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Abstract

We study liquidity requirements in a model of fire sales that nests three common pricing

mechanisms—cash-in-the-market, second-best-use, and adverse selection—and can produce

the same observables under these mechanisms. We identify a novel externality that arises un-

der adverse selection and operates through the average quality of the assets traded, and three

additional forces that shape the optimal policy under all pricing mechanisms: (i) the differ-

ence between the sellers’ and buyers’ ability to collect cash flow from the marginal unit traded,

(ii) the sensitivity of the fire-sale price to the sellers’ liquidity holdings, and (iii) incomplete

risk sharing. Absent risk-sharing considerations and collateral constraints, the equilibrium is

(Pareto) efficient under cash-in-the-market pricing; a liquidity requirement is optimal under

second-best-use pricing; and a liquidity ceiling (i.e., a cap on liquid assets) is optimal under

adverse selection. With inefficient risk sharing and collateral constraints, the socially optimal

level of liquidity remains higher with second-best-use pricing compared to cash-in-the-market

pricing, and a liquidity ceiling remains optimal with adverse selection.

1 Introduction

Fire sales are common phenomena in periods of financial distress. These episodes are characterized

by large sales of financial assets and a reduction in their prices, despite little to no change in the

fundamentals, and they occur when investors are forced to sell their assets for various reasons.

Examples abound across markets and asset classes, ranging from assets held by distressed banks
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(Granja, Matvos, and Seru, 2017) to asset-backed securities (Merrill et al., 2021) and highly rated

corporate bonds (Falato, Goldstein, and Hortaçsu, 2021; Ma, Xiao, and Zeng, 2022).

To mitigate the risks posed by fire sales, policymakers have increasingly relied on liquidity

requirements, which have become a cornerstone of financial regulation over the past two decades.

Following the 2008 financial crisis, liquidity requirements were imposed on banks and money

market mutual funds. The financial distress caused by the COVID-19 crisis further spurred action,

with the Securities and Exchange Commission (SEC) tightening liquidity requirements on money

market mutual funds and proposing liquidity requirements for open-end mutual funds.

The literature provides several theories that use different pricing mechanisms to explain low

asset prices in a fire sale. Some theories are based on the assumption that buyers have limited cash

available to purchase assets (Allen and Gale, 1998). Others assume that buyers have a low willing-

ness to pay because they can collect lower cash flows than sellers (i.e., the so-called second-best-use

assumption; Shleifer and Vishny, 1992; Kiyotaki and Moore, 1997; Lorenzoni, 2008; Dávila and

Korinek, 2018). A third set of theories is based on asymmetric information and adverse selection

(Guerrieri and Shimer, 2014; Kurlat, 2016; Chang, 2018; Dow and Han, 2018).

Despite a consensus on the main theories to explain fire sales, there is strong disagreement in

the literature on the role and effects of liquidity requirements. Some theoretical analyses argue

that liquidity requirements are beneficial (Goldstein et al., 2022; Kara and Ozsoy, 2020; Kashyap,

Tsomocos, and Vardoulakis, 2024), others suggest that liquidity requirements can be counterpro-

ductive and reduce welfare (Malherbe, 2014), and others find positive or negative welfare effects

depending on some model parameters (Allen and Gale, 2004). While these studies adopt different

fire-sale pricing mechanisms, the lack of comparability among models leaves open the question of

whether the pricing mechanism itself or other economic forces drive the divergent policy implica-

tions. More broadly, the literature still lacks a comprehensive analysis of the full set of forces that

determine the optimal design of liquidity regulation.

In this paper, we study fire-sale inefficiencies and liquidity requirements using a unifying frame-

work that nests the three main pricing mechanisms proposed by the fire-sale literature. That is, our

framework includes, as special cases, a model with cash-in-the-market pricing, one with second-

best-use pricing, and a third one with adverse-selection pricing.

We provide two main contributions. First, the socially optimal level of intermediaries’ liquidity

holdings and the optimal regulatory stance differs dramatically depending on the underlying pricing

mechanism responsible for fire sales. Second, our analysis sheds light on the forces that shape the
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optimal liquidity regulation. Specifically, we identify a novel externality that arises under adverse

selection and operates through the average quality of the assets traded, and three additional forces

that shape the optimal policy under all pricing mechanisms: (i) the difference between the sellers

and the buyers’ ability to collect cash flow from the marginal unit traded, (ii) the sensitivity of the

fire-sale price to the sellers’ liquidity holdings, and (iii) if and how market incompleteness prevents

full and efficient risk sharing. Depending on the mechanism and the impact of market incomplete-

ness on risk sharing, the optimal policy may involve no regulation, a liquidity requirement (i.e., a

lower bound on liquidity holdings), or a liquidity ceiling (i.e., an upper bound).

Because of the generality of our framework, our analysis provides a unifying theory of liquidity

regulation applicable to a broad range of markets and asset classes. Our results imply that the mere

possibility of fire sales is insufficient to justify liquidity requirements, and offer practical guidance

for designing regulations governing intermediaries’ liquidity holdings.

Our framework yields observationally equivalent equilibria under the three pricing mechanisms

we consider, under appropriate parameter restrictions. This means that our framework can produce

identical outcomes in portfolio choices, trading volumes, prices, and buyers’ demand elasticity un-

der cash-in-the-market, second-best-use, and adverse-selection pricing. Consequently, determining

the socially optimal level of liquidity requires understanding the microfoundations, as identical

equilibrium outcomes could mask either excess, insufficient, or optimal liquidity levels.

We first use a simple baseline framework that allows us to abstract from risk-sharing consider-

ations and the effects of collateral constraints, delivering stark results. The model has two assets

(i.e., a short-term liquid asset and a long-term asset) and, similar to the fire-sale literature, two

sets of agents (which we label the sellers and the buyers). An exogenous shock that increases the

sellers’ liquidity needs triggers a fire sale, forcing them to sell long-term assets to the buyers. In

the efficiency and policy analysis, we focus on the composition of the sellers’ portfolios in terms

of their liquid and long-term assets before the possible realization of fire sales, aiming to determine

whether and how the mix of the two assets should be regulated.

With cash-in-the-market pricing, the equilibrium is (Pareto) efficient and, thus, no liquidity

regulation is necessary. This is because the occurrence of a fire sales—relative to a scenario with no

shocks that induce fire sales—simply redistribute resources from the sellers to the buyers, as buyers

are able to buy assets at a low price. Hence, fire sales generate no aggregate welfare losses because

buyers can extract the same cash flow as sellers from the long-term assets. Policy interventions

would either move the equilibrium along the Pareto frontier or create aggregate welfare losses.
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With second-best-use pricing, the buyers collect less cash flow from long-term assets than the

sellers do. Thus, a fire sale reduces aggregate efficiency because long-term assets end up in the

hands of the buyers, who are less efficient at collecting cash flow. The optimal policy is a liquidity

requirement, which reduces the depth of a fire sale and results in more long-term assets being

retained by sellers, increasing the economy-wide cash flow collected from such assets.

With adverse-selection pricing, the equilibrium is again inefficient, and two forces affect the

optimal policy. First, there is a standard distributive externality (Dávila and Korinek, 2018; Lanteri

and Rampini, 2023) because buyers collect less cash flow from the marginal unit traded, relative to

sellers. This gap in cash-flow collected arises even if buyers and sellers can collect the same cash

flow from any given asset. Indeed, sellers have private information about the asset quality under

adverse-selection pricing, and on the margin, trade high-quality assets—all of the low-quality ones

are sold as infra-marginal units. But for buyers, the marginal unit traded is the average asset in the

market, which includes both high- and low-quality ones. Second we highlight a novel externality

relative to the literature that studies fire sales inefficiencies, which we label market quality exter-

nality. This externality arises because, when sellers make their initial portfolio choices, they do

not internalize that such choices affect the average quality of the assets traded in a fire sales, and

with it, the cash flow that buyers can collect from such assets—higher quality translates into higher

cash flow, and thus, higher welfare for buyers. The two externalities partially offset each other,

and to see why, consider a regulatory intervention that results in an increase in the average asset

quality, and with it, higher asset prices. Buyers lose as they have to pay more for any amount they

purchase, but gains because the higher quality translates into higher consumption for them. These

two effects exactly offset each other, and ultimately, only sellers’ welfare is relevant to design the

optimal regulation. Thus, the optimal policy resembles the choice of a “monopolistic seller” that

makes its ex-ante portfolio choices with no regards for buyers’ welfare.

Importantly, with adverse-selection pricing, the optimal policy is a liquidity ceiling, rather

than a liquidity requirement as with second-best-use pricing. Under both second-best-use and

asymmetric-information pricing, the regulator wants to reduce the depth of a fire sale. But with

asymmetric information, this objective is achieved with a ceiling on sellers’ liquidity holdings,

rather than a lower bound. The logic is similar to that in Malherbe (2014). That is, if the sellers

enter a fire-sale episode with less liquidity, a larger fraction of the sales will be due to fundamental

reasons and a smaller fraction to private information, reducing the extent of the adverse-information

problem. This result highlight the importance of the sensitivity of asset prices to sellers’ liquidity
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holdings in the design of the optimal regulation.

We then provide two extensions. First, we relax some assumptions about buyers’ and sellers’

utility so that market incompleteness prevents full and efficient risk sharing. Second, we add a

collateral constraint for sellers—a common feature in fire-sale models in the literature. Under both

extensions, the equilibrium is generically inefficient under all pricing mechanism—even cash-in-

the-market pricing. However, the policy analysis mirrors the results of the baseline model. First,

when comparing two observationally equivalent equilibria under cash-in-the-market and second-

best-use pricing, the socially optimal level of liquidity is higher under second-best-use pricing.

Thus, regulation should be “tighter” if the buyers’ low willing to pay is driven by second-use con-

siderations. Second, under asymmetric information, the baseline result is qualitatively unchanged,

and the optimal policy remains a liquidity ceiling akin to the choice of a “monopolistic seller.”

Our analysis shows that the socially optimal level of liquidity and the optimal policy are cru-

cially affected by distributive externalities as well as a novel externality in the context of fire sales,

that we label market quality externality. Relative to the existing literature that focuses on distribu-

tive externalities, our results make progress by building on the insight of Dávila and Schaab (2023)

to distinguish two forces that affect such externalities: the gap in the cash flow that the sellers and

buyers are able to collect from the marginal unit they trade, and the role of imperfect risk sharing.

While the first force typically points in one direction—in nearly all fire-sale models in the liter-

ature, the sellers can collect the same or more cash flow than the buyers can—the second one is

ambiguous and depends on whether imperfect risk sharing has a higher impact on the buyers or

the sellers. We thus establish that the inability to unambiguously sign the effects of the distributive

externalities is due solely to imperfect risk sharing. While this result is derived in the context of

liquidity requirements, the logic behind it seems robust to other policy analyses.

Our analysis also shows that externalities linked to collateral constraints—which are widely

analyzed in the literature—are not central in understanding our key findings. That is, even though

collateral externalities can be important quantitatively, they do not affect the basic result that the

socially optimal level of liquidity is higher under second-best-use relative to cash-in-the-market,

and that the optimal policy is a liquidity ceiling under asymmetric information.

A direct policy implication is related to the debate about the introduction of liquidity require-

ments for open-ended mutual funds, proposed by the SEC and motivated by the March 2020 “dash

for cash.” This event was a fire sale of high-quality corporate bonds and, thus, was likely unrelated

to second-best-use considerations as the investors should easily collect cash flow from corporate
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bonds. There is also no evidence of adverse selection (Haddad, Moreira, and Muir, 2021). If the

fire-sale prices in this event were driven by cash-in-the-market pricing, and if the concerns are

about similar events in the future, our analysis suggests that the impact of market incompleteness

on risk sharing should have first-order importance in determining the optimal policy.

More generally, our analysis indicates that policymakers should be cautious about the link be-

tween fire sales and liquidity requirements. The mere possibility of fire sales does not, by itself,

justify imposing liquidity requirements, and there is no one-size-fits-all approach to regulating in-

termediaries’ liquid-asset holdings. The optimal policy hinges on the micro-foundations of fire

sales and on how market incompleteness shapes risk sharing, which likely differs depending on

the characteristics of the assets, intermediaries, and potential buyers. Our results isolate the key

forces on which regulators should focus when tailoring liquidity rules, and although we derive

these insights in a pared-down framework, the mechanisms are likely to remain relevant in richer

environments.

1.1 Additional comparisons with the literature

Among the papers that study optimal policies to mitigate fire sales of financial assets, several focus

on regulating ex-ante borrowing and total investments (e.g., Lorenzoni 2008; Stein 2012; Dávila

and Korinek 2018; Kurlat 2021). Our paper complements these studies, as we focus on the com-

position of investors’ portfolios and the share invested in liquid assets, abstracting from the size of

investors’ borrowing and investments.

Our work is closely related to Dávila and Korinek (2018). Using second-best-use pricing, they

identify collateral externalities and distributive externalities—the latter are driven by incomplete

markets—and provide sufficient statistics to guide policy interventions. While our policy analysis

builds on their approach, there are important distinctions. First, Dávila and Korinek (2018) fo-

cus on the size of investors’ borrowing and investments, whereas we focus on the composition of

their portfolios, in terms of liquid and illiquid assets, to study liquidity requirements. Second, we

show that the sufficient statistics identified by Dávila and Korinek (2018) can be used not only with

second-best-use pricing but also with cash-in-the-market and asymmetric-information pricing—

overturning the conjecture of Kurlat (2021) about the inability to use the approach of Dávila and

Korinek (2018) with asymmetric information. We also highlight the novel market quality external-

ity, that arises under asymmetric information and interacts with the distributive externality. Third,

we use the insights of Dávila and Schaab (2023) to further distinguish two forces that affect dis-
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tributive externalities (i.e., the cash flow collected from the marginal unit traded, and imperfect

risk sharing), allowing us to make progress in understanding the effects of distributive externalities.

While Dávila and Korinek (2018) show that distributive externalities can lead to choices that are

either too high or too low relative to those preferred by the regulator, our results show that the in-

ability to unambiguously sign these effects to study liquidity requirements is due only to imperfect

risk sharing.

Another closely related paper is Kurlat (2021), which compares the optimal size of ex-ante

investments, using second-best-use and adverse-selection pricing. While the spirit of our exer-

cise is similar, there are important differences. First, we also consider cash-in-the-market pricing.

Second, Kurlat (2021) focuses on the size of ex-ante investments, whereas we focus on the com-

position in terms of liquid and illiquid assets. Third, in Kurlat (2021), investors have linear utility,

whereas we extend our analysis to a setting with general utility to study the impact of risk-sharing

considerations. Fourth, even though Kurlat (2021) states that “[t]he result of Dávila and Korinek

(2018) that there are measurable statistics that suffice to determine the direction of the externality

[...] does not extend to the asymmetric-information pricing,” we show that the sufficient statistics

identified in Dávila and Korinek (2018) can actually be used with asymmetric-information pricing

(and with cash-in-the-market pricing too) to perform policy analysis. Fifth, we identify the novel

market quality externality, which affects the optimal policy stance. Sixth, we show that the optimal

regulatory stance with asymmetric-information pricing is related to how asset prices respond to the

sellers’ liquidity holdings (consistent with Malherbe, 2014), in combination with the distributive

and market quality externality. Whether or not the buyers and sellers can collect the same cash flow

from any given assets—a point the literature has often focused on (Dow and Han, 2018; Kurlat,

2021)—matters only insofar as it affects the cash flow collected from the marginal unit traded.

