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Abstract

To avoid endogeneity, financial economists often construct alternate regressors using values
from other observations, with lagged and leave-out variables being common examples. We
examine a bias in these “constructed regressors” that can be induced by including fixed effects,
which reintroduce the focal observation’s bias through de-meaning. We show generally that
the size of the bias is determined by level of overlap between the construction group and the
fixed effect set and provide an intuitive test for the significance of the bias. We illustrate the
bias’s magnitude via simulation and with patent examiner data in a Judge FE design. Even
when scrambling the patent examiners, thus removing any instrument validity, the bias leads
to a first-stage F-statistic over 1,000. We provide general solutions through either adjustment

of the fixed effects or construction sets and detail other, case-specific, solutions.
JEL Codes: C13 - C36 - D22- K00

Keywords: Lagged Variables - Leave-Out Instruments - Judge Fixed Effects - Hausman Instru-
ments - Jackknife IV (JIVE) - Patents

“We thank Scott Cunningham, Ralf Elsas, Keith Ericson, Shan Ge, Paul Goldsmith-Pinkham, Aurobindo Ghosh,
Michal Kolesar, Peter Hull, Eli Liebman, Seongjoo Min, Richard Peter, Marc Ragin, Ryan Riordan, Stephen Shore,
Suyong Song, Justin Sydnor, and seminar participants at The University of lowa, LMU Munich, The European Group
of Risk and Insurance Economists, The German Finance Association, and The Financial Management Association for
providing valuable comments. The views in this paper are solely the authors” and do not reflect the views of the Federal
Reserve Bank of Dallas or the Federal Reserve System.

"Federal Reserve Bank of Dallas (alexander.chudik@dal.frb.org)

Dept. of Finance, Tippie College of Business, University of Iowa (cameron-ellis@uiowa.edu)

SLMU Munich School of Management, LMU Munich (jaspersen@imu.de)



1 Introduction

Consider a financial economist who wants to estimate the causal effect of x;; on y;, but worries
that z; ; is endogenous. To overcome this endogeneity, researchers will look for another variable
v that correlates with z;;, but doesn’t directly impact y; ;. A common strategy is to use differ-
ent values of z, either along the i or ¢t dimension that plausibly satisfy the exclusion restriction.
The economist will use this value (or an average if there are multiple) to “construct” a proxy or
instrument for x;;. Perhaps the original, and most common, version of this “constructed regres-
sor” strategy is to exploit exogeneity induced by time and use lagged values, either of z itself or
a necessary control variable, instead of the contemporaneous value. More recently, econometri-
cians have developed “leave-out” constructions, which average other observations along a data
dimension besides time to utilize plausibly exogenous disturbances in the broader data category

to circumvent bias within individual observations.

The leave-out strategy originated with the “Hausman” instrument, which averages a firm’s
prices in other markets in the same year to instrument for prices in the focal market (e.g., Haus-
man, 1996; Nevo, 2001).! “Judge fixed effects” are a similar style of leave-out instrument where
an individual judge’s average rulings on other cases are used as an instrument for the current
case (e.g., Aizer and Doyle, 2015; Dobbie et al., 2018). “Peer effects” are constructed in a simi-
lar manner through averaging other observations along a dimension such as social network or
school, but are often used directly instead of as an instrument (e.g., Fruehwirth et al., 2019; Lavy
and Megalokonomou, 2024). “Supply restriction” instruments also have a similar construction but
rely on a different kind of exogenous shock, are also increasingly common (e.g., Ma et al., 2022;
Gabaix and Koijen, 2024).2 Though largely originating in other fields, leave-out instruments have
been increasingly exploited by financial economists across a diverse range of topics including;
innovation (Farre-Mensa et al., 2020), mortgage servicing (Aiello, 2022), bank supervision (Eisen-
bach et al., 2022), broker financial crimes (Honigsberg and Jacob, 2021), and manager promotion
(Benson et al., 2019).

Finance researchers often combine these constructed regressors with fixed effects, typically
Firm and/or Year, to control for unobserved variables that are invariant along some dimension.

With lagged variables, firm fixed allow the researcher to ignore the (many) potential confounding

1“BLP Instruments” for non-price product characteristics also typically use characteristics of rival products in the
same market to instrument for the focal product’s characteristic.

“For supply restriction instruments, the correlation relies on aggregate supply constraints such that a positive shock
to other observations in the same year will lead to a negative shock to the focal observation. These variables can also
be used for direct inference, as is the case in Paravisini et al. (2023). We also note that Gabaix and Koijen (2024) are very
careful in properly detailing how their instrument should be constructed in the presence of fixed effects.



time-invariant firm characteristics. Leave-out instruments also typically require fixed effects to be
plausibly exogenous. With Hausman instruments, it is important to include (at least) Firm effects
to ensure that characteristics such as general firm quality do not bleed into the instrument (Nevo,
2001). Judge designs also require fixed effects, since judges are typically only randomly assigned
within a court, county or, in the case of patents, art units (Chyn et al., 2024; Farre-Mensa et al.,
2020).

We explore a potential pitfall of this common combination of identification strategies: when
constructed regressors are combined with fixed effects that “overlap”—where observations within
a fixed effect share common terms from the constructed regressor—they become mechanically
correlated with the exact value they are trying to avoid, leading to bias.> To show the prevalence
of this identification strategy we examined all papers in issues 75, 76, and 77 (2020 - 2022) of
the Journal of Finance and found 33 (out of 211) papers that likely contain some bias from the
combination of a constructed regressor and an overlapping fixed effect. Table 1 shows the break-
down by field, with over a quarter of empirical, non-asset pricing papers — and over 15% of all

papers — likely having some bias 4

Table 1: Journal of Finance Papers with Constructed Regressors and Overlapping Fixed Effects

Type Total Possible Bias Percent
Empirical (Non Asset Pricing) 101 28 27.72%
Empirical (Asset Pricing) 45 3 6.66%
Structural 14 2 14.29%
Theoretical 42 - -
Other 9 - -
Total 211 33 15.64%

Note: Table provides an overview over the categorization of all 211 papers surveyed in the structured liter-
ature review. The “other” category is comprised of replications/ corrigenda, methods papers, and similar
types of research. Further details on the procedure and the full list of identified papers is given in Online
Appendix F.

*For example, a constructed regressor of z; ;1 overlaps with Firm (i) fixed effects since z; ; is the constructed re-
gressor for z; 411, which shares the same fixed effect.

*We focused on papers that made causal claims, which excluded most asset pricing papers, and only included
papers that had the potential for a non-trivial bias based on the level of overlap. For example, we typically removed
papers with lagged regressors and Industry fixed effects, but included those with lagged regressors and Firm fixed
effects. Further details and a complete list of identified papers is given in Online Appendix F.



We first show that the bias exists even if the constructed regressor by itself satisfies the ex-
clusion restriction or is simply used as a control for a different hypothesis variable that is not
constructed. Furthermore, when used as an instrument, this bias leads to an increase in the appar-
ent “strength” of the first stage, even if the identifying shock does not actually exist, with a larger

bias mechanically leading to a larger first stage F-Statistic.

After showing generally that the bias exists when fixed effects overlap, and does not exist
when they don’t, we develop a simple and intuitive resampling-based test for the significance
of the bias. Next, we develop general, though potentially restrictive, solutions. We also detail
existing, case-specific, solutions for the most popular construction strategies (lags and leave-outs)
that do not seem to have made their way to finance research.” We then examine the potential size
of the bias through extensive Monte Carlo simulations. Finally, we provide an empirical example
with commonly used patent examiner data. We find that the inclusion of overlapping fixed effects
biases the coefficient by over 20% relative to the bias of OLS. Even when scrambling the patent
examiners, thus removing any identifying variation, the overlapping fixed effects bias induces a

tirst-stage F-statistic of over 1,000.

The intuition for the bias is simple. The explicit reason researchers construct regressors is
to avoid bias from a focal observation. When researchers then include fixed effects, they cre-
ate “within” estimations—where the identification only comes from the value of the constructed
regressor relative to other constructed regressors within the same fixed effect. If the focal observa-
tion is used in any of those other constructions, the researcher has mechanically reintroduced the
same bias that they were trying to avoid in the first place, with the extent of this bias determined

by how many of the other constructed regressors within the fixed effect use the focal observation.®

We develop an easy and intuitive test for the existence of this bias that does not require the re-
searcher to code any new estimators. The test relies on developing a placebo regressor that shares
the same construction strategy, but has no identifying information. This is achieved though scram-
bling observations along the relevant construction dimension and then re-running the original re-

gression. In the case of judge fixed effects, judges within a court-year are randomly re-sampled.”

5In the case of leave-out instruments, researchers can use the IJIVE or UJIVE estimators of Ackerberg and Devereux
(2009) and Kolesar (2013). For lagged independent variables, researchers can use the Double-Filter IV of Hayakawa
et al. (2019). For lagged dependent variables, known as the “Nickell Bias” (Nickell, 1981), researchers can use the
dynamic panel estimators of Blundell and Bond (1998) and Arellano and Bond (1991).

SImportantly, it is not necessarily determined by the size of the construction sets themselves. In the extreme case, a
Hausman IV with a Firm-Year FE or a Judge FE design with a Judge-Year FE, all of the non-focal observations fully can-
cel out, regardless of how many markets or cases there are, and the estimator is numerically equivalent to instrumenting
the focal observation with itself.

"In the case of lagged regressors, the researcher can resample firm ids within a year. However, this test is under-
powered when auto correlation is strong, so we also detail a more formal Hausman test. Unfortunately, the Hausman
test requires the researcher also code one of our provided solutions.

3



Because this resampling removes any identifying variation conditional on observables, any signif-
icance that remains in the regression must originate from the bias. An alternative is to implement
the appropriate estimator we identify as the case-specific remedy and perform a Hausman (1978)

specification test.

We derive general solutions to the bias from the fact that if the observations used in the in-
strument and those used in the fixed effect do not overlap, then the de-meaning process has no
negative consequences for the instrument’s validity. This can be achieved in two ways. First, by
increasing the fixed effects” granularity through interacting the fixed effect’s desired dimension
with a separate fixed effect at the level of the group orthogonal to the instrument group. For ex-
ample, in the Hausman IV, the researcher could include Market x Firm fixed effects instead of
simply Firm. The other option is to change the calculation of the instrument by leaving out all
observations also used in the fixed effect. In practice, this will often involve an “imputation” ap-
proach, estimating the instrument on one part of the sample, and then the primary regressions on
a separate part of the sample. However, it may be the case that an “outside-sample” exists that is

relevant for the instrument, but not relevant to the primary regression.

Our primary contribution is to further financial economists” understanding of the potential
bias in this extremely common empirical design. A structured examination of empirical papers
published by the Journal of Finance from 2020 - 2022 finds that 21 empirical, non-asset pricing,
papers used constructed regressors either as instruments or hypothesis variables and combined
them with overlapping fixed effects. A further 12 used them as controls, which we show can also
introduce bias. While several of these papers feature data dimensions that could make the bias

relatively small, none of them test for the bias’s existence or attempt any solutions.

We also make a novel contribution to the methodological literature. Case-specific versions of
the bias we explore have been identified by other work (e.g., Nickell, 1981; Chudik et al., 2018;
Kolesar, 2013; Angrist et al., 1999). While that work proves that the bias exists for a general set
of control variables, with the bias increasing in the number of controls, our focus on fixed effects
(the most common “many controls” setting) allows us to create a general theory that encompasses
all cases. We use this general theory to show that, in contrast to the results of existing work, it is
the overlap that determines the bias, and not the general number of fixed effects. Indeed, there
are cases where multiplying two fixed effects together can fully remove the bias, even though the
number of controls increases dramatically. We also develop an intuitive and simple test for the
existence of this bias, which can inform researchers if pursuing potentially costly solutions are

necessary.



