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Abstract
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requirement substantially lowers run risk and improves capital allocation, but lowers the
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1 Introduction

Banks hold portfolios of fixed-income assets—such as loans and securities—whose values de-

cline when the yield curve shifts upward. These assets are primarily funded with insured and

uninsured deposits, exposing banks to run risk. The Federal Reserve’s interest rate hike in 2022

revealed significant heterogeneity in banks’ exposure to interest rate and run risk, highlighting

the need for a framework to assess the effectiveness of microprudential policies in mitigating

financial fragility in the banking sector.

This paper builds a framework to jointly analyze portfolio and funding choices and the

resulting run-fragility exposure across the bank size distribution. We first study and quantify the

forces that drive differences in banks’ risk exposure choices. We then use the model to analyze

which regulatory policies reduce financial fragility at large banks since they impact financial

sector stability the most. We show that a size-dependent capital requirement is most effective

at lowering financial fragility, without changing the allocation of bank loans and provision of

liquidity services.

Three stylized facts about differences in banks’ portfolio choices and funding characteristics

guide our model setup. First, the banking sector is highly concentrated, with over half of

aggregate assets owned by banks in the top percentile of assets. Second, larger banks choose

a higher share of uninsured deposit funding. These two facts imply that uninsured deposit

funding is also very concentrated: the top 10% of banks issue 90% of aggregate uninsured

deposits. Third, the portfolio share of cash and securities is decreasing in bank size except for

the top-percentile banks, whose share is as large as that of a median-sized bank.

We build a two-period model with a cross-section of banks and a representative household

to analyze the economic drivers of differences in portfolio and funding choices across banks.

Households derive utility from consumption in both periods and liquidity services from banks.

Banks are ex-ante heterogeneous in their lending and deposit productivity. In the first period,

banks choose investments in credit-risky loans and interest-rate risky bonds. Banks fund their

assets with insured and uninsured deposits that are differentiated products and offer liquidity

services valued by the household and equity issued to the household. We model liquidity

services as a constant elasticity of substitution (CES) aggregator over quantities of insured and
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uninsured deposits scaled by banks’ deposit productivity. A capital requirement and a liquidity

requirement constrain bank leverage and portfolio choices. In the second period, the lending

technology is subject to decreasing returns to scale and is hit by an idiosyncratic and aggregate

productivity shock. Bonds expose banks to interest rate risk. Banks can default when they

cannot repay depositors in the second period. Bank default causes bankruptcy costs that lower

aggregate consumption. While insured deposits are fully covered by deposit insurance, funded

with lump-sum taxes on households, uninsured depositors are not necessarily repaid in full,

providing uninsured depositors with an incentive to run.

We calibrate the model to U.S. commercial banks, focusing on the post-Great Financial Crisis

(GFC) period after 2009. Our calibration uses standard data from bank regulatory filings

(FFIEC 031/041) on asset and uninsured deposit concentration, bond shares, and realized

deposit rates. We jointly calibrate three parameter sets that govern loan productivity, deposit

productivity, and liquidity preferences.

The loan return technology parameters determine the concentration within the banking sec-

tor. Our model differentiates between asset concentration and loan concentration, which are

influenced by the curvature of the loan production function and the parameter that governs

ex-ante loan productivity differences across banks. Our calibration of these parameters targets

the standard deviation of the loan and asset distribution, the aggregate loan return, and asset

productivity estimates implied by Egan, Lewellen, and Sunderam (2022). We assume that a

bank’s deposit productivity is proportional to its lending productivity, which captures comple-

mentarities between banks’ assets and liabilities. We calibrate the parameter that governs how

much deposit productivity rises with a bank’s lending productivity separately for banks below

and above the loan productivity median. We target the bond share of the smallest 20% and

the top 1% largest banks by assets, respectively.

We calibrate the liquidity preferences parameters as follows. We target the average time

deposit rate for the parameter that governs the overall weight on liquidity services in the util-

ity, and the average share of uninsured deposits in overall deposits for the weight on insured

deposits.1 For the parameters that govern the degree of deposit product differentiation between

1Due to data limitations, transaction and time deposit rates are used as proxies for insured and uninsured
deposit rates.
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banks within the insured and the uninsured deposit market, our calibration targets the aver-

age transaction deposit rate and the Gini coefficient of uninsured deposits, respectively. Our

calibration finds that insured deposits are more differentiated than uninsured deposits.

The model rationalizes the cross-section of bank portfolio and funding choices as follows.

Its lending and deposit technology optimally determines a bank’s scale. It can fund its assets

with insured and uninsured deposits. Our calibration implies that the bank’s profit margins

are higher in the insured deposit market. The deposit business mainly drives the balance sheet

size of a less loan-productive bank. Such a bank invests in bonds to back its insured deposit

business. In contrast, a more loan-productive bank has a larger optimal size than what it can

optimally fund with insured deposits, without giving away too much of the profit margin in

the insured market. Therefore, it also issues uninsured deposits to fund its profitable loan

business. In our model, small banks hold bonds to support a relatively more profitable deposit

business, generating a security share that declines with bank size. However, as in the data, the

largest banks—with more uninsured deposit funding and hence higher run risk exposure—hold

optimally more bonds compared to slightly smaller banks whose lower uninsured share means

they have less precautionary incentives to hold bonds.

We then study bank default decisions. The model distinguishes between two types of defaults:

solvency defaults and run defaults. Low fundamental asset return realizations characterize both

types of defaults. In addition to a terrible asset return realization, run defaults require some

assets to be illiquid. We find that solvency defaults are more common in less productive small

banks, with a solvency default probability of up to 1.5%. Run defaults only affect banks with

uninsured deposits, hence only large bank risk run defaults. In the baseline calibration, run

defaults only happen for the lowest realization of the asset returns, increasing the probability

of run-driven failures to just over 5%. Large banks hold enough bonds to hedge against run

risk for all other asset return realizations. If an unanticipated rate hike shock hits banks’ bond

portfolios, small banks’ default rates increase by roughly 10 basis points, while the run default

probability of the largest banks nearly doubles. These findings illustrate that the combination

of uninsured deposit funding and unexpectedly low bond return realizations can significantly

increase the financial fragility of large banks.

Building on previous analysis, we solve a version of the model in which banks anticipate
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highly volatile bond returns to allow them to internalize the effects of raising interest rates on

their optimal decisions. Interestingly, we find that rather than choosing safer portfolios as a

precaution, the default probability of banks increases across the size distribution, especially run

defaults for the larger banks. The increase in run-induced defaults is partly driven by lower

realized bond returns but also reflects large banks’ choice to no longer hold bonds to guard

against runs. For large banks whose loans are very productive and whose uninsured deposit

rates reflect some asset risk, an increase in bond risk makes bonds much less attractive as an

investment and as a means to hedge liquidity (run) risk. For smaller banks whose balance sheet

size is primarily determined by their insured and, therefore, mispriced deposit business, the

increased bond risk is not reflected in insured deposit rates. Together with their relatively more

profitable deposit business, small banks choose a similar balance sheet scale and, therefore, a

similar amount of bonds to back their deposit business. This analysis suggests that the rational

anticipation of interest rate risk can increase bank fragility.

Finally, we use the model as a laboratory to evaluate the microprudential effects of several

policy interventions. We show that increasing the capital requirement effectively reduces run-

induced default risk among large banks, thereby lowering aggregate deadweight losses from

bankruptcies. It also improves capital allocation by addressing distortions in banks’ size choices

caused by mispriced insured deposits. However, an across-the-board tighter capital requirement

constrains the banking sector’s ability to provide liquidity through deposit funding.

Given that default risk is concentrated among large banks in our model, we examine a policy

that scales capital requirements with bank size. Imposing stricter capital requirements on large

banks reduces their leverage and mitigates their run risk. Unlike a uniform increase in capital

requirements across all banks, this targeted approach achieves a meaningful reduction in default

risk without significantly diminishing the liquidity services provided by the banking sector.

Since runs trigger most defaults among large banks, our third policy experiment considers

tightening the liquidity requirement by explicitly conditioning on the amount of uninsured

deposit funding. This policy compels large banks to hold more liquid (but interest rate-sensitive)

bonds. Although it does reduce run-induced defaults, its effectiveness is less than half that of

the size-dependent capital requirement, as increased bond holdings heighten banks’ exposure

to interest rate risk. Not only is the policy less successful at mitigating run risk, it also distorts
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portfolio choices across banks of different sizes, leading to misallocation in the loan market.

Thus, our framework suggests that size-dependent capital regulation is more effective at limiting

the run exposure of large banks than liquidity requirements that do not distinguish between

the duration risk of bonds.

Related literature Our work is at the intersection of banking, asset pricing, and macro-

finance. The model captures several forces emphasized in prior literature, including banks’

interest rate risk exposure, asset and deposit productivity heterogeneity across banks, and the

risk of runs on uninsured deposits.

The maturity transformation inherent in banks’ business models exposes them to interest

rate risk, defined as changes in a bank’s value due to fluctuations in interest rates. Long-

standing literature has examined how to measure the extent of banks’ exposure to this risk

(e.g., Flannery, 1981; Choi, Elyasiani, and Kopecky, 1992; Hirtle, 1997; Landier, Sraer, and

Thesmar, 2013; English, Van den Heuvel, and Zakraǰsek, 2018; Paul, 2023; Haddad and Sraer,

2020; Greenwald, Krainer, and Paul, 2024; Begenau, Piazzesi, and Schneider, 2025; Jiang et al.,

2024; DeMarzo, Krishnamurthy, and Nagel, 2024). In our model, banks endogenously choose

how much interest rate risk they seek exposure to in conjunction with credit risk and deposit

funding choices.

Our model builds on the quantitative macro-banking literature with heterogeneous banks

(e.g., Robatto, 2019; Elenev, Landvoigt, and Van Nieuwerburgh, 2021; Jamilov, 2021; Begenau

and Landvoigt, 2022; Begenau et al., forthcoming; Coimbra and Rey, 2024), capturing bank-

ing sector concentration—the first stylized fact—highlighted by Corbae and D’Erasmo (2020)

and quantitatively modeled in Corbae and D’Erasmo (2021). Compared to much of the exist-

ing macro-banking literature, our model incorporates endogenous run risk driven by uninsured

deposit funding. While some notable macro-banking models also incorporate run risk (e.g.,

Ennis and Keister, 2003; Gertler and Kiyotaki, 2015; Robatto, 2019), our approach emphasizes

cross-sectional heterogeneity across banks. In line with the IO-banking literature, differences

in product offerings and productivity levels across banks help account for the observed concen-

tration in the banking sector.

Our paper also connects to the IO-banking literature that has long modeled product- and
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productivity differences on banks’ asset side (for recent examples see Benetton, 2021; Benetton

and Buchak, 2024; Egan, Lewellen, and Sunderam, 2022; Jiang, 2023; Buchak et al., 2024)

and deposit side (e.g., Egan, Hortaçsu, and Matvos, 2017; Egan, Lewellen, and Sunderam,

2022; d’Avernas et al., 2024; Jiang et al., 2023, 2024). The fragility from uninsured deposits

and potential policy responses has been extensively analyzed by Egan, Hortaçsu, and Matvos

(2017), and more recently in Chang, Cheng, and Hong (2023), Jiang, Matvos, Piskorski, and

Seru (2023), Pancost and Robatto (2023) and Jiang, Matvos, Piskorski, and Seru (2024). Jiang,

Matvos, Piskorski, and Seru (2023) also show that larger banks rely more on uninsured deposit

funding compared to smaller banks, the second stylized fact the model aims to capture. We

contribute to this literature by adding portfolio choice and endogenous run risk to a model of

heterogeneous banks with insured and uninsured funding choices. We model run decisions of

uninsured depositors as in Dávila and Goldstein (2023).

Our model reflects the deposit-centric view of banking (e.g., Hanson et al., 2015; Drechsler,

Savov, and Schnabl, 2017; Egan, Hortaçsu, and Matvos, 2017; Egan, Lewellen, and Sunderam,

2022; d’Avernas et al., 2024), recognizing that a core aspect of the banking business model

revolves around deposit-taking. In our model, households derive utility from deposits (Van den

Heuvel, 2008; Krishnamurthy and Vissing-Jorgensen, 2012; Begenau, 2020; Krishnamurthy and

Li, 2023) and deposits are differentiated products (Egan, Hortaçsu, and Matvos, 2017). Our

model shows that deposits drive banks’ portfolio decisions, particularly banks’ choice to invest

in interest rate sensitive bonds to back a profitable deposit business when lending opportunities

are weak, which is consistent with the empirical evidence in (e.g., Stulz, Taboada, and Van Dijk,

2022; Begenau, Piazzesi, and Schneider, 2025).