A third closely related paper is Malherbe (2014). In both Malherbe (2014) and the version of

our model with asymmetric information, an increase in the sales of high-quality (long-term) assets

increases the market price, as the average asset quality in the market increases. The key result

of Malherbe (2014) is that this mechanism contributes to the existence of multiple equilibria—a

good equilibrium with large trading volume and a bad equilibrium with a liquidity dry-up. We

show that the same mechanism creates an inefficiency even if one abstracts from multiplicity or

the equilibrium is unique. And while Malherbe (2014) note that a liquidity requirement reduces

welfare with asymmetric information, we establish that the unregulated equilibrium is inefficient

when fire sales are driven by asymmetric information, we show that the inefficiency is related to
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distributive and market quality externalities, and we show that the optimal policy is a liquidity

ceiling.

Other papers study fire sales and and intermediaries’ liquidity holdings but focus on other as-

pects. Farhi, Golosov, and Tsyvinski (2009) show that liquidity requirements can mitigate the

problem of hidden trades in a Diamond-Dybvig framework. Calomiris, Heider, and Hoerova (2015)

show that regulating banks’ cash holdings is beneficial because cash is easily observable and risk-

less, increasing a bank incentives to manage risk in the remaining, non-cash portfolio of risky asset.

Hachem and Song (2021) show that liquidity regulation can trigger credit booms, focusing on China

from 2007 to 2014. Robatto (2023) studies the interaction between liquidity requirements and cen-

tral bank interventions. A separate literature that includes Diamond and Dybvig (1983), Acharya

and Yorulmazer (2008) and Gertler and Kiyotaki (2015) focuses on fire sales in the context of

bank runs, and other papers such as Bolton, Santos, and Scheinkman (2011), Gale and Yorulmazer

(2013), Li (2023), and Robatto (2019) study central bank interventions and expansion of public

liquidity during fire sales.

2 General model framework

This section presents a general model framework that nests three pricing mechanisms commonly

used in the literature. That is, under some assumptions about the primitives of the model, the model

produces fire sales driven by cash-in-the-market pricing, or second-best-use pricing, or asymmetric

information.

Following a standard approach in the fire-sale literature (e.g., Dávila and Korinek, 2018), we

consider an economy populated by two sets of investors—the sellers (s) and the buyers (b)—and

the economy lasts for three periods, t = 0, 1, 2. At t = 0, the sellers make their portfolio choices

by choosing their investments in a liquid asset and a long-term asset. At t = 1, the buyers are born,

and a fire sale can occur depending on the realization of an exogenous shock that forces the sellers

to sell some of their holdings of the long-term asset. At t = 2, the payoff of the long-term assets

are realized.

2.1 Environment

We begin by describing the preferences of sellers and buyers. Sellers have linear utility from

consumption, cs2, at t = 2. Buyers’ utility is u
(
cb1
)
+cb2, where cb1 and cb2 denote buyers’ consumption
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at t = 1 and t = 2, respectively, and u(·) is weakly increasing and weakly concave. The linearity of

the buyers and sellers’ utility functions at t = 2 allows us to abstract from inefficiencies driven by

incomplete risk sharing. We extend the analysis in Section 4 to a framework with a general utility

function at t = 2 to account for such inefficiencies.

At t = 0, the sellers have an endowment, es, and issue debt, ds0, where ds0 represents the face

value of the debt. We assume that the debt is issued at par, and we return below to the timing of

the debt repayment. The sellers allocate their resources, es + ds0, to liquid and long-term assets,

denoted by ls0 and ks
0, subject to the budget constraint

ls0 + ks
0 ≤ es + ds0. (1)

We assume that the debt, ds0, is exogenously given by ds0 = ds, and we focus on the choices of

{ls0, ks
0}.1 This allows us to take the size of the sellers’ portfolio as given (i.e., es + ds) and focus

on whether the allocation of these resources to long-term and liquid assets is efficient or the sellers’

liquidity holdings should be regulated. Our analysis complements that of several other fire-sales

papers, which often focus on the inefficiencies that lead to overborrowing (Lorenzoni 2008; Stein

2012; Dávila and Korinek 2018; Kurlat 2021).

Buyers are born at t = 1 with an endowment of liquid assets only, similar to e.g. Stein (2012).

We normalize such an endowment to one.2

The liquid asset is standard; for each unit invested at time t = 0, there is one unit available at

t = 1. The liquid asset technology is also available at t = 1, so that for each unit invested at t = 1,

there is one unit available at t = 2.

The long-term asset works as follow. For each unit invested by sellers at t = 0, the asset

produces no output at t = 1, and its productivity at t = 2 depends on two elements: (i) a quality

shock realized at t = 1 and (ii) whether the asset is held, at t = 2, by sellers or buyers.

• Quality shock: At the beginning of t = 1, a fraction 1 − θ of the long-term assets held by

each sellers becomes of high quality, and a fraction θ becomes of low-quality. The fraction

θ of low-quality assets is a random variable realized at t = 1, and we will focus our analysis

1Regarding ds0, one can assume that there is a mass of external agents that may deposit their endowments with the
sellers. Assuming the external agents are risk neutral and that they can only deposit with the sellers or use a storage
technology, and that the sellers can make a take-it-or-leave-it offer, the sellers will offer a zero return on deposits, and
ds0 will be equal to the external agents’ total endowment.

2To prove some of our results, we require the endowment of the buyers’ liquid asset to be 1+ ε for a (small) ε > 0.
This is just a technical assumption and, for simplicity, we focus the exposition on the limiting case ε → 0.

9



on the case in which θ can take values {0, θ̄}, with θ̄ ∈ [0, 1). (We will describe the exact

process for θ later.) While the realization of θ is common knowledge to all agents, sellers

have private information, at t = 1, about the quality of each asset they hold. Low quality

assets produce no output at t = 2, and the productivity of high-quality assets depend on

whether they are hold by buyers or sellers, as described next.

• Sellers and buyers productivity at t = 2: Consider an agent that enters t = 2 with an amount

k ≥ 0 of high-quality assets. If the agent is a seller, she collects output Rk (i.e., the marginal

productivity is R). If the agent is a buyer, she collects output f(k), where f(·) is a strictly

increasing and weakly concave function that satisfies f(0) = 0 and f ′(0) = R (i.e., the

marginal productivity is f ′(k) ≤ R).

At t = 1, the sellers have to repay a fraction γ of debt ds0, while the remaining fraction 1 − γ

will be due at t = 2. We assume that γ is an aggregate shock realized at t = 1 that can take values

γ ∈ {0, γ̄}, with γ̄ ∈ (0, 1). We refer to γ = 0 as the low-withdrawal state and γ = γ as the high-

withdrawal state. We can thus interpret sellers as banks, money market mutual funds, or mutual

funds that may experience withdrawals or outflows or, more generally, acute liquidity needs.

We assume that the realization of the two shocks at t = 1—the withdrawal shock γ and the

quality shock θ—is correlated. Specifically, at t = 1, there are two possible states:

(γ, θ) =

(0, 0) with probability 1− π

(γ̄, θ̄) with probability π,
(2)

where π ∈ (0, 1). In equilibrium, a fire sale occurs at t = 1 in the latter state.

At t = 1, there is a centralized market in which the buyers and the sellers can trade the liquid

and long-term assets. We denote q1 as the price of the long-term asset and normalize the price of

the liquid asset to one. We assume that short selling is not allowed. These assumptions imply that,

at t = 1, the buyers and sellers are able to adjust their portfolio holdings of the liquid and long-

term assets by trading in the centralized market, but at the economy-wide level, it is not possible

to change the overall supply of the two assets. The overall supply is given by 1 + ls0 and ks
0 for

the liquid and long-term asset, respectively (i.e., the amounts that the buyers and sellers have at the

beginning of t = 1; recall that buyers start t = 1 with one unit of the liquid asset).

We impose three sets of parameter restrictions. First, we assume that the long-term asset is on

average more productive than liquidity, that is, (1− π)R + πR(1− θ̄) > 1, which implies R > 1.
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Second, we assume that the probability π of the high-withdrawal state is sufficiently large,

π >
(R− 1)(1− γ̄ds)

γ̄ds
, (3)

which guarantees that the possibility of fire sales at t = 1 is not negligible and, thus, the sellers

want to have positive holdings of the liquid assets at t = 0. Second, we assume that γ̄ and es are

sufficiently large to ensure that the sellers’ investments in liquidity and long-term assets at t = 0

are both strictly positive and their time-2 consumption is also strictly positive, which allows us to

sidestep the potential issue of the sellers’ default.

2.2 How the environment nests commonly used pricing mechanisms

The general framework described in Section 2.1 nests three pricing mechanisms commonly em-

ployed in the literature: cash-in-the-market pricing, second-best-use pricing, and asymmetric-

information pricing. To obtain each pricing mechanism, one can impose assumptions on three

key elements of the model: buyers’ utility at t = 1 , that is, u(cb1); buyers’ ability to extract cash

flow from the long-term assets, that is, f(·); and the degree of asymmetric information in the high-

withdrawal state, that is, θ̄. Specifically:

• Cash-in-the-market pricing: u(cb1) = log cb1, f ′′(k) = 0 for any k ≥ 0, θ̄ = 0.

• Second-best-use pricing: u(cb1) = 0, f ′′(k) < 0 for any k ≥ 0, θ̄ = 0.3

• Asymmetric-information pricing: u(cb1) = 0, f ′′(k) = 0 for any k ≥ 0, θ̄ > 0.

Buyers derive utility u(cb1) from consumption at t = 1 under cash-in-the-market pricing, but no

utility under the other pricing mechanisms. With cash-in-the-market pricing, we specialize to the

log utility case for simplicity, but the results can be generalized to more general well-behaved utility

functions. The utility from consumption under cash-in-the-market provides a reason for buyers to

use liquidity at t = 1 other than purchasing assets sold by sellers, giving rise to a downward sloping

demand even if buyers have the same technology and information as sellers.

The assumptions about the function f(·) imply that the productivity of buyers (i.e., f ′(k)), is

the same as that of sellers (i.e., R) under cash-in-the-market pricing and asymmetric-information

3For second-best use pricing, we also assume that limk→(es+ds) f
′(k) < πR/(R − 1 + π), which guarantees that

the price in a fire sale is less than one.
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pricing, but strictly lower with second-best-use pricing. This lower productivity generates a fire-

sale price under the second-best-use pricing.

The parameter that governs the fraction of low-quality assets, θ̄, is zero under cash-in-the-

market and second-best-use pricing, and thus, no informational asymmetries in those cases. Only

with asymmetric-information pricing, if θ = θ̄, a fraction θ̄ > 0 of the long-term assets is of low

quality and sellers’ private information is relevant.

Remark 1. To avoid possible confusion, we clarify the distinction between cash-in-the-market

and second-best-use pricing. Our notion of cash-in-the-market pricing is one in which the buyers’

opportunity cost to use liquidity to purchase assets from sellers at t = 1 depends on a strictly

concave function that governs the payoff of alternative uses of liquidity. In our model, this function

is the time-1 utility of buyers. An alternative and isomorphic formulation is the one in Stein (2012),

in which buyers can invest in a project that produces at t = 2 according to a strictly concave

function. The second-best-use formulation is instead one in which the purchase of long-term assets

by buyers results in lower output extracted from the long-term assets. While our second-best-use

formulation follows the tradition of Kiyotaki and Moore (1997), Lorenzoni (2008), and Shleifer and

Vishny (1992), a similar result could be achieved with the formulation of Goldstein et al. (2022)

in which buyers have a very limited endowment and can raise additional resources at a cost that

results in a deadweight loss for the society.

Remark 2. As we show in details in the next sections, the elements u(·), f(·), and θ̄ that deter-

mine the pricing mechanism have no impact on sellers’ choices, and they affect only the problem

of buyers. This allows us to show, in Section 2.7, that the equilibrium is observationally equivalent

under the three pricing mechanism, under appropriate parameter restrictions.

2.3 Sellers’ choices at t = 1

We now present the sellers’ choices at time 1. Recall that: sellers enter t = 1 with ls0 units of the

liquid asset and ks
0 units of the long-term asset; a fraction θ of the long-term asset holdings ks

0 are

low quality (i.e., they will produce no output at t = 0); sellers have private information about the

quality of their long-term asset holdings; and sellers have to repay a fraction γ of their debt ds;.

When θ > 0, sellers’ private information gives rise to an adverse selection problem, and we

consider a pooling equilibrium. Unlike the classic lemons problem (Akerlof, 1970), in which trade
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collapses, here sellers sell some high-quality long-term assets to meet their liquidity needs at t = 1,

resulting in a positive price for long-term assets.

To solve sellers’ time-1 problem, we focus on the relevant case in which sellers sell all of their

holdings of long-term low-quality assets (if any), and on the margin, they trade a long-term high-

quality asset. Let ks
1 denote the holdings of the long-term high-quality assets that the sellers retain.

Their problem is to maximize consumption cs2 at t = 2, which is the sum of the cash flow Rks
1 from

the amount ks
1 of retained high-quality long-term asset, and from their liquidity holdings chosen at

t = 1, ls1, minus the repayment (1− γ)ds owed to the debt holders at t = 2:

max
ks1,l

s
1

Rks
1 + ls1 − (1− γ)ds (4)

subject to ls1 ≥ 0 and the budget constraint

ls1 + γds ≤ ls0 + q1θk
s
0 + q1 [(1− θ)ks

0 − ks
1] . (5)

The budget constraint (5) says that the sellers finance their holdings ls1 of liquidity and the with-

drawals γds by using the liquidity ls0 carried from t = 0, selling their holdings of low-quality long-

term assets θks
0 at price q1, and selling an amount (1 − θ)ks

0 − ks
1 of their high-quality long-term

assets, also at price q1.

We restrict our attention to the relevant equilibrium cases in which q1 ≤ R.4 If q1 = R, the

liquid and long-term assets have the same returns, so the sellers are indifferent between the two.

The outcome q1 = R will arise in the low-withdrawal state (i.e., when γ = 0 and θ = 0), and

without loss of generality, we will focus on the case in which the sellers do not engage in any trade,

so that their holdings will be ls1 = ls0 and ks
1 = ks

0.

When q1 < R, the high-quality long-term asset has a higher return than the liquid asset. The

outcome q1 < R will arise when a fire sale occurs, that is, in the high-withdrawal state (i.e., γ = γ̄

and θ = θ̄). Sellers will use all their liquidity ls0 and sell all their low-quality assets, if any, to pay

withdrawals, but will also be forced to sell some of their high-quality assets. Any wealth left after

repaying the time-1 withdrawals will be invested only in the long-term assets, which have higher

return than liquidity. That is, ks
1 > 0 and ls1 = 0. Specifically, the amount of high-quality assets

4If q1 > R, then the expected return of the long-term asset is negative, but because the return of the liquid asset is
zero, no agent would invest in the long-term asset. This cannot be an equilibrium because the market-clearing condition
for the long-term asset would not hold.
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they retain, ks
1, is residually determined by the budget constraint (5) and given by

ks
1 =

q1k
s
0 − (γ̄ds − ls0)

q1
, (6)

where we have set γ = γ̄ because we are focusing on the high-withdrawal state. Note that buyers’

choices in the high-withdrawal state (i.e., γ = γ̄ and θ = θ̄) do not depend on value of θ̄ (i.e., the

fraction of low-quality long-term assets). Thus, (6) holds for any θ̄, including θ̄ = 0.

2.4 Buyers’ choices at t = 1

We now turn to the buyers’ problem at time 1. We first state the buyers’ problem in the general

model, but we then analyze buyers’ optimal choices separately under each pricing mechanisms.

The buyers’ problem varies across different pricing mechanisms, as the assumptions about buyers’

preferences, technology, and information differ, and focusing on each pricing mechanism sepa-

rately simplifies the exposition.