Lastly, we contribute to the general literature examining biases that may be induced by fixed
effects. Such biases have been shown in other settings, such as the incidental parameters problem
in maximum likelihood estimation (Neyman and Scott, 1948; Lancaster, 2000) or difference-in-
differences with staggered roll-outs (Goodman-Bacon, 2021; Borusyak et al., 2024; Sun and Abra-
ham, 2021). Fixed effects are popular, because they can solve important econometric problems
(Petersen, 2008). At the same time, however, they can often lead to problems in a non-intuitive
way when combined naively with other estimations strategies. We show that such an effect can
appear with constructed regressors, but, at the same time, highlight several ways in which a com-

bination of these instruments with fixed effects is still possible.

2 Theory

2.1 General Result

We consider fixed effects (FE) estimation of a linear regression model featuring a constructed re-
gressor. This estimation can either be the direct test of a hypothesis, or the first stage of a two-stage
least squares design, in which case the constructed regressor acts as the instrument. Both types of
analyses are common in the literature. We assume the following general model to derive our main

results:
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fori = 1,2,...,n. Here, index i uniquely identifies one of a total of n observations. z; is the con-
structed regressor which is based on the underlying, endogenous variable v. The constructed re-
gressor for observation i is calculated using a set of observations that we call construction “group”,
denoted by G(i). The constructed regressor is calculated as the mean of variable v in G(i). Note
that by the nature of constructed regressors, i ¢ G(i). We denote the cardinality of any set A with
the commonly used operator |A|. Note that our set-up allows for the case of v; = y; such that our
results subsume the Judge Fixed Effect instrument for case outcomes, among other applications.
x; = (zi1, Ti2y -, a:,»k)’ is a k x 1 vector of further regressors and 4 is the associated coefficient vec-
tor. The estimation features fixed effects. For observation ¢, the set of all observations used for
the calculation of the fixed effect is called the “cell”, denoted by C(i) € C. C is a partition of the

data such that each observation belongs to exactly one cell. In Equation (1), the fixed effect for



cell C(7) is denoted by 7 ;). While not typically used in this fashion, this notation subsumes all
common panel structures, including those with multiple fixed effects (such as the common Firm
and Year two-way fixed effects). Using this notation is helpful for our purposes, because it makes

transparent which fixed effect cell is used to de-mean observations in the estimation.

For ease of notation, we use lower-case bold fonts for vectors and upper-case bold fonts for
matrices. All vectors are column vectors. We may rewrite Equation (1) in matrix notation, such
thaty = 8z + X& +n + €. Let the average of any variable z; over elements of set C(i) be Z¢(;) =
Ic@|t S jec(i) %j- Then we can define de-meaned versions of any variable z; as Z; = 2; — Z¢ ().

Lastly, define ¢;; = I [i € G(j)] with I(.) being an indicator function.

We consider a simple illustrative set-up for the endogeneity of v, given by Assumption 1 be-
low, and a general regularity requirements on errors and regressors given by Assumption 4 in
Appendix A.1. Our endogeneity assumption is not just for ease of exposition, but more impor-
tantly our aim is to show that the bias we explore here can appear even if conditions for estimation

are otherwise optimal.

Assumption 1 (Endogenous v). Foralli,j =1,2,...,n, we have

E(UZ‘EJ‘) = 0 fori 7& j (3)

Ovei fOri=j

where oye; # 0.

We thus explore the case where v; is only correlated with the error term of observation ¢ and
not with any other error term. Note that this correlation does not have to be homogeneous across
different observations, but can take different values for different i. This assumption corresponds
to the best possible situation one could have while using constructed regressors. If 0,.; = 0 for all
observations, then constructed regressors would be unnecessary in the first place. The very idea

of the constructed regressor is to take advantage of F(v;e;) = 0 for i # j.

Let /3 be the fixed effects (FE) estimator of 8 in model (1),

B = (#Myz) #M;y, (4)

8y = (y1,y2, ...,yn)', z = (21, 22, ...7zn)/, X = (x1,x2, ...,xn)/, n= (770(1)7770(2)7 ...,nc(n))/, and € = (g1, €2, ...75n)/.



S
where My =1, — X (X’ X) X'. We begin by stating the general result for the consistency of
the FE estimator when the sets C'(i) and G(i) overlap in an arbitrary way. The result allows for
cases in which each set has observations that are not in the other but also for cases in which one is

a subset of the other.

Proposition 1. Let y;, z; be given by (1)-(2), and suppose Assumptions 1 and 4 hold. Consider the FE

estimator B given by (4). Then, as n — oo,
B = Bo— Qu Ag, (5)

where

1 = 2jec(i) CiiOvej
Ag = lim Ag, = lim — iSO M
= ,HWZ; G [CG)]

in which cj; = 1[j € G(i)] and I(.) is an indicator function.

All proofs are provided in Appendix A.2.

This proposition shows that the overlap between the sets C(i) and G(i), givenby 3. ;) ¢ji =
(i) N C(i)], can lead to inconsistency of 3.° For illustrative purposes, assume o,.; = o, for all .

Then Ag,, reduces to

eC(1) C]Z _
Z\G] BI1CT) Z‘) =l

where

f=n"'> 0,and ;= ", 0<6; <1 (6)

Clearly, 6 can tend to zero or a positive nonzero value (< 1), as n — oo, depending on given
empirical setting. For instance, as long as |C(i)| and |G(7)| do not change with n then the bias of
/3 will not dimish in n and /3 will be inconsistent so long as |G (i) N C(i)| # 0. A specific example
of this case is when the constructed regressor is calculated from lagged past observations of the
same firm and there are Firm level fixed effects, then adding new firms changes nothing about the
size of the construction group or the fixed effect cell. Only adding more years, and thus increasing
|C(7)|, will decrease the bias.

°This bias occurs even if E(v;e;) = 0 for all i # j. If this condition is relaxed, then the expression for the bias will be
more complex.



In general, 6 can be of order n~?, for some value of the exponent « in the range 0 < a < 1,
namely 0 = O (n~%). Then B is consistent if o > 0. However, even if B is consistent, this does not
mean inference would be valid. Under the usual regularity assumptions for \/n convergence rate
of 3, we would need a > 1/2 for the asymptotic distribution to be correctly centered at zero. This
is a much stronger requirement than simply « > 0. In Monte Carlo section we illustrate how bad

inference could be even if the bias of 3 is asymptotically negligible (namely when 3 —, o).

When thinking of Equation (1) as the first stage in an instrumental variable estimation, then
important implication of Proposition 1 is that the first stage F-Statistic can be spuriously large
when 5y = 0. If the data sample is increased along the C(i) dimension, holding |C(7)| and |G(7)|
constant, then the bias does not diminish in n while the standard error of the estimated coefficient
will approach zero, leading the first-stage F-Statistic to approach infinity. A common case where
the data increase but |C(i)| and |G(7)| are constant is in the Judge Fixed Effects case, where C/(i)
is constructed at the Court-Year Level. G(i) is constructed Judge-Year level. Adding more Court-
Years while keeping the number of cases per Judge-Year and Judges per Court-Year constant will

not change the bias, but it will lower the standard error.!’

2.2 Lagged Construction Example

One way in which regressors can be constructed is the use of lags. We consider a very simple
panel data model that uses a single lag, this time indexing observations as (f, ) to indicate both
the unit f and the time period ¢. One can think of the data structure as a panel of F’ firms (indexed
by f =1,2,..., F) observed for T time periods (indexed by t = 1,2, ..., T), but the data can also be
any other type of panel. For illustrative purposes, we focus on the case without additional control

variables. The equation to be estimated is

Yre = Bugi—1 + 05+ €pe, (7)

which is a special case of (1)-(2) with the datapoint i given by the pair (f,¢), x; = 0 (no additional
regressors), 2z = vf—1,and G (f,t) = {(f,t —1)}.

The constructed regressor is thus given by z¢; = vs,_1, so in terms of Equation (2), we are tak-
ing the average over a single observation (formally: |G(f,t)| = 1). This is the most common way
of including lags in empirical literature, though there are some application in which the average

is taken over multiple lags (see, e.g., Gao et al., 2024) and the result extends to such estimations.

'0A similar argument is made by Kolesér (2013).



We focus on a balanced panel, which is again for illustrative purposes. Assuming vy is not
observed, then T' — 1 periods are available for estimation (¢t = 2,3, ...,T), and we have C (f,t) =
{(f.1),(f,2),....(f,T)}. Hence |C (f,t)| = T — 1. The following corollary shows FE estimator is

not consistent when 7' is fixed, and the bias is of order 7!.

Corollary 1. Consider the special case of model (1)-(2) given by (7), and suppose conditions of
Proposition 1 hold, with £ (vfeft) = o4, f for all t. Let /3 be the FE estimator of 3 in (7), using a

balanced sample on 7" time periods and F firms. Then, as F' — oo and 7 is fixed,

B —p Bo— QupAp.1, ®)
where
T—-2
Apr = ——30u,
ﬁ?T (T o 1)2 €

Ope = limp_00 P Z?:l Ove, f and Qv,T = pliTnFﬁooF_1 (T o 1)71 Z?:l 23:2 6]2”,1‘,71'

We can thus see that the bias described in Section 2.1 leads to a very tangible result in the
commonly used regression specifications where lagged regressors are combined with unit-level
fixed effects. The overlap between the fixed effect cell (all observations for a unit f) and the
construction group (lagged value of v for unit f) is given by (7'—2)(T—1)~2. This is approximately
equal to 1/7 and only slightly smaller for very small values of 7.!! As can be seen in Figure 1, the

bias can be quite sizeable and is be particularly strong for panels with short 7'.

The result in Corollary 1 is not qualitatively new. It is reminiscent of Nickell bias (Nickell,
1981) and it is a special case of the weak exogeneity bias derived in Chudik et al. (2018). The
intuition is the same as for the general result. Including the unit-level fixed effects is equivalent to
demeaning the lagged regressor. Because about 1/7 of this mean is the focal observation’s value of

the regressor, this share of the covariance between vy ; and €, biases the estimate of the coefficient
.

Under the usual regularity conditions FE estimator of 5 in Equation (7) will converge at the
rate of VFT. As long as both dimensions F, T — oo, 3 is consistent. However,the asymptotic
distribution of 3 will be correctly centered at zero only if \/ﬁQ;TA@T — 0. Since Agr in
Corollary 1 is of order 1/7, this condition is met only when F'/T" — 0 as F,T — oo. Hence, the
inference will be valid only if F is small relative to 7". This rules out many applications where F

(the number of firms) is typically quite large in comparison with 7" (the number of time periods).

17t is not exactly 1/T because the vy r does not appear in any constructed regressors and v¢,1 never appears in a
fixed effect cell so there is no overlap for these observations.



Figure 1: Extent of bias in the FE estimation of illustrative panel regression with a single lag
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Note: The graph shows the size of the factor (7'—2)(7—1) 2 from the result in Corollary 1 for given number
of time periods in the estimation. The blue dashed line shows the approximation 1/7". The graph starts at
T = 3. With T' = 2 only one period is used in the estimation, thus not allowing for unit-level fixed effects.

2.3 Jackknife IVs: The Leave-Out Construction Example

One of the other main applications of constructed regressors are leave-out means. These underlay
the common “judge fixed effects” estimation strategy that is popular in both finance and eco-
nomics (e.g., Dobbie et al., 2018; Farre-Mensa et al., 2020). Angrist et al. (1999) show that they are
equivalent to Jackknife IV estimators (or JIVEs) which is why they are also sometimes referred
to as such. The difference to the general result of Proposition 1 is that the construction groups
are now set in a less flexible structure. Specifically, the estimation uses a leave-out setting if the

following assumption is fulfilled

Assumption 2 (Leave-out setting). For each i it holds that G(i) = J (i) \ i with J(i) € J and J being
a partition of the data.

We call J (i) the jackknife set. In the leave-out setting the construction group of observation i is
comprised of all observations in J(¢) except 7 itself. Thus, within a jackknife set, the construction

groups of two observations differ only regarding a single observation: their own.