The following section presents stylized facts that guide our modeling choices. Section 3

presents our model. We discuss the model’s calibration in Section 4. Section 5 analyzes the

model mechanism and discusses policy experiments.

2 Stylized Facts

This section summarizes stylized facts about the cross-section of US commercial bank securities

and uninsured deposit funding central to our modeling framework. We use bank call report data
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from 2010Q1 to 2022Q4 to capture the post-GFC era changes in banks’ regulatory environment.2

Securities Share We study differences in banks’ portfolio choices over the size distribution.

Smaller banks hold more cash and securities on their balance sheet compared to larger banks.

Figure 1 presents a binned scatter plot of the securities and cash shares over bank size as

measured by logged assets. To construct this plot, we compute each bank’s asset share in

securities, cash, and federal funds sold and repo assets for each quarter between 2010Q1 and

2022Q4. We calculate the average cash and securities share for each log asset percentile. The

security share is generally declining in size but increases slightly for the largest banks.

Figure 1: Stylized Facts of the Cross-Section of Banks

Security and Cash Share Across Bank Size
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Notes: This figure presents the average securities share (Panel A) and the average maturity of securities as a

binscatter plot, with 100 bins. The securities share is the ratio of the sum of cash, federal funds sold, repo

assets, and securities over assets. The data are from bank call reports, filing forms FFIEC 031/041 using a

bank-quarter panel from 2010Q1 to 2022Q4.

Asset and Uninsured Deposits Concentration The banking sector is highly concentrated

(see Panel A of Figure 2 and Corbae and D’Erasmo (2020); Begenau, Piazzesi, and Schneider

(2025). As a result, most assets and uninsured deposits are held by a small fraction of banks. In

addition, Panel B of Figure 2 shows that uninsured deposits represent a larger fraction of large

2The data are from bank level call forms FFIEC 031 and FFIEC 041.
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banks’ domestic deposit funding, confirming the earlier findings by Jiang, Matvos, Piskorski,

and Seru (2023). The average uninsured deposit share increases from about 10% for the smallest

banks to about 40% for the largest banks. Since the banking sector is very concentrated,

uninsured deposits dollars are disproportionately concentrated in the largest banks (Panel A).

Figure 2:

Panel A: Concentration of Uninsured Deposits and Assets
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Notes: Panel A shows the concentration of unsecured deposits and assets. We compute the cumulative aggregate

share of each held by a given share of banks and plot the curves. Panel B presents the uninsured share over the

bank size distribution as a binscatter plot, with 100 bins. The uninsured share is the ratio of uninsured domestic

deposits over domestic deposits. Uninsured deposits are deposit accounts with more than $250 thousands. The

data are from bank call filing forms FFIEC 031/041 using a bank-quarter panel from 2010Q1 to 2022Q4.
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Deposit Rates Figure 3 presents a scatter plot of transaction deposit rates in Panel A and

time deposit rates in Panel B. The largest banks pay higher deposit rates compared to the

smallest banks, but the largest banks pay less than large mid-size banks consistent with the

findings in d’Avernas, Eisfeldt, Huang, Stanton, and Wallace (2024). We choose transaction

and time deposit rates as data on realized interest expenses on insured and uninsured deposits

are unfortunately not available for transaction accounts and are very limited for time deposits.

Figure 3:

Panel A: Transaction Deposit Rates
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Notes: This figure shows binned scatter plots of deposit rates in percentage points over bank size as measured

by log assets. The data are from bank call reports, filing forms FFIEC 031/041 using a bank-quarter panel

from 2010Q1 to 2022Q4. Transaction deposit rates (Panel A) are computed as the sum of domestic deposit

interest rate expense less domestic time deposit expense divided by transaction deposits at the beginning of the

period. Transaction deposits are domestic deposits less domestic time deposits. Time deposit rates (Panel B)

are computed as the interest expense on time deposits divided by the beginning of period time deposits.
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In the next section, we build a model that is consistent with the concentration of assets and

uninsured deposits and the cross-sectional differences in the security share and deposit rates.

3 Model of the Cross-section of Banks

3.1 Environment and Timing

There are two types of agents, households and banks. Households are identical, and we solve the

problem of a representative household. Banks are heterogeneous in their productivity of lending

and providing deposits to households. Banks are indexed by i on the continuum [0, 1]. The

model has two dates, 0 and 1. At date 0, households invest in bank liabilities, and banks decide

on lending and capital structure. At date 1, there are two subperiods. First, aggregate and

idiosyncratic bank productivity shocks are realized, and uninsured depositors decide whether

to “run” on the bank and demand their balances to be paid. In case of a run, banks have to

liquidate assets to pay out these early withdrawals.

Thereafter, banks can decide to default, in which case they are liquidated by the deposit

insurance agency. Insured deposit payoffs are safe and backed by taxation. Uninsured deposits

are risky and only receive a stochastic recovery value depending on bank assets.

3.2 Households

There is a unit mass of identical households. Households maximize utility over consumption

Ct in both periods t ∈ {0, 1}, and over liquidity services at time 0 that are provided by bank

deposits. They maximize the utility function

U(C0, C1, {DI
i }, {DU

i }) = log(C0) + ψlog
(
H

(
{DI

i }, {DU
i }

))
+ βlog

(
E
[
C1−φ

1

]1/(1−φ)
)

(1)

with the liquidity preference function

H
(
{DI

i }, {DU
i }

)
=

[
α

(∫ 1

0

(AD
i D

I
i )

ρIdi

)η/ρI

+ (1− α)

(∫ 1

0

(AD
i D

U
i )

ρUdi

)η/ρU
]1/η

, (2)
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where {DI
i }i∈[0,1] are insured, and {DU

i }i∈[0,1] are uninsured deposits. Household enjoy liquidity

services provided by both types of deposits, with α being the relative weight on insured deposits

and η governing the elasticity of substitution between types. Banks have different productivity

in liquidity services provision given by AD
i . Further, banks have local monopolies in deposit

markets, implying that their deposits are not perfect substitutes within the insured and unin-

sured categories. The degree of substitutability in each type is governed by ρj, for j ∈ {I, U},

respectively.

At date 0, households are endowed with initial wealth W0, and they choose how much of

this wealth to consume and how much to invest in equity {Si} and deposits {DI
i }, {DU

i } of all

banks. The household budget constraint at date 0 is

C0 = W0 − T +

∫
i

Πidi−
∫
i

piSidi−
∫
i

qIiD
I
i di−

∫
i

qUi D
U
i di, (3)

where pi is the price of equity and qji for j ∈ {I, U} is the price of insured and uninsured

deposits of bank i. Households pay lump-sum taxes T that are needed to pay for bailouts of

insured deposits. They further receive time-0 profits of all banks Πi. Consumption at time 1

consists of the payoff of all securities bought at time 0:

C1 =

∫
i

DI
i di+

∫
i

IndiSiDividi+

∫
i

DU
i PU

i di. (4)

Insured deposits pay off with certainty, while only non-defaulting banks, indicated by the binary

variable Indi , pay dividends to equity holders. The payoff of uninsured deposits depends on both

aggregate and idiosyncratic risk through banks’ default decision and the potential realization of

runs. These factors are encapsulated in PU
i defined in equation (23) below. Time-1 consumption

is exposed to aggregate risk and hence a random variable at time 0.

3.3 Banks

There is a continuum of banks of mass one, indexed by i. Banks are ex-ante heterogeneous

in their cost of producing deposits and in their lending productivity, denoted by the pair of

parameters (AD
i , A

K
i ) ∼ G. Banks can invest in two types of assets, bonds and loans (= capital).
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The capital price at time 0 is normalized to 1 and the aggregate return to capital RK is risky:

RK ∈ {RK,1, . . . , RK,nK
} with probability vector πK . Bonds are also exposed to aggregate risk,

with bond return realizations RB ∈ {RB,1, . . . , RB,nB
} and probability vector πB, analogous to

capital. We allow the payoffs banks earn on their bond holdings to have limited exposure to

bond return risk. Banks have tools to reduce this exposure, for example by holding bonds to

maturity or by hedging using derivatives, that are outside of our model. Specifically, the bond

payoff in the final period is

R̄B = ωRB + (1− ω)(1 + r), (5)

where r is the riskfree rate, and ω governs exposure to interest rate risk.

The aggregate payoffs of both assets are independent. Banks further receive multiplicative

i.i.d. shocks ϵi to their loan production at time 1. A bank that extends Ki loans at time zero

therefore receives total loan payoff

RKA
K
i ϵiK

1−κ
i , (6)

where κ governs the degree of decreasing returns in lending.

Banks can decide to default. If a bank defaults, its pays out a dividend of zero and a fraction

ξ of its output is lost in the bankruptcy proceedings. The remaining output (1−ξ)AK
i ϵiK

1−κ
i is

allocated proportionally to the recovery of insured and uninsured deposits. Uninsured deposits

pay out this recovery value to households, while insured deposits pay out 1. Payouts of insured

deposits for defaulting banks are funded by the government, which raises lump-sum taxes on

households at date 0 to cover the shortfall between recovery and full payout in expectation.

Banks’ uninsured deposits are subject to runs. In particular, we assume that fraction 1−ϕ of

uninsured deposits is “runnable,” while remaining fraction ϕ is not.3 Banks can pay out early

withdrawals by liquidating bonds or loans to outside investors.

When a run occurs, bonds are always liquidated at their market value RB. The measures

banks take to mitigate bond return risk in their final payoff, reflected by ω in equation (5),

are irrelevant when the bank experiences a run. Further, capital can only be liquidated with

fire-sale discount δ < 1.

3The non-runnable fraction ϕ represents other bank liabilities that are junior to deposits. This share of
uninsured deposits is only senior to bank equity and will receive the residual recovery value of bank assets in
bankruptcy. We will also consider too-big-too-fail guarantees for these deposits.
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To summarize, the timing of events is

0. Time 0: Banks choose portfolio {Ki, Bi, D
U
i , D

I
i }. Households choose portfolio of bank

securities.

1a. Time 1: Aggregate and idiosyncratic productivity shocks are realized and observed. Unin-

sured depositors decide whether to run. Banks subject to runs choose quantity of capital

and bonds to sell in order to cover deposit outflow DU
i .

1b. Bank default decision. All assets pay out.

3.4 Bank Problem

We will solve the bank problem backwards, starting at the run stage 1a. in the time line above.

Problem with run. We consider the problem of a bank that experiences a run. The bank

needs to decide on the quantities of loans K̂i and bonds B̂i to liquidate in order to pay out

running depositors. We summarize the portfolio of the bank by Ai = (Bi, Ki, D
I
i , D

U
i ). The

aggregate state R = (RK , RB) consists of the realized loan and bond returns. The bank solves

the optimization problem

V (Ai, ϵi,R) = max
0≤K̂i≤Ki,0≤B̂i≤Bi

max{0, AK
i ϵiRK(Ki − K̂i)

1−κ + R̄B(Bi − B̂i)−DI
i − ϕDU

i } (7)

subject to

δRKK̂i +RBB̂i ≥ (1− ϕ)DU
i . (8)

The bank maximizes its post-run dividend to shareholders in (7). However, if this dividend

is negative, banks take advantage of limited liability and go into bankruptcy. The constraint

in (8) states that the bank must pay out balances of running depositors (1 − ϕ)DU
i by selling

capital or bonds. Comparison between the bond payoffs in equations (7) and (8) clarifies that

bonds always have full risk exposure RB during the run stage when bonds are liquidated to

pay out depositors, while their risk exposure in the bank objective R̄B depends on the effective

exposure ω. We assume that banks always choose portfolios such that they can fully pay out

running depositors, i.e. the constraint (8) can always be met.
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Assumption 1. All banks choose portfolios Ai that satisfy constraint (8).

This assumption is not restrictive. If κ > 0, banks have decreasing returns in loan payoffs

with an Inada condition in the production function. For a hypothetical bank that has sold

off its complete loan portfolio in a fire sale such that Ki − K̂i = 0, the inframarginal unit of

loans has an infinite marginal payoff. This is not compatible with optimality for fairly general

conditions, implying that banks will have enough assets to avoid selling all capital. To simplify

the solution to the problem given by (7) – (8), we further make the following assumption.

Assumption 2. Conditional on a run, banks first liquidate their bond holdings to pay out

running depositors. Only if bond holdings are insufficient to cover deposit withdrawals, banks

also liquidate capital holdings.