To state the buyer problem in general, we need to specify buyers’ beliefs about the fraction of

high- and low-quality long-term assets that are traded at t = 1 because of the possible asymmetric

information problem. Let α1 ∈ [0, 1] be the (endogenously determined) fraction of high-quality

long term assets traded at t = 1. We proceed under the assumption that buyers’ beliefs are rational

and, thus, the buyers’ belief about the fraction of high-quality long-term assets traded at t = 1

is equal to α1. Thus, if a buyer purchases an amount k of long-term assets at t = 1, the buyer

anticipates collecting output f(α1k) at t = 2. The share α1 of high-quality long-term assets traded

at t = 1 is

α1 =
(1− θ) ks

0 − ks
1

ks
0 − ks

1

. (7)

That is, α1 is the ratio of the high-quality long-term assets sold by sellers (i.e., the total amount of

high-quality assets (1− θ) ks
0 minus the amount ks

1 that are retained by sellers) relative to the total

amount of long-term assets sold by the sellers (i.e., ks
0 − ks

1).

We can now state the buyers’ problem. A buyer chooses their holdings of the liquid and long-

term assets lb1 and kb
1 purchased at t = 1, and their consumption at t = 1 and t = 2, to solve:

max
lb1, k

b
1,c

b
1,c

b
2(α1)

u
(
cb1
)
+ cb2(α1), (8)

14



where we have emphasized the dependence of the time-2 consumption cb2 on the belief α1:

cb2(α1) = lb1 + f(α1 k
b
1). (9)

The problem is subject to non-negativity constraints and to the budget constraint

cb1 + lb1 + q1k
b
1 ≤ 1. (10)

Note that the resources available to the buyer (i.e., the right-hand side of (10)) are equal to one

because the buyers are born at t = 1 with a unit of the liquid asset and no holdings of the long-term

asset, as discussed in Section 2.1.

We begin by analyzing the optimal choice of the buyers under cash-in-the-market pricing, that

is, when u(c) = log c, f(k) = Rk, and θ̄ = 0. In this case, there is no uncertainty about the

quality of the long-term asset, and thus, the buyers’ belief is simply α1 = 1. In addition, because

f(k) = Rk, the maximization in (8) implies the standard asset pricing condition

q1 =
1

u′
(
cb1
) ×R, (11)

where 1/u′(cb1) is the ratio of the marginal utility at t = 2 (i.e., one) and the marginal utility at t = 1

(i.e., u′ (cb1)). Note that the time-1 consumption choice satisfies u′ (cb1) ≥ 1 because the buyers will

never choose to consume more than one unit at t = 1, given the quasi-linear preference structure.

Focusing again on the relevant case in which q1 ≤ R, and using u(c) = log c, the buyers’ optimal

choices are

{
cb1, l

b
1, k

b
1

}
=


{1, 0, 0} if q1 = R{

q1
R
, 0, 1

q1
− 1

R

}
if q1 < R

(12)

To preview some of the results, we note that in the low-withdrawal state γ = 0 (i.e., when no fire

sales occur), the buyers consume cb1 = 1 so that their marginal utility is u′(cb1) = 1, and (11) implies

a time-1 price of q1 = R for the long-term asset. Hence, q1 is equal to the cash flow that the asset

produces at t = 2. In contrast, in the high-withdrawal state γ = γ̄ (i.e., when a fire sale occurs),

the buyers consume cb1 < 1, so that their marginal utility is u′ (cb1) > 1. Hence, (11) implies that

the time-1 price of the long-term asset is q1 < R, and thus, lower than the cash flow R.

Next, we turn to second-best-use pricing, that is, u(cb1) = 0, f(k) < Rk for any k > 0, and
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θ̄ = 0. Similar to the case with cash-in-the-market pricing, there is no asymmetric information in

equilibrium, and thus, buyers’ belief are α1 = 1. The maximization in (8) now imply

q1 = f ′(kb
1) ≤ R. (13)

In particular, q1 < R when kb
1 > 0 because of the strict concavity of f(·) under second-best use

pricing. That is, the buyers are willing to purchase long-term assets at a low price because they

are able to collect a lower cash flow than the sellers. Buyers’ liquidity holdings, lb1, are residually

determined from the budget constraint, and consumption cb1 at t = 1 is zero because buyers only

value consumption at t = 2.

Finally, with asymmetric-information pricing, u(cb1) = 0, f(k) = Rk, and θ̄ > 0. Thus,

f(α1 k
b
1) = α1Rkb

1, and the buyers’ first-order condition is

q1 = α1R. (14)

Thus, buyers are willing to purchase any amount, provided that the price equals their belief about

the output produced by the average asset traded. Similar to the case with cash-in-the-market pricing,

lb1 is residually determined from the budget constraint, and consumption cb1 at t = 1 is zero because

buyers only value consumption at t = 2.

2.5 Sellers’ choices at t = 0

We now turn to the analysis at t = 0, when the sellers decide how to allocate their resources

between the liquid and long-term assets. Then, in Section 3, we ask whether the sellers’ choices at

t = 0 are efficient and whether liquidity regulation can improve the equilibrium outcome. Recall

that buyers are born at t = 1, and thus, the time-0 analysis involves only sellers.

To determine the sellers’ portfolio choices at t = 0, we proceed along the lines of Dávila and

Korinek (2018) and derive the sellers’ time-0 choices that maximize their indirect utility function at

t = 1. This approach is very convenient because the analysis is independent of many features of the

model, and it will make the comparison with the regulator’s problem and solution very transparent.

The sellers’ indirect utility function at t = 1 is

V s
1 (ls0, k

s
0) = cs2 + λs

1 [l
s
0 + q1k

s
0 − (ls1 + q1k

s
1 + γ ds)] + µs

1l
s
1. (15)
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The first term on the right-hand side is the sellers’ time-2 utility, which is linear in consumption, cs2.

The second term is the Lagrange multiplier λs
1 of the sellers’ time-1 budget constraint (equation (5))

times the budget constraint itself. The last term is the Lagrange multiplier µs
1 of the non-negative

constraint on liquidity holdings, times such holdings, ls1. (The term µs
1l

s
1 in (15) does not affect the

analysis, but we include it because the non-negativity constraint ls1 ≥ 0 is binding in some cases in

equilibrium.)

At t = 0, the sellers choose liquidity ls0 and long-term asset holdings ks
0 to maximize their

expected indirect utility function

max
ls0,k

s
0

E0 {V s
1 (ls0, k

s
0)} , (16)

subject to the budget constraint (1) and to non-negativity constraints on ls0 and ks
0. The problem in

(16) is easy to analyze because we can exploit the envelope theorem to obtain

E0 {λs
1q1} = E0 {λs

1} , (17)

provided that the time-0 non-negativity constraints on ls0 and ks
0 do not bind. Recall that λs

1 is the

Lagrange multiplier of the sellers’ budget constraint at t = 1 and, thus, it represents the sellers’

marginal value of wealth. Equation (17) states that the sellers choose their time-0 portfolio to

equalize the time-1 marginal value of holding one additional unit of the long-term asset (i.e., the

left-hand side) to the marginal value of holding one additional unit of liquidity (i.e., the right-hand

side). That is, a marginal dollar of investments at t = 0 could be used to invest in the long-term

asset or in liquidity, which have market values of q1 and one at t = 1, respectively, and which the

sellers value according to their time-1 marginal utility of wealth λs
1.

The marginal utility of the sellers’ wealth, λs
1, (and the equivalent object for the buyers, λb

1) is a

crucial object for our analysis, and plays a key role in the efficiency and policy analysis of Section

3. Because λs
1 is formally defined as the Lagrange multiplier of (5), the analysis in Section 2.3

implies

λs
1 =

R

q1
. (18)

That is, a marginal unit of wealth available to sellers at t = 1 can be used to purchase (or retain)

1/q1 units of the long-term assets. Each unit of the asset will then produce a payoff R, which is

evaluated according to the linear marginal utility of wealth.
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2.6 Equilibrium definition

An equilibrium is a collection of the sellers’ portfolio choice at t = 0 (i.e., {ls0, ks
0}); and given a

realization of the shocks (γ, θ) ∈
{
(0, 0), (γ, θ)

}
, the sellers’ and buyers’ portfolio choices at t = 1

(i.e., {ls1, ks
1} and {lb1, kb

1}); the buyers’ beliefs about the fraction α of high-quality assets traded at

t = 1; the buyers’ consumption choices at t = 1 and t = 2 (i.e., cb1 and cb2); the sellers’ consumption

choices at t = 2 (i.e., cs2), and a time-1 price for the long-term asset (i.e., q1), such that the buyers

and sellers maximize their utilities, the buyers’ beliefs are rational, and the time-1 market clears.

Specifically, the market-clearing condition for liquidity at t = 1 is

cb1 + lb1 + ls1 + γds0 = 1 + ls0, (19)

where the right-hand side uses the assumption that the buyers are endowed with one unit of liquidity

(see Section 2.1). That is, the liquid assets available in the economy, 1+ ls0, is allocated between the

buyers’ consumption, cb1, their liquidity holdings, lb1, and the sellers’ liquidity holdings, ls1, carried

to t = 2, and the resources γds0 that are used to repay the sellers’ debt holders at t = 1. The other

market-clearing condition—for the long-term asset—holds by Walras’ law, but we also state it for

completeness:

kb
1 + ks

1 = ks
0, (20)

where the right-hand side uses the assumption that only sellers enter t = 1 with some holdings of

the long-term asset.

2.7 Equilibrium and equivalence under the three pricing mechanisms

We now characterize the equilibrium. Since the sellers’ problem is independent of the pricing

mechanism (i.e., independent of the microfoundation of buyers’ demand), several equilibrium fea-

tures emerge regardless of the specific pricing mechanism.

In the low-withdrawal state (i.e., γ = 0 and θ = 0), the equilibrium price at t = 1 must be

q1 = R so that the liquid and long-term assets have the same return. If q1 < R or q1 > R, the two

assets would have a different return, and because there is no uncertainty between t = 1 and t = 2,

sellers (and possibly buyers) would demand the asset with the higher return, and markets would not

clear.5

5Note also that in the low-withdrawal state γ = 0 and θ = 0, and thus, there is never asymmetric information.
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In the high-withdrawal state (i.e., γ = γ̄ and θ = θ̄), we can determine the time-1 price q1 using

the sellers’ first-order condition at t = 0, equation (17), together with the expression in (18) for the

marginal utility of wealth λs
1 and the process for (γ, θ) in (2). The resulting price is

q1 = R
π

(R− 1) + π
< R, (21)

where the inequality follows from R > 1.

These considerations show that the price q1 is given by q1 = R in the low-withdrawal state and

by (21) in the high-withdrawal state, in any equilibrium.6 Note that this result holds not only when

one pricing mechanism is at play, but even when multiple pricing mechanisms operate together to

generate a fire-sale price.

The trading volume is also the same independently of the microfoundation of the fire-sale price,

for any given amount of the sellers’ liquidity holdings ls0 at t = 0. In general, trading volume in our

model is equal to the amount of long-term assets sold by sellers, that is, ks
0 − ks

1. Given the results

in Section 2.3, trading volume is zero in the low-withdrawal state (i.e., when γ = 0 and θ = 0), and

equal to (γds−ls0)(R−1+π)

πR
in the high-withdrawal state (i.e., when γ = γ̄ and θ = θ̄).

Based on the above results, the next proposition offers a simple characterization of the equilib-

rium variable at t = 1 (i.e., when a fire sale can happen). Because we are not taking any stance on

the pricing mechanism, the result shows that the model generates a fire sale in the low withdrawal

state not only when a pricing mechanism operates in isolation, but also when multiple pricing mech-

anisms play an active role.7 All proofs are in Appendix A, and a more comprehensive description

of the full equilibrium under each pricing mechanism can be found in Appendix B.

Proposition 2.1. (Equilibrium at t = 1 in the general framework) If the time-0 non-negativity

constraints of sellers ls0 ≥ 0 and ks
0 ≥ 0 are not binding, the equilibrium variables at t = 1 satisfy:

• In the low withdrawal state, the price is q1 = R; the trading volume is zero; the sellers’

portfolio choices are ks
1 = ks

0 and ls1 = ls0; and the buyers’ choices are kb
1 = 0 and lb1+cb1 = 1.

• In the high-withdrawal state, the price is q1 = Rπ
(R−1)+π

; the trading volume is (γds−ls0)(R−1+π)

πR
;

the sellers’ portfolio choices are ks
1 < ks

0 and ls1 = 0; and the buyers’ choices are kb
1 > 0 and

lb1 + cb1 < 1.
6More precisely, (21) holds in any equilibrium in which sellers are not constrained by ls0 ≥ 0 and ks0 ≥ 0.
7Proposition 2.1 focuses on the combined term lb1+cb1 to provide a result that holds under any combination of pricing

mechanisms. This is because, depending on buyers’ preference at t = 1, buyers might use liquidity for consumption
or for investments in the liquid asset.
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Next, we compare the equilibrium under the three pricing mechanism we consider. We show

that not only prices and trading volumes are independent of the mechanism, but under certain pa-

rameter restrictions, the entire equilibrium is the same too. We establish this result through an

equivalence proposition. That is, taking as given an equilibrium under cash-in-the-market pricing,

we show that the equilibrium under second-best-use pricing or asymmetric-information pricing is

the same under appropriate parameter restrictions. Hence, the equilibrium under the three pricing

mechanisms is observationally equivalent. Thus, if we look at a given episodes of fire sales in prac-

tice through the lenses of the model, we cannot identify the pricing mechanism without knowing

the microfoundation of buyers’ demand.

While not necessary for our results, the proposition also shows that the demand elasticity during

a fire sale—an object which can be identified in practice—is the same under the three mechanisms,

under appropriate parameter restrictions. We define the demand elasticity based on a comparative

static exercise in which we vary the sellers’ supply of long-term assets by changing the parameter

γ̄ that governs the time-1 withdrawals. The idea is to mimic how the elasticity can be estimated in

practice, that is, by finding exogenous variations to the supply curve.8

Proposition 2.2. (Observational equivalence of the three models.) Consider the equilibrium un-

der cash-in-the-market pricing (i.e., u(cb1) = log cb1, f(k) = Rk, and θ̄ = 0). Then:

(i) Under second-best use pricing (i.e., u(c) = 0, f(k) < Rk for any k > 0, and θ̄ = 0), if

f ′(R−1
πR

)
= πR

R−1+π
, the equilibrium has the same sellers’ portfolio choices at t = 0 as under

cash-in-the-market pricing, and in each state (γ, θ), the same sellers’ choices at t = 1, 2,

the same buyers’ holdings of kb
1 and the same combined liquidity holdings and consumption

lb1+cb1 at t = 1, and the same price q1 and trading volume at t = 1. If, in addition, f
′′ (R−1

πR

)
=

− (πR)2

(R−1+π)2
, the buyers’ time-1 demand elasticity in state (γ̄, θ̄) is the same as under cash-in-

the-market pricing.