The idea is best exemplified by a concrete data application. For this, we borrow the setting of
our empirical application described in Section 4. Here, examiners grant or refuse patent applica-

tions. Examiners differ in their strictness and the allocation of patent applications to examiners is

10



random within the so-called art units. For causal inference, researchers estimate the average strict-
ness of an application’s examiner leaving out only the focal application. The applications handled
by one examiner thus forms the jackknife set. A counterexample can make clear how the leave-
out setting differs from the general case: When corporate finance researchers are interested in peer
effects, they might define a company’s peers as the competitors for the company’s main product.
Because company A being a competitor for company B’s main product does not have to mean that

said product is also company A’s main product, this definition would violate Assumption 2.

Because the leave-out setting is a special case of the general model, Proposition 1 carries over.
The extent of the bias is now determined by the overlap of the jackknife set with the fixed effect
cell. In the above example, if the OLS estimation was combined with Art Unit fixed effects, then

the bias is determined by the share of applications an examiner handles within their own art unit.

This special case does, however, allow for interesting further results. Specifically, if the data
is balanced in the sense that each jackknife set is of equal cardinality, then we can derive a series
of small sample properties. In particular, we can derive equivalent estimators that show how the
tixed effects allow for the focal observation to bleed over into the constructed regressor. The small
sample results cover six possible cases in which the data can be arranged. The cases are depicted
in Figure 2 and cover different arrangements of how C(i) and J(i) can overlap. If the relationship

between these sets is the same for all observations, the six shown cases are exhaustive.

The cases are sorted by the severity of the problem. In Cases 1 and 2, de-meaning due to fixed
effects leads to an instrument solely consisting of the focal value. In Cases 3 and 4, the focal value
is still contained in the equivalent instrument, but to a lesser degree. Here, Case 4 has a less severe
bias than Case 3. Cases 5 and 6 show no bias. Case 5 allows combining a leave-out instrument
with fixed effects, but requires additional dimensions in the panel. Case 6, which does not occur

naturally, structures the instrument in a way such that the overlap is removed.

We now state these results formally. For notational convenience, we split J(%) into two subsets.
That which has shared elements with C(i), denoted as .J(i), and that which does not, which we
denote J(i). Formally, J(i) = J(i) N C(i) and J(i) = J(i) \ J(i). Because observation i always
needs to be in C(i), it is clear that i € J(i) and i ¢ .J(i). The small sample properties of the JIVE
estimator with fixed effects can be derived under a balanced data structure. Letting k; and k»
denote a generic constants that do not depend on the data structure, this is summarized in the

next assumption.

Assumption 3 (Balanced leave-out data). For each observation i it holds that |J(i)| = ky and |.J(i)| =

ko. We exclude trivial cases such that k1 > 2.

11



Figure 2: Venn diagrams of possible cases for J (i) (Jackknife set) and C(7) (fixed effect cell)

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4
(e) Case 5 (f) Case 6

O OO0

Note: The diagrams show the schematic possibilities for the sets J(¢) (in blue) and C(¢) (in black). The tan-
gency of the two sets in Case 5 indicates a single observation shared between both sets The jackknife set
J (i) is used to calculate the constructed regressor in a leave-out mean, while the estimator is demeaned
over the fixed effect cell C'(¢). For all cases we only consider non-trivial structures such that |J(¢)| > 2 and
|C(i)| > 2 and in Case 4 that |J(¢)| > 3 and |C(¢)| > 3. The six cases can be described as J(i) = C(¢) (Case
1), C(i) C J(3) (Case 2), J(i) C C(3) (Case 3), |J(i) N C(@)| > 2N J@E)\ C(3) # @ A C®i)\ J(i) # @ (Case
4),|J(1) N C(i)] =1 (Case 5), and J (i) N C(i) = & (Case 6).

We can then state the results.

Proposition 2. Under Assumptions 1 to 3, estimating Equation (1) with OLS is equivalent to

1. estimating Equation (1) with OLS and using

if J(1) = C(i) (Case 1) or C(i) C J(i) (Case 2).

2. estimating Equation (1) with OLS and using

1
Zy = — - v; + vj
|G(2)] 2

JECEHNJ(7)

if J(i) C C(i) (Case 3).
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3. estimating Equation (1) with OLS and using

1
A g |\t 2 wim 2

JEC(D)\J(2) jeJ()

if|J(i)NC)| > 2, J3)\ C(i) # @, and C(i) \ J(i) # @ (Case 4).
Further, the estimation is unbiased if |.J(i) N C(i)| = 1 (Case 5) or J (i) N C(i) = & (Case 6).

There are several takeaways from this proposition. Item 1 shows that the leave-out instrument
with fixed effects on the same or smaller level as the jackknife set is not an instrument at all.
Instead, using it is equivalent to a multiplicative transformation on the focal value. Intuitively, the
mean of the leave-out instrument contains all observations in J(i) equally often. The leave-out
instrument itself also includes all of these observations except the focal one. By subtracting one
from the other, what is left is the focal observation and its mean across the set J (7). If v; = y; V 4,

then the first stage is perfectly collinear.'?

The intuition from Cases 1 and 2 carries over to Cases 3 and 4 in items 2 and 3 of Proposition 2,
but the problem is not as severe as it is with granular fixed effects. Because the de-meaning is now
on a broader scale — there is less shared information between construction group and fixed effect

cell — the instrument does not fully reduce to information about the focal observation.

Case 3 is particularly likely to appear. The patent examiner application introduced above is
one example for this. Another one is a set of Hausman instruments for firms operating in multiple
markets where the estimation features Firm or Year fixed effects, or both.!> The commonplace
appearance of Case 3 highlights the importance of our result. Even though the bias can disappear
if the data becomes larger, this is only the case if the instrument itself is informative. The problem
is, however, that if the instrument is not informative, the other element of the weighted sum will
simply add noise orthogonal to the value that is to be instrumented. In this case, the focal market
component will be the main determinant of the instrument’s coefficient, leading to a persistent
bias. Increasing the sample along the relevant dimension will only increase the standard error.

Thus, adding more data potentially only makes the fit of the first stage worse. A researcher un-

121t should be noted that most statistical programs will not treat this estimation as perfectly collinear. Rather, it will
return a highly significant first stage and proceed with the estimation. For v; = z; and |J;| = k1 V 4, an easy way to see
whether the instrument reduces to the focal value is to check whether the coefficient on the instrument in the first stage
is equal to — 1.

We provide a technical treatment of the two-way fixed effects case in Online Appendix B.
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aware of our result might remove (or re-weight, as recommended by Coussens and Spiess, 2021)
portions of their data to seemingly achieve a better fit in the first stage, while in actuality, all

explanatory variation is coming from the bias introduced by the focal market component.

Case 4 (and thus item 3 of Proposition 2) appears when there are observations in the Jackknife
set which are not contained in the fixed effect cell. This makes the equivalent instrument include a
part which is not biased by the de-meaning process, improving the performance of the estimator.
In the example of the patent examiners Case 4 would appear if individual examiners handled

patents in multiple art units.

The last part of the proposition shows a way towards potential solutions for the bias. If there is
only a single observation shared by the Jackknife set and the fixed effect cell (Case 5), then that ob-
servation has to be the focal one. Since that implies that there are no shared observations between
G(i) and C(i), there will be no bias in the estimation as can be seen in Equation (5). The intuition
for this is straightforward. If i is the only observation shared between the two sets, then it never
enters the mean of the other observations within the same fixed effect cell. Stated differently, none
of the observations in C(i) use observation ¢ in the calculation of their leave-out instrument. Ob-
servation ¢ is only used in the leave-out instrument for observations that are both not observation
iand in J(¢) at the same time. By the definition of the case, these observations are not part of C'(7).
Similarly, no bias appears in Case 6 when there are no shared observations between .J (i) and C(7).
An interesting aspect of both Case 5 and 6 is that these solutions to the biased estimation are not
tied to the number of fixed effect cells, i.e., they are not associated with fewer control variables.
This is a new result in comparison to the extant literature on JIVE estimators, which generally
considers the bias to be increasing in the number of control variables (Ackerberg and Devereux,
2009; Kolesér, 2013).

2.4 Tests and Solutions

We first detail a simple test and intuitive re-sampling based placebo test for the bias that does not
require the researcher to code any new estimators. We next discuss a more formal test that does
require additional coding. Following that, we discuss general solutions to the bias. Finally, we

detail case-specific solutions from the literature for lags and leave-outs.

14



2.4.1 Tests

The formal results and their intuitive explanations make clear that the bias reintroduces the focal
value in the estimation mechanically. This interferes with the otherwise informative nature of the
construction set such that the coefficient estimate, b, features both the informative component and
the bias. A test for the existence of the bias is thus to remove the informative component from the
constructed regressor and then test the estimated coefficient on the newly constructed regressor
for statistical significance. If all informative components were removed successfully, a statistically
significant coefficient implies the existence of the bias. Specifically, we propose the following two-

step test:

Test 1 (for existence of the bias). The test has two steps

1. For each observation i, generate a new construction group G(i) such that |G(i)| = |G(3)|, |G (i) N
C@)| = |G(E) N C ()|, G(i) N G(i) = @, and for each i € G(i) and each j € G(i) it holds that
COU('U@, ’Uj ’X’M 770(1)) =0.

1

2. Estimate Equation (1) with z; = TeTt] Zjeé’(i) vj and test b for significance.

The conditions for the new construction set in the first step ensure that the potential bias is of
equal magnitude as in the primary estimation since it overlaps with the fixed effect cell to the same
degree. The new and original construction sets should not share observations and there should
be no correlation between the values of v in the new and the original set when conditioning on

control variables and fixed effects.

In practice, G(i) can be generated by scrambling the data on the adequate dimension. In the
lagged regressor case, the researcher can, for example, simply choose the lagged value of v for
a different firm.!* In the judge fixed effect case, the researcher can scramble judge ids and then

re-estimate the first stage. This procedure is used in Section 4.

The downside of this placebo test is that it only keeps in place the mechanical influence of the
focal observation. In many cases, lagged variables being the most prominent, the researcher may
also be concerned about the endogeneity of other values entering through the construction set.

Thus, in these cases, our test will be underpowered for estimating the full extent of the bias.

For these scenarios, we recommend that the researcher perform a Hausman (1978) specification
test. The purpose of the Hausman test is to compare an estimator that is known to be consistent

with one that is more efficient, but potentially inconsistent.!® Formally, for two estimators f

“This can be achieved easily by scrambling firm ids within a year and then resetting the panel.
>We detail several consistent estimators later in this section.
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(consistent) and f; (efficient), the test is
H = (30 - 31)/ [Vaf(Bo) - Val"(&)} _I(BO - 31) ~x

However, since the researcher must code the consistent estimator, it can be more time consuming

to implement.

2.4.2 General Solutions

Proposition 1 and the discussion of Cases 5 and 6 in Section 2.3 provide an obvious path to a
solution for the bias. Any estimation with a data structure such that G(i) and C(¢) do not overlap
will be unbiased. There are several generic ways in which this data structure can be implemented
and we introduce them with the help of examples below. In addition, specific situations may have

specific solutions, which we discuss at the end of the section.

If the data is sufficiently rich, one way to ensure that there is no overlap between construction
group and fixed effect cell is to interact the existing fixed effect with another fixed effect that is
orthogonal to the construction group. Orthogonal in this context means that for each construc-
tion group, each observation is in a different cell of the new fixed effect. Consider the Hausman
instruments case as an example. Let the regressor be constructed from observations of the same
firm in the same year but in different markets and let the estimation feature Firm fixed effects. If,
instead of only including the raw Firm fixed effects, we interact them with fixed effects for the
market dimension (so Fiirm x Market fixed effects), then the G(i) and C(7) will not overlap for any
observation 7.!® Thus, the estimation will be unbiased as long as the other assumptions necessary
for leave-out instruments are met.!”. This is a good example of how adding more control variables

can actually reduce (or, in this case, eliminate) the bias.

If the data are not rich enough to introduce a fixed effect orthogonal to the construction group,
one can separate the construction group and fixed effect cell altogether. In the leave-out setting,
this would be Case 6. However, this data structure does not occur naturally, and must be induced
by the econometrician through alternate construction of the instrument or fixed effects. We detail

three potential ways to do this.