This assumption implies that banks will choose B̂i = min
{

(1−ϕ)DU
i

RB
, Bi

}
and only resort to

selling capital at fire sale discount δ if (1 − ϕ)DU
i > RBBi. While we outright assume this

liquidation pecking order for simplicity, we should note that it is also optimal for banks for a

wide range of parameters.4

A key property of our model is that banks choose their exposure to run risk by issuing

uninsured deposits. A bank that issues only insured deposits does not experience any runs.

Furthermore, it is important to note that even though banks have sufficient assets to pay out

running uninsured depositors, the remaining assets after these payouts may be insufficient to pay

out the bank’s remaining debts. These consist of non-running uninsured and insured deposits,

ϕDU
i +DI

i . We define optimal policy functions B̂∗
i = B̂i(Ai, ϵi,R) and K̂∗

i = K̂i(Ai, ϵi,R) for

fire sale quantities characterized in Appendix C.2. Inserting these optimal choices into the bank

dividend in (7) implies the existence of the default threshold

ϵi =
DI

i + ϕDU
i − R̄B(Bi − B̂∗

i )

AK
i RK(Ki − K̂∗

i )
1−κ

, (9)

such that banks with ϵi > ϵi do not default even conditional on experiencing a run.

4For a given δ, deviations from this pecking order can arise for banks with large capital holdings Ki, but
low loan productivity realizations ϵi. For such banks, the effective marginal product of loans after the run,
AK

i ϵi(1− κ)K−κ
i , can be lower than the fire sale price δ.
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Figure 4: Endogenous run-prone region as function of idiosyncratic risk
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Problem without run. Now we consider a bank that does not experience a run. This bank’s

dividend payment to households is

max{0, AK
i ϵiRKK

1−κ
i + R̄BBi −DU

i −DI
i },

which implies a threshold

ϵi =
DU

i +DI
i − R̄BBi

AK
i RKK

1−κ
i

. (10)

Banks with idiosyncratic shocks ϵi < ϵi will default even if they do not experience a run.

Run coordination. Consistent with the thresholds for idiosyncratic productivity in (9) and

(10), we assume that uninsured depositors do not run on banks with ϵi > ϵi, since these banks

are always solvent. Further, we assume that the regulator shuts down banks with ϵi < ϵi before

depositors can run. This leaves banks in the interval ϵi ≥ ϵi ≥ ϵi vulnerable to runs. These

banks will default if they experience a run, but not otherwise. We assume that depositors

choose to run on such banks conditional on realization of a bank-specific Bernoulli variable ςi

that takes on value 1 with probability π (a sunspot).5

Time-0 Problem. Define the household SDF M , derived in Appendix C.1. Then at time 0,

bank i solves

max
Ki,Bi,DU

i ,DI
i

Πi + E
[
M

(
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

) (
AK

i ϵiRKK
1−κ
i + R̄BBi −DU

i −DI
i

)]
(11)

5The run game follows the structure laid out in Dávila and Goldstein (2023).
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subject to the budget constraint

pi + qIi (D
I
i )D

I
i + qUi (Ai)D

U
i = Ki +Bi +Πi, (12)

the leverage constraint

DI
i +DU

i ≤ θKKi + θBBi, (13)

and the liquidity constraint

θD(DI
i +DU

i ) ≤ Bi. (14)

Banks choose their portfolio of assets to maximize the sum of time-0 profits and the present

value of time-1 dividends to their shareholders, the households. The bank maximizes dividends

for states of the world in which the bank does not default, which are selected by the indicator

functions based on the thresholds in (9) and (10). The objective (11) highlights that banks

suffering a run always default. The budget constraint in (12) states that banks raise funds

through sales of equity pi and both types of deposits. Deposit prices are bank-specific, since

banks have market power and idiosyncratic default risk. Banks internalize the effects of their

portfolio choice on these bond prices, a key mechanism that shapes their optimal choices. Banks

spend the funds raised on purchases of loans and bonds, and on profit payouts. The model

contains two features giving rise to non-zero economic profits, which are decreasing returns to

scale in lending and market power in deposit markets. The leverage constraint in (13) captures

real-world bank equity capital requirements, allowing for different risk weights on loans and

bonds. Finally, constraint (14) reflects liquidity regulation such as the liquidity coverage ratio

(LCR) that requires banks to hold a fraction of their assets in liquid assets (bonds).

3.4.1 Recovery Value

When a bank defaults, creditors have a claim on the remaining value of bank assets. A fraction

ξ of assets is lost in the bankruptcy process. The remainder is allocated proportionally to

insured and uninsured deposits. The recovery value for insured deposits is used by the insurance

fund to partially cover its expenses for paying out insured depositors. The recovery value of

uninsured deposits is paid out to uninsured deposit holders. We separately derive recovery

values conditional on whether a bank experienced a run.
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No Run. In this case, assets after bankruptcy are (1− ξ)(ϵiRKA
K
i K

1−κ
i + R̄BBi). Fractions

DI
i /(D

I
i +DU

i ) and D
U
i /(D

I
i +DU

i ), respectively, are allocated to the recovery value of insured

and uninsured bonds. The recovery value per dollar of deposits is thus for both insured and

uninsured deposits

rnri =
(1− ξ)(ϵiRKA

K
i K

1−κ
i + R̄BBi)

DI
i +DU

i

. (15)

Run. If there is a run, assets after bankruptcy are

(1− ξ)(ϵiA
K
i RK(Ki − K̂i)

1−κ + R̄B(Bi − B̂i)).

Since fraction 1 − ϕ of uninsured deposit holders have been paid out already after a run, the

recovery value applies to insured deposits and the non-running uninsured deposits:

rri =
(1− ξ)

(
ϵiA

K
i RK(Ki − K̂i)

1−κ + R̄B(Bi − B̂i)
)

DI
i + ϕDU

i

. (16)

3.5 Equilibrium

Expected insurance payouts for insured deposits are for each bank

Ti = DI
iE [F (ϵi)(1− E(rnri )) + π (F (ϵi)− F (ϵi)) (1− E(rri ))] .

Total taxes are T =
∫
i
Tidi. The government raises the amount of revenue needed to pay for

bailouts in expectation.6

Bonds are supplied elastically by the government at price p. Loans are supplied by borrowers

elastically at a price of 1. Insured deposit, uninsured deposit, and equity markets clear for each

bank: supply of these securities by banks must equal demand by households at prices qIi , q
U
i ,

and pi, respectively.

6Depending on the aggregate state, actual bailout expenses may deviate from this expected expenditure.
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3.6 Equilibrium Conditions

We provide a full derivation of all equilibrium conditions in the model appendix. Below we sum-

marize the model’s implications for the drivers of bank runs, choices of insured and uninsured

deposits by households and banks.

Drivers of runs. Each bank has idiosyncratic run risk given by π(F (ϵi)− F (ϵi)). Thus, run

risk depends on ϵi − ϵi; if this difference is large, bank i is subject to high run risk.

While the size of the interval [ϵi, ϵi] generally depends on many model parameters, we can gain

some intuition for the drivers of runs by considering a simplified case, in which all uninsured

depositors are alert, ϕ = 0, and bonds have equal exposure to risk at the run and final payoff

stages, ω = 1. We further define the fraction of uninsured deposit withdrawals that can be

satisfied from bond liquidations

xi = min

{
1,
RBBi

DU
i

}
. (17)

If a bank has large bond holdings relative to uninsured deposits, then it can meet all uninsured

redemptions during a run, implying xi = 1. A value of xi < 1 in turn implies that the bank

needs to liquidate capital to pay out running uninsured depositors. Given this definition we

can write the thresholds as

ϵi =
DI

i + xiD
U
i −RBBi

AK
i RKK

1−κ
i

(
1− (1−xi)DU

i

δRKKi

)1−κ , (18)

ϵi =
DI

i +DU
i −RBBi

AK
i RKK

1−κ
i

. (19)

We can gauge the factors that drive run risk by inspecting the difference ϵi− ϵi. A high ratio of

bonds to uninsured deposits yields xi = 1, implying ϵi− ϵi = 0 and zero run risk. This includes

the case of a bank that issues no uninsured deposits, DU
i = 0. Thus, banks can always choose

to completely avoid run risk by issuing no uninsured deposits.

Consider instead the case of a bank that has zero bond holdings and strictly positive uninsured

deposits, DU
i > 0, such that xi = 0. This bank needs to liquidate capital to pay out uninsured
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depositors who run. We show in Appendix C.4 that under the additional assumption of a

binding leverage constraint (13), DI
i + DU

i = θKKi, the condition for run risk ϵi − ϵi > 0

becomes
ui

1− (1− ui)
1

1−κ

>
δRK

θK
, (20)

where ui = DU
i /(D

U
i +DI

i ) is the fraction of deposits that is uninsured. Condition (20) clarifies

that absent bond holdings and at a binding leverage constraint, the only bank specific variable

contributing to run risk is the uninsured deposit share. The LHS of condition (20) is strictly

increasing in ui, such that for any parameters run risk is increasing in the uninsured share.

The condition also clarifies that even for a bank with an uninsured share of ui = 1, run risk

could be zero. If ui = 1, the LHS of the condition is 1. Suppose banks have tight capital

requirements, with θK < 1 and capital returns are bounded by the lowest return RK . Then

if capital is sufficiently liquid, with δ > θK

RK
, the RHS is greater than 1 and runs occur with

zero probability. Conversely, if capital is more illiquid (smaller δ), leverage constraints are lax

(higher θK), or capital returns are more volatile (lower RK), the run region expands. In the

unrestricted case that does not satisfy the simplifying assumptions underlying condition (20),

banks’ leverage choice, the fact that bonds have different risk exposure in runs and final payoffs

ω, the share of non-alert depositors ϕ, and the distribution of idiosyncratic shocks F affect run

risk in addition.

This analysis highlights that the fundamental sources of run risk in our model are capital

illiquidity, high leverage, and low capital payoffs.7 Banks can avoid this liquidity risk associated

with capital by issuing few uninsured deposits or holding fully liquid bonds. However, since

bonds are also exposed to market risk, low realizations of RB raise run risk for those banks who

hedge their uninsured deposit issuance through bond holdings.

7Our model thus features runs driven by asset illiquidity and strategic complementarities as in Diamond and
Dybvig (1983) and Dávila and Goldstein (2023), and differs, therefore, from deposit franchise runs as modeled
in recent work (e.g., Jiang et al., 2024; Haddad, Hartman-Glaser, and Muir, 2023).
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Households. Households purchase insured and uninsured deposits of all banks. In Appendix

C.1, we derive household first-order conditions for deposits of bank i as

qIi = ψHI(DI
i )C0 + E[M ], (21)

qUi = ψHU(DU
i )C0 + E

[
MPU(Ai)

]
, (22)

where the payoff to uninsured deposits is

PU(Ai) =1− F (ϵi) + F (ϵi)E[r
nr
i |ϵi < ϵi]

+ (1− π) (F (ϵi)− F (ϵi)) + π (F (ϵi)− F (ϵi)) (1− ϕ+ ϕE[rri |ϵi ≤ ϵi ≤ ϵi]) ,
(23)

with F being the c.d.f. of ϵi. Insured deposit prices in (21) have a certain payoff of 1 at time

1. In addition, they deliver a liquidity benefit HI(DI
i ) given in equation (30) in Appendix C.1

to households that depends on their quantity – deposits have diminishing marginal benefits.

Uninsured deposits in (22) deliver an analogous liquidity benefit HU(DU
i ) contained in equation

(29) in the appendix. Furthermore, uninsured deposits have a stochastic payoff at date 1 given

in equation (23) that depends on aggregate risk and banks’ idiosyncratic shock ϵi. The first

line of (23) accounts for banks that are either run-proof with a shock realization ϵi > ϵi, or

fundamentally insolvent even absent a run ϵi < ϵi. In the former case, uninsured deposits pay

out in full, and in the latter case they pay the no-run recovery value in (15). The second

line of (23) accounts for banks in the run-prone region with ϵi ∈ [ϵi, ϵi]: these banks do not

experience a run with probability 1−π, in which case uninsured deposits pay out in full. A run

occurs with probability π, in which case the fraction 1 − ϕ of running uninsured depositors is

paid out in full, but fraction ϕ of inactive depositors only receives the post-run recovery value

from (16). Equation (23) clarifies that the uninsured payoff depends on the complete portfolio

Ai = (Ki, Bi, D
I
i , D

U
i ) of the bank, since these choices impact default thresholds and recovery

values.