(ii) Under asymmetric-information pricing (i.e., u(cb1) = 0, f(k) = Rk, and θ̄ > 0), if es =
(R−1)2

(R−1)Rπ−(R−1+π)Rπ(γ̄ds−θ̄)
, the equilibrium has the same sellers’ portfolio choices at t = 0

8While not central to our main results, we sidestep a common issue in standard asymmetric information models.
Specifically, these models often predict that an increase in sellers’ liquidity needs—that raises trading volume during
fire sales—leads to higher asset prices. This prediction contradicts both cash-in-the-market and second-best-use mod-
els, as well as observed fire-sale dynamics (see, e.g., the discussion in Eisfeldt (2004) and Uhlig (2010)). Proposition
2.2 avoids this counterfactual implication by assuming that adverse selection (i.e., the fraction of lemons) intensifies as
sellers’ liquidity needs increase, ensuring that greater liquidity needs are associated with a larger share of low-quality
assets traded in the market, and with it, lower asset prices. For alternative approaches with deeper microfoundations,
see Kurlat (2016) and Chang (2018).
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as under cash-in-the-market pricing, and in each state (γ, θ), the same sellers’ choices at

t = 1, 2, the same buyers’ holdings of kb
1 and the same combined liquidity holdings and

consumption lb1 + cb1 at t = 1, and the same price q1 and trading volume at t = 1. If,

in addition, θ and γ are such that θ = g(γ) for some function g(·) with g(0) = 0 and

g′(γ̄) =
π2 ds

R
(A+θ̄BR)2+B(R−1+π)2dsθ̄

B(R−1+π)2A−π2B(A+θ̄BR)2
where A = R−1

R−1+π
and B = es+(1−γ̄)ds+A, the buyers’

time-1 demand elasticity in state (γ̄, θ̄) is the same as under cash-in-the-market pricing.

Regarding the equivalence between the equilibrium under cash-in-the-market and second-best-

use pricing (i.e., Item (i) in Proposition 2.2), note such equivalence is established when f(k) =

log(1 +Rk).

3 Efficiency and policy analysis

We now study whether the equilibrium is efficient; that is, whether the equilibrium allocation—

and, in particular, the sellers’ time-0 portfolio choice—corresponds to that of a planner or reg-

ulator (hereinafter simply referred to as the “regulator”). Under the assumption that the buyers

and sellers have linear utility at t = 2, we show in Section 3.2 that the equilibrium with cash-in-

the-market pricing is efficient and, thus, no liquidity regulation should be imposed on the sellers’

time-0 choices. In Sections 3.3 and 3.4, we show that the equilibrium is, instead, inefficient un-

der second-best-use and the asymmetric-information pricing, requiring liquidity regulation in those

cases. Crucially, the optimal regulation is a liquidity requirement under second-best-use pricing

but a liquidity ceiling under asymmetric-information pricing.

We use a standard approach employed in the fire-sale literature. Various papers, such as Loren-

zoni (2008), Dávila and Korinek (2018), and Kurlat (2021), consider a regulator that makes the

initial portfolio choices at t = 0 but has no influence on the trading and choices that occur in the

subsequent time periods (i.e., at t = 1 and t = 2). Besides following a common approach in the

literature, the methodology is in line with our objective of studying liquidity requirements because

this regulation is imposed, in practice, before the possible realization of fire sales.

There are two key differences between the regulator’s problem and that of individual agents.

First, similar to the literature, the regulator internalizes the effects of the time-0 portfolio choices on

the time-1 price q1, whereas private agents take the price as given. Second, the regulator internalizes

the effects of its choices on the average quality of the assets that are traded at t = 1 (i.e., the share

α1 of high-quality long-term assets that are traded), which is also taken as given by private agents.
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This second effect is novel in the literature that formalizes fire sales externalities.

To define efficiency, we rely on the concept of Pareto optimality because our model—like sev-

eral others in the fire-sale literature—has two sets of agents (i.e., buyers and sellers). Thus, an

equilibrium is constrained efficient if no regulatory intervention at t = 0 can improve the wel-

fare of the buyers (keeping sellers’ welfare unchanged), the welfare of the sellers (keeping buyers’

welfare unchanged), or both.

3.1 Regulator’s problem and first-order conditions

We consider the problem of a regulator aiming to maximize the sellers’ welfare while ensuring that

the buyers’ welfare is at least as high as it would be in the unregulated equilibrium. At t = 0,

the regulator chooses investments in the sellers’ liquidity and long-term assets, ls0 and ks
0, that will

maximize the sellers’ utility. In addition, the regulator chooses a transfer, T , from the sellers to

the buyers to make sure that the buyers achieve the same level of utility as that in the unregulated

equilibrium. Because the buyers are born at t = 1, we assume that the transfer from the sellers

to the buyers involves an amount T of the liquid asset.9 Thus, the sellers will enter t = 1 with

liquidity ls0 − T and the buyers with liquidity 1 + T—recall that buyers are endowed with one unit

of the liquid asset at t = 1. The regulator’s problem is

max
ls0,k

s
0,T

E0 {V s
1 (ls0 − T, ks

0; q1, α1)} (22)

where V s
1 (·) is the sellers’ indirect utility functions, defined in (15), in which we have highlighted

the dependence on the time-1 price q1 and the fraction of high-quality assets α1 that are traded at

t = 1. The maximization is subject to the sellers’ time-0 budget constraint, (1) evaluated at ds0 = ds,

ls0 + ks
0 ≤ es + ds (23)

and to the constraint that the buyers’ time-1 indirect utility V b
1 (T ; q1) should be no less than the

level V they achieve in the unregulated equilibrium:

V b
1 (T ; q1, α1) ≥ V . (24)

9As in the literature, the transfer cannot be contingent on the state of the economy at t = 1, otherwise it would
violate the assumption that the regulator can affect only the time-0 choices.
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Specifically, the buyers’ time-1 indirect utility is defined analogously to that of the sellers:10

V b
1 (T ; q1, α1) = u(cb1) + cb2(α1) + λb

1

[
1 + T −

(
lb1 + q1k

b
1 + cb1

)]
+ µb

1l
b
1 + ηb1c

b
1, (25)

where we have emphasized the dependence of the time-2 consumption cb2(α1) on the average quality

of the assets that are traded at t = 1 (i.e., the share of high-quality long-term assets α1, defined

in (7)). The term λb
1 is the Lagrange multiplier of the buyers’ time-1 budget constraint and, thus,

represents the buyers’ marginal utility of wealth. The terms µb
1 and ηb1 are the Lagrange multiplier

on the non-negativity constraints lb1 ≥ 0 and cb1 ≥ 0, respectively.

Next, we derive the regulator’s first-order conditions. Denoting ξ as the Lagrange multiplier of

the buyers’ utility constraint (24), the regulator’s first-order conditions for the choice of the sellers’

holdings of liquidity, ls0, and long-term assets, ks
0, imply:

E0 {λs
1q1} = E0

{
λs
1 +

∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂α1

∂ls0

∂cb2(α1)

∂α1

ξ

}
. (26)

When comparing the regulator’s optimality condition (26) at t = 0 with that of individual sellers in

(17), there are two key differences.

First, the regulator considers the impact of the time-0 choices on the time-1 price q1 of long-

term assets—this is a typical element of policy analyses in the fire-sale literature. This gives rise, in

our context, to a distributive externality (as in Dávila and Korinek 2018). In our model, this effect

is captured by the term ∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
on the right-hand side of (26). The term ∂q1/∂ls0 is

the sensitivity of the time-1 price to sellers’ time-0 liquidity holdings; the term ks
0−ks

1 > 0 denotes

the quantity of long-term assets sold by sellers (i.e., the trading volume); and the term λs
1 − ξλb

1

measures the gap between sellers’ and buyers’ marginal utilities of wealth, adjusted by the tightness

of the of the constraint (24)—as measured by its Lagrange multiplier ξ. If, for instance, ∂q1/∂ls0 > 0,

a liquidity requirement that increases ls0 produces a higher q1, and buyers have to transfer more

resources to sellers to purchase any of the ks
0 − ks

1 assets that are traded in a fire sale. Whether this

additional transfer from buyers to sellers is beneficial from the regulator’s perspective depends on

the gap λs
1 − ξλb

1 between sellers’ and buyers’ marginal utilities of wealth.

Second, the regulator considers how a change in sellers’ time-0 liquidity holdings affects the

quality α1 of assets traded at t = 1, and with it, buyers’ time-2 consumption cb2. This effect is novel

10Recall from Section 2.1 that the buyers have no holdings of the long-term asset at the beginning of t = 1.
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in the literature that formalizes fire sale externalities, and we label it market quality externality,

along the lines of the distributive and collateral externalities identified by Dávila and Korinek

(2018). The market quality externality is captured by the term ∂α1

∂ls0

∂cb2(α)

∂α1
ξ on the right-hand side

of (26). To understand this externality, consider a change in sellers’ liquidity holdings ls0 that, for

instance, increases the average quality α1 at t = 1. The higher quality of assets in the market

increase buyers’ time-2 consumption, thereby relaxing the constraint (24) that requires buyers’ to

achieve at least the same utility as in the unregulated equilibrium. Thus, the regulator can reduce

the transfers T to buyers for any given regulatory intervention, and the utility value of this lower

transfer is measured by the Lagrange multiplier ξ of the constraint (24).

Liquidity requirements are optimal when the term E{∂q1
∂ls0

(ks
1 − ks

0)
(
ξλb

1 − λs
1

)
+ ∂α

∂ls0

∂cb2(α)

∂α
ξ} in

(26), evaluated at the unregulated equilibrium, is positive. This is because the right-hand side of

(26) represents the regulator’s marginal value of investing in liquidity at t = 0. Hence, a positive

value for the term E{∂q1
∂ls0

(ks
1 − ks

0)
(
ξλb

1 − λs
1

)
+ ∂α

∂ls0

∂cb2(α)

∂α
ξ} means that, at the unregulated equilib-

rium, the regulator’s value of investing in liquidity exceeds that of the private agents. Vice versa, a

negative sign for such a term implies that a liquidity ceiling is optimal.

The first-order condition for the choice of transfers, T , is

E0 {λs
1} = E0

{
ξλb

1 +
∂q1
∂T

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂α1

∂T

∂cb2(α1)

∂α1

ξ

}
. (27)

The welfare effect of a transfer T depends on how the marginal utility of wealth for sellers λs
1 (on

the left-hand side of (27)) compares with that of buyers λb
1 (on the right-hand side of (27), adjusted

by the Lagrange multiplier ξ). In addition, and similar to (26), the regulator accounts for the impact

of T on the time-1 price q1 and on the quality α1 of the assets that are traded at t = 1.

3.2 Efficiency and liquidity requirements with cash-in-the-market pricing

We now specialize the analysis to the case with cash-in-the market pricing. The key result is that

the equilibrium is efficient, and thus, no liquidity regulation is needed.

Under cash-in-the-market pricing, and given the key assumption that sellers and buyers have

linear utility at t = 2, the next proposition shows that the term E{∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂α1

∂ls0

∂cb2(α1)

∂α1
ξ} in the regulator’s first-order conditions (26) is zero. Thus, the regulator’s first-order

condition (26) coincides with that of the private agents in (17), and the equilibrium is efficient. As a
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result, no liquidity regulation is required under cash-in-the-market pricing in our baseline model.11

Proposition 3.1. (Efficiency in the cash-in-the-market pricing) Under cash-in-the-market pricing

(i.e., u(cb1) = log cb1, f(k) = Rk, and θ̄ = 0), the unregulated equilibrium is constrained efficient.

Under cash-in-the-market pricing, there is no informational asymmetry. Hence, the market

quality externality does not operate because α1 is constant at one—formally, ∂α1/∂ls0 = 0. In addi-

tion, given the linear utility of consumption at t = 2, the marginal utility of wealth of buyers and

sellers, λs
1 and λb

1, are equalized:

λs
1 = λb

1 =
R

q1
. (28)

This result arises because the buyers and sellers collect the same cash flow, R, from any unit

traded—including the marginal unit—and they both have constant linear utility at t = 2. The linear

utility at t = 2 also prevents any wealth effect that could arise from the planner’s transfers, T . This

implies that the time-1 price, q1, is unresponsive to the transfers, T , and, thus, the term ∂q1/∂T in

the regulator’s first-order condition (27) is zero as well. All of these results together imply that

the Lagrange multiplier ξ of the regulator’s constraint (24) is equal to one. That is, the sellers and

buyers are effectively “symmetric”—not just at the unregulated equilibrium but also as we change

the sellers and buyers’ wealth, using the transfers, T . In other words, a fire sale simply entails a

redistribution from the sellers to the buyers and create no inefficiencies. Formally, because ξ = 1

and λs
1 = λb

1, the first-order condition (26) simplifies to E0 {λs
1q1} = E0 {λs

1} and is, thus, identical

to that of the individual sellers, that is, to equation (17).

3.3 Inefficiency and liquidity requirements with second-best-use pricing

We now turn to the case with second-best-use pricing. The equilibrium is now inefficient, and the

optimal regulation is a liquidity requirement. That is, the regulator should force sellers to hold

more liquidity, relative to the unregulated equilibrium. The next proposition formalizes this result.

Proposition 3.2. (Inefficiency under second-best-use pricing) Under second-best pricing (i.e.,

u(cb1) = 0, f(k) < Rk for any k > 0, and θ̄ = 0), the unregulated equilibrium is not constrained

efficient, and the sellers’ time-0 liquidity holdings are lower than the socially optimal level.

11Dávila and Korinek (2018) show that when markets between t = 0 and t = 1 are complete, the equilibrium is
efficient. Our model has two assets at t = 0 (i.e., long-term asset and liquidity) and two states at t = 1 (i.e., two
possible realizations of γ), but the markets are not complete here because the buyers are born at t = 1 and, thus, have
essentially no market access at t = 0. Thus, efficiency under cash-in-the-market pricing arises despite markets are
incomplete.
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The problem of the regulator and the first-order conditions described in Section 3.1 continue

to apply. Similar to cash-in-the-market pricing, the market quality externality does not operate

because there is no asymmetric information, and thus, ∂α1/∂ls0 = 0. The key difference relative

to the cash-in-the-market is in the buyers’ marginal utilities of wealth. In all states at t = 1, the

buyers’ marginal utility of wealth λb
1 is now given by

λb
1 = 1 (29)

and, thus, is independent of the price q1 of the long-term asset—compare (29) with the correspond-

ing expression under the cash-in-the-market pricing in (28). Equation (29) arises under second-

best-use pricing because buyers are indifferent, on the margin, between investing in liquidity or

long-term assets at t = 1, and the marginal value of liquidity is always one. In contrast, the sell-

ers’ marginal utility of wealth, λs
1, is the same as under cash-in-the-market pricing (because their

problem is the same), that is, λs
1 = R/q1; see (18).

Comparing the sellers’ and buyers’ marginal utilities in (18) and (29) shows that the two sets

of agents have the same marginal utility of wealth in the low-withdrawal state γ = 0 (i.e., when

q1 = R) but different marginal utilities in the high-withdrawal state γ = γ̄ (i.e., when q1 < R

and a fire sale occurs). That is, a gap between the two marginal utilities opens up when a fire sale

occurs; specifically, λs
1 > λb

1. The proof of Proposition 3.2 shows that even after accounting for the

adjustment required by the Lagrange multiplier ξ of (24), we still obtain that λs
1 > ξλb

1.

The gap that opens up between the buyers’ and sellers’ marginal utilities of wealth is due to the

buyers’ lower ability to extract cash flow from the marginal unit traded. Because of this gap, when

assets are transferred to buyers in fire sales, the economy-wide output at t = 2 is lower, compared

to the non-fire-sales state.

The regulator can improve welfare by forcing the sellers to invest more in liquidity at t = 0.

With more liquidity available at t = 1, each seller needs to sell fewer assets, resulting in a higher

price q1 during a fire sale. The higher price, in turn, implies that the sellers need to sell even less,

increasing the quantity of the long-term assets that remain in their hands and, thus, increasing the

total output available in the economy at t = 2.
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3.4 Inefficiency and liquidity ceiling in the asymmetric-information pricing

As a last step in the policy analysis, we focus on the asymmetric-information pricing mechanism.

