i) + F (ϵ̂i)r

U
i

))]
is the part of qUi (Ki, Bi, D

I
i , D

U
i ) that is homogeneous of degree 0 in all arguments. Further

note that E
[
M(1− ϕ)F (ϵ̂i)(1− rUi )

]
is also homogeneous of degree zero.
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