!*Note that using Firm + Market fixed effects will not reduce the bias at all.
7See, among others, Angrist (2014), Betz et al. (2018), and Borusyak and Hull (2023) for the discussion of the neces-
sary assumptions.
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The easiest way to separate construction and fixed effects can be used when there exists “outside-
sample” data that is irrelevant to the direct research question, but helpful in estimating the identi-
tying shock. In this case, the researcher can define the construction group on this outside-sample,
which is data that is not used for the later estimation of Equation (1). This reduces the overlap
of G(i) and C(i) to zero by constructions. A concrete example of this is given by Sampat and
Williams (2019) who study the effect of patent protection on follow-on innovation in the human
genome. They compare follow-on innovation across successful and unsuccessful patent appli-
cations, instrumenting for the success of applications using the strictness of the assigned patent
examiner for patents that do not relate to the human genome. Because there is no overlap between
the instrument construction and the fixed effects, there is no bias. This solution is a type of two-
sample, two-stage least squares estimation (Angrist and Krueger, 1992; Inoue and Solon, 2010).

Another example of such a procedure is given in Section 4.

When there is no outside-sample instrument available and the identifying variation is a subset
of the necessary fixed effect, a split-sample, imputation approach is possible. The basic idea is to
separate the data into a regressor construction sample and an estimation sample. Data used for
the construction of the regressor is then simply not used for the estimation of the equation and
there can be no overlap between G(i) and C(i). As an example, consider the lagged regressor of
Section 2.2. If the constructed regressor is the simple one-period lag, then the econometrician can
limit the estimation to every second period. This way, the data used for regressor construction

never appears in the fixed effect cell.

This approach is part of a set of recently developed estimators that take advantage of split
samples and separated prediction and estimation procedures to circumvent econometric prob-
lems (e.g. Chernozhukov et al., 2018; Wager and Athey, 2018; Borusyak et al., 2024; Abadie et al.,
2024). This solution requires the most out of the data, since it must be large enough to support
the separate estimation of the instrument and the (potentially 2SLS) regression on individual par-

titions, but unlike the other solutions, it can used in any data structure.!8

2.4.3 Case-Specific Solutions

It is worth noting that some specific data structures with constructed regressors have idiosyncratic
solutions available to them. For the lagged regressor with firm fixed effects case we recomend that
researchers adopt the Double-Filter IV (DFIV) estimator of Hayakawa et al. (2019).

8The optimal size of the split will depend on the power of the instrument as well as the power of the primary
regression. We leave this calculation as an interesting avenue for future research.
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To implement the DFIV, the researcher first applies a “forward orthogonal-deviation filter”

to the outcome and lagged covariates, i.e. subtracting off each observation’s future mean. Then,

the researcher instruments with the same variables but “backward orthogonal-deviated,” i.e. each
instrument is de-meaned using its own past mean. Because the two filters run in opposite time
directions, the focal observation never re-enters the instrument set, so the overlap that plagues
conventional lags is mechanically eliminated. The downside of the estimator is a loss of precision,

which we quantify in Section 3

Three methods have been developed for the leave-out case: (1) the IJIVE (Ackerberg and De-
vereux, 2009), (2) the UJIVE (Kolesar, 2013), and (3) the CJIVE Frandsen et al. (2024).'° The IJIVE
works by projecting out the fixed effects before performing the JIVE. The UJIVE and CJIVE instead
directly remove the influence of the focal observation after the JIVE step has occurred, with the

CJIVE also removing a researcher-specified “cluster.”

3 Monte Carlo Evidence

To illustrate the magnitude of the potential bias outlined in Section 2 and its consequences for
inference, we employ a series of Monte Carlo simulations in simple settings comparable to our
examples above. We consider three sets of experiments in Subsections 3.1 to 3.3 below. The first
set of experiments investigates the bias of including both a lagged regressor and fixed effects in a
standard Firm-Year panel.?’ The second set of experiments showcases that bias also appears when
the lagged variable is only used as a control. The last set of experiments adopts a Firm-Market-
Year panel and demonstrates the bias of leave-one-out instruments under the various options
for fixed effects discussed in Section 2.3. In addition to illustrating the theoretical arguments
made earlier, we also showcase small sample performance of possible solutions. We intentionally
choose a transparent and simple data generating processes to illustrate our main points as clearly

as possible.

Y A STATA module for the CJIVE is available at Frandsen et al. (2025). An (in-progress) R package is available at
Butts (2025).

®Tn Online Appendix Online Appendix C, we also consider the bias when instrumenting an endogenous regressor
with lags.
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3.1 Experiments with a lagged regressor

We label the explanatory variable as zy; for firm f = 1,2,...,F, and year t = 1,2,...,T. In all
experiments, we consider a large number of firms, F' = 4,000 or 20,000 and a small number of

years, T' = 5 or 10. We simulate data according to

(DGPY)  yp = Brypi1 + %5% )

‘:Uft frd pmxf,tfl —|— 8?1&’ and 51;'75 - KI&?t + e?‘t; (10)

where E?w ef; ~ IIDN (0,1) and the initial values are zy_; = 0. We are interested in recovering

B. We set 5y = 1, p, = 0.8, and » = 4. This value for s is chosen to avoid unreasonably large fit.2!

We consider three experiments based on DGP1 with x; = 0,0.2 and 1 which determines the
relationship between €Y and £”. For k., = 0, €%y 18 independently distributed of Efy forall f, f',t,t/,
and the regressor x is strictly exogenous. In this case, it is well known that the FE estimator is
unbiased and inference based on the FE estimator is valid. What is often overlooked in empirical
research is that when s, # 0, (which is presumably the reason why the regressor z is lagged
in the first place), then the FE estimator is subject to bias even though the regressor itself is not

endogenous.

Table 2 reports our findings for the simulated bias, 95% confidence interval coverage rates
(CR, x100) and the root mean square error (RMSE, x100) of the individual estimators.?> We adopt
two estimators of Jy, the FE estimator (using Firm fixed effects) and the double-filtered IV (DFIV)
estimator proposed by Hayakawa et al. (2019) as a possible solution. Both estimators allow for

Firm fixed effects.

The FE estimator works well only in the case of strong regressor exogeneity. Looking at the
experiments with x, = 0 in the upper part of Table 2, we observe no discernible bias and the
confidence interval coverage rates are all very close to 95 percent. In contrast, the FE estimator is

severely biased in the remaining experiments, even for a relatively small value of x = 0.2, which

*'DGP1 can be seen as a special case of the general model (1)-(2) by setting i = (f,t), G (f,t) = {(f,t — 1)}, vpe = w2
and the set defining Firm fixed effects is C (f,t) = {(f,1),(f,2),...,(f,T)}. Thereis an overlap |G (f,t)NC (f,t)| =1
and, which implies § given by (6) is of order 1/T, and we can expect the bias to be of the same order when r, # 0,
according to Proposition 1.

2L et 3 be the estimate of Bo in the Monte Carlo replication r = 1,2, ..., R, and CI (r)

5.95% be its respective 95 percent

confidence interval estimate. Then, the bias of B is computed as bias; = % Zle (B ) _ 50), the root mean square

. A 2
error of 5 is computed as RMSE; = \/ = >SE (ﬂ“) - Bg) , and the 95 percent confidence interval coverage rate is

computed as CRj g5, = & Yory I (B(T') € C’[éfgs%).
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corresponds to only 4 percent variance share of %, explained by 53]’%. As predicted by theory,

the bias of the FE estimator in experiments with x, # 0 does not depend much on F, and it

declines with T'. Even though the magnitude of the bias is relatively small for larger 7" and smaller

Kz, the inference remains completely wrong for all sample sizes considered with the reported 95

percent coverage rates all equal to zero. This is in line with Section 2.2, where the much stricter

requirement of v FT — 0 must be met for inference to be valid. Since 7 is not large relative to F

in our samples, we essentially find a zero probability that the true parameter value will fall in the

estimated 95 percent confidence intervals for the FE estimator when «,, # 0.

Table 2: Simulated bias, 95% confidence interval coverage rates (CR), and root mean square errors
(RMSE) of FE and DFIV estimators of §y = 1 in experiments with lagged regressor

Bias CR (x100) RMSE (x100)

F\T 5 10 5 10 5

10

A. Experiments with x, = 0 (regressor is strictly exogenous)

FE estimator

4,000 0.00 0.00 95.05 94.55 3.32 1.86
20,000 0.00 0.00 94.80 95.55 1.50 0.81
DFIV estimator
4,000 0.01 0.00 95.00 95.10 19.69 6.45
20,000 0.01 0.00 95.70 95.00 8.92 2.88
B. Experiments with «, = 0.2 (weak correlation between %, and £%,)
FE estimator
4,000 -0.35 -0.18 0.00 0.00 35.33 18.10
20,000 -0.35 -0.18 0.00 0.00 35.25 18.00
DFIV estimator
4,000 0.01 0.00 95.65 95.50 19.40 6.31
20,000 0.01 0.00 95.25 95.05 8.78 2.80
C. Experiments with «, = 1 (moderate correlation between ¢, and £%,)
FE estimator
4,000 -0.92 -0.47 0.00 0.00 91.60 46.81
20,000 -0.92 -0.47 0.00 0.00 91.53 46.76
DFIV estimator
4,000 0.00 0.00 95.35 95.45 14.41 4.47
20,000 0.00 0.00 95.35 95.40 6.41 2.00

Note: The data generating process is given by ys: = Bxsi—1 + %siﬁt, xpe = 0.8xyi—1 + €%y, and €7, =
nza’;t +efy, fort =1,2,...,T,and f = 1,2,..., ', where s?t, ef, ~ IIDN (0,1) and » = 4. Estimating equa-
tionis ys: = ay + Bry—1 + €Y,. DFIV is the double filter IV estimator by Hayakawa et al. (2019) using the
regressor x s ¢—1 itself as an instrument. All experiments are based on R = 2,000 Monte Carlo replications.
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In contrast to the FE estimator, the DFIV estimator is consistent when F' is large and T is
small, regardless of the value of x,. We see no notable bias of DFIV estimator in Table 2 in any
experiment. Confidence interval coverage rates are also close to 95 percent in all cases. These
result confirm that the double filtered IV approach by Hayakawa et al. (2019) can be a useful
case-specific solution for the lagged regressor construction. Unfortunately, there is also a cost to
using the DFIV estimator — a loss in estimation precision. In experiments with a strictly exogenous
regressor the RMSE of the DFIV estimator is at least three-fold higher than the FE estimator.

Since the cost of using the DFIV estimator can be large, we also consider the small sample
performance of the Hausman (1978) specification test. Table 3 shows that the empirical size of the
Hausman test, given by the rejection rate in the case of experiments featuring a strictly exogenous
regressor, is close to the chosen nominal level of 5 percent. The simulated power, given by rejection
rates in the case of experiments with «,, # 0, increases with sample size and appears to be sufficient
(close to 100) when the sample is sufficiently large. These results suggest that the Hausman test

can provide useful guidance, but may lack power in smaller samples.

Table 3: Empirical size and power of the Hausman test for the weak exogeneity bias in experiments
with lagged regressor

Power (x100)
Size (x100) Ky = 0.2 Ke =1
F\T 5 10 5 10 5 10
4,000 4.60 4.75 43.85 84.00 100 100
20,000 4.20 5.35 98.75 100 100 100

Note: Hausman test is based on the difference between the FE and DFIV estimators of 8o. DFIV is the double
filter IV estimator by Hayakawa et al. (2019) using the regressor itself as an instrument. The data generating
processis givenby ys: = Bwy,—1+ e}, w5 = 0.8xp—1+¢€%,, and €F, = Kaepe +efy, fort = 1,2,..., T, and
f=12,.. F wheree}, e} ~ IIDN (0,1) and 5 = 4. Estimating equation is ys¢ = ay + Brs—1 + €},
Reported empirical size is the rejection rate in experiments with x, = 0. Empirical power is the rejection
rate in experiments with s, = 0.2 and 1. All experiments are based on R = 2,000 Monte Carlo replications.