The equilibrium is inefficient, as in the case of second-best-use pricing. However, the optimal

policy is a liquidity ceiling, as opposed to a liquidity requirement as with second-best-use pricing.

Proposition 3.3. (Inefficiency under asymmetric-information pricing) Under asymmetric-information

pricing (i.e., u(cb1) = 0, f(k) = Rk, and θ̄ > 0) the unregulated equilibrium is not constrained

efficient, and the sellers’ time-0 liquidity holdings exceed the socially optimal level.

The problem of the regulator and the first-order conditions described in Section 3.1 continue to

apply. Under asymmetric information pricing, both the distributive and market quality externalities

operate under asymmetric information. Crucially, the distributive externality is partially offset

by the market quality externality. This is because the time-1 price q1 of the long-term asset is

affected by both the distributive externality (directly through the effect of ls0 on q1) and the market

quality externality (indirectly through the effect that ls0 has on the average quality α1, which is then

transmitted to the price q1 because of the buyers’ first-order condition (14)). To understand this

result, consider a change in regulation that increases the average quality α1 of the assets traded at

t = 1. On the one hand, the higher quality results in a higher price q1, so that buyers have to transfer

more resources to purchase long-term assets at t = 1; this effect reduces buyers’ consumption. On

the other hand, for any given trading volume, the higher quality of the assets traded allows buyers

to increase their consumption. These two effects offset each other exactly, and the regulator’s

first-order condition (26) simplifies to12

E0 {λs
1q1} = E0

{
λs
1 +

∂q1
∂ls0

(ks
0 − ks

1)λ
s
1

}
. (30)

Note that this is the same first-order condition that would be obtained if the regulator chooses

sellers’ time-0 portfolio to maximize the utility of sellers, without any consideration for buyers’

utility (i.e., without the constraint (24)). Indeed, under asymmetric information, buyers always

attain the same level of consumption (and thus, the same overall utility) for any feasible time-0

portfolio choice of sellers.13 This is the case because, for buyers, the average and marginal unit

12Equation (30) is obtained by differentiating (14) with respect to ls0 to obtain ∂q1/∂ls0 = R (∂α1/∂ls0), which implies
(∂q1/∂ls0) (k

s
0 − ks1)(−ξλb

1) + ξ (∂α1/∂ls0)
(
∂cb2(α1)/∂α1

)
= 0 using ks0 − ks1 = kb1 from the market clearing condition for

capital (20) and λb
1 = 1 from the problem of buyers (8) under the assumption of asymmetric information pricing (i.e.,

u(cb1) = 0, f(k) = Rk, and θ̄ > 0).
13This follow from combining (9) and (10) with the first-order condition (14), which implies that cb2 is always equal
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traded at t = 1 are identical, and thus, they not only break even on the trade of the marginal unit but

also on the trades of all the inframarginal units. Hence, as the regulator alters the time-0 portfolio

of sellers, any choice made by the regulator does not affect buyers’ utility, and the constraint (24)

is satisfied with no transfers: T = 0. Thus, the full problem (22) of the regulator has the same

solution as the problem of a regulator that focuses only on sellers’ utility, without any consideration

for buyers’ welfare. In other words, under asymmetric information, the solution to the regulator’s

problem (22) is the same as that of a “monopolist seller” that tries to increase the price and reduce

the quantity traded relative to the unregulated equilibrium in which each seller is a price taker. This

logic is very robust to all the extensions we consider.

Because of the equivalence with a monopolist problem, the regulator’s solution involves re-

stricting the time-1 trading volume and increasing the price, relative to the unregulated equilibrium.

This objective is similar to that of the regulator in the second-best-use version of the model, but it is

achieved with the opposite regulation, that is, a liquidity ceiling (as opposed to a liquidity require-

ment, which is optimal under second-best-use pricing). With asymmetric information, reducing

liquidity results in a higher time-1 price q1 during a fire sale, due to the same logic discussed in

Malherbe (2014). That is, if the sellers hold less liquidity, a larger fraction of the assets traded

are sold to meet their liquidity needs and, thus, consists of high-quality assets. Consequently, the

share of lemons in the market is lower, mitigating the adverse-selection problem. Formally, with

adverse-selection pricing, the term ∂q1/∂ls0 in the regulator’s first-order condition (30) is negative, in

contrast to the positive sign that arises for the same term under second-best-use pricing.

4 Extensions: General time-2 utility and collateral constraints

The model of Sections 2-3 yield a simple and stark result: Three observationally equivalent pricing

mechanisms that are commonly used to study fire sales have very different implications regarding

the liquidity regulation that should be imposed on financial intermediaries. With cash-in-the-market

pricing, the equilibrium is efficient and no regulation is needed. With second-best-use pricing, a

liquidity requirement is optimal. And with asymmetric information, the opposite regulation (i.e., a

ceiling on liquidity) is optimal.

We now provide two extensions to our baseline model. In the first extension (Section 4.1), we

relax the assumption that the investors have linear utility at t = 2, and instead allow for an arbitrary

to one.
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concave utility function (possibly strictly concave). This extension allows for the possibility that

market incompleteness prevent full and efficient risk sharing in financial markets, giving rise to an

additional force that affects the optimal policy. In the second extension (Section 4.2), we augment

the baseline by introducing a collateral constraint for sellers at t = 1.14

The equilibrium in these extensions is generically inefficient—even under cash-in-the-market

pricing. However, the result we derive mirrors what we obtained in the baseline model. First, liq-

uidity regulation should be “tighter” under second-best-use pricing, relative to cash-in-the-market

pricing. More precisely, in the general utility model, the optimal policy could be a liquidity re-

quirement or a liquidity ceiling under cash-in-the-marker pricing, but the socially optimal level

of liquidity is higher in an observationally equivalent second-best-use setting. In the model with

collateral constraints, the optimal policy is always a liquidity requirement under both cash-in-the-

market and second-best-use pricing, but the requirement is tighter under second-best-use pricing.

And second, in both extensions, the optimal policy is always a liquidity ceiling under asymmetric-

information pricing.

4.1 General time-2 utility

In our first extension, we consider a version of the baseline model in which both buyers and sellers

have a more general utility at t = 2. The key difference with the baseline model is that the opti-

mal policy can be a liquidity requirement or a liquidity ceiling under both cash-in-the-market and

second-best use pricing. However, similar to the baseline model, we obtain that (i) the socially opti-

mal level of liquidity is higher under second-best use pricing relative to cash-in-the market pricing,

and (ii) the optimal regulation is a liquidity ceiling under asymmetric-information pricing.

4.1.1 General time-2 utility: Model

The sellers’ time-2 utility from consuming cs2 is us
2(c

s
2), and the buyers’ time-2 utility from con-

suming cb2 is ub
2(c

b
2), where us

2(·) and ub
2(·) are strictly increasing and weakly concave functions and

at least one of them is strictly concave. We relabel the time-1 utility function of buyers as ub
1(·) to

avoid confusion. All the other features of the environment described in Section 2.1 are unchanged.

Without loss of generality, we impose a normalization on the sellers’ and the buyers’ time-2

14In principle, we could also add a collateral constraint for seller at t = 0. However, because we take the total size of
sellers’ portfolio as given, adding a collateral constraint at t = 0 would not change the analysis, provided that liquidity
and long-term assets are treated symmetrically in the constraint.
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utility function. For sellers, we normalize us
2(·) so that their time-1 marginal utility of wealth λs

1

is equal to one in the low-withdrawal state (γ, θ) = (0, 0).15 For buyers, we normalize ub
2(·) so

that the buyers’ marginal utility is one if the low-withdrawal state (γ, θ) = (0, 0) is realized. This

requires ∂ub
2(0)/∂c2b = 1 with cash-in-the-market pricing and ∂ub

2(1)/∂c2b = 1 with the second-best-use

and asymmetric-information pricing.

We derive the policy analysis (in Section 4.1.2) under the assumption that there exists an equi-

librium with the same features as in the baseline (i.e., as in Proposition 2.7): an interior portfolio

choice for liquidity and long-term asset holdings of sellers at t = 0, no trading at t = 1 in the

low-withdrawal state (γ, θ) = (0, 0), a positive trading volume and a fire sale at t = 1 in the high-

withdrawal state (γ, θ) = (γ̄, θ̄), and a buyers’ demand that is downward sloping in the trading

volume. Appendix B.3 provide some examples, focusing on cash-in-the-market pricing.16 The re-

mainder of this section provides some remarks to show that an equilibrium with these features is

consistent with the environment we consider.

Remark #1: Sellers and buyers’ choices at t = 1. Because the sellers’ utility depends only on

their time-2 consumption and because there is no uncertainty between t = 1 and t = 2, the sellers’

objective function at t = 1 is the same as i the baseline model (i.e., maximizing time-2 consump-

tion). Thus, the sellers’ time-1 choices are the same as those described in Section 2.3. For the buy-

ers, the problem and solution are also the same, under second-best-use and asymmetric-information

pricing—the buyers’ utility depends only on time-2 consumption and there is no uncertainty be-

tween t = 1 and t = 2—and thus the first-order conditions (13) and (14) are unchanged. Under

cash-in-the-market pricing, the time-1 first-order condition (11) is replaced by

q1 =
(ub

2)
′(cb2)

(ub
1)

′(cb1)
R. (31)

Remark #2: Sellers’ and regulator’s problems at t = 0. The formulation of the sellers and

regulator’s problem in (16) and (22), respectively, is unchanged. While the sellers’ first-order

condition (17) is unchanged, the regulator’s first-order conditions (26) and (27) are slightly different

15This simply require scaling the utility function by a constant and, thus, has no effect on the equilibrium allocation.
16We sidestep the issue of the conditions under which the equilibrium exists, given the generality of the utility func-

tions we consider. Nonetheless, the concavity assumptions on the utility functions are in line with standard assumptions
that guarantee existence in general equilibrium models.
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because of the general time-2 utility:

E0 {λs
1q1} = E0

{
λs
1 +

∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂α1

∂ls0

∂ub
2

(
cb2(α1)

)
∂cb2(α1)

∂cb2(α1)

∂α1

ξ

}
, (32)

E0 {λs
1} = E0

{
ξλb

1 +
∂q1
∂T

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂α1

∂T

∂ub
2

(
cb2(α1)

)
∂cb2(α1)

∂cb2(α1)

∂α1

ξ

}
. (33)

That is, the last term on the right-hand side includes the marginal utility of buyers, ∂ub
2(cb2(α1))/∂cb2(α1).

This term is equal to one in the baseline model because of the linear time-2 utility in that framework.

Remark #3: Asset prices in the low-withdrawal state (γ, θ) = (0, 0). Under the normaliza-

tions regarding the buyers’ marginal utility, which we introduced before, and taking as given time-0

choices, the price in the low-withdrawal state is q1 = R under each of the three pricing mechanism,

as in the baseline. The argument is the same as the one discussed in Section 2.7.

Remark #4: Asset prices and trading volume in the high-withdrawal state (γ, θ) = (γ̄, θ̄).

Similar to the baseline, we can use (17) to pin down the price q1 of the long-term asset in the high-

withdrawal state. To do so, we note that the time-1 marginal utility of the sellers’ wealth, λs
1, which

is given by (18) in the baseline, is now given by

λs
1 =

R

q1

∂us
2 (c

s
2)

∂cs2
(34)

under all three pricing mechanisms. That is, an additional unit of wealth at t = 1 allows the

sellers to reduce their sales by 1/q1 units of the long-term asset, obtaining a payoff, R, per unit of

asset, which is then valued according to their time-2 marginal utility of consumption, ∂us
2(cs2)/∂cs2.

Combining (2), (17), (34) and the assumption that the sellers’ marginal utility of wealth, λs
1, is

normalized to one in the low-withdrawal state, we can solve for the price q1 of the long-term asset

in high-withdrawal state:

q1 =
πR

∂us
2(cs2(γ̄,θ̄))

∂cs2

(1− π) (R− 1) + πR
∂us

2(cs2(γ̄,θ̄))
∂cs2

< R, (35)

where cs2(γ̄, θ̄) is sellers’ consumption at t = 2 in the high-withdrawal state. Even though (35)

expresses q1 as a function of cs2(γ̄, θ̄) (i.e., as a function of another endogenous variable), it shows
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that q1 < R, using the assumptions R > 1 and π < 1. Thus, in the high-withdrawal state, the

price of the long-term asset drops relative to the low-withdrawal state. In addition, because the

sellers make the same choices as in the baseline (see Remark #1), the high-withdrawal state is

again characterized by a higher trading volume relative to normal times, similar to the baseline of

Sections 2-3. That is, a fire sale occurs in the high-withdrawal state.

4.1.2 General time-2 utility: Policy analysis

We are now ready to state our main results in the model with general utility. We begin by comparing

efficiency and regulation under cash-in-the-market and second-best-use pricing, and then we turn

to the model with asymmetric information.

Under cash-in-the-market pricing, the equilibrium is generically inefficient, and the optimal

policy could be a liquidity requirement or a liquidity ceiling. We provide two examples in Appendix

B.3 to show the general inefficiency and that the sign of the optimal regulation depends on the

parameterization. However, the next proposition implies that if the optimal policy is a liquidity

ceiling under cash-in-the-market pricing, the optimal policy under second-best-use pricing is either

a lower liquidity ceiling or a liquidity requirement; and if the optimal policy under cash-in-the-

market pricing is a liquidity requirement, the optimal policy under second-best-use pricing is a

tighter liquidity requirement.

Proposition 4.1. (General utility: cash-in-the-market and second-best-use pricing) Consider two

observationally equivalent equilibria derived under cash-in-the-market and a second-best-use pric-

ing, respectively (i.e., the sellers make the same time-0 choices in the two models and for any (γ, θ),

the time-1 price q1, the time-1 trading volume kb
1, and the sensitivity of the price q1 to the trading

volume kb
1, are the same in the two models).

Then, the socially optimal level of liquidity is higher under second-best-use pricing, in compar-

ison to cash-in-the-market pricing.

To understand this result, note that in the model with general utility, during a fire sale, a gap can

open up between the sellers and the buyers’ marginal utilities of wealth (i.e., between λs
1 and λb

1), so

that the regulator’s first-order condition does not necessarily coincide with those of the individual

sellers.17 Importantly, with cash-in-the-market pricing, this gap is smaller in comparison to second-

best-use pricing. Under cash-in-the-market pricing, both the sellers and the buyers’ marginal util-

17Formally, the gap is given by λs
1 − ξλb

1, where ξ is the Lagrange multiplier of (24).

32



ities, λs
1 and λb

1, increase in a fire sale, relative to normal times—for both sellers and buyers, the

marginal unit of the long-term asset that is traded has a higher return, because of its lower price

relative to normal times. Differently, with second-best-use pricing, only the sellers’ marginal utility

of wealth increases. The buyers’ marginal utility of wealth decreases because buyers gain on the

inframarginal units they purchase—for such inframarginal units, the cash flow collected is greater

than the price paid because f ′′ < 0, and the cash flow is equal to the price only for the marginal

unit. Thus, the gap in marginal utilities of wealth is greater under second-best use pricing, imply-

ing a higher socially optimal level of liquidity. The proof of Proposition 4.1 formalizes this result,

accounting for the fact, in the regulator’s first-order condition (32), the gap between λs
1 and λb

1 is

adjusted using the Lagrange multiplier ξ of the constraint (24). In addition, the proof shows that

the ∂q1/∂ls0 (i.e., the other key object that appears in the regulator’s first-order condition (32)) is the

same under cash-in-the-market pricing and second-best-use, under the assumption that the equilib-

ria under both pricing mechanisms are observationally equivalent. Specifically, the assumption that

q1 has the same sensitivity to kb
1 under the two mechanisms (i.e., the demand elasticity is the same)

implies that changes in ls0 that shift the supply of long-term assets sold during a fire sale have the

same impact on q1.