Banks. When banks choose their portfolios, they internalize the effects of their choices on the

prices of insured and uninsured deposits. Taking bank first-order conditions for (Ki, Bi, D
I
i , D

U
i )

therefore involves differentiating (21) and (22). For example, the the FOC of bank i for insured
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deposits is

qIi = µi + θDλi −
∂qI(DI

i )

∂DI
i

DI
i −

∂qU(Ai)

∂DI
i

DU
i + E [M(1− F (ϵi)− π(F (ϵi)− F (ϵi))] . (24)

In this expression, µi is the Lagrange multiplier on the bank’s leverage constraint and λi is the

multiplier on the liquidity constraint. The rightmost term reflects that bank equity owners only

care about payoffs in states without bank default. The two partial derivatives in the middle

arise as banks take into account the effect of their insured deposit issuance on the household

valuation of insured and uninsured deposits – these terms differentiate the household demand

functions in (21) and (22). Specifically, each bank internalizes that issuing more insured deposits

will decrease households’ marginal liquidity benefit and thus raise the interest rate it has to pay

on insured deposits (
∂qI(DI

i )

∂DI
i

< 0). Further, each bank internalizes that issuing more insured

deposits will raise its leverage and default risk, which in turn means that it must pay higher

interest on its uninsured deposits (∂q
U (Ai)

∂DI
i

< 0). All other bank first-order conditions and the

derivatives of household demand functions are in Appendix C.2.

4 Calibration

4.1 Parameters

We calibrate the model to bank-level data from regulatory filings (FFIEC 031/041) from 2010q1

to 2022q4. We jointly calibrate the key parameters in Panel A of Table 1 as they shape how bank

productivity and size distribution interact with households’ liquidity demand. We can structure

this description around how and which parameters affect (1) banks’ production technology, (2)

banks’ deposit productivity, (3) and households’ liquidity preference.

The production technology parameters are helpful for capturing the concentration of the

banking sector. Our model allows for a distinction between asset concentration and loan con-

centration. Both the loan production function curvature κ and the parameter Zshape, which

governs the loan productivity distribution across banks, influence how concentrated the bank-

ing sector is. We target both the standard deviation of log loans (1.521) and log assets (1.427).

The parameter µRK determines the average aggregate return on capital RK , which scales the
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average aggregate loan return. Note that given the concentration in the banking sector and

decreasing returns to scale, the average loan return is distinct from the average aggregate return

on capital RK . We compute a value-weighted loan return in the data as the ratio of the sum of

aggregate interest income on loans and leases and loan sale income minus provisions for loan

losses and the loan operating expense share over the beginning of period aggregate loans.

The second set of parameters governs heterogeneity in banks’ deposit productivity. We

assume that deposit productivity is correlated with loan productivity, with a loading that

can depend on the position of the bank in the productivity distribution. Specifically,

AD
i = ā+ A−min{AK

i −med(AK
i ), 0}+ A+max{AK

i −med(AK
i ), 0}.

This specification allows a different loading for banks below and above median loan productivity.

To calibrate A− and A+, we target the bond share of the bottom 20% smallest banks by asset

size and the bond share of the top 0.1% of banks. This leads to a higher sensitivity for below-

median banks with A− = 1.05, implying that these banks are roughly equally unproductive in

deposit creation and lending. For above-median banks, we set A+ = 0.4. The high value of

A− causes small banks to reduce their holdings of bonds relative to a calibration with constant

deposit productivity, since their deposit franchise is less valuable. At the same time, the

moderately positive value for A+ means that the most loan-productive banks also have high

deposits productivity, which causes them to have higher bond holdings. We define the bond

share as the ratio of the sum of cash, federal funds sold, repo assets, and securities over assets.

Bank size is determined by assets.

The final set of jointly calibrated parameters governs liquidity preferences. The parameter

ψ is the weight of liquidity in the household utility function. As such, it scales the liquidity

premium that drives a wedge between the risk-free rate and deposit rates. The CES elasticity of

substitution parameter ρ, which governs the degree to which insured deposits are differentiated

products, also matters for the level of deposit rates (ceteris paribus). When insured deposits

are relatively more differentiated relative to uninsured deposits, households accept a lower

interest rate on insured deposits relative to uninsured deposits. The ideal empirical targets for

ψ and ρ would, therefore, be the insured and uninsured deposit rates. Unfortunately, rates
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Table 1: Key Parameters

Panel A: Jointly Calibrated Parameters
Name Description Value Data Model

Production technology
κ Production fct curvature 0.125 Std(Log Loans) = 1.521 1.560

µRK Mean capital return 1.0875 Agg Loan Return = 2.742% 2.204%
Zshape Shape of loan prd dist 0.13 Std(Assets) =1.427 1.436

std = shape × scale

Deposit technology

AD
− Slope of Deposit Productivity − 1.05 Bottom 20% bond share= 0.410 0.398

AD
+ Slope of Deposit Productivity + 0.4 Top 0.1% bond share = 0.328 0.213

Liquidity preference
ψ Weight on liquidity 0.048 Time deposit rate = 1.228% 0.936%
α Weight on insured deposits 0.65 Uninsured deposit share = 0.419 0.376
ρ EoS b/w insured deposits 0.855 Transaction deposit rate = 0.312% 0.234%
ρU EoS b/w uninsured deposits 0.96 Gini uninsured = 0.963 0.894

Panel B: Externally Calibrated Parameters
Name Description Value Data Source

β Discount factor 0.99 1% risk-free return
φ Risk aversion 2 Standard value in literature

Zmean Mean loan productivity 1 Normalization
Zloc Minimum loan productivity 0.6 ELS implied 0.48
Zscale Max - min loan productivity 1.55 ELS implied 1.54
σRK Deviation of capital return 0.045 Vol of corporate bond portfolio
σϵ ln Volatility of idio. capital shocks 0.11 Vol of idio. bank equity return
r Bond return 0.0123 Avg. bond return
µRB Avg. bond payoff 1 + r Normalization
σRB Volatility of bond return 0.035 Vol of 5-year UST
ϕ Fraction of sleepy uninsured depositors 0.03 Long term debt share = 0.074
δ 1 - Firesale costs of capital 0.78 Literature
ξ 1 - share lost in recovery 0.25 Moody’s recovery
ω long-horizon IR risk 0.4 Greenwald, Krainer, and Paul (2024)

Notes: This table presents the internally (jointly) calibrated model parameters (Panel A) and the parameters

set directly to external moments in the data (Panel B). Uninsured share is the share of uninsured deposits in

total domestic deposits. ELS stands for Egan, Lewellen, and Sunderam (2022). Details on Panel A parameters

are in the text. The sample period is from 2010 to 2022 unless otherwise stated. Data sources are bank call

report filings. Details on Panel B parameters are in Appendix Section A1.
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by insurance status are only available for time deposits and only before 2009 or after 2016

when bank call reports reported the interest expense on time deposits broken out by deposit

insurance limit.8 Given the data limitation, we choose to target the transaction deposit rates

and time deposit rates to roughly capture insured and uninsured deposit rates. We compute the

transaction deposit rate as interest expenses on domestic deposits less domestic time deposit

interest expense over beginning of period transaction deposit accounts, which are domestic non-

time deposit accounts. The time deposit rate is the interest expense on domestic time deposits

divided by the beginning of period domestic time deposit accounts. Both rates are annualized.

The parameter α is the weight on insured deposits in the liquidity aggregator, and therefore

determines the insured deposit share, and likewise our target the uninsured deposit share. We

compute the uninsured share as the share of uninsured domestic deposits over total domestic

deposits. Uninsured deposits are deposit account values with balances over $250,000 minus

the number of uninsured accounts times $250,000. We choose the Gini coefficient of uninsured

deposits as a target for the elasticity of substitution parameter for uninsured deposits ρU . When

households perceive uninsured deposits as relatively undifferentiated, only the most productive

banks will find it profitable to issue uninsured deposits. As a result, uninsured deposits will be

only issued by the largest banks since large banks are the most productive banks in our model,

leading to the Gini coefficient as a natural target for ρU .

We discuss the externally calibrated parameters listed in Panel B in Appendix Section A.

4.2 Model Fit

When compared to the cross-sectional stylized facts documented in Section 2, the model pro-

duces the right qualitative and quantitative patterns, as can be seen in Figure 5. The asset

size distribution is as dispersed and as skewed as it is in the data, with the largest percentile of

banks more than 5 orders of magnitude larger than the median. As in the data the bond share

is U-shaped in log assets, decreasing for small and medium banks and higher for the largest

8Between 2009 and 2016, interest expenses were reported for time deposits with balances above and below
$100,000, but the deposit insurance limit had increased to $250,000 at the end of 2008. In addition, large
demand or savings deposits accounts may also exceed the deposit insurance limit. RateWatch reports banks
offer rates by deposit products, but offer rates on select products are not informative about what banks actually
pay overall on their deposit accounts.
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banks than for the medium-large ones. The uninsured share is small for small and large for

large banks. The model overstates this pattern somewhat relative to the data, but captures

the particularly rapid increase in uninsured deposit share in the right tail of the bank size

distribution.

Figure 5: Model Fit
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Notes: X-axis: percentile rank of banks ordered by assets, e.g., a value of 0.5 represents the median bank. Left

column: “log Assets” is the logarithm of the sum of capital and bonds. Middle column: “Bond Share” is the

fraction of bonds in the asset portfolio. Right column: “Uninsured Share” is the fraction of uninsured deposits

in all deposits. Top row: data; bottom row: baseline calibration of the model.

5 Results

In this section, we first describe the model mechanism, then discuss how an unanticipated

interest rate shock and a partial bailout guarantee affect the banking system, and finally, we

discuss policy implications.
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5.1 Key Model Mechanisms

We now describe the key mechanisms that allow the model to match the empirically observed

high concentration of uninsured deposits among the largest banks. High shares of uninsured

deposits expose the largest banks to the possibility of runs.

5.1.1 The Role of Runs

We first analyze how run risk affects bank choices and the industry equilibrium, both ex-ante

and in terms of realized risks. To do so, we consider a counterfactual version of the model

where capital can be sold without a firesale discount during runs (δ = 1), allowing banks to

fully repay depositors in case of a run. In this special case, runs do not induce banks to realize

losses. Thus, with δ = 1, depositors have no reason to run in the first place, and runs will not

occur in equilibrium irrespective of banks’ portfolio composition.9

Figure 6 shows six outcome variables in the cross-section of banks, indexed by asset pro-

ductivity Zi on the x-axis. The blue line shows the calibrated model “Baseline,” while the

red dashed line shows a counterfactual model with no fire sale discount, δ = 1. Banks choose

similar scales in terms of total assets, although the largest, most productive banks are smaller

in the δ = 1 model without run risk as a result of general equilibrium forces. The presence of

run risk has a noticeable effect on banks’ bond share: absent this risk, small banks choose to

hold more bonds, while large banks only hold bonds mandated by liquidity regulation. This

is contrary to the baseline model, where the largest banks voluntarily hold more bonds than

required. The share of uninsured bonds is most strongly affected by the presence of run risk.

While the least productive banks do not issue any uninsured deposits in either model, the unin-

sured share is more steeply increasing in the δ = 1 equilibrium, and it is higher for the largest

banks. Without run risk, all banks are at a binding leverage constraint. In the baseline model,

the largest banks leave a buffer to the constraint – this is despite the fact that their greater

bond share would allow them higher leverage compared to the δ = 1 model. These effects

on bond holdings, uninsured deposits, and leverage reflect precautionary portfolio decisions of

banks to insure against the risk of runs.

9Alternatively, we could set the probability of the sunspot for runs π to zero. Results look almost identical
to the ones for δ = 1. Varying δ is computationally more convenient.
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Figure 6: Equilibrium in Baseline and Without Runs

Notes: Top row: “log Assets” is the logarithm of the sum of capital and bonds; the plot shows the difference

“δ = 1” minus “Baseline”, “Bond Share” is the fraction of bonds in the asset portfolio, and “Uninsured Share”

is the fraction of uninsured deposits in all deposits. Bottom row: “Total Leverage” is the sum of insured and

uninsured deposits divided by assets, “P(Run Def.)” is the unconditional probability of banks experiencing a

run and defaulting as a result, and “P(Default)” is the unconditional probability of default across all aggregate

payoff states.

The mid panel of the bottom row shows that runs occur for the largest banks in the baseline

economy with an unconditional probability of 1.2%. With δ = 1, the absence of runs is an

immediate consequence of the fundamental lack of a run motive. However, δ = 0.75 in the

baseline model implies substantial fire sale losses in case of a run. The fact that few runs occur

even in this model is due to banks’ precautionary behavior: they issue fewer uninsured deposits

(to reduce run exposure) and hold more bonds (to hedge fire sale losses in capital). A few

medium to large banks reduce leverage (to limit default risk).