3.2 Experiments with a lagged control variable

In the second set of experiments, we focus on estimation of /3 in regression specifications that
augment the regressor (r) with a lagged control variable, denoted as wys;_1. Consequently the

estimating equation for the FE and DFIV estimators is given by a regression of y on = and a lagged
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value of w and the firm fixed effects,
Yre = Brpr + 0wp 1+ a; + €,

where a; are the Firm fixed effects. We choose to generate data according to the design outlined
below. In this design, the equation for y features only the strictly exogenous regressor x s, and no
control variable. Even though the control variable is not necessary, the inclusion of w¢;_; in the

estimation can lead to a serious bias in the focal parameter 3. Formally:

(DGP2) yg = By + %E?t, (11)
Tfe = prtii1 + Gy (12)
w?t = puWyt—1 + 57;)15/ and 5;””75 = Kw (5?1‘ - 83]Uct) + elft’ (13)

for f = 1,2,...,Fand t = 1,2,...,T, where E?t,a%,esﬁ’t ~ IIDN (0,1) and the initial values are
wy_1 = 0. Weset By = 1,p, = py = 0.8, and » = 4. We consider three experiments based on
DGP2 with x,, = 0,0.2 and 1. For &, = 0, the control variable w is strictly exogenous, whereas
for Ky, # 0, there is a feedback from eiif to wy, namely the contemporaneous values of the control
variable are endogenous. Regardless of the value of «,,, the lagged control, w1, is uncorrelated

with 5?%, which is the typical justification researchers use for lagging control variables.

Table 4 reports the small sample findings for the FE and DFIV estimators. As in the previous
experiments, we expect the FE estimator to work well only when «,, = 0. This is confirmed in
Panel A of Table 4, where we see no discernible bias and coverage rates close to 95 percent. In
Panel B, which features a small value of x,, = 0.2, the bias of the FE estimator is non-zero, but
small at -0.02 for all sample sizes. However, even a small bias causes inference problems with
reported confidence intervals coverage rates at 34.15 percent for I’ = 20,000 and 7" = 10. The bias
and inference problems of the FE estimator is more serious for larger value of ., = 1 in Table 4.
In this case, the bias is substantial. It is comparable in size to the bias induced when the regressor

itself is endogeneous with x, = 0.2.

In contrast to the FE estimator, the DFIV estimator works well for all experiments, regardless
of the value of x,,. However, similarly to findings in Table 2, the reported RMSE values in Table 4

show a significant cost of using the DFIV estimator when it is not strictly needed.
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Table 4: Simulated bias, 95% confidence interval coverage rates (CR), and root mean square errors
(RMSE) of FE and DFIV estimators of 5y = 1 in experiments with lagged control variable

Bias CR (x100) RMSE (x100)
F\T 5 10 5 10 5 10
A. Experiments with «,, = 0 (control w; ;_; is strictly exogenous)

FE estimator

4,000 0.00 0.00 94.40 94.65 3.37 1.89

20,000 0.00 0.00 95.55 95.20 147 0.80
DFIV estimator

4,000 -0.01 0.00 94.65 95.25 22.56 6.83

20,000 0.00 0.00 94.60 95.30 10.09 2.96

B. Experiments with r,, = 0.2 (small correlation between ¢%, and %"

FE estimator

4,000 -0.02 -0.02 89.25 81.45 4.03 2.71

20,000 -0.02 -0.02 65.55 34.15 2.73 2.10
DFIV estimator

4,000 0.00 0.00 95.75 94.70 24.63 6.91

20,000 0.00 0.00 94.90 95.85 11.18 3.01

C. Experiments with r,, = 1 (moderate correlation between ¢¥, and €%’

FE estimator

4,000 -0.21 -0.19 0.00 0.00 21.40 19.29

20,000 -0.21 -0.19 0.00 0.00 21.26 19.22
DFIV estimator

4,000 -0.01 0.00 96.00 95.45 26.31 7.06

20,000 0.00 0.00 94.95 95.30 12.00 3.10

Note: The data generating process is given by yy: = B e + se%,, x5 = 0.8 4,1 + €y, Wi = 0.8wp,e—1 +
¥, and €f; = kuw (e}, — €5¢) +efy, fort =1,2,...,T,and f = 1,2, ..., F, where €},,e5,, e, ~ IIDN (0, 1)
and s = 4. Estimating equation is ys: = ay + Bzt + dwy,e—1 + €%,. DFIV is the double filter IV estimator
by Hayakawa et al. (2019) using the regressors themselves, (z¢,:, wy,:—1)’, as instruments. All experiments
are based on R = 2,000 Monte Carlo replications.

In Table 5 we see that the Hausman test is correctly sized, but that the power is only good if
the magnitude of the bias and the sample size is sufficiently large. Specifically, we see a power of
only 9.3 percent when x,, = 0.2 and the sample size is n = 20,000 and 7" = 10. This shows that it
is possible to have a serious problem with the accuracy of inference when using the FE estimator

even when the Hausman test does not indicate a problem.
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Table 5: Empirical size and power of the Hausman test for the weak exogeneity bias in experiments
with lagged control variable

Power (x100)
Size (x100) Kw = 0.2 Kw =1
F\T 5 10 5 10 5 10
4,000 5.65 4.70 44 6.1 12.05 81.3
20,000 5.30 4.55 5.1 9.3 444 100

Note: Hausman test is based on the difference between the FE and DFIV estimators of So. DFIV is the
double filter IV estimator by Hayakawa et al. (2019) using the regressors themselves as instruments. The
data generating process is given by ys: = Bzt + €%, x4 = 0871 + €fy, Wi, = 0.8wys -1 +€Fy, and
€%y = kuw(eh, —€) tefy, fort = 1,2,..,T, and f = 1,2,..., F, where ¢%,,¢%,, e}, ~ IIDN (0,1) and
» = 4. Estimating equation is y+ = oy + Bz s + dwy 1 +€%,. Reported empirical size is the rejection rate
in experiments with ., = 0. Empirical power is the rejection rate in experiments with x,, = 0.2, and 1. All
experiments are based on R = 2,000 Monte Carlo replications.

3.3 Experiments with endogenous regressor in a Market-Firm-Year panel

Finally, we consider a Monte Carlo design with multiple markets. Let z;,,; be the explanatory
variable for firm f = 1,2,..., F, market m = 1,2,....M,and year t = 1,2,...,T. We set M = 3 and

consider the same values for F' and 7" as before. Data is generated according to:

(DGP3)  ypmt = BT e + %ezjcmt, eljﬁmt = Vef + e?mt, (14)
Tfmt = P2 fmi—1 + 5§7m7t, and e?mt =ycp + ejémt (15)

where €mt> e?mt, cge ~ IIDN (0,1) and the initial values are zf,, 1 = 0. We set 5y = 1,p, = 0.8,

v =1, % = 4, and unless stated otherwise, v = 1.

Our strategy to identify [ is to use the average of 2’s for the same firm in the same year, but in
other markets, to estimate cy;. We then use this proxy as an instrument for z ¢, ; and estimate /3y
via 2SLS. We refer to these IV estimators as Leave-One-Out (LOO) estimators. For comparison, we
also report on the FE estimator, which will be biased, due to the correlation between the regressor
Zfm, and the error term 5?7m7t. We explore five forms of fixed effects to illustrate the findings of
Proposition 1 and its special cases discussed in Proposition 2. The bias of LOO estimators (if any)

depends on the choice of fixed effects.?

BDGP3isa special case of the general model (1)-(2) with ¢ = (f,m,t), Vf,m,+ = Tfm,+, and the construction group for
the instrument is given by G(f,m,t) = J(f,m,t) \ {f, m,t} with J(f,m,t) = {(f,1,%), (f,2,1), ..., (f, M,t)}. Hence
|G(f,m,t)] = M — 1. The overlap between the set G(f,m,t) and the fixed effects set C(f, m,t) will determine the
extent of the bias of LOO estimators.
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We begin by examining fixed effect structures consistent with Case 3 of Proposition 2. First we
consider Firm fixed effects, which results in |C(f, m,t)| = MT and |G(i) N C(i)| = M — 1. Hence,
0, as given by (6), is of order 1/(MT), and since both M and T are small in our experiments, we
can expect a sizable bias, that diminishes with A/ and 7" but does not change with F'. We next look
at Year fixed effects. In this case, we have |C(f,m,t)| = MF, |G(i) N C(i)| = M — 1, and therefore
6 given by (6) is of order 1/(M F). Since F is large in our design, we do not expect any sizable bias
for this LOO estimator. Third, we analyze Firm + Year fixed effects, which, given the discussion
above and the results of Online Appendix B, is expected to lead to a similar bias as with Firm fixed

effects alone.

The fourth type of fixed effects is Firm x Year and corresponds to Case 1 of Proposition 2. This
is the case where LOO estimator will be identical to FE estimator. Last, we consider Firm x Market
tixed effects, which corresponds to Case 5 of Proposition 2. This case is not expected to have any

notable bias.

All of these theoretical predictions are borne out in findings reported in Table 6. All FE estima-
tors are severely biased, regardless of the choice of fixed effects. LOO estimators using Firm and
Firm + Year fixed effects share similar and sizable bias which in some cases is worse than the bias
observed when not instrumenting at all. In contrast, the bias of the LOO estimator with Year fixed
effects is not discernible. The LOO estimator with Firm x Year fixed effects (Case 1) is numerically
identical to the FE estimator with the same fixed effects. Our preferred solution (Case 5) using

Firm x Market fixed effects does not have any discernible bias.

An additional implication of Proposition 2 is that, due to the bias of the first stage regressions,
F-statistics can spuriously indicate instrument relevance. Figure 3 reports histograms for first-
stage F-statistics of LOO estimators using Firm fixed effects only and Firm x Markets fixed effects
in experiments with v = 0, which means there is no correlation between the instrument and the
regressor and thus the instrument is irrelevant.?* Despite this irrelevance, the F-statistics for the
tirst stage regressions with Firm fixed effects (Panel (a) of Figure 3) show F-stats of around17,000,
spuriously indicating instrument strength. In contrast, Panel (b) shows that the spurious relevance

disappears when the bias is removed.

A These experiments feature F' = 4,000 firms, M = 3 markets, and T = 5 periods.
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Table 6: Simulated bias, 95% confidence interval coverage rates (CR), and RMSE of FE and Leave-
One-Out IV estimators of 5y = 1 in Firm-Market-Year panel experiments with regressor endo-
geneity

Bias CR (x100) RMSE (x100)
F\T 5 10 5 10 5 10
A. Fixed Effects Estimators
Firm Fixed Effects
4,000 1.39 1.11 0.00 0.00 139.20 110.86
20,000 1.39 1.11 0.00 0.00 139.26 110.83
Year Fixed Effects
4,000 0.90 0.81 0.00 0.00 90.35 81.16
20,000 0.90 0.81 0.00 0.00 90.39 81.12
Firm + Year Fixed Effects
4,000 1.39 1.11 0.00 0.00 139.21 110.86
20,000 1.39 1.11 0.00 0.00 139.26 110.83
Firm x Year Fixed Effects
4,000 1.81 1.62 0.00 0.00 180.68 162.26
20,000 1.81 1.62 0.00 0.00 180.73 162.24
Firm x Market Fixed Effects
4,000 1.50 1.15 0.00 0.00 150.21 114.66
20,000 1.50 1.15 0.00 0.00 150.28 114.62

B. Leave-One-Out Instrumental Variable Estimators
Firm Fixed Effects (Case 3)

4,000 -2.86 -0.57 0.00 0.00 287.53 56.91
20,000 -2.85 -0.57 0.00 0.00 284.96 56.71
Year Fixed Effects (Case 3)
4,000 0.00 0.00 93.60 94.00 2.05 1.33
20,000 0.00 0.00 94.15 94.75 0.88 0.59
Firm + Year Fixed Effects (Case 3)
4,000 -2.86 -0.57 0.00 0.00 287.92 56.97
20,000 -2.85 -0.57 0.00 0.00 285.03 56.72
Firm x Year Fixed Effects (Case 1)
4,000 1.81 1.62 0.00 0.00 180.68 162.26
20,000 1.81 1.62 0.00 0.00 180.73 162.24
Firm x Market Fixed Effects (Case 5)
4,000 0.00 0.00 94.00 94.70 3.46 1.88
20,000 0.00 0.00 94.80 94.80 1.53 0.83

Note: The DGPis givenby ysme = BT pme+3e%,,,, €%,y = €fmetef, and Tpme = 0.8 ¢ m t—1+Cr e +€fme,
for f=1,2,...,F,t=1,2,...,T,and m = 1,2, 3, where 6;mt,€?mt,c_ft ~ IIDN (0,1), and » = 4. Leave-
One-Out IV estimators are 2SLS estimators that use firm-specific averages of  f.: in other markets as an
instrument, given by zfme = 3,14, T,m’+- All experiments are based on R = 2,000 Monte Carlo repli-
cations.
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Figure 3: Histograms of F-statistics for Leave-One-Out (LOO) instrument relevance in Firm-
Market-Year experiments with irrelevant instrument (y = 0), F' = 4,000, M =3 and T = 5.