As a last step, we analyze efficiency and regulation with asymmetric information. The forces

that operate in the baseline model with linear utility continue to operate. That is, the regulator’s

optimal choice is the same as that of a “monopolistic seller” that maximizes sellers’ joint utility

without any regards for buyers’ welfare, as discussed in Section 3.4. Hence, the regulator wants

to reduce the depth of a fire sale (i.e., reduce trading volume and increase prices). In addition, as

discussed in Section 3.4, a higher price q1 is achieved with lower time-0 liquidity holdings, as this

allocation reduces the adverse selection problem.

Proposition 4.2. (General utility: asymmetric-information pricing) Consider a version of the

model with asymmetric-information pricing (i.e., ub
1(c) = 0 for all c, f(k) = Rk, and θ̄ > 0).

The sellers’ time-0 liquidity holdings are higher than the socially optimal level, so that the optimal

policy is a liquidity ceiling.

4.2 Collateral constraints

We now extend the baseline model by introducing a collateral constraint on sellers at t = 1. The

main results are qualitatively identical to those of the baseline model. While a liquidity require-
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ment is now optimal with both cash-in-the-market and second-best-use pricing, the socially optimal

amount of liquidity is higher under second-best-use pricing—as in the baseline—and thus, the liq-

uidity requirement should be tighter under second-best-use pricing. Under asymmetric information,

the optimal regulation continues to take the form of a liquidity ceiling.

4.2.1 Collateral constraints: Model

At t = 1, sellers are subject to the collateral constraint

q1k
s
0 + ls0 − ds ≥ ζ

(
q1k

s
1 + ls1

)
. (36)

The left-hand side of (36) represents the sellers’ equity, which must be no less than a fraction ζ of

the value of their total assets at time t = 1.

We also introduce the possibility that sellers’ withdrawals can be adjusted endogenously, and we

denote ws
1d

s ≥ 0 to be the withdrawals in addition to the baseline level γds (i.e., total withdrawals

at t = 1 are (γ + ws
1)d

s). We include this extension because the collateral constraints can trigger

endogenous deleveraging of sellers to meet the collateral constraint. If this deleveraging occurs,

some of the sellers’ assets are sold, and their liabilities are also reduced so that their total assets

equal their liabilities plus equity.

All the other features of the environment described in Section 2.1 are unchanged. Note that

because the buyers’ building block of the model is unchanged, the buyers’ problem and choices are

the same as those described in Section 2.4. In what follows, we focus on the problem of sellers and

of the regulator.

We reformulate the time-1 problem of sellers to account for the collateral constraint (36) and

the endogenous withdrawals ws
1d

s. That is, sellers choose ws
1 in addition to the time-1 holdings of

liquidity ls1 and high-quality long-term assets ks
1. Thus, the problem in (4) is replaced by

max
ks1,w

s
1,l

s
1

Rks
1 + ls1 − (1− γ − ws

1)d, (37)

subject to the budget constraint

ls1 + (γ + ws
1) d

s ≤ ls0 + q1θk
s
0 + q1 [(1− θ)ks

0 − ks
1] . (38)

and to the collateral constraint (36). Any wealth available after repaying the time-1 withdrawals
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will be invested only in the long-term assets, which have higher return than liquidity, implying

ls1 = 0. When the sellers’ collateral constraint is binding, we can use (36) together with the budget

constraint (38) to solve for the sellers’ choices of ws
1 and ks

1:

ws
1 =

(q1k
s
0 + ls0)

(
1− 1

ζ

)
+ ds

ζ
− γ ds

ds
, ks

1 =
q1k

s
0 + ls0 − ds

ζq1
.

To solve for the sellers’ problem at t = 0, we augment the indirect utility (15) to include the

collateral constraint at t = 1:

V s
1 (ls0, k

s
0) = cs2+λs

1 [l
s
0 + q1k

s
0 − (ls1 + q1k

s
1 + γ ds + ws

1d)]+ηs1[q1k
s
0+ls0−ds−ζ(q1k

s
1+ls1)]+µs

1l
s
1,

where ηs1 is the Lagrange multiplier of the time-1 collateral constraint. Thus, the first-order condi-

tion for the time-0 choices of the sellers is

E0 {(λs
1 + ηs1)q1} = E0 {λs

1 + ηs1} . (39)

The regulator’s optimality condition for the time-0 portfolio choice of sellers, (26), becomes

E0 {(λs
1 + ηs1)q1}

= E0

{
(λs

1 + ηs1) +
∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂α1

∂ls0

∂cb2(α1)

∂α1

ξ +
∂q1
∂ls0

(ks
0 − ζks

1) η
s
1

}
. (40)

The main difference relative to (26) is the last term on the right-hand side, that is, (∂q1/∂ls0) (ks
0 − ζks

1) η
s
1.

This term captures the fact that the regulator internalizes the effects of the time-0 choices on the

price q1 at t = 1, and with it, the tightness of the sellers’ collateral constraint (36). This is a standard

effect in models of fire sales.

4.2.2 Collateral constraints: Policy analysis

We begin by analyzing efficiency and regulation under cash-in-the-market and second-best-use

pricing. Because of the introduction of the collateral constraint, the allocation of liquidity becomes

inefficient even under cash-in-the-market pricing, in contrast to the baseline model. This is because

of the standard logic, according to which an individual seller does not internalize that their time-0

choices impact the time-1 price q1. Specifically, increasing the liquidity holdings at t = 0 would
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increase the price q1 and with that, relax the collateral constraint of other sellers. The same force

operates under second-best-use pricing, thereby increasing the socially optimal level of liquidity

relative to the baseline model.

Crucially, the socially optimal level of liquidity is higher under second-best-use pricing than

under a comparable case with cash-in-the-market pricing. This is because the effects that operate

through the collateral constraint are the same under both pricing mechanism, and the force identi-

fied in the baseline model that makes liquidity holdings more socially desirable under second-best-

use pricing still operates.

Proposition 4.3. (Cash-in-the-market and second-best-use pricing with collateral constraints)

(i) Under cash-in-the-market and second-best-use pricing, the unregulated equilibrium is not

constrained efficient, and the optimal policy is a liquidity requirement.

(ii) Consider two observationally equivalent equilibria derived under cash-in-the-market and

second-best-use pricing (i.e., the sellers make the same time-0 choices in the two models and

for any (γ, θ), the time-1 price q1, the time-1 trading volume kb
1, and the sensitivity of the price

q1 to the trading volume kb
1 are the same in the two models). Then, the socially optimal level

of liquidity is higher under second-best-use pricing than under cash-in-the-market pricing.

Finally, we turn to asymmetric-information pricing. Under asymmetric information, the equi-

librium is inefficient and the optimal regulation is a liquidity ceiling, as in the baseline model. The

logic is the same as the one discussed in Section 3.4. That is, the regulator’s solution is the same

as that of a “monopolistic seller,” and even though the tightness of the liquidity constraint affect

quantitatively the optimal regulatory stance, the optimal policy is qualitatively identical.

Proposition 4.4. (Asymmetric-information pricing with collateral constraints) The sellers’ time-0

liquidity holdings are higher than the socially optimal level, so that the optimal policy is a liquidity

ceiling.

5 Conclusions

This paper analyzes liquidity requirements—a policy that has attracted growing attention over time

from policymakers and academics—in a model in which financial intermediaries are forced to sell

some assets to meet high liquidity needs. The model nests three mechanisms commonly employed
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in the literature to generate low fire-sale prices: cash-in-the-market pricing, second-best-use pric-

ing, and adverse-selection pricing.

The optimal regulation of intermediaries’ liquidity holdings is a liquidity requirement, or a

liquidity ceiling, or no intervention, depending on the pricing mechanism and the effects of market

incompleteness on investors’ ability to efficiently share risk. More generally, we have highlight

four forces that determine the optimal policy: (i) the cash flow that the buyers and sellers collect

from the marginal unit traded, (ii) the sensitivity of the fire-sale price to the investors’ liquidity

holdings, (iii) a novel externality that depends on the sensitivity of the average quality of the assets

traded to the sellers’ liquidity holdings, and (iv) if and how market incompleteness prevents full

and efficient risk sharing.

We have derived our results using a standard fire-sale framework in which trades take place

in centralized markets, in line with a common approach used in the literature. In practice, how-

ever, some assets that have experienced fire sales—such as asset-backed securities and corporate

bonds—are traded in decentralized over-the-counter (OTC) markets. While the forces we identified

are likely to be important even in OTC markets, future research could study whether such forces

interact with other possible distortions that are driven by the lack of centralized trading venues.
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APPENDIX

A Proofs

Proof of Proposition 2.1 In the low withdrawal state, q1 = R, and thus, the liquid and long-term

assets have the same returns. As a result, both the sellers and the buyers are indifferent between the

39



two. Consequently, a no-trade allocation constitutes an equilibrium. In the high withdrawal state,

the price and the trading volume are derived in Section 2.7. Because q1 < R, the return on the

long-term asset is less than one, and thus, lower than the return on liquid assets. Then, we argue

that ls0 < γ̄ds must holds (i.e., buyers do not have enough liquidity to finance their withdrawals).

By contradiction, assume that ls0 ≥ γ̄ds. If θ̄ = 0, sellers sell no long-term assets, and no trade

takes place; however, the only way to sustain a no-trade equilibrium is with q1 = R, which is a

contradiction. If θ̄ > 0, sellers sell only their low-quality assets, but the price for such assets would

be q1 = 0, which is again a contradiction—the price q1 is given by (21) and satisfies q1 > 0. Finally,

because ls0 < γ̄ds, sellers need to sell some of their long-term assets to finance their withdrawals,

and thus, ks
1 < ks

0. Then, the market-clearing condition (20) implies kb
1 > 0, and the buyers’ budget

constraint (10) implies lb1 + cb1 < 1.

Proof of Proposition 2.2 The equivalence result regarding portfolio choice, prices, and trading

volume follows from using the value of the equilibrium objects derived in Appendix B and plugging

in the parameter restrictions stated in the proposition.

Regarding the buyers’ demand elasticity, we write ks
1 as function of q1, and evaluate the elastic-

ity

ϵ ≡ dkb
1(q1)

dq1
∗ q1
kb
1(q1)

at the equilibrium. Under cash-in-the-market pricing, we have kb
1 =

1
q1
− 1

R
(see Section 2.4), hence

the elasticity at equilibrium price is

ϵcash-in-the-market = − 1

q21

q1
1
q1
− 1

R

∣∣∣∣
q1=

πR
R−1+π

= −R− 1 + π

R− 1
. (41)

In the second-best-use pricing, the assumption of the proposition about f ′ implies kb
1 = R−1

πR
, and

(13) implies dkb1
dq1

= 1
f ′′ (kb1)

. Hence, using q1 =
πR

R−1+π
, we have

ϵsecond-best-use =
1

f ′′(R−1
πR

)

πR

(R− 1 + π)R−1
πR

, (42)

and ϵsecond-best-use = ϵcash-in-the-market using the assumption about f ′′ stated in the proposition.

Under asymmetric information pricing, the sellers’ budget constraint in fire sales times, (6),
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together with (7), (14), and the market clearing condition (20) evaluated at θ = g(γ) imply

kb
1 =

γds − ls0
q1

, q1 =
(γds − ls0)R

γds − ls0 + g(γ)ks
0R

.

We can then solve for kb
1(γ) and q1(γ) (where we have emphasized the dependence of these equi-

librium object on γ), totally differentiate to compute dkb
1/dγ and dq1/dγ, and rearrange to obtain

dkb
1

dq1
=

(d
s

R
+ g′(γ)ks

0)(γd
s − ls0 + g(γ)ks

0R)2

R2ks
0(d

sg(γ)− (γds − ls0)g
′(γ))

.

The elasticity, evaluated at equilibrium items (q1, kb
1, l

s
0 and ks

0), is thus

ϵasymmetric-information =
(d

s

R
+ g′(γ)ks

0)(γd
s − ls0 + g(γ)ks

0R)2

R2ks
0(d

sg(γ)− (γds − ls0)g
′(γ))

∗ q1
kb
1

∣∣∣∣
equilibrium

=
(d

s

R
+ g′(γ)B)(A+ g(γ)BR)2

B(dsg(γ)− Ag′(γ))

π2

(R− 1)(R− 1 + π)

where A = R−1
R−1+π

and B = es + (1− γ)ds + R−1
R−1+π

. To make it equal to ϵcash-in-the-market, let γ = γ̄,

and θ̄ = g(γ̄), we hence need

−
π2(d

s

R
+ g′(γ̄)B)(A+ θ̄BR)2

B(R− 1 + π)2(dsθ̄ − Ag′(γ̄))
= 1, (43)

or

g′(γ̄) =
π2 ds

R
(A+ θ̄BR)2 +B(R− 1 + π)2dsθ̄

B(R− 1 + π)2A− π2B(A+ θ̄BR)2
. (44)

The result follows.

Proof of Proposition 3.1. First note that ∂α
∂ls0

= 0 in this case. The two FOCs of the regulator’s

problem are simplified to

E0 {λs
1q1} = E0

{
λs
1 +

∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)}
. (45)

and

E0

{
∂q1
∂T

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+ ξλb

1

}
= E0 {λs

1} . (46)
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We then evaluate the first-order condition of the regulator at the unregulated equilibrium. Specif-

ically, we rederive the equilibrium in a version of the model in which the regulator announces a

transfer, T , close to zero before the sellers make their time-0 decisions, so that we can compute the

expression ∂q1/∂T that appears in the regulator’s first-order condition (46). We then evaluate this

equilibrium at T = 0.

In the version of the model with the transfer T close to zero, the sellers’ time-0 problem (16)

becomes

max
ls0,k

s
0

E0 {V s
1 (l

s
0 − T, ks

0)} ,

subject to the budget constraint (1) evaluated at ds0 = ds. The first-order condition (17), however,

is unchanged. The expression for q1 in a fire sale in Proposition 2.1 is also unchanged because the

time-1 market-clearing condition for liquidity (19) is independent of T . This is the case because

the buyers enter t = 1 with 1 + T units of liquidity and the sellers enter ls0 − T and, thus, the

total liquidity available in the economy is unchanged at 1 + ls0. Hence, the price q1 in (21) that

follows from (17) and (18) is also unchanged. Note that q1 in (21) does not depend on T and, thus,
∂q1/∂T = 0 in the high-withdrawal state. Turning to the price q1 in the low-withdrawal state, and

under the assumption that the buyers’ endowment is 1 + ε (see footnote 2), a marginal change in T

away from T = 0 does not affect the buyers’ optimal choice cb1 = 1. Thus, because (11) implies

the price q1 depends only on cb1, we have ∂q1/∂T = 0 in the low-withdrawal state too.

Using the result ∂q1/∂T = 0 in all states for a T close to zero, the first-order condition (46) of

the regulator simplifies to

ξ =
E {λs

1}
E
{
λb
1

} . (47)

Then, using (28), we obtain ξ = 1. Thus, using ξ = 1 and (28), the regulator’s optimality condition

(45) becomes identical to that of the sellers in (17). In other words, the regulator’s first-order

condition holds when evaluated at the unregulated equilibrium and, thus, such an equilibrium is

constrained efficient.

Proof of Proposition 3.2. We proceed as in the proof of Proposition 3.1 by rederiving the equilib-

rium with a transfer, T , that is close to zero, evaluating such an equilibrium at T = 0, and showing

that ∂q1/∂T = 0 in all states at t = 1, when evaluating this derivative at T = 0. And ∂α
∂ls0

= 0 also

hold in this case, hence (45) and (46) are the simplified FOCs of regulators’ problem.