Total realized defaults shown in the bottom right panel are the sum of run- and solvency-

driven defaults. Small banks do not have run risk exposure, since they issue no uninsured

deposits. However, they have worse performing loan assets, raising their risk of solvency default
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relative to large banks.

5.1.2 Differential Market Power in Insured versus Uninsured

The model generates a realistic concentration of uninsured deposits among the largest banks. As

in the data, the uninsured share is strongly increasing in bank size. To isolate the role of product

differentiation in generating this cross-sectional pattern, we consider a simple counterfactual

economy in which the degree of production differentiation is identical in both deposit types, i.e.

ρU = ρI = 0.855.

Figure 7: Equilibrium With Symmetric Deposit Market Power

Notes: “Uninsured Share” is the fraction of uninsured deposits in all deposits. “Bond Share” is the fraction of

bonds in the asset portfolio. “log Assets” is the logarithm of the sum of capital and bonds.

Figure 7 shows the effects of this parameter change. As we can see in the top left panel, the

uninsured share is almost flat at 30% across the size distribution when ρU = ρI . The different

nature of competition in the uninsured market, in turn, affects bond shares, leverage, profits,

and default rates. The right panel shows log assets of the model with equal ρj minus log assets

in the δ = 1 baseline. This difference shows that with symmetric market power in both deposit

types, the bank size distribution is more equal: low-productivity banks are relatively larger,

and high-productivity banks are smaller compared to the baseline with more differentiation

in insured deposits. This comparison highlights that the cross-sectional pattern in uninsured

deposits generated by the model is not due to run risk or bailout guarantees, since neither of

these channels are present in the δ = 1 economy. Rather by comparing the one-parameter

change in ρU relative to the high-delta economy, we can clearly see that the differential degree
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of market power in markets for insured and uninsured deposits is at the core of the model’s

ability to create the right cross-sectional allocation of uninsured deposits.

5.1.3 Deposit Productivity Heterogeneity

The baseline model features heterogeneity in deposit productivity that is perfectly correlated

with loan productivity. However, the loading of deposits on loan productivity is asymmetric

above and below the median. Deposit productivity of below-median banks is Ā− = 1.05 times

their loan productivity, while for above-median banks the loading is Ā+ = 0.4.

Figure 8: Equilibrium With Symmetric Deposit Productivity

Notes: ‘Uninsured Share” is the fraction of uninsured deposits in all deposits. “Bond Share” is the fraction of

bonds in the asset portfolio. “log Assets” is the logarithm of the sum of capital and bonds.

Figure 8 compares the baseline calibration to a model in which the deposit productivity

loading is symmetric below and above the mean at Ā− = Ā+ = 0.4. The direct consequence

of this parameter change is that the deposit productivity of banks below the median is now

declining much less rapidly in loan productivity than in the baseline. The rightmost plot in

Figure 8 shows that low-productivity banks are much smaller in the baseline economy as a

result. In the counterfactual economy with Ā− = 0.4, banks with low loan productivity have

relatively much higher deposit productivity. It is optimal for them to issue larger quantities

of insured deposits to exploit their market power. Since these banks only have access to low

productivity loans, they instead rely on bonds to scale up their balance sheet, resulting in a

much higher bond share as can be seen in the middle panel of Figure 8. The main effect of

lower Ā− on large banks is in the uninsured deposit share depicted in the left panel. Even
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though the above-median banks are not directly affected by the parameter change, general

equilibrium forces cause them to increase their uninsured deposit share. In the symmetric Āj

model, low-productivity banks are much larger, and they supply substantially more insured

deposits in total. Since insured and uninsured deposits are imperfect substitutes in aggregate,

greater insured supply from small banks creates demand for greater uninsured supply from

large banks.

5.2 Effects of Aggregate Shocks on Bank Defaults

We next analyze the role of aggregate loan and interest rate risk on the fragility of the banking

sector. Figure 9 displays bank default rates, by type of default, across the bank size distribution.

Each line corresponds to a combined realization of the two aggregate shocks. Blue lines represent

high aggregate loan productivity (RK) while red represent low. Likewise, dotted lines represent

high bond returns (RB), while solid lines represent low bond returns, which realize when bond

yields go up, e.g., when the central bank hikes rates.

Figure 9: Default Probabilities by Aggregate State

Notes: “P(Solvency Def.)” is the default rate due to insolvency (ϵi < ϵi). “P(Run Default)” is the default rate

caused by runs. “P(Default)” is the sum of insolvency and run-induced defaults. Blue (red) lines correspond to

high (low) realizations of RK . Dotted (solid) lines correspond to high (low) realizations of RB .

As the left panel shows, small banks default for solvency reasons. Solvency default is highly

sensitive to aggregate loan risk. Low loan returns increase solvency risk across the board (blue

to red), which is amplified further by low bond returns (dotted to solid).

For large banks, a low bond return realization poses an additional threat, given their role as
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a precautionary buffer against run risk. Low bond returns cause an expansion of the run-prone

region and lead to a substantial increase in the likelihood of run-driven defaults, approximately

5% for the largest banks (middle panel). In this state of the world, run defaults account for

the vast majority of overall bank failures (right panel).

Agents in the model anticipate substantial interest rate return risk: the return on bonds has

a standard deviation of 3.5%. What if bond returns drop lower than agents anticipate, for

example, following a surprising interest rate hike by the central bank? To answer this question,

we study how default risk across the bank size distribution is affected by an unanticipated low

return realization of 5% below the mean.10

Figure 10 displays bank default rates across the size distribution for different realizations of

aggregate returns on loans and bonds. The left panel shows defaults purely based on solvency

risk, i.e., when ϵi < ϵi. When the loan return is high and the bond payoff is low, as shown by the

solid blue line, solvency defaults are small and slightly declining in size. When both asset returns

are low, as depicted by the red line, solvency default rates are around 1.5% for the smallest

banks and decline to around 1% for the largest banks. When interest rates unexpectedly

increase such that the return on bonds is -5% (dashed green line), solvency defaults for the

smallest banks rise noticeably; solvency defaults for banks above the 25th percentile of the

asset distribution, however, are hardly changed relative to the low anticipated value of bond

returns. This is because smaller banks hold a substantially larger fraction of their assets in

interest-rate-sensitive bonds.

Run defaults in the middle panel jump to 5% for low realizations of both returns (red line).

The low unexpected return of -5% causes run risk among the largest banks to spike at over

10% since these banks have issued most uninsured deposits. Total defaults in the right panel

are the sum of both components. After a rate hike, defaults are higher at all points in the size

distribution. These results demonstrate that the combination of uninsured deposits and low

bond returns greatly amplifies the default risk of large banks.

10The numerical implementation discretizes the bond return with two equal-probability realizations. The
lowest return realization in the expectation set is thus 3.5% below the mean.

31



Figure 10: Default Probabilities After Rate Hike

Notes: “P(Solvency Def.)” is the default rate due to insolvency (ϵi < ϵi). “P(Run Default)” is the default rate

caused by runs. “P(Default)” is the sum of insolvency and run-induced defaults. Blue and red solid lines show

the effect of an anticipated low bond return RB , conditional on high and low loan productivity realization RK ,

respectively. The green-dotted line shows the effect of an unanticipated rate hike, leading to an especially low

realization of RB , conditional on low RK .

5.3 Were Banks “Surprised” By Rate Hikes?

Do these results hold up if banks anticipate greater bond return risk, or more technically, if

lower (and higher) bond return realizations are in the expectation set of banks, rather than

arriving as “MIT shocks?”

Symmetric Bond Return Risk. We explore this question in Figure 11, which compares

the baseline economy to one in which bond returns are much more volatile at 8.5% standard

deviation (compared to 3.5% in the baseline), in the red line labeled “High Bond Risk.” The

middle and right panels of the top row show default rates conditional on an anticipated low

loan/low bond return shock. In the baseline model (blue line labeled “Baseline”), this shock

causes run defaults. In the economy with high bond risk, however, this anticipated shock

causes a doubling of run defaults for large banks. This rise in run-induced defaults is, of course,

partially due to a much lower realization of bond returns, but it is also caused by different ex-

ante portfolio choices of banks. In particular, large banks in the high bond risk economy have

negligible voluntary bond holdings (top left) and do not keep a precautionary buffer to their

maximum allowed leverage (bottom left). Furthermore, small banks in the high-risk economy

do not decrease their bond share despite much riskier returns. Small banks’ optimal size is
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mainly driven by the insured deposit market profitability. Since insuring deposits severs the

link between asset risk and deposit rates, small banks maintain similar bond portfolio shares

compared to the baseline economy, even with high bond risk. This behavior results in slightly

higher solvency default rates for small banks.

Figure 11: Default Probabilities After Rate Hike With Higher Bond Risk

Notes: “Bond Share” is the fraction of bonds in the asset portfolio. “Total Leverage” is the sum of insured and

uninsured deposits divided by assets.“P(Run Default)” is the default rate caused by runs. “P(Default)” is the

sum of insolvency and run-induced defaults. The middle and right panels of the top row present default rates

for low aggregate capital and bond returns. The middle and right panels of the bottom row present default

rates for the rate hike experiment. The blue line represents the baseline economy, the red line represents the

economy with higher anticipated bond risk, and the green-dotted line represents the economy where rate hikes

are expected with a 5% probability.

The middle and right panels in the bottom row show how these different portfolio choices

affect the probability of run defaults and defaults overall when the unanticipated rate hike

occurs. As for the top row that displays the anticipated shock, overall defaults are mainly

driven by run defaults. When banks anticipate bonds to be much more volatile (the red-line in

the bottom panels), the rate hike leads to only half the run defaults compared to the baseline
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economy, where banks expect bond return volatility to be just 3.5%. This makes sense since

the worst-case scenario of bond returns in the high bond risk economy spans the rate hike.

These results highlight that rational anticipation of higher symmetric bond return risk by

banks does not necessarily lead to safer portfolios that can absorb greater interest rate fluctu-

ations without incurring solvency and run risk.

Downside Bond Return Risk. What if banks instead anticipate the actual rate hike with

a 5% probability? The green dotted line labeled “Pr(Rate Hike)=5%” shows this scenario.

Relative to the high bond risk economy, banks now anticipate asymmetric downside risk in

bond returns that is equal in size to the realized rate hike. This change in expectations shifts

the mean bond return, causing both small and large banks to downscale their bond shares

relative to the baseline economy. Especially large banks reduce leverage substantially in this

economy, which works to reduce run and overall default risk. Since bonds are less useful as

insurance for runs, banks instead use leverage to manage their risk.

Taken together, both scenarios imply that bank exposure to interest rate risk is consistent

with rational portfolio choice that anticipates high bond return volatility. Only if banks have

expectations of asymmetric downside (but not upside) bond return risk, our model implies that

they would optimally choose slightly safer portfolios compared to the baseline economy.

5.4 Partial Guarantees for Uninsured Deposits

Implicit bailout guarantees for large banks that are deemed “too big too fail” (TBTF), are

commonly considered as explanation for uninsured deposit concentration at these large banks

(O’Hara and Shaw, 1990). The intuition is straightforward: if the “uninsured” deposits of large

banks also enjoy significant government guarantees, then depositors should be more willing to

hold them. As we established in Section 5.1.2, the baseline version of our model does not rely

on this explanation. However, we can easily incorporate probabilistic bailout guarantees of

uninsured deposits that are increasing in bank size.

In Figure 12, we show the size-dependent bailout probability that we feed into the model.

The probability is zero for banks below the asset median and then increases in balance sheet
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Figure 12: Size-dependent Bailout Probability

Notes: Left panel: size-dependent bailout probability for uninsured deposits by bank productivity Zi. Right

panel: size-dependent bailout probability for uninsured deposits by bank asset distribution percentile.

size until topping out at 45% for the largest banks. In Figure 13, we see how this bailout

probability affects bank choices and outcomes. Most strikingly, too-big-too-fail bailouts raise

the run risk of large banks significantly, as the bottom mid-panel shows. This is despite large

banks choosing fewer uninsured deposits – the increase in risk happens as a result of a lower

bond share and higher leverage. While bailout guarantees do not explain the allocation of

uninsured deposits, they are a powerful source of risk-taking for large banks.

We further decompose the increase in default risk in Figure 14, which also displays the effect

of an unanticipated rate hike combined with too-big-to-fail guarantees. The red and blue solid

lines in the graph show the default probability in the baseline and TBTF versions of the model,

respectively, for the worst possible aggregate payoff state. As we know from previous results, low

aggregate return realization for loans and bonds cause run-based defaults in the baseline model.

However, in the model with bailout guarantees, the run default rate in the bad (expected) state

is close to 8%. The dashed green line shows default probabilities to the unanticipated rate

hike in the model with bailouts. Run-default rates for the largest banks go above 12% in this

model; from Figure 10, we recall that this default rate only rises to 10% in the baseline model.