(a) LOO-1V using Firm Fixed Effects (b) LOO-1V using Firm x Market Fixed Effects
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Note: The DGP is given by yrme = BT fme + 5#€%,,1 €4t = €fme + €4y a0d Tpme = 0.8 f,mi—1 + Vet + €Fmes
fmf:lﬂwwﬂt:LZmﬂﬁmhn:LZ&WMmﬁmx%mquHDN@JLmd%:&[mwmmmm
instrument is given by zme = >°,/,,, T5,m,¢- This instrument is not relevant when v = 0. All experiments are based
on R = 2,000 Monte Carlo replications.

4 Empirical Application: Judge Fixed Effects in USPTO Data

There is an active and important research agenda trying to understand the effects of decisions by
judges and other officials in questions such as the incarceration of a defendant, the acceptance into
a social program, the granting of patents, and other areas. The empirical challenge for such studies
is that these decisions are not made at random, and thus, exogenous variation in the independent
variable is difficult to find. Beginning with Kling (2006), a common empirical approach has been to
use the leniency of randomly assigned decision-makers as an instrument, an approach popularly
dubbed as “Judge Fixed Effects” (Frandsen et al., 2023, who also provide a literature overview of

applications).

We provide an empirical demonstration of our bias in this application of the leave-out instru-
ment using publicly available data from the U.S. Patent Office (USPTO). The data covers patent
applications and unique patent examiner identifiers for 9.23 million patent applications from 1910
until 2014. This data, or data like it, have been used in combination with leave-out instruments
to answer a variety of questions in finance, innovation research, and other areas (see, e.g., Farre-
Mensa et al., 2020; Feng and Jaravel, 2020; Melero et al., 2020). To illustrate the effects of the bias,
we consider a research question that can be answered using only the USPTO data and does not
require additional, potentially proprietary or subscription-based, data. We thus focus on the ques-

tion of whether a successful patent application makes inventors more likely to apply for another
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patent in the future. Data availability for unsuccessful patent applications requires us to focus on
applications starting 2001 (see, e.g., Sampat and Williams, 2019, for detail). We focus on first-time
applicants between 2001 and 2009, as identified by their full name on the patent application. They
are categorized as a repeating inventor if the same name appears on a later patent application.
This definition raises some measurement error concerns. However, we are focused on identifying
the estimation bias rather than finding a credible answer to the research question. Discussions of

the identification and other details of the analysis can be found in Online Appendix D.

After data restrictions, we consider 1.15 million inventors on 790,000 patent applications. The
descriptive statistics of the sample can be seen in Table 7 below. Repeated applications are com-
mon, with 53.4% of inventors applying for one or more patents after the first one. We can see
that about 64% of first applicants are successful, such that there are sufficiently many treated and
untreated inventors. The leave-out instrument to measure examiner generosity is calculated from
all examiner decisions in the year of the patent application. Notably, this also includes patent ap-
plications by inventors who are not applying for a patent for the first time. In total, we use 2.9
million patent applications for calculating the IV. Unsurprisingly, it has a mean close to 64%.% Im-
portant for the extent of our bias, we can see that the instrument is based on a median of 77 patent
applications. This gives an indication of the magnitude of |G(i)|. We combine the analysis with
Art Unit x Year fixed effects. With a median value of 19 examiners per art unit, we can further
see that |G(7)|/|C(i)| is about 0.05 in our analysis. This provides an idea of the size of the overlap

between construction group and fixed effect cell.

To analyze the research question, we first simply regress the success of the application on the
measure for an inventor with a repeated application, using Art Unit x Year fixed effects. Column
(1) in Table 8 shows that this OLS analysis renders a positive and highly significant effect of past
success on the likelihood of further applications. This estimation, however, suffers from obvious
endogeneity problems. In column (2), we use the canonical combination of leave-out instruments
and fixed effects to address this. The results show that applying the instrument makes the coef-
ficient smaller than in OLS, but still economically meaningful and highly statistically significant.

Furthermore, a five-digit F-statistic promises a strong instrument and valid identification strategy.

However, the estimate in column (2) suffers from bias due to a reintroduction of the focal value
by the fixed effects as summarized by Proposition 1 in general and item 2 of Proposition 2 for this
case in particular. Not all solutions mentioned in Section 2.4.2 are feasible here. Since there is
no obvious orthogonal dimension to the examiner using a fixed effect on such a dimension in an

interaction is not possible here. Further, since most examiners are only working on applications

PSee also Figure D1 in Online Appendix D for the residualized distribution.
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Table 7: Descriptive Statistics for Analysis Sample

Mean St. Dev. Median 5% Pctl 95% Pctl

Repeated Application 0.533 0.4989 - - -
Successful Application 0.6394 0.4802 - - -
Examiner Generosity 0.6515 0.2293 0.6927 0.22 0.9667
Examiner Generosity (Outside) 0.6579 0.2349 0.7041 0.2121 0.9762
Patents/ Examiner x Year 971.8 4,609 77 19 340
Patents/ Examiner x Year (Outside) 378.7 1,969 49 13 186
Examiners/ Art unitx Year 25.85 22.08 19 11 82

Note: The table shows the descriptive statistics for the main analysis of the USPTO data. The first four rows and the
last row are based on the 1.15 million inventors or 790 thousand applications in the estimation sample. Inventors have
a repeated application if their name appears on at least one more patent application filed after the first one. An appli-
cation is denoted successful if it has an issue date. Examiner generosity is the leave-out instrument. Outside stands for
outside sample and denotes instruments calculated only from applications without any first time applicant on them.
Patents/ Examinerx Year values are calculated directly from the 2.9 or 2 million patent applications which are used to
calculate the leave-out instrument or outside sample instrument, respectively.

Table 8: Estimation Results USPTO Data

Real Examiners Scrambled Examiners
D ) 3) 4) &)

OLS 2SLS 2SLS 2SLS 2SLS

Success 0.085*** 0.054*** 0.045*** 0.086*** —5.060
(0.002) (0.006) (0.008) (0.020) (41.345)

1st Stage F-Stat. - 48,046 5,712 1,309 0.01637
Fixed effects Art unit x Art unit x Art unit x Art unit x Art unit x

Year Year Year Year Year
Instrument Group ) All Non-first All Non-first

Applications Applications Applications Applications

Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 1,146,706 1,146,706 1,146,706 1,146,706 1,146,706

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
on the probability of the inventor applying for at least one additional patent in the data. We consider all inventors who
filed for their first patent application in the years 2001 through 2009. 2SLS estimations use a leave-out instrument based
on examiner generosity in all patents of that examiner in the year the focal patent is filed (columns (2) and (4)) or all
applications without any first-time applicant on them in the same time frame (columns (3) and (5)). The analyses in
columns (4) and (5) use examiner IDs scrambled within the fixed effect cell such that the instrument is uninformative.
Standard errors are clustered on the level of the Art unit in each estimation. Stars *, **, and *** denote statistical signifi-
cance at the 0.10, 0.05, and 0.01 levels, respectively.

in a single art unit, calculating the instrument outside of the fixed effect cell is also unfeasible.
This leaves us with the “outside-sample” approach following Sampat and Williams (2019). Here,

we calculate the instrument using only patent applications in which none of the inventors are
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applying for the first time (n = 2 million). Results for this instrument are shown in column (3).
The estimated coefficient is 16.1% smaller than that in the canonical estimation and has a 29.6%
higher standard error. The standard leave-out IV thus has a bias of 21.6% relative to that of OLS.
These numbers are comparable to the numerical simulation, especially when considering that with
|G(7)|/|C ()| at around 0.05.

Most importantly, this empirical application allows us to utilize our test for existence of the
bias as it is described in Section 2.4. For step 1, we randomly scramble the examiner IDs between
patents within an Art unit x Year cell. The leave-out instrument calculated on the basis of these
scrambled examiner IDs is uninformative and should not lead to a viable identification, given
that the applications are now allocated randomly to construction groups. Nevertheless, as can be
seen in column (4) of Table 8, a regression with the canonical IV strategy leads to a coefficient that
is a) highly statistically significant, b) has a first stage F-statistic above 1000, and c) is about as
large as the OLS coefficient. At face value, the instrument thus seems reliable and the endogene-
ity minimal. However, all statistical evidence is generated by the bias. Column (5) shows that
using the correct outside-sample instrument from scrambled examiner IDs leads to a statistically

insignificant result and a first-stage F-statistic of essentially 0.2°

The empirical application thus shows that even in data structures that give the ex-ante impres-
sion that the bias could be small, it can still impact results in a meaningful way. Moreover, if the
instrument is completely uninformative, the bias can make it appear informative and valid, in-
stead. In this setting, the bias can also lead to seemingly statistically significant and economically
meaningful results when there really are none.”’ On a positive note, the general identification
strategy using leave-out instruments based on examiner generosity still seems valid. While first-
stage F-statistics decline by over one order of magnitude when the corrected instrument is used,

they are still very high.

*We also note that this shows that the bias cannot be generated from the potential covariance structure at the
Art unit x Year level (as detailed in Frandsen et al., 2024), since the outside sample scrambled IV is constructed
from the same A7t unit x Year.

“The implications of the results are unaffected by using different definitions of the dependent variable, even if the
results themselves are somewhat different. In all analyses, the use of scrambled examiner IDs leads to an informative
canonical instrument and an uninformative corrected one. See Online Appendix D for details.
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5 Discussion

Our critique of identification via constructed regressors in combination with certain fixed effect
structures adds to a growing literature that highlights potential pitfalls of common identification
techniques in general and leave-out-related strategies in particular (e.g. Angrist, 2014; Betz et al.,
2018; Huber, 2023). In this section, we briefly cover how our bias relates to common assumptions

of unbiased identification and discuss certain possible extensions of the model.

The bias described in this study may come as a surprise because an exhaustive fixed effect
structure is typically seen as a sign of particularly robust identification. This might particularly
be the case if the constructed regressors are used as instrumental variables, as is often the case.
Here, the typical requirement is that the instrument needs to fulfill the exclusion restriction. In
the notation of Equation (1), it is obvious under Assumption 1 that z; and ¢; are uncorrelated.
However, they are not uncorrelated conditional on the non-endogenous control variables (i.e. the
fixed effects). Nevertheless, that is the necessary condition to fulfill the exclusion restriction (see,
e.g., Greene, 2019, chapter 8). Thus when considering the exclusion restriction, it is important to
consider the estimation strategy holistically instead of only considering the constructed regressor

in isolation.?8

An common extension of the results in Propositions 1 through 2 is that base variables are often
transformed in econometric applications. For example, researchers often take the logs of variables
or the variables are normalized into an interval such as [0,1]. How does this affect the problems

identified in Section 2?