In the high-withdrawal state, the result ∂q1/∂T = 0 can be shown as in the proof of Proposition
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3.1. In the low-withdrawal state, we have kb
1 = 0 for any T close to zero. Thus, because q1 is

pinned down by (13) evaluated at kb
1 = 0, we have ∂q1/∂T = 0 when evaluated at T = 0.

Thus, as in the proof of Proposition 3.1, the value of ξ is given by (47). However, the expression

for λb
1 is different here, relative to the proof of Proposition 3.1, and in particular, λb

1 = 1 in all states

under second-best-use pricing. Thus, ξ = E {λs
1}.

Next, again using λb
1 = 1 and λs

1 = R/q1 together with the last result ξ = E {λs
1}, the regulator’s

first-order condition (45) becomes

E {λs
1 (q1 − 1)} = E

{
∂q1
∂ls0

(ks
1 − ks

0) (E {λs
1} − λs

1)

}
= (1− π)× 0 + π(1− π)

∂q1(γ̄)

∂ls0
(ks

1(γ̄)− ks
0)

(
1− R

q1(γ̄)

)
, (48)

where q1(γ̄) and ks
1(γ̄) denote the price and the sellers’ end-of-period holdings of the long-term

assets in the high-withdrawal state, respectively. The second line uses the assumption that fire

sales happen with probability π (according to (2)), and the result ∂q1
∂ls0

= 0 in the low-withdrawal

state (which holds because the sellers enter t = 1 with ls0 > 0, where the inequality follows from

(3)). As a last step, we show that the right-hand side of (48) is not zero and, thus, the equilibrium

is not efficient. Specifically, the right-hand side is positive and, thus, the right-hand side of the

regulator’s first-order condition (45) evaluated at the unregulated equilibrium is higher than the

marginal value of the sellers’ wealth λs
1. Because the right-hand side of (45) is the marginal social

value of investing in liquidity, such a value is higher for the regulator than for the individual agents

and, thus, the sellers’ time-0 liquidity holdings are lower than the socially optimal level.

To establish that ∂q1(γ̄)
∂ls0

(ks
1(γ̄)− ks

0)
(
1− R

q1(γ̄)

)
> 0, we begin by noting that ks

1(γ̄) − ks
0 < 0

because the sellers sell some of their long-term asset holdings in a fire sale and that 1− R/q1(γ̄) < 0

because q1(γ̄) < R in a fire sale. Thus, we need to show that ∂q1(γ̄)/∂ls0 > 0. To establish this result,

Figure 1 plots the left- and right-hand sides of the buyers’ first-order condition (13) evaluated at the

equilibrium value of kb
0; that is, using the time-1 market-clearing condition for capital, (20), and

the budget constraint of the sellers in times of fire sales (6):

q1(γ̄) = f ′
(
γ̄ds − ls0
q1(γ̄)

)
(49)

as a function of q1(γ̄). The left-hand side is given by q1(γ̄) and, thus, is represented by the 45-

degree line (solid line). The right-hand side f ′
(

γ̄ds−ls0
q1(γ̄)

)
is represented by the dotted line and

43



q1(γ̄)

q1(γ̄)

R

f ′
(

γ̄ds−ls0
q1(γ̄)

)

Figure 1: Establishing the sign of ∂q1(γ̄)/∂ls0 in the second-best-use pricing. The figure plots q1(γ̄) (solid line) and

f ′
(

γ̄ds−ls0
q1(γ̄)

)
(dotted and dashed lines). An increase in ls0 causes an increase in f ′

(
γ̄ds−ls0
q1(γ̄)

)
, represented by the shift

from the dotted to the dashed line, and thus, an increase in the equilibrium value of q1(γ̄).

depends on q1(γ̄) through f ′(·). As q1(γ̄) → ∞, the argument of f ′(·) goes to zero and, thus, f ′(·)
converges to R, given the assumptions in Section 2.1. And as q1(γ̄) decreases, the argument of

f ′(·) increases, and f ′(·) decreases because f ′′ < 0. In addition, the intersection with the 45-degree

line is somewhere at a point where q1(γ̄) < R. If ls0 increases, the argument of f ′(·) decreases and,

again, because f ′′ < 0, the value of f ′(·) increases for any q1(γ̄). Thus, an increase in ls0 causes an

upward shift in Figure 1 (i.e., the shift from the dotted line to the dashed line). In other words, an

increase in ls0 generates an increase in q1(γ̄), and vice versa, establishing ∂q1(γ̄)/∂ls0 > 0.

Proof of Proposition 3.3. In the asymmetric-information pricing, c2 = lb1 + αRkb
1, hence ∂c2

∂α
=

kb
1R, and the regulator’s FOC w.r.t. ls0 becomes

E0 {λs
1(q1 − 1)} = E0

{
∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+ ξkb

1R
∂α

∂ls0

}
. (50)

Note that q1 = αR, we have

R
∂α

∂ls0
=

∂q1
∂ls0

.
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Using this condition, alongside the fact that λb
1 = 1, and the market clearing condition kb

1 = ks
0−ks

1,

(50) can be rearranged as

E0 {λs
1(q1 − 1)} = E0

{
∂q1
∂ls0

(ks
0 − ks

1)λ
s
1

}
. (51)

In the fire sale state, ks
0 − ks

1 > 0. We also have λs
1 > 0, and we argue that the sign of ∂q1/∂ls0 is

negative here (and thus different from the positive sign in the proof of Proposition 3.2). To see this,

use the sellers’ optimal choice for ks
1, which is given by (6), together with (7) and (14), and time-0

budget constraint (1) to get

q1 =
R(

1 +R
θ̄(es+ds−ls0)

γ̄ds−ls0

) . (52)

It follows that ∂q1/∂ls0 < 0 in the fire-sale state.18 As a result, the right-hand side of (51) is nega-

tive in the asymmetric-information pricing, rather than positive as in the second-best-use pricing.

Therefore, the sellers’ holdings of the liquidity assets at t = 0 in the unregulated equilibrium are

higher than the socially optimal level, and a liquidity ceiling is required.

Proof of Proposition 4.1. Because the proposition focuses on cash-in-the-market and second-

best use pricing, and because there is no asymmetric information under these pricing mechanisms

(i.e., θ̄ = 0), we simply use γ rather than (γ, θ) to refer to identify the state at t = 1.

We begin by establishing the intermediate results that ∂q1/∂T evaluated at T = 0 is equal to zero

in the low-withdrawal state (i.e., when γ = 0), both under cash-in-the-market pricing and second-

best-use pricing, similar to the baseline. This follows from the same logic used in the baseline.

That is, under cash-in-the-market pricing, the buyers’ first order conditions when γ = 0 are

(ub
1)

′(cb1) =
R

q1
(ub

2)
′(cb2), (53)

(ub
1)

′(cb1) = (ub
2)

′(cb2), (54)

using the assumption that the buyers are endowed with 1 + ε units of liquidity (see footnote 2)

and that the trading volume is zero in equilibrium (so that kb
1 = 0). These equations imply that

q1 = R, independently of the level of the buyers’ consumption and, thus, independently of T . In

the second-best-use pricing, the result can be shown as in the proof of Proposition 3.2.

18More precisely, when allowing for transfers, T , the price q1 is given by q1
(
γ̄, θ̄
)
= R/

(
1+R

θ̄(es+ds−ls0)

γ̄ds−(ls0−T)

)
. However,

the dependence on T does not affect the sign of ∂q1/∂ls0.
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The term ∂q1/∂T in the high-withdrawal state γ = γ̄, however, is not zero, in general, because the

price q1 depends on T ; see (35) and note that the time-2 consumption cs2 is, in general, a function

of T . However, because q1 and cs2 are the same under the cash-in-the-market and second-best-use

pricing (see Remarks #1 and #4 in Section 4.1), ∂q1/∂T will also be the same in both models.

Next, we establish another intermediate result. That is, we show that

λb
1 = 1 (55)

in the low-withdrawal state (i.e., when γ = 0), under both pricing mechanisms. Under the cash-

in-the-market pricing, the buyers’ marginal utility of wealth is λb
1 = 1/cb1. This can be obtained

by differentiating the buyers’ time-1 Lagrangian with respect to cb1 and using the functional form

(ub
1)(c) = log c (see Section 2.2). Then, the normalization (ub

2)
′(0) = 1 and the first-order condi-

tions (53) and (54), together with the buyers’ budget constraint (10), imply that cb1 = 1 and, thus,

λb
1 = (ub

1)
′(1) = 1. Under the second-best-use pricing, the buyers’ marginal utility of wealth is

λb
1 = (ub

2)
′(cb2); this can be obtained by differentiating the buyers’ time-1 Lagrangian with respect

to lb1. The result, λb
1 = 1, under second-best-use pricing, follows from the fact that, in the low-

withdrawal state (in which γ = 0, and q1 = R), no trading takes place and the buyers’ time-2

consumption is equal to their endowment of liquidity, cb2 = 1, so that (ub
2)

′(1) = 1 because of the

normalization introduced in Section 4.1.

Next, we turn to the regulator’s first-order conditions (32) and (33). First, we note that there is

no asymmetric information under both cash-in-the-market and second-best-use pricing, and thus,
∂α1/∂ls0 = ∂α1/∂T = 0. Second, for both models, we can rewrite the regulator’s first-order condition

(33) using (i) the result ∂q1/∂T = 0 in the low-withdrawal state (i.e., when γ = 0), (ii) the normal-

ization λs
1 = 1 in the low-withdrawal state (i.e., when γ = 0) introduced in Section 4.1, and (iii)

the fact that λb
1 = 1 in the low-withdrawal state (i.e., when γ = 0), from (55). Thus, using “(γ̄)” to

denote the variables in the high-withdrawal state, γ = γ̄, (33) becomes

π
∂q1(γ̄)

∂T
(ks

1(γ̄)− ks
0)
[
ξλb

1(γ̄)− λs
1(γ̄)

]
+ E0

{
ξλb

1 − λs
1

}
= 0

and rearranging

ξ =
1− π + λs

1(γ̄)π
∂q1(γ̄)
∂T

[ks
1(γ̄)− ks

0(γ̄)] + πλs
1(γ̄)

1− π + λb
1(γ̄)π

(
1 + ∂q1(γ̄)

∂T
[ks

1(γ̄)− ks
0(γ̄)]

) . (56)

Note that (56) holds in both the cash-in-the-market and second-best-use pricings.
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The last step is to compare the expression E0

{
∂q1
∂ls0

(ks
1 − ks

0)
(
ξλb

1 − λs
1

)}
in the other regu-

lator’s first-order condition, (32), under cash-in-the-market and second-best-use pricing. In both

models, ∂q1/∂ls0 = 0 in the low-withdrawal state γ = 0, which can be established similarly to the

result ∂q1/∂T = 0 for that state derived before. In the high-withdrawal state, we can establish that
∂q1/∂ls0 is the same under both cash-in-the-market and second-best-use pricing using the assumption

that the sensitivity of the price q1 to the trading volume kb
1 (i.e., the demand elasticity) is the same.

To do so, we combine the sellers’ budget constraint (6) with the long-term asset market-clearing

condition (20) to obtain

kb
1(γ) =

γ̄ds − ls0
q1(γ̄)

,

where we have emphasized that we are focusing on the time-1 variables in the high-withdrawal

state γ̄. Totally differentiating with respect to ls0 and rearranging, we obtain

∂q1(γ̄)

∂ls0
=

−1/q1(γ̄)
∂kb1(γ̄)

∂q1(γ)
+

kb1(γ̄)

q1(γ̄)

.

Because the proposition assumes that the equilibria under cash-in-the-market and second-best-use

are equivalent (i.e., q1(γ̄), kb
1(γ̄), and ∂kb1(γ̄)/∂q1(γ) are the same), the term ∂q1(γ̄)/∂ls0 is also the same

under the two pricing mechanisms. Thus, because the trading volume ks
1−ks

0 is also the same under

the assumption that the equilibria are equivalent, we only need to show

[
ξλb

1(γ̄)− λs
1(γ̄)

]
cash-in-the-market pricing >

[
ξλb

1(γ̄)− λs
1(γ̄)

]
second-best-use pricing . (57)

To see why this is the case, note that if ξλb
1(γ̄) − λs

1(γ̄) > 0 under cash-in-the-market pricing, the

expression ∂q1/∂ls0 (k
s
1 − ks

0)
(
ξλb

1 − λs
1

)
< 0 in the high-withdrawal state γ = γ̄, using ∂q1/∂ls0 > 0

and ks
1 − ks

0 < 0 in that state. Hence, the sellers’ liquidity holdings are higher than the socially

optimal level (and the optimal policy is a liquidity ceiling), as discussed in the proof of Proposition

3.3. Therefore, if the term ξλb
1(γ̄)− λs

1(γ̄) is smaller under second-best-use pricing, the expression
∂q1/∂ls0 (k

s
1 − ks

0)
(
ξλb

1 − λs
1

)
is closer to zero or positive, implying that the optimal policy under

second-best-use pricing is a lower ceiling (if ∂q1/∂ls0 (k
s
1 − ks

0)
(
ξλb

1 − λs
1

)
< 0) or a liquidity re-

quirement (if ∂q1/∂ls0 (k
s
1 − ks

0)
(
ξλb

1 − λs
1

)
> 0).

As λs
1(γ̄) is the same under both pricing mechanisms, establishing (57) is equivalent to showing

[
ξλb

1(γ̄)
]

cash-in-the-market pricing >
[
ξλb

1(γ̄)
]

second-best-use pricing (58)
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or, using (56),

1− π + λs
1(γ̄)π

∂q1(γ̄)
∂T

[ks
1(γ̄)− ks

0] + πλs
1(γ̄)

1− π + λb
1(γ̄)π

(
1 + ∂q1(γ̄)

∂T
[ks

1(γ̄)− ks
0]
) λb

1(γ̄)


cash-in-the-market pricing

>

1− π + λs
1(γ̄)π

∂q1(γ̄)
∂T

[ks
1(γ̄)− ks

0] + πλs
1(γ̄)

1− π + λb
1(γ̄)π

(
1 + ∂q1(γ̄)

∂T
[ks

1(γ̄)− ks
0]
) λb

1(γ̄)


second-best-use pricing

.

The numerator is the same under both pricing mechanisms and, thus, we need to show that

[
(1− π)

1

λb
1(γ̄)

+ π

(
1 +

∂q1(γ̄)

∂T
[ks

1(γ̄)− ks
0]

)]
cash-in-the-market pricing

<

[
(1− π)

1

λb
1(γ̄)

+ π

(
1 +

∂q1(γ̄)

∂T
[ks

1(γ̄)− ks
0]

)]
second-best-use pricing

.

The only term that is different under the two pricing mechanisms is the buyers’ marginal utility of

wealth λb
1(γ̄). Thus, we need to show that

[
λb
1(γ̄)

]
cash-in-the-market pricing

>
[
λb
1(γ̄)

]
second-best-use pricing ,

and we do so by showing that

[
λb
1(γ̄)

]
cash-in-the-market pricing

> 1 ≥
[
λb
1(γ̄)

]
second-best- use pricing .

To establish this result, we show that, in the high-withdrawal state, γ = γ̄ (i.e., when fire sales

occur), the buyers’ marginal utility increases under cash-in-the-market pricing, relative to the low-

withdrawal state, whereas it decreases under second-best-use pricing.