Thus, TBTF bailout guarantees amplify the run risk of big banks in case of a large surprise

rate increase.
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Figure 13: Equilibrium in Baseline and With Bailouts

Notes: Top row: “log Assets” is the logarithm of the sum of capital and bonds, “Bond Share” is the fraction

of bonds in the asset portfolio, and “Uninsured Share” is the fraction of uninsured deposits in all deposits.

Bottom row: “Total Leverage” is the sum of insured and uninsured deposits divided by assets, “P(Run Def.)”

is the unconditional probability of banks experiencing a run and defaulting as a result, and “P(Default)” is the

unconditional probability of default across all aggregate payoff states.

Figure 14: Bank Default Risk With Bailouts

Notes: “P(Solvency Def.)” is the default rate due to insolvency (ϵi < ϵi). “P(Run Default)” is the default rate

caused by runs. “P(Default)” is the sum of insolvency and run-induced defaults.

36



5.5 Policy Implications

We use the model as a laboratory for evaluating various policy proposals. In the following

subsections, we will consider standard size-independent regulation and policies that explicitly

condition on bank size. For all policy counterfactuals, we use the model with TBTF guarantees

as baseline.

Unconditional capital requirements. Equity capital requirements for risky assets are

widely regarded as a powerful tool for mitigating risk-taking by banks and have been stud-

ied extensively in the literature. We begin our policy analysis by studying variations in the

equity capital requirement for loans, which is captured by the maximum leverage parameter θ

in the model. Table 2 shows different aggregate outcomes for different values of θ around the

baseline value of 0.88 (corresponding to a 12% risk-weighted capital charge on loans).

Table 2: Varying the capital requirement on loans

Outcome θ θ(size)

85% 86% 87% 88% 89%

Loans -0.529 -0.268 -0.022 1.571 -0.007 0.005
C0 -0.015 -0.005 0.004 2.073 -0.010 0.000
E(C1) 0.095 0.063 0.030 2.201 -0.032 0.001
E(DWL) -68.510 -53.966 -30.007 0.002 42.668 -1.137
SD(MPK) -24.002 -17.147 -9.760 0.003 12.571 -0.007
Liquidity -2.527 -1.712 -0.876 0.927 0.861 -0.038
HH Utility -0.114 -0.074 -0.035 1.509 0.028 -0.001
Run Def. top 0.1% -99.983 -60.192 -44.006 0.020 52.801 -41.414

C1 (Rate Hike) 0.065 0.040 0.014 2.118 -0.043 0.002
HH Utility (Rate Hike) -0.138 -0.092 -0.047 1.472 0.022 -0.001

Notes: This table shows changes in aggregate model outcomes as the maximum allowed leverage on loans

θ is varied around its baseline value of 88%. The last columns shows the effects of size-dependent capital

requirements. The levels of listed outcomes for the baseline model are shown in the θ = 88% column of the

table. The columns to the left and right show percentage changes of the same moments relative to baseline.

Moments: 1. Loans – aggregate lending Ei[K], 2. C0 – time-0 consumption, 3. E[C1] – time-1 expected

consumption, 4. E[DWL] – time-1 aggregate expected DWL, including default bankruptcy costs and firesale

losses during runs, 5. SD[MPK] – expected standard deviation in marginal product of capital across banks at

time 1, 6. Liquidity – liquidity utility H, 7. HH Utility – total time-0 expected utility, 8. C1 (Rate Hike)

– Time-1 consumption conditional on unanticipated rate hike. 9. HH Utility (Rate Hike) – Time-0 utility

conditional on unanticipated rate hike at time 1.
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In line with other studies, capital requirements govern a trade-off between consumption and

liquidity provision. Row 1 shows that tightening the capital requirement by 3% (to θ = 85%)

restricts lending by 0.5%, while relaxing the requirement by 1% (to θ = 89%) also reduces

lending slightly. At the same time, a tighter requirement reduces bankruptcy-induced dead-

weight losses by 69% (row 4), while a relaxation by 1% causes deadweight losses to rise by 43%.

These changes in bankruptcy losses affect consumption in an intuitive way – lower losses mean

higher consumption; see rows 2 and 3 of the table. However, since baseline losses are small, so

are the corresponding changes in consumption. The benefit of a tighter capital requirement is

thus higher consumption, which is traded off against lower liquidity provision. Row 6 displays

this effect on utility from liquidity services, which declines by 2.5% with a 3% tighter capital

requirement. In row 5, which shows the dispersion in the marginal product of lending, we can

see how capital requirements affect the efficiency of capital allocation in the banking sector. In

a frictionless model, the marginal product of capital should be equalized across banks. Row 5

shows that dispersion in MPK declines with a tighter capital requirement in the model, which

is an additional source of welfare gain from tighter regulation that is not directly linked to

avoiding bankruptcy losses.11

Row 7 shows that household utility is roughly maximized at the baseline value of θ at 88%,

although a slight relaxation of the requirement would imply 2bp higher utility. A tighter capital

requirement increases consumption in both periods but also lowers liquidity services, with the

second effect dominating. Looser capital requirements, in turn, cause an increase in liquidity

utility but simultaneously reduce consumption through greater defaults and misallocation. Note

that our model only captures the micro-prudential effects of bank capital requirements and that

macro-prudential considerations such as larger consumption losses during a systemic crisis may

warrant a tighter capital charge on loans.

The focus of our analysis in on run default risk among the largest banks. Here, tighter

capital requirements are a highly effective tool. A 3% tighter requirement almost eliminates

run defaults among the top 0.1% banks by assets completely.

11Better loan allocation measured by lower dispersion in MPK materializes in higher consumption, same as
lower bankruptcy losses.
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Size-dependent capital requirements. Size-dependent capital requirements that explicitly

condition on assets are designed to account for the systemic importance of large banks. Since

the model captures the cross-sectional distribution of banks, we can use it to evaluate size-

dependent policies.

Figure 15: Size-dependent Capital Requirements

Notes: Effects of size dependent capital requirements in an economy with bailout guarantees.

Figure 15 compares the baseline model with TBTF guarantees, to the same model with a

tighter unconditional capital requirement (red line), and a third model in which the capital

requirement is increasing in bank size (green line). The resulting level of maximum leverage

θ is plotted in the middle panel of the top row. The bottom row displays how this policy

affects leverage, run-driven defaults, and total defaults. The size-dependent requirement is as

effective in curbing run-driven defaults among the largest banks as the unconditionally tighter

requirement.

However, as we can see in Table 2, unconditional increase in θ cause a decline in welfare, since

they reduces bank leverage throughout the whole distribution, and cause a decline in liquidity

supply. The size-dependent requirement in the final column, on the other hand, only reduces
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leverage of the largest banks and leads to a much smaller reduction in liquidity supply. The

overall welfare impact of an unconditional tightening of θ is negative, while the size-dependent

requirement is roughly welfare-neutral. Thus, size-dependent capital requirements are an ef-

fective tool to reduce run exposure of large banks. At the same time, they have a minimal

negative impact on other aspects of bank portfolios. We conclude that size-contingent capital

requirements are an effective targeted regulation to address run risk caused by concentration

of uninsured deposits.

Liquidity requirements. Liquidity requirements are meant to ensure that banks have liq-

uid assets which can be sold without loss in case of large deposit withdrawals or runs. Our

model captures both runs and the heterogeneous exposure of banks to run risk through their

endogenous choice of uninsured deposits. A natural policy to mitigate the risk stemming from

runs are liquidity requirements tied to uninsured deposits. We implement this policy in the

model through a modified liquidity constraint (see equation (14)):

θDDI
i + (θD + θU)DU

i ≤ Bi, (25)

where θU is a new parameter that requires banks to hold bonds in proportion to their uninsured

deposits.

Table 3 shows how the same aggregate outcomes studied in Table 2 respond to an increase in

θU relative to its baseline value of 0% in the first column. The run risk of the largest banks is

listed in row 8 of the table, and one can see that small additional liquidity requirements work

as intended: they reduce this risk by 20% at the 2% value for θU . Interestingly, the effect is

non-monotonic – at θU = 8%, run defaults of the largest banks are higher by 17%, highlighting

the importance of general equilibrium effects.

While the liquidity requirement makes large banks less vulnerable to runs, it also distorts

their asset portfolio away from loans and towards bonds. The result is increased dispersion

in the marginal product of capital listed in row 5. This causes capital misallocation. Higher

liquidity requirements are effective at reducing run risk, but they do this at the expense of

lending efficiency.
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Table 3: Varying liquidity requirements for uninsured deposits

Outcome θU

0% 2% 4% 6% 8%

Loans 1.571 -0.536 -1.089 -1.645 -2.379
C0 2.073 -0.028 -0.056 -0.085 -0.122
E(C1) 2.201 0.025 0.050 0.075 0.107
E(DWL) 0.002 2.883 6.015 9.488 10.276
SD(MPK) 0.003 6.175 13.156 20.739 24.313
Liquidity 0.927 0.043 0.087 0.130 0.223
HH Utility 1.509 0.002 0.003 0.005 0.008
Run Def. top 0.1% 0.020 -20.395 -14.692 -1.011 17.546

C1 (Rate Hike) 2.118 0.032 0.064 0.096 0.138
HH Utility (Rate Hike) 1.472 0.006 0.011 0.017 0.026

Notes: This table shows changes in aggregate model outcomes as the additional liquidity requirement for

uninsured deposits θU is raised from its baseline value of 0%. The levels of listed outcomes for the baseline

model with TBTF guarantees are shown in the θU = 0% column of the table. The columns to the right show

percentage changes of the same moments relative to baseline. Moments: 1. Loans – aggregate lending Ei[K],

2. C0 – time-0 consumption, 3. E[C1] – time-1 expected consumption, 4. E[DWL] – time-1 aggregate expected

DWL, including default bankruptcy costs and firesale losses during runs, 5. SD[MPK] – expected standard

deviation in marginal product of capital across banks at time 1, 6. Liquidity – liquidity utility H, 7. Welfare

– total time-0 expected utility, 8. Run Def. top 0.1% – Run-induced default rate of top 0.1% largest banks in

worst aggregate payoff state.

In Figure 16, we analyze the causes for the non-monotonic effects of higher liquidity require-

ments targeted specifically at uninsured deposits. We compare the baseline TBTF economy to

one with a 1% tighter capital requirement θ = 0.87 (red dashed) and a third economy with

θU = 0.04 (green dotted). The liquidity requirement works as intended, forcing a higher bond

share for banks with uninsured deposits. It is as effective at reducing run defaults among the

largest banks as a 1% tighter capital requirement, yet it accomplishes this task without reducing

leverage and thus liquidity provision. Quite contrary, we see in Table 3 that higher θU actually

increases liquidity provision. However, we can also see that the liquidity requirement causes a

pronounced reallocation of bond holdings across the size distribution.

Furthermore, while reducing run defaults among the largest banks, the policy slightly raises

run default among among banks with productivity above 1.5, explaining the non-monotonic

effects in Table 3.
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Figure 16: Comparing tighter capital and liquidity requirements

Notes: The figure compares the baseline economy with TBTF guarantees to policy counterfactuals with (i) a 1%

tighter capital requirement (θ = 0.87) and (ii) a liquity requirement of 4% for uninsured deposits (θU = 0.04).

In summary, our policy experiments show that both size-dependent capital requirements and

liquidity requirements targeted at uninsured deposits are highly effective tools at reducing run

risk among the very top banks. However, our experiments also demonstrate that different

policies cause substantially different cross-sectional allocations of loans, bonds, and deposits.

Banks in our model face a realistic set of portfolio choices both on the asset and liability sides.

Once we take into account this wide range of choices, it is difficult to find a “one-size-fits-all”

policy that reduces risk exposure without side effects on lending and liquidity provision.

6 Conclusion

In this study, we develop a model to investigate the complex interplay between banks’ portfolio

and funding choices–particularly the reliance on uninsured deposits and investment in interest

rate sensitive securities–and the resulting in cross-sectional differences between banks. We

then examine their impact on financial stability in the face of interest rate- and run risk.
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Our analysis reveals that large banks’ reliance on uninsured deposit funding exposes them to

greater financial instability, especially during periods of rising interest rates. The model shows

that large banks–while benefiting from greater loan and deposit productivity–face heightened

run-risk, while small banks are more vulnerable to solvency risk.