There are two ways in which transformations are commonly applied to a constructed regressor.
The first one is that the variable v, which is underlying the leave-out instrument, is transformed
directly. In this case, there is little change to our result Proposition 1, because the transformed
version of a variable with a non-zero correlation with the error term is still likely to have a non-
zero correlation with the error term. Further, in the special case of the leave-out construction,

Proposition 2 will apply unchanged to the transformed variable.

The second way of applying transformations is that the constructed regressor is transformed
after construction. In this case, our results may not apply directly, but the way in which they
are changed introduces variation in the constructed regressor, which is likely unintended by the
econometrician. Again, the transformation will change the correlation structure, but in a way that

is unlikely to make the bias disappear. We use Case 1 from Proposition 2 to illustrate this. The

%The relationship of our bias with other identification tests, with a specific focus on using constructed regressors as
instruments, is covered in Online Appendix E.
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proof to this case boils down to

1 1
", T\ e ) "

jeCl JEC(3)

Let the transformation be denoted by the function ¢(-). If the transformation is linear then it
1 — ) 1 ) = ) 1 ;

holds that ¢(z;) — 0] ngc(i) e(z5) = ¢ (Zz R0 ZjeC(i) ZJ) =¥ (b (UZ BRE0] ZJ'GC(Z') UJ))
=b (go(vi) — m 2 jec) d)(vj)) and the same results as before are obtained. This is, for exam-
ple, the case if the variable is normalized into [0,1]. If, however, the transformation is non-linear,
then ¢(z;) — m Yjeci) P(z) # @ (zi — m > jec( zj> and the results will not apply fully.
In this case, the extent to which they apply will solely be determined by how close the transfor-
mation is to linearity. The log transformation is a good example here, because we know it to be
close to linear if the values are close to one another (in relative terms). However, if the relative
values are spaced far apart, there will be a larger difference between ¢(z;) — m > jec) P(7)
and ¢ (zl- - m 2jech) zj) and thus the constructed regressor will not fully reduce to the focal
value. Nevertheless, all variation that makes using ¢(z;) different from using by (v;) stems from
the non-linearity of the transformation and not from the fact that z; has become more informative

as an regressor.

The theoretical results derived in Proposition 2 in Section 2.3 required the assumption that all
construction groups are of equal cardinality. Similarly, our numerical illustrations also used fully
balanced panels. Technically speaking this is only necessary for Cases 3 and 4 of Proposition 2,
because all other cases can be shown to hold in unbalanced panels analytically. However, because
these two cases are the empirically most relevant, we explore them numerically. Our findings
show that our results are not limited to balanced panels, but also appear when the data is un-
balanced. Thus, having instrument groups of different cardinalities does not address the issues
raised in Propositions 2 even though these results are only formulated for balanced panels. Ad-
ditionally, the analysis highlights that unbalanced panels can even exacerbate the bias and lead to

more strongly misleading F'-statistics associated with the estimators.

Lastly, all our theoretical and numerical analyses consider OLS estimators, independent of
the ultimate use of the leave-out construction. In certain empirical literatures, such as demand
estimations in industrial organization, it is typical to use methods of moments estimators or other
non-linear procedures. While we cannot provide a blanket statement for the applicability of our
results to such cases, it is clear from the proofs that if the within transformation for fixed effects is

applied before the estimation, then our critique will be valid.
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6 Conclusions

In this paper, we have identified a bias that arises when constructed regressors are combined
with overlapping fixed effects. The inclusion of these fixed effects acts as a de-meaning process
that can reintroduce the focal observation into the constructed regressor, leading to mechanical
correlation and biased estimates. We show this result generally and then apply it to two often
used econometric specifications: lagged and leave-out regressors. For the latter, we categorize
the potential specifications into six cases based on the relationship between the set used for fixed
effects and the set used to create the regressor. Irrespective of the application, bias is most severe
when the fixed effect cell overlaps strongly with the construction group. We provide a test based
on scrambling and resampling of regressor construction groups that indicates whether or not the

bias exists in a given data structure and detail both general and case-specific solutions.

Our findings have important implications for researchers using constructed regressors in fi-
nance applications. Careful consideration must be given to the interaction between the fixed ef-
fects structure and construction of the regressor to avoid mechanical correlation and, in the case
of instrumental variable estimations, inflated first-stage F-statistics. When possible, researchers
should use fine-grained fixed effects such that overlap between the construction group and the
tixed effect set is avoided. If this is infeasible, the regressor should be constructed to have minimal

overlap with the fixed effects.

We illustrate the practical relevance of our results in numerical studies and an empirical appli-
cation of the judge fixed effects estimation strategy. Across both of these settings, naively combin-
ing constructed regressors with fixed effects can generate substantial bias. Our proposed reme-

dies, guided by our theoretical results, provide solutions to obtain consistent estimates.

As the use of constructed regressors continues to proliferate, our paper serves as a cautionary
note and practical guide. Econometric methods leveraging fine-grained variation can be powerful
for causal inference in financial research, but their validity depends crucially on understanding
how that variation interacts with other dimensions of the empirical specification. We hope our
analysis enables applied financial researchers to reap the benefits of constructed regressors while

avoiding the pitfalls that arise from their interaction with fixed effects.
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Appendix

This appendix is organized in two sections. Section A.l presents additional regularity assump-

tions and remarks, and Section A.2 presents proofs.

A.1 Additional Assumptions
- /e N1 o
Assumption 4. (Idiosyncratic errors and regressors) Let \; = z&; — E (2€;), Pz = X (X’ X) X/,

and M ¢ = 1,, — P ¢, where I, is n x n identity matrix and X = (X1,%2,...,%,) . Asn — o0,

(i) n 1S N =, 0,
(ii)) n'FM g7 —pQ.r > 0, and
(iii) n~'Z'P 4& —,0.

Remark 1. Assumption 4 stipulates general high-level requirements on the idiosyncratic errors
and regressors required for the consistency of FE estimator. Condition (i) allows for heteroskedas-
tic and correlated idiosyncratic errors, but rules out strong correlations among errors. [Literature
on weak/strong cross section dependence can be cited] Condition (ii) essentially ensures suffi-
cient variation among z; once the fixed effects and regressors in X were filtered out. Condition
(¢41) is an exogeneity requirement ensuring that the correlation between the regressors in X and

idiosyncratic errors is sufficiently weak for it to not affect the consistency of the FE estimator.

A.2 Proofs

Proof of Proposition 1. Usingy = Sz + X0 + 1 + ¢, the vector of demeaned variables y is given by
§ = 7 + X0 + . Substituting this expression for § in (4), and noting that M ; X = 0, we obtain

R FMoz\ ' FME
_ — X X )
B —Bo ( - ) -

Under Assumption 4.(ii), n~'zZ'M ¢z —,Q., where Q. > 0. Consider n~'z'M & next. We have

SINA - 5 sl 5P .=
ZMX€:E_ZPX€

’
n n n
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where n~1Z'P € —p0, as n — oo under Assumption 4.(iii). Last but not least, consider n~lZ/¢.

Let M be the orthogonal projection matrix that filters out the fixed effects, namely Z = Mz, and
€ = Mce. Since M¢ is symmetric and idempotent, we have

where \; = z;6; — E (2;€;), and
1 — .
1=

E()\;) = 0 by construction. In addition, under Assumption 4.(i), £ > | A; =, Oasn — oo.
Noting &; = &; — £¢(;), where ¢ ;) =1C (i )\_ Z]ec e, and using (2) for z;, we can write Ag,, as

1 @& 1
Aﬁﬂl = n; (G’(Z) Z E(Ujéi))

JEG(i)

heG (3) jeC ()

1i<G e O ZEvhsj) (A1)

But E (v;ei) = 0 for i # j under Assumption 1. Noting i ¢ G(i), it follows 3. ;) E (vjei) = 0.
For the second term on the right side of (A1), we obtain

heG (i) jeC(3)

1 — 1 — ZjGC(') Cji0vej
(vpe =—) ——
Z(G 2 2 B ]) n; [G(@)]C ()]
where ¢j; = I'[j € G(i)], and I (.) is indicator function. These results establish

B - ﬁO + Qz_lAﬁ,n —p 0,

as n — 0o, where
n

1 Z ieC(i) Cii9vej
Agp == J—.
=52 G(@)[C )]

Result (5) follows.

Proof of Corollary 1. Form Proposition 1, we have

"D jec() CiiOvej
Ag,=) == = =
’ ; EBIIE]
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But in the spec1a1 case given by (7), |G(i)| = 1, |C(i)| = T — 1, the summation ) ;. ; becomes
FYT-1)" Zle ST, 0uej becomes o, ;, and we obtain

rr I t<T Jo
Ngrry = FTHT~ 1)7122 Uef’
f=1t=2
T-2 1 ZF:
= —=x Ove, f-
(T - 1) F f=1
Using 6. = limp o0 F-1 Z?:l Ove,f, We have
T—2
Agr = lim A = ——0
BvT Fl—I}go B7(F1T) (T o 1)20-’05

In addition, n~'z'M 3z reduces to F ! (T — 1)t 25:1 Zthg 13%2571. Let Qur = plimp_, oo F~H (T —
then result (8) follows. O

Proof of Proposition 2. We begin by showing item 3 (Case4). The other items follow immediately
from that. From the Frisch-Waugh-Lovell Theorem, estimating Equation (1) is equivalent to esti-
mating

= Bz + X[y + e (A2)

We consider z* = z; — ICi%Z)\ >_; € C(i)z;. From Equation (2) and Assumption 2, we know that

2 = |Gi}z)\ Zje o) Vi = m Z]. (N Vi Substituting, we obtain

= Zva“,2| 12 (A

]E] (4)\i JEC(i) heJ (\J
= ﬁ ( Z U] z) | _ 1 Z U]
]EJ jed (i)
PR 1( 2 mt ) ”h) (A
]GC(Z ]’LGJ ])\] hEJ
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By Assumption 3 it holds that |.J(i)| = k; V ¢. It follows that

1<Z% NP R LD VLA TP )

JEJ (i) JEC(i)\J (3) FEC(i)\J (i) J€C@) heJ(j)\j

1
+7|J(i)\—1 (Z vj — | Z Z vh) (AD)

jEJ (i) JEC(i) heJ(4)

By Assumptions 2 and 3, J is a partition of the data and |J(i)] = ky V i. It thus holds that
> ject) Zhej i Uh = (|J()| - 1) >_jec(j) Vi Rearranging the terms we obtain

.1 o o 1CO) =T +1 o
ZﬁJ(i)l(l D A G )

FECENJI (i) JEC (i)

1
+J(’L')1<Z,Uj ‘Z Z’L)h). (A6)

JEJ(4) JEC(i) he

We reverse the within transformation and obtain item 3 of the proposition. Item 2 follows by
observing that in this case J(i) = @ i. Item 1 follows from observing that in these cases both
J(i) = @ iand C(i) \ J(i) = @. The observations for Cases 5 and 6 follow from the original
statement in Proposition 1 and observing that for both cases G (i) N C(i) = @. O
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Online Appendix B Leave-out Case 3 for Two-way Fixed Effects Esti-

mators

We mention in Section 2.3 that two-way fixed effects estimators do not improve the situation for
leave-out constructed regressors in Case 3 when compared to one-way fixed effects estimators.
This appendix gives a formal result akin to item 2 in Proposition 2 for two-way fixed effects es-
timators under Assumptions 1, 2, and 3. For the proof, we denote the two fixed effects cells for
observation ¢ as C(1,7) and C(2,7) and the set of all observations as 2. We consider a specific
balanced panel structure in which for every i the intersection of its two fixed effect cell is equal to
the jackknife group J(i). The data structure considered in the numerical simulations of Section 3

is a possible illustration of the case covered here.

Proposition 3. Let the data be structured that for all observations i € € it holds that J(i) C C(1,1),
J(i) C C(2,i)and C(1,i) N C(2,i) = J(i). Further assume |C(1,1)| = c1 A |C(2,i)] =ca A |J(i)] =
k ¥V i. Then estimating

T = B2i + Ne) + Mo, + & with (B1)
1
S - B2
AT 2 Y (®2)
JEJ()\i

with OLS under Assumptions ?? through 1 is equivalent to estimating Equation (B1) with

1
Z; = — m (UZ‘ + « Z vj + (1 — Oé) Z Uj) (B3)
jec \J(3)

(1,9)\J(4) jeC(2,3)

forany a € R.