Under cash-in-the-market pricing, the equilibrium in the low-withdrawal state is the same as in

the baseline; that is, cb1 = 1 and cb2 = 0. With this allocation, the buyers’ first-order condition (31)

holds, given the normalization (ub
2)

′(0) = 1 and the fact that sellers behave as in the baseline, and

the market-clearing condition for liquidity, which is still given by (19), holds as well. Then, as in

the baseline, the market-clearing condition evaluated at lb1 = 0 and ls1 = 0 implies that cb1 < 1 in the

high-withdrawal state γ = γ̄ and, thus, λb
1(γ̄) > 1 because λb

1 = 1/cb1, as established before.
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Under second-best-use pricing, the buyers’ time-2 consumption is

cb2 = lb1 + f
(
kb
1

)
= lb0 − q1k

b
1 + f

(
kb
1

)
,

where the last line uses the time-1 budget constraint. Differentiating with respect to kb
1,

∂cb2
∂kb

1

= −∂q1
∂kb

1

kb
1 − q1 + f ′ (kb

1

)
= −f ′′ (kb

1

)
kb
1 > 0,

where the second line uses q1 = f ′(kb
1) from (13), which continues to hold in the model with

general utility, as noted in Remark #1 in Section 4.1. Because kb
1 increases in the high-withdrawal

state γ = γ̄ relative to the low-withdrawal state γ = 0 (i.e., trading increases in a fire sale and,

thus, buyers acquire assets in a fire sale relative to the non-fire sale state), the buyers’ time-2

consumption under second-best-use pricing also increases. As a result, the marginal utility of

wealth λb
1 = (ub

2)
′(cb2)(γ̄) is weakly lower than in the low-withdrawal state γ = 0; that is, it is less

than or equal to one, because ub
2(·) is weakly concave (and possibly strictly concave).

Proof of Proposition 4.2. In the general model, the regulator’s FOC w.r.t. ls0 writes as

E0 {λs
1(q1 − 1)} = E0

{
∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+ ξks

1R
∂α

∂ls0
(ub

2)
′(cb2)

}
. (59)

Because on the margin, the buyers can purchase one unit of liquidity at t = 1, which allows them

to increase consumption by one unit at t = 2, we can express their marginal utility of wealth as

λb
1 = (ub

2)
′(cb2). Consequently, (59) can also be rearranged as

E0 {λs
1(q1 − 1)} = E0

{
∂q1
∂ls0

(ks
0 − ks

1)λ
s
1

}
,

which is the same as (51). The right-hand side is negative, implying the sellers’ holdings of the

liquidity assets at t = 0 in the unregulated equilibrium are higher than the socially optimal level.

Note the result ∂q1/∂ls0 < 0 can be derived as in baseline model; see the proof of Proposition 3.3.
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Proof of Proposition 4.3. We first prove the inefficiency with cash-in-the-market pricing by

showing that the sum of the last two items on the right-hand side of (40) is positive. The first-

order condition for the planner’s choice of transfers, T , is now

E0

{
∂q1
∂T

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+ ξλb

1 +
∂q1
∂T

(ks
0 − ζks

1) η
s
1

}
= E0 {λs

1 + ηs1} . (60)

As the time-1 price, q1, is unresponsive to T , (60) implies

ξ =
E0(λ

s
1 + ηs1)

E0(λb
1)

=
(1− π) + π( R

ζq1
+ 1− 1

ζ
)

(1− π) + π R
q1

.

Hence

E0

{
∂q1
∂ls0

(ks
0 − ks

1)
(
λs
1 − ξλb

1

)
+

∂q1
∂ls0

(ks
0 − ζks

1) η
s
1

}
= π

∂q1(γ̄)

∂ls0

[
(ks

0 − ks
1(γ̄))

(
λs
1(γ̄)− ξλb

1(γ̄)
)
+ (ks

0 − ζks
1(γ̄)) η

s
1(γ̄)

]
> π

∂q1(γ̄)

∂ls0

[
(ks

0 − ks
1(γ̄))

(
λs
1(γ̄)− ξλb

1(γ̄) + ηs1(γ̄)
) ]

= π
∂q1(γ̄)

∂ls0

[
(ks

0 − ks
1(γ̄))

(
R

ζq1
+ 1− 1

ζ
− R

q1

(1− π) + π( R
ζq1

+ 1− 1
ζ
)

(1− π) + π R
q1

)]

= π
∂q1(γ̄)

∂ls0
(ks

0 − ks
1(γ̄))

[
(1− ζ)(1− π)( R

q1
− 1)

ζ(1 + π( R
q1
− 1))

]
>0.

The first inequality comes from the fact that ζ < 1.

In the second-best-use pricing, we show that the wedge is positive by showing the second term

on the RHS of (40) is positive (as the third term is clearly positive). To see this, note that λb
1 = 1 in

the second-best-use pricing. And we only need to show λs
1− ξ > 0. In the second-best-use pricing,

ξ = 1− π + π

(
R

q1
+ 1− 1

ζ

)
,

and λs
1 is the same as in the cash-in-the-market pricing, the result follows.

We then show that the socially optimal level of liquidity is higher under second-best-use pricing,

in comparison to cash-in-the-market pricing. That is, we show that the wedge in the second-best use
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is larger than that in the cash-in-the market. When the two equilibria are observational equivalent,

we can show that ∂q1/∂ls0 is the same under both pricing mechanisms following the same steps used

in the proof of Proposition 4.1. Thus, because the observational equivalence also implies that

(ks
0 − ks

1(γ̄)) is the same under both pricing mechanisms, the proof boils down to showing

[λs
1(γ̄)− ξλb

1(γ̄)]Cash-in-the-market < [λs
1(γ̄)− ξλb

1(γ̄)]Second-best use,

or

[ξλb
1(γ̄)]Cash-in-the-market > [ξλb

1(γ̄)]Second-best use,

or
(1− π) + π( R

ζq1
+ 1− 1

ζ
)

(1− π) + π R
q1

R

q1
> 1− π + π

(
R

q1
+ 1− 1

ζ

)
,

which is true by R > q1 in the fire-sale state.

Proof of Proposition 4.4. Using q1 = αR, λb
1 = 1 and the market clearing condition kb

1 = ks
0−ks

1,

(40) becomes

E0 {(λs
1 + ηs1)q1} = E0

{
(λs

1 + ηs1) +
∂q1
∂ls0

(ks
0 − ks

1)λ
s
1 +

∂q1
∂ls0

(ks
0 − ζks

1) η
s
1

}
.

The wedge is negative, as ∂q1
∂ls0

< 0 in this case, and ks
0 − ζks

1 > ks
0 − ks

1 > 0 in the fire-sale state.

B Full equilibrium characterization

In this appendix, we describe the full equilibrium under each pricing mechanism.

B.1 Equilibrium in the cash-in-the-market pricing

The equilibrium at t = 0, 1, 2 under cash-in-the-market pricing is the following:

• At t = 0, the sellers invest an amount ls0 =
π

R−1+π
+ γ̄ds−1 in liquidity and ks

0 = es+ds(1−
γ̄)− πR

R−1+π
+ 1 in the long-term asset.

• At t = 1
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– If γ = 0, the price of the long-term asset is q1 = R, the trading volume is zero (i.e.,

ks
1 = ks

0 and ls1 = ls0 for the sellers, and kb
1 = 0 and lb1 = 0 for the buyers), and the

buyers’ consumption is cb1 = 1;

– If γ = γ̄, the price of the long-term asset is q1 = πR
R−1+π

< 1, the sellers’ portfolio

choices are

ks
1 =

π2R (ds(1− γ̄) + es) + π(R− 1) [R (ds(1− γ̄) + es) +R− 1]− (R− 1)2

πR (R− 1 + π)

and ls1 = 0, the buyers’ portfolio choices are kb
1 = R−1

πR
and lb1 = 0, and the buyers’

consumption is cb1 =
π

R−1+π
.

• At t = 2

– If γ = 0, the sellers consume cs2 = Res+(R− 1)
[
ds (1− γ̄) + R−1

R−1+π

]
and the buyers

consume cb2 = 0;

– If γ = γ̄, the sellers consume cs2 =
π(R−1+π)[d(R−1)(1−γ̄)+esR]−(1−π)(R−1)2

π(R−1+π)
and the buyers

consume cb2 =
R−1
π

.

B.2 Equilibrium in the second-best-use pricing

The equilibrium at t = 0, 1, 2 under second-best-use pricing is the following:

• At t = 0, the sellers invest an amount ls0 = γ̄ds − πR
R−1+π

(f ′)−1
(

πR
R−1+π

)
in liquidity and

ks
0 = es + ds − πR

R−1+π

[
γ̄ds − (f ′)−1

(
πR

R−1+π

)]
in the long-term asset.

• At t = 1

– If γ = 0, the price of the long-term asset is q1 = R, the trading volume is zero (i.e.,

ks
1 = ks

0 and ls1 = ls0 for the sellers, and kb
1 = 0 and lb1 = 1 for the buyers), and the

buyers’ consumption cb1 is zero;

– If γ = γ̄, the price of the long-term asset is q1 = πR
R−1+π

< 1 and the sellers’ portfolio

choices are

ks
1 = es + ds(1− γ̄) + (f ′)

−1

(
πR

R− 1 + π

)
×
(

πR

R− 1 + π
− 1

)
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and ls1 = 0, the buyers’ portfolio choices are kb
1 = (f ′)−1 ( πR

R−1+π

)
and lb1 = 1 −

πR
R−1+π

(f ′)−1 (R π
R−1+π

)
, and the buyers’ consumption cb1 is zero;

• At t = 2

– If γ = 0, the sellers consume cs2 = Res+(R−1)
[
ds(1− γ̄) +

(
πR

(R−1)+π

)
(f ′)−1 ( πR

R−1+π

)]
and the buyers consume cb2 = 1;

– If γ = γ̄, the sellers consume cs2 = Res+(R−1)ds(1−γ̄)+R
(

πR
R−1+π

− 1
)
(f ′)−1 ( πR

R−1+π

)
and the buyers consume cb2 = f

[
(f ′)−1 ( πR

R−1+π

)]
+ 1− πR

R−1+π
(f ′)−1 (R π

R−1+π

)
.

B.3 Equilibrium in the asymmetric-information pricing

The equilibrium at t = 0, 1, 2 in the asymmetric-information pricing is the following:

• At t = 0, the sellers invest an amount ls0 =
Rπθ̄es−(R−1)γ̄ds

Rπes−(R−1)
in liquidity and

ks
0 =

(R− 1 +Rπθ̄)es −Rπ(es)2 + (R− 1)(1− γ)ds0 −Rπesds0
(R− 1)−Rπes

in the long-term asset.

• At t = 1

– If γ = 0, the price of the long-term asset is q1 = R, the trading volume is zero (i.e.,

ks
1 = ks

0 and ls1 = ls0 for the sellers, and kb
1 = 0 and lb1 = 1 for the buyers), and the

buyers’ consumption cb1 is zero;

– If γ = γ̄, the price of the long-term asset is q1 = πR
R−1+π

< 1, the sellers’ portfolio

choices are ks
1 =

ds((R−1)(−1+γ)+es(πR+γ−(π+R)γ))+es(esπR−(R−1)(1+(π−1)θ̄))
1+(esπ−1)R

and ls1 = 0,

the buyers’ portfolio choices are kb
1 =

γ̄ds− (R−1)γ̄ds−Rπθ̄es

(R−1)−Rπes

Rπ
(R − 1 + π) and lb1 = 1 +

(R−1)γ̄ds−Rπθ̄es

(R−1)−Rπes
− γ̄ds, and the buyers’ consumption cb1 is zero;

• At t = 2

– If γ = 0, the sellers consume cs2 = Res+ds (R− 1)− (R− 1)
[

π
R−1+π

+ γ̄ds − 1
]

and

the buyers consume cb2 = 1;

– If γ = γ̄, the sellers consume cs2 =
ds((R−1)(−1+γ)+es(πR+γ−(π+R)γ))+es(esπR−(R−1)(1+(π−1)θ̄))R

1+(esπ−1)R

and the buyers consume cb2 = 1.
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Appendix C

Numerical example under cash-in-the-market pricing

This appendix provides a numerical example that illustrates the results of Section 4.1. We show

that, depending on parameter values, the unregulated equilibrium can feature either excessive or

insufficient liquidity relative to the social optimum.

Utility. Buyers have

ub(cb1, c
b
2) = log(cb1) + log

(
1 + cb2

)
,

which satisfies the condition ∂ub
2(0)/∂c

b
2 = 1 stated in Section 4.1. Sellers’ utility is identical to

that in the baseline model.

Time 1 portfolios. In the low-withdrawal state (γ = 0) the portfolios are

ks
1

∣∣γ = 0 = ks
0, ls1

∣∣γ = 0 = ls0, (61a)

kb
1

∣∣γ = 0 = 0, lb1
∣∣γ = 0 = 0, cb1

∣∣γ = 0 = 1. (61b)

In the high-withdrawal state (γ = γ̄) the buyer’s first-order condition (31) implies

q1
∣∣γ = γ̄ =

cb1
1 + cb2

R.

Combining cb2 = lb1 +Rkb
1 with the time-1 budget 1 = cb1 + lb1 + q1k

b
1 yields

ks
1

∣∣γ = γ̄ =
q1k

s
0 −

(
γ̄d− ls0

)
q1

, ls1
∣∣γ = γ̄ = 0, (62a)

kb
1

∣∣γ = γ̄ =
R− q1
2Rq1

, lb1
∣∣γ = γ̄ = 0, cb1

∣∣γ = γ̄ =
q1 +R

2R
. (62b)

Time 0 price and portfolios. With λs
1 = R/q1, the equilibrium price in the high-withdrawal state

remains

q1
∣∣γ = γ̄ =

πR

R− 1 + π
. (63)
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Using the time-0 constraint ks
0 = es + d− ls0 we obtain

ls0 =
1 + 2d(π − 1)γ̄ +R

[
−1 + 2dγ̄

]
2
[
−1 + π +R

] , (64a)

ks
0 = d(1− γ̄) +

−1 +R + 2es
[
−1 + π +R

]
2
[
−1 + π +R

] . (64b)

(The remaining time-1 allocations follow mechanically; we reproduce them for completeness.)

Planner’s first-order condition. Under cash-in-the-market pricing the planner’s condition (32)

reduces to

E0[λ
s
1q1] = E0

[
λs
1 +

∂q1
∂ls0

(
ks
0 − ks

1

)(
λs
1 − ξλb

1

)]
.

In the high-withdrawal state:

∂q1
∂ls0

= 2R > 0, λs
1 − ξλb

1 =
(−1 + π +R)

[
−1− π + 2π2 +R− πR

]
π
[
−1− π + 2π2 +R + πR

] .

Numerical calibration. Fix R = 1.1, es = 10, d = 3, and γ̄ = 0.3. We vary π to show that

equilibrium liquidity can exceed or fall short of the social optimum.

Case 1: π = 0.10

q1 = 0.55, ls0 = 0.35, λs
1 − ξλb

1 = −1.3846.

Because the wedge λs
1 − ξλb

1 is negative—and ∂q1
∂ls0

> 0 and ks
0 − ks

1 > 0—the sellers’ liquidity is

above the planner’s optimum.

Case 2: π = 0.04

q1 = 0.314286, ls0 = 0.242857, λs
1 − ξλb

1 = 0.626866.

The positive wedge λs
1 − ξλb

1 implies that equilibrium liquidity is below the planner’s optimum.

These two cases confirm that, even under the same cash-in-the-market pricing mechanism, the

sign of the regulatory wedge—and hence whether liquidity is excessive or insufficient—is ambigu-

ous and depends on the parameterization of the model.
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