Our model underscores the importance of considering the heterogeneous impact of regulatory

policies. Uniform regulations may not adequately address the unique challenges faced by banks

of varying sizes and risk profiles. Therefore, a more nuanced regulatory approach that differen-

tiates between the risks posed by smaller versus larger institutions is essential for maintaining

financial stability in a dynamic economic environment.
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A Calibration

Panel B of Table 1 lists the externally calibrated parameters. Related to households’ preferences,

the discount factor β is set to match a 1% risk-free return. The risk-aversion parameter φ is

set to 2, a standard value in the literature.

The ex-ante bank loan productivity Zi follows an affine function of a Beta-distributed random

variable. Specifically,

Zi = Zloc + (Zloc + Zscale) Z̃i,

with Z̃i ∼ B (β1, Zshape) . We choose β1 such that the E[Zi] ≡ Zmean = 1. We follow Egan,

Lewellen, and Sunderam (2022) to estimate cross-sectional statistics of banks’ loan productivity

using quarterly bank call report data from 2010 to 2022.

We match the volatility of the aggregate loan productivity σRK to the volatility of a portfolio

consisting of BBB-rated corporate bonds and mortgage-backed securities. We match the volatil-

ity of banks’ idiosyncratic capital shocks to the volatility of bank equity returns. To this end,

we take the equity return of publicly traded banks over our sample period and residualize them

vis-a-vis the Fama-French 3-Factor model. We then compute the annualized cross-sectional

standard deviation of the residuals. We match the bond return r to the annualized real return

on a constant 5-year maturity Treasury portfolio and σRB to its volatility.

We match the fraction of uninsured depositors that are sleepy, i.e., that do not run, to roughly

the fraction of long-term unsecured debt funding of banks. These are the uninsured depositors

are exposed to losses during a run. The fire-sale discount parameter 1− δ is consistent with the

literature Campbell, Giglio, and Pathak (2011) and Franks, Seth, Sussman, and Vig (2021).

The recovery ratio is fromMoody’s. To parameterize the long-horizon interest rate risk of banks’

security portfolio we target the AFS security share as documented by Greenwald, Krainer, and

Paul (2024).

Table A1 lists all parameter values used in the model.

48



B Empirical Support for Model Assumption

B.1 Liquidity Converage Ratio

The liquidity coverage ratio does not differentiate between short and long duration assets as

Figure A1 below shows. The tables are from Roberts, Sarkar, and Shachar (2023).

LCR =
HQLA

30 day net outflow rate
≥ 1

Figure A1: Roberts, Sarkar, and Shachar (2023) LCR

(a) Liquidity Coverage ratio

(b) Assumed Outflow Rate

Notes: These figures are excerpts from the internet Appendix of ”Liquidity Regulations, Bank Lending and
Fire-Sale Risk” by Roberts, Sarkar, and Shachar (2023)
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B.2 Uninsured versus insured deposits as different products

Section 3 assumes insured and uninsured deposits are separate products. We now show that this

is largely consistent with the data. Note that in the data, banks report how many accounts are

above the deposit insurance limit of 250K and how many dollars are in these ”large” accounts.

Figure A2a presents a histogram of the fraction of uninsured dollars in large accounts. Most

large accounts are indeed uninsured accounts.

Figure A2: Uninsured Deposits

(a) Fraction Uninsured In Large Accounts(≥ 250K)
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(b) Fraction of uninsured in large (≥ 250K) accounts by bank size
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Figure A2b shows this relationship by size. For the largest banks, which in our model are
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those with the highest uninsured share, roughly 80% of large accounts are uninsured.

B.3 Interest rate risk in unmarked assets

Mark-to-Market Losses and Bank Equity It is rare for interest rate risk to be visibly

realized in bank portfolios since they are mainly unmarked. The interest rate hike period after

the pandemic has allowed a rare glimpse into the interest rate sensitivity of bank portfolios. For

securities, bank call reports require banks to fill in the fair value of their unmarked securities

(hold-to-maturity securities). When we revalue assets by subtracting the book value of securities

and adding back their fair value, we can recalculate an implied market value of equity. Panel

A of Figure A3 shows the aggregate market value of equity normalized by the aggregate book

equity since 2010. The rate hike period led to large unrealized losses in banks’ securities

portfolio, leading to a drop in the market value equity due to security losses alone of nearly

20%.12

Panel B shows the mark-to-market losses of the 50 largest banks in 2022 Q3, calculated

similarly to for Panel A but expressed as a share of assets. For comparison, we also plot the

regulatory book value of equity as a fraction of assets. Most of the large banks sustained losses

on their securities portfolios, leading to large unrealized losses in equity.

C Derivations

C.1 Household Problem

Denoting equity shares of bank i that are in unit supply as Si, households solve

max
{Si},{DI

i },{DU
i },C0,C1

log(C0) + ψlog
(
H

(
{DI

i }, {DU
i }

))
+ βlog

(
E
[
C1−φ

1

]1/(1−φ)
)

(26)

subject to

C0 = W0 +

∫
i

Πidi− T −
∫
i

piSidi−
∫
i

qIiD
I
i di−

∫
i

qUi D
U
i di, (27)

C1 =

∫
i

DI
i di+

∫
i

(
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

)
SiDividi+

∫
i

DU
i PU

i di. (28)

12Granja, Jiang, Matvos, Piskorski, and Seru (2024) show how banks attempted to insulate themselves from
the interest rate shock by shifting more securities into the held-to-maturity portfolio.
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Figure A3: Interest Rate Shock and Portfolio Revaluation

Panel A: Security Revaluation at Market Prices: Time Series
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2010Q1 to 2022Q4.

At time 0, households purchase all securities issued by banks: debt of both types and equity.

Household funds consist of initial wealth W0 and bank profits, net of taxes raised to cover

expected deposit insurance payouts. At time 1, households receive insured deposit payouts.

They also receive the dividend payouts of non-defaulting banks, with the survival rate being

1− F̂ (ϵi, ϵi) ≡ E
[
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

]
= 1− F (ϵi)− π (F (ϵi)− F (ϵi)) .

The payoff on uninsured deposits depends on the realization of banks’ idiosyncratic productivity

shocks ϵi. As explained in the main text, the payoff to uninsured deposits is given in (23):

PU
i =1− F (ϵi) + F (ϵi)E[r

nr
i |ϵi < ϵi]

+ (1− π) (F (ϵi)− F (ϵi)) + π (F (ϵi)− F (ϵi)) (1− ϕ+ ϕE[rri |ϵi ≤ ϵi ≤ ϵi]) .
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Marginal liquidity value. First, we compute marginal value of liquidity of each type.

HU
i =

∂log
(
H

(
{DI

i }, {DU}
))

∂DU
i

= (1− α)

(
AD

i D
U
i

DU

)ρU (
DU

H

)η
1

DU
i

(29)

HI
i =

∂log
(
H

(
{DI

i }, {DU}
))

∂DI
i

= α

(
AD

i D
I
i

DI

)ρI (DI

H

)η
1

DI
i

(30)

where Dj =
(∫

i
(AD

i D
j
i )

ρjdi
)1/ρj

, for j = I, U .

Consumption-savings choice. Denote total household wealth at time 0 as W = W0 +∫
i
Πidi − T , and the total value of the household portfolio for time 0 (=savings) as Z =∫

i
piSidi+

∫
i
qIiD

I
i di+

∫
i
qUi D

U
i di. The return on this portfolio is

R1 = C1/Z =

∫
i

dIi di+

∫
i

IndisiDividi+
∫
i

dUi PU
i di,

where dIi = DI
i /Z, d

U
i = DU

i /Z, and si = Si/Z. We can rewrite the HH problem as

max
{si},{dIi },{dUi },Z

log(W − Z) + ψlog
(
ZH

(
{dIi }, {dUi }

))
+ βlog

(
E
[
(R1Z)

1−φ
]1/(1−φ)

)
.

The FOC for Z is

1

W − Z
=
ψ

Z
+

β

E [(R1Z)1−φ]1/(1−φ)

1

1− φ

(
E
[
(R1Z)

1−φ
]1/(1−φ)−1

)
E
[
R1−φ

1 (1− φ)Z−φ
]

which reduces to

Z =
β + ψ

1 + β + ψ
W,

and therefore

C0 =
1

1 + β + ψ
W.

SDF. To derive the representative household’s stochastic discount factor, we consider the

first-order condition for a hypothetical riskfree bond without any liquidity benefits, with price

q̃. The FOC would be

q̃

C0

=
β

E
[
C1−φ

1

]1/(1−φ)

1

1− φ

(
E
[
C1−φ

1

]1/(1−φ)−1
)
E
[
(1− φ)C−φ

1

]
.

Canceling and multiplying by C0

q̃ = β
C1−φ

0

E
[
C1−φ

1

]E[(
C1

C0

)−φ
]
.
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We can thus define

M = β
C1−φ

0

E
[
C1−φ

1

] (C1

C0

)−φ

, (31)

such that q̃ = E[M ].

Deposits. Then HH FOCs for deposits are

qIi = ψHI
iC0 + E[M ], (32)

qUi = ψHU
i C0 + E

[
MPU

i

]
. (33)

Bank equity. The FOC for bank equity shares is

pi = E {M ((1− F (ϵi))Eϵ[Divi|ϵi > ϵi] + (1− π)(F (ϵi)− F (ϵi))Eϵ[Divi|ϵi > ϵi > ϵi])} . (34)

C.2 Bank Problem

Stage 1a. We start with the optimization problem at the run stage 1a. Given Assumptions

1 and 2, banks will sell bonds at market price RB until they have either paid out all running

depositors, or they have liquidated all bonds

B̂i = min

{
Bi,

(1− ϕ)DU
i

RB

}
.

Banks do not want to sell more capital than necessary at fire sale prices, and the constraint

(8) is always binding. Thus capital fire sales are

K̂i =
(1− ϕ)DU

i −RBB̂i

RKδ
.

We can write the post-run dividend more compactly defining the function

x(Bi, D
U
i ) = min

{
1,

RBBi

(1− ϕ)DU
i

}
. (35)

Using this definition, we have that

RBB̂i = x(Bi, D
U
i )(1− ϕ)DU

i ,

since either the bond portfolio is (weakly) more valuable than the amount that needs to be paid

out, RBBi ≥ (1 − ϕ)DU
i , in which case x(Bi, D

U
i ) = 1, or the full bond portfolio is liquidated
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but insufficient, in which case x(Bi, D
U
i ) < 1 and B̂i = Bi. We can thus express the key terms

in the bank payoff as

R̄B(Bi − B̂i)− ϕDU
i = R̄BBi −DU

i

[
x(Bi, D

U
i )(1− ϕ)

R̄B

RB

+ ϕ

]
.

This in turn allows us to write the upper default threshold as

ϵi =
DI

i + ϕDU
i + (1− ϕ)DU

i x(Bi, D
U
i )

R̄B

RB
− R̄BBi

AK
i RK

(
Ki − (1−ϕ)DU

i (1−x(Bi,DU
i ))

RKδ

)1−κ . (36)

Recall that the lower default threshold is

ϵi =
DI

i +DU
i − R̄BBi

AK
i RKK

1−κ
i

. (37)

Stage 0. The dividend for the time-0 problem becomes

E[Mmax{0,Div∗i }] = E
[
M

(
Iϵi≥ϵi + Iϵi≥ϵi≥ϵi

Iςi=0

) (
AK

i RKϵiK
1−κ
i + R̄BBi −DI

i −DU
i

)]
,

which we can write as

E
[
M(1− F (ϵi))

(
AK

i RKϵ
+
i K

1−κ
i + R̄BBi −DI

i −DU
i

)]
+E

[
M(1− π)(F (ϵi)− F (ϵi))

(
AK

i RKϵ
+
i K

1−κ
i + R̄BBi −DI

i −DU
i

)]
with the the conditional expectations

ϵ+i = E[ϵi|ϵi > ϵi],

ϵ+i = E[ϵi|ϵi > ϵi > ϵi].

Given this definition of the bank dividend, the optimization problem in (11) only needs to

be solved at time 0, with the function (35) reflecting optimal choices at the run stage, and the

default thresholds (36) and (37) capturing the optimal default decision.

In problem (11), x(Bi, D
U
i ) is a non-differentiable function of Bi and D

U
i . For the numerical

implementation, we define

Q(z) =

∫
min {ν, z} dF (ν) = Fν (z) E [ν | ν < z] + (1− Fν (z)) z.
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where ν is a random variable with positive support, c.d.f Fν , and E[ν] = 1. We then define the

function

x̃(Bi, D
U
i ) = Q

(
RBBi

(1− ϕ)DU
i

)
and approximate

x(Bi, D
U
i ) ≈ x̃(Bi, D

U
i ).

First-order conditions. We attach multiplier µi to the leverage constraint (13) and λi to

the liquidity constraint (14). The bank FOC for capital is

1 = µiθ
K+

∂qUi (Ai)

∂Ki

DU
i +E

[
M

(
(1− F (ϵi)) ϵ

+
i + (1− π)(F (ϵi)− F (ϵi))ϵ

+
i

)
(1− κ)RKA

K
i K

−κ
i

]
.

(38)

The bank FOC for bonds Bi is

p =µiθ
B + λi +

∂qU(Ai)

∂Bi

DU
i + E

[
M(1− F̂ (ϵi, ϵi))R̄B

]
. (39)

The FOCs for deposits are

qIi =µi + λiθ
D − ∂qI(DI

i )

∂DI
i

DI
i −

∂qU(Ai)

∂DI
i

DU
i + E

[
M(1− F̂ (ϵi, ϵi))

]
, (40)

qUi =µi + λiθ
D − ∂qU(Ai)

∂DU
i

DU
i + E

[
M(1− F̂ (ϵi, ϵi))

]
. (41)

The FOCs in (38) – (41) contain derivatives of the deposit demand functions from households

in (21) and (22). In the next section, we provide expressions for these terms.

C.3 Derivatives of qI and qU

C.3.1 Insured

To compute the derivative of qI(DI
i ) given by (21) with respect to DI

i , we apply the same

assumptions as in the usual monopolistic competition setup. Banks internalize the effect on DI
i

in household demand, but not the effect on the aggregate DI .

∂qI(DI
i )

∂DI
i

= C0ψ(ρI − 1)α
(AD

i )
ρI

(DI
i )

2

(
DI

DI
i

)−ρI ( H

DI

)−η

= −C0ψ
1− ρI
DI

i

HI
i . (42)
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C.3.2 Uninsured

Recall the household FOC for uninsured deposits

qU(Ai) = ψHU
i C0 + E

[
MPU(Ai)

]
,

with the payoff PU(Ai) provided in (23),

PU
i =1− F (ϵi) + F (ϵi)E[r

nr
i |ϵi < ϵi]

+ (1− π) (F (ϵi)− F (ϵi)) + π (F (ϵi)− F (ϵi)) (1− ϕ+ ϕE[rri |ϵi ≤ ϵi ≤ ϵi]) .

We want to calculate the derivative of this function with respect to bank choices in Ai. The

derivatives of the deposit demand function are

∂qU(Ai)

∂DU
i

= −ψ1− ρU
DU

i

HU
i + E

[
M
∂PU(Ai)

∂DU
i

]
,

∂qU(Ai)

∂DI
i

= E

[
M
∂PU(Ai)

∂DI
i

]
,

∂qU(Ai)

∂Bi

= E

[
M
∂PU(Ai)

∂Bi

]
,

∂qU(Ai)

∂Ki

= E

[
M
∂PU(Ai)

∂Ki

]
.

Computing the derivatives of qU therefore comes down to computing the derivatives of PU for

each Zi ∈ {DI
i , D

U
i , Ki, Bi}. In what follows, denote the derivatives of the default probability

weighted recovery values as

RZ,nr
i =

∂(F (ϵi)E[r
nr
i |ϵi < ϵi])

∂Zi

for the no-run states, and

RZ,r
i =

∂((F (ϵi)− F (ϵi)) E[r
r
i |ϵi ≤ ϵi ≤ ϵi])

∂Zi

for run states. The derivative of the payoff PU(Ai) takes the general form

∂PU(Ai)

∂Zi

= −
(
πϕf(ϵi)

∂ϵi
∂Zi

+ (1− πϕ)f(ϵi)
∂ϵi
∂Zi

)
+RZ,nr

i + πϕRZ,r
i .

We thus need to calculate the derivatives of both default thresholds with respect to all bank

choices. To do so, we define the marginal product of capital for bank i, conditional on the

outcome of the run game as

MPKnr
i = (1− κ)RKA

K
i K

−κ
i , (43)

MPKr
i = (1− κ)RKA

K
i

(
Ki −

(1− ϕ)DU
i (1− x̃i)

δRK

)−κ

. (44)
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Solvency default threshold. First, for ϵi given in (37) we get

∂ϵi
∂DU

i

=
1

Di

,
∂ϵi
∂DI

i

=
1

Di

,
∂ϵi
∂Ki

= −MPKnr
i ϵi

Di

,
∂ϵi
∂Bi

= −R̄B

Di

where

Di = RKA
K
i K

1−κ
i .

Run default threshold. For the threshold ϵi provided in (36), we obtain similar expressions

for capital and insured deposits

∂ϵi
∂DI

i

=
1

Di

,
∂ϵi
∂Ki

= −MPKr
i ϵi

Di

,

where

Di = AK
i RK

(
Ki −

(1− ϕ)DU
i (1− xi)

δRK

)1−κ

.

For the derivative w.r.t. DU
i , we get

∂ϵi
∂DU

i

=
(ϕ+ R̄B

RB
(1− ϕ)Fν,iν

−
i )Di +

1−κ
δ
AK

i

(
Ki − (1−ϕ)DU

i (1−x̃i)

δRK

)−κ

(1− Fν,iν
−
i )Ni

(Di)2

Ni = DI
i + ϕDU

i + x̃i
R̄B

RB

(1− ϕ)DU
i − R̄BBi,

and we have further defined the conditional expectations ν−i = E
[
ν | ν < RBBi

(1−ϕ)DU
i

]
. To calculate

the expression above we have used the fact that

∂x̃(Bi, D
U
i )

∂DU
i

= −(1− Fν,i)RBBi

(1− ϕ)(DU
i )

2
,

and the definition of x̃ as

x̃ = Q(z) = Fν(z)ν
−
i + (1− Fν(z))z.

We can simplify the expression to get

∂ϵi
∂DU

i

=
ϕ+ (1− ϕ)

(
R̄B

RB
Fν,iν

−
i + (1− Fν,iν

−
i )

MPKr
i

δRK
ϵi

)
Di

. (45)

Similarly, we take the derivative w.r.t. Bi

∂ϵi
∂Bi

=

(
−RB + R̄B(1− Fν , i)

)
Di − 1−κ

δ
AK

i

(
Ki − (1−ϕ)DU

i (1−x̃i)

δRK

)−κ

RB(1− Fν,i)Ni

(Di)2
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where we use the fact that
∂x(Bi, D

U
i )

∂Bi

=
RB(1− Fν,i)

(1− ϕ)DU
i

.

This reduces to

∂ϵi
∂Bi

= −
RB + (1− Fν,i)

(
RB

MPKr
i

δRK
ϵi − R̄B

)
Di

. (46)

Combining. We can now combine the expressions above to obtain the complete derivatives.

First, for DU
i

∂qUi
∂DU

i

= − ψ
1− ρU
DU

i

HU
i − E

[
M

(
(1− πϕ)f(ϵi)

1

Di

−RDU ,nr
i

)]

− πϕE

M
ϕ+ (1− ϕ)

(
R̄B

RB
Fν,iν

−
i + (1− Fν,iν

−
i )

MPKr
i

δRK
ϵi

)
Di

−RDU ,r
i

 . (47)

For insured deposits we get

∂qUi
∂DI

i

= − E

[
M

(
(1− πϕ)f(ϵi)

1

Di

−RDI ,nr
i + πϕf(ϵi)

1

Di

− πϕRDI ,r
i

)]
. (48)

For capital, the derivative is

∂qUi
∂Ki

= E

[
M

(
(1− πϕ)f(ϵi)

MPKnr
i ϵi

Di

+RK,nr
i + πϕf(ϵi)

MPKr
i ϵi

Di

+ πϕRK,r
i

)]
. (49)

Finally, for bonds we calculate

∂qUi
∂Bi

= E

[
M

(
(1− πϕ)f(ϵi)

R̄B

Di

+RB,nr
i

)]

+ πϕE

M
f(ϵi)RB + (1− Fν,i)

(
RB

MPKr
i

δRK
ϵi − R̄B

)
Di

+RB,r
i

 . (50)

Inserting the derivatives in (47) – (50) into the first-order conditions in (38) – (41) completes the

bank’s optimality conditions. Note that the expressions above contain unresolved derivatives

of the recovery values, RZi,j
i , for Zi ∈ {DU

i , D
I
i , Ki, Bi} and j ∈ {nr, r}. Calculating these

derivatives explicitly requires substantial algebra, but provides little additional insight. The

derivatives of the recovery values can be signed unambiguously, with

RDU
i ,j

i < 0, RDI
i ,j

i < 0

and

RKi,j
i > 0, RBi,j

i > 0,
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for j ∈ {nr, r}. This in turn implies that we can sign the derivatives of all assets but bonds as

∂qUi
∂DU

i

< 0,
∂qUi
∂DI

i

< 0,
∂qUi
∂Ki

> 0.

The sign of bond derivative
∂qUi
∂Bi

depends on parameter values; the termRB
MPKr

i

δRK
ϵi−R̄B compares

the value of bonds during runs to the final portfolio payoff. In our calibrated model, we have

∂qUi
∂Bi

> 0, since fire sale losses on capital are sufficiently large (δ is sufficiently small), and a

fraction of bonds is held in the AFS account (such that RB and R̄B are correlated). These signs

are intuitive: on the margin, issuing more deposits of either kind increases the bank’s default

risk and thus the required interest paid to households, equivalent to a lower issuance price at

time 0. By the same logic, holding more assets either in the shape of loans or bonds reduces

the bank’s default risk and the interest rate required on uninsured deposits.

C.4 Condition for ϵi > ϵi

Setting Bi = 0 and xi = 0, the condition becomes

ϵi − ϵi =
DI

i(
1− DU

i

δRKKi

)1−κ − (DI
i +DU

i ) > 0. (51)

A binding leverage constraint implies that

Ki =
DI

i +DU
i

θK
,

which we can substitute into (51) to get

DI
i(

1− θKDU
i

δRK(DI
i +DU

i )

)1−κ > DI
i +DU

i .

Defining ui = DU
i /(D

U
i + DI

i ) as in the main text and dividing both sides by DU
i + DI

i then

gives
1− ui(

1− θKui

δRK

)1−κ > 1.

Note that bank choices in combination with the power production function give rise to an Inada

condition that guarantees 1− θKui

δRK
> 0. We can thus rewrite the condition as

(1− ui)
1

1−κ > 1− θKui
δRK

,

and some additional algebra yields the expression in the main text in equation (20).
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Table A1: Model Calibration Parameters

Name Description Value

κ production function curvature 0.125

β discount factor 0.99

µRK mean capital return 1.0875

σRK deviation of capital return 0.045

πK probability of high capital return 0.5

r bond return 0.0123

µRB mean bond return 1

σRB deviation of bond return 0.035

ω Afs share 0.4

πB probability of high bond return 0.5

ψ liquidity preference 0.048

α insured deposit share 0.65

ρ elasticity of substitution between insured deposits 0.855

ρU elasticity of substitution between uninsured deposits 0.96

η elasticity of substitution between uninsured and insured deposits 0.025

θ leverage constraint 0.88

π run probability 0.25

ϕ uninsured deposit haircut in runs 0.03

δ 1 - firesale costs of capital 0.78

φ risk aversion 2

σϵln volatility of idiosyncratic capital shocks 0.11

Zmean mean loan productivity 1

Zloc minimum loan productivity 0.6

Zscale max - min loan productivity 1.55

Zshape shape of loan productivity distribution std = shape * scale 0.13

bailKmin size of bank below which no bailout 7.5

bailα rate of bailout probability increase 0.8

ξ 1 - share lost in recovery 0.25

A− for below median loan productivity 1.05

A+ for above median loan productivity 0.4

W0 initial wealth set to ensure Kagg = 1 4

61


	Introduction
	Stylized Facts
	Model of the Cross-section of Banks
	Environment and Timing
	Households
	Banks
	Bank Problem
	Recovery Value

	Equilibrium
	Equilibrium Conditions

	Calibration
	Parameters
	Model Fit

	Results
	Key Model Mechanisms
	The Role of Runs
	Differential Market Power in Insured versus Uninsured
	Deposit Productivity Heterogeneity

	Effects of Aggregate Shocks on Bank Defaults
	Were Banks ``Surprised'' By Rate Hikes? 
	Partial Guarantees for Uninsured Deposits
	Policy Implications

	Conclusion
	Calibration 
	Empirical Support for Model Assumption 
	Liquidity Converage Ratio 
	Uninsured versus insured deposits as different products 
	Interest rate risk in unmarked assets

	Derivations
	Household Problem
	Bank Problem
	Derivatives of qI and qU
	Insured
	Uninsured

	Condition for i > i