Proof. From the Frisch-Waugh-Lovell Theorem, estimating Equation (B1) is equivalent to estimat-

ing

T — Toy — To) + Ta =02 — Zo,i) — 2o + Z0) + i — Eo(1,i) — Ec(2q) T Ea- (B4)
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We denote ziR — Zc(1,i) — Zc(2,4) T Za and substitute equation (B2)

1 1 1 1 1
Sl B DRIl D v SD DL bl Di v HD DL

jeJ( i\ 1 jeC(l i) heG;\j 2 iec@) heG;\j
pondiD DD D v D DI (B5)
]eC(l 7) hecgj leGh\h
-1 kE—1 -1
Z vj Vi~ Z v~ — Z ; Z Z up, (B6)
J€J(3) ! JeC(1,0) ! jec(2, z) ;eC (1,i) heCy;

Cc1 . . C1 .
jeC(1,3) JEC(2,7) jEC(l 1) heCy;

kll(vi—kl Z vj+l Z vj—— Z th)
—I-kll(z Uj+a< Z vj — Z )vj>+(1a)( Z vj — Z

JeJ (i) JEC(1,i)\J (%) JEC(1)\JI (4 J€C(2,i)\J(3) JeC(2,)\J (4

jGC(l %) ]EC 2,i) ]GC (1,7) heCoq;

- Z UJ_* Z UJ+7 Z th) (B7)
k:ll( vz—i-— Z v]—l—— Z vj—— Z th)

jEC (1,%) ]GC (2,2) jGC(l i) heCy;

(Li\J (i) JECL\I () U ec

acy — k
+k11(a Z v — (1 —a) Z vj + L Z v
jel
+(1—()éc)202—k Z ’U]—|—7 Z th> (BS)

Jje€C(2,9) jeC (1,2) heCsq;

C
Lec Lec 1€2 . C001,i) heCy,

kll( ’Uz—i-* Z UJ—F* Z vj—— Z th)

1 —k
+k:1( ajecz vj — (1 —a) Z v]—i—al Z v

(1,5)\J(¢) JEC(1,i)\J(3) jeC(1,i)

C
2 jec(i GEC(1,i) heCay

HI-f28 3 g - featlTeesl 5 5 ) v

Reversing the within transformation across both clusters C(1,7) and C(2, i) renders the proposi-
tion. O
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The proposition can be interpreted in different ways. However, the simplest intuition for the
applied researcher is that with two-way fixed effects estimators, item 2 of Proposition 2 is true
for both fixed effects at the same time. With a standard panel of firm data, when including both
a Firm and a Year fixed effect, both |T'| and |F| need to become large in order for the bias to
disappear.
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Online Appendix C Additional Monte Carlo Experiment

Our additional set of experiments considers an endogenous regressor that can be instrumented

with its lag in a standard Firm-Year panel. Data is generated according to:

(DGPA1) yy = Bzp + %si{t, E?}t = vef, + ei’ct, and (C1)
Tfe = payi—1+ Gy (C2)

for f = 1,2,..,F and t = 1,2,...,T, where sft,e‘;{t ~ IIDN (0,1) and the initial values are
xy_1 = 0. As before, we set fy = 1,p, = 0.8, and » = 4. The parameter v defines the degree
of the endogeneity of the regressor. We consider three experiments based on v, = 0,0.2 and 1. To
estimate 3y we use a 25LS IV estimator featuring firm fixed effects and use x;_; as the instrument
for x y;. We denote this estimator as IV-Lag below. In our DGPA1, this instrument is uncorrelated
with 5? . and it is strong for all values of v, and all sample sizes considered. What is often over-
looked in empirical research is that these two conditions are not sufficient for the IV-Lag estimator
to be consistent. As discussed in Section 2.1, we expect bias of order O(1/7"), and consequently
the IV-Lag estimator will be inconsistent as F' — oo and 7' is fixed. In DGPA1, consistency of
the IV-Lag estimator under large-F" asymptotics is achieved only if v, = 0, which is when z; is
strictly exogenous, and instrumenting is not needed to begin with. As a possible solution, we also
compute a double filtered IV estimator of Hayakawa et al. (2019) featuring Firm fixed effects and
using the lagged regressor as the instrument. We denote this estimator as DFIV-Lag below.

Table C1 confirms our theoretical predictions. The reported biases of the IV-Lag estimator
are all very large and the confidence interval coverage rates are all close to zero when v # 0.
Unfortunately, it appears to be a common practice in the literature to use the IV-Lag estimator,
even if it is clearly expected that the instrument is correlated with past and/or future values of
z—:?t, in panel settings with Firm Fixed effects and a relatively small time dimension. In contrast to
the IV-Lag estimator, the DFIV-Lag estimator is consistent in this design, regardless of the value of
v. We see no discernible bias of the DFIV-lag estimator in Table C1. Confidence interval coverage
rates are also close to 95 percent in all cases. Hence, the DFIVF-Lag estimator is a viable solution.
Implementing it is again costly in terms of an increased root mean squared error. However, this
cost can only be seen in Panel A of Table C1 and in the case shown there, intrumentation would

not be necessary in the first place.
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Table C1: Simulated bias, 95% confidence interval coverage rates (CR), and root mean square
errors (RMSE) of FE, IV-Lag and DFIV-Lag estimators of 5y = 1 in Firm-Year panel experiments
with regressor endogeneity

Bias CR (x100) RMSE (x100)
F\T 5 10 5 10 5 10
A. Experiments with v = 0 (regressor is strictly exogenous)

FE estimator

4,000 0.00 0.00 94.35 94.45 3.40 1.80
20,000 0.00 0.00 94.60 94.35 1.54 0.82
IV-Lag estimator (using lagged regressor as instrument)
4,000 0.00 0.00 94.60 95.40 10.75 3.36
20,000 0.00 0.00 94.90 94.85 4.70 1.54
DFIV-Lag (using lagged regressor as instrument)
4,000 0.00 0.00 94.90 95.10 22.70 7.43
20,000 0.00 0.00 94.65 95.40 10.20 3.24

B. Experiments with v = 0.2 (small degree of endogeneity)

FE estimator

4,000 0.60 0.46 0.00 0.00 60.24 4591
20,000 0.60 0.46 0.00 0.00 60.12 45.90
IV-Lag estimator (using lagged regressor as instrument)
4,000 -1.18 -0.35 0.00 0.00 118.36 35.31
20,000 -1.18 -0.35 0.00 0.00 118.09 35.09
DFIV-Lag (using lagged regressor as instrument)
4,000 -0.01 0.00 94.95 94.75 2331 7.55
20,000 0.00 0.00 94.80 94.90 10.32 3.31

C. Experiments with v = 1 (moderate degree of endogeneity)

FE estimator

4,000 3.01 2.29 0.00 0.00 300.62 229.31
20,000 3.01 2.29 0.00 0.00 300.51 229.32
IV-Lag estimator (using lagged regressor as instrument)
4,000 -5.89 -1.75 0.00 0.00 589.88 175.42
20,000 -5.89 -1.75 0.00 0.00 589.26 175.39
DFIV-Lag (using lagged regressor as instrument)
4,000 -0.02 -0.01 95.05 94.95 32.79 10.37
20,000 0.00 0.00 94.70 95.00 14.03 4.55

Note: The DGP is given by ys: = Bay + xe%,, €%, = vef, + e}, and wpr = 0.8244-1 + €5y, fort = 0,1,2,..,T, f =
1,2,..., F, where %,, e?t, ~ IIDN (0,1) and > = 4. Estimating equation is ys: = ay + Bz + s;"’ct. IV-Lag is two-stage
least squares (2SLS) instrumental variable estimator using lagged regressor, = _1, as an instrument. DFIV-Lag is the
double filter IV estimator by Hayakawa et al. (2019) using lagged regressor, <1, as an instrument. All experiments
are based on R = 2,000 Monte Carlo replications.

Online Appendix D Details on USPTO Data Analysis

We source data from the 2014 wave of the USPTO Patent Examination Research Dataset (PatEx).
We chose this wave because, in contrast to later waves, it provides a unique examiner ID for

each patent application, which reduces measurement error in the identification of the instrument
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group. We combine the data on applications with that on inventors. A unique inventor is iden-
tified by their first, middle, and last name. With this procedure, it is likely that in certain cases,
multiple inventors are combined into a single person. We cannot address this measurement prob-
lem here, because we do not want to make arbitrary further data restrictions (such as focusing on a
specific type of invention) or use additional data for our empirical demonstration. As a result, the
research question is probably not identified to a satisfactory degree. However, we are interested
in identifying the bias and not the particular research question. We further remove all entries in
the data without an examiner ID and inventors with an undefined application date. This process

mostly removes older entries in the data which are not of relevance to our analysis.

In the regression analyses, we focus on the success of the first application by an inventor. Be-
cause failed applications are only reliably documented in the data for applications filed on or after
November 29" 2000 (Sampat and Williams, 2019), we focus on applications from 2001 onwards.
An application is categorized as the first application if the inventor’s name has not appeared on
any previous application in the data. If inventors have multiple first applications on the same day,
they are deleted from the data. An application is deemed successful if the patent has an issue date
in the data. The dependent variable indicates whether the inventors are repeat applicants. They
are classified as such if they file for at least one more patent after having filed for the first. We
provide a robustness check for this definition below. Because we only observe data up to the year
2014 inclusively, we limit our analysis to the years 2001 through 2009, such that later applicants

have sufficient time for a second application.

To calculate the leave-out instrument, we consider all decisions on applications by an examiner
in a given year. This includes decisions on applications that are not by first-time applicants. Let
;.1 be the it decision by examiner e in year ¢ and n(e, t) the number of decisions by examiner e

in year ¢, then the canonical leave out instrument is given by

(e.)
1
Ziet = W ; Tjet — Tiet | - (Dl)
The outside sample instrument instead considers all decisions on patents which do not have at
least one first-time applicant on them. Denoting these decisions as x; ;-1 and their total number

for examiner e in year t as n(e, t, ~1), the outside sample instrument is given by

1 n(e,t,—1)
e — ioto1 | - D2
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Figure D1: Histograms of Leave-out Instruments (Real and Scrambled Examiner IDs)
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Note: The graphs show the histograms of the residualized leave-out instruments over the 1.15 million observations used
in the analysis of the USPTO data. The instrument for all applications is defined over all decisions of the examiner in the
year of the patent application (Equation (D1)) The non-first application instrument only considers examiner decisions

on applications by inventors who do not apply for a patent for the first time (Equation (D2)). Scrambled instruments
result from randomly assigned examiners within a and Art unit x Year cell.

Note that in this case, all first-time applicants to examiner e in year ¢ have the same value for
the instrument. Distributions for both instruments are given in Figure D1. The figure also shows
distributions for the scrambled examiner IDs. Note that we delete all observations from the data
in which the denominator in Equation (D1) is 0. We do this for both the real examiner IDs and the
scrambled ones such that all estimations in Table 8 are made on the same dataset.
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One possible concern for the identification of the dependent variable could be that in the defi-
nition of the main analysis, we do not consider the timing of the decision. Rather, we say that any
second application by an inventor after the first one constitutes a repeated application, irrespective
of whether a decision on the first application has been rendered or not. To provide a robustness
check for this identification, we repeat the analysis from the paper with a different definition of the
dependent variable. Table D1 describes results when inventors are only categorized as repeated
applicants if they apply after the decision on the first patent has been made (that is, after the issue
date or the abandonment date).

Table D1: Estimation Results with Alternative Definition of Repeated Application

1) ) 3) 4) ®)

OLS 2SLS 2SLS 2SLS 2SLS

Success 0.041*** 0.091*** 0.106*** 0.048*** 0.898
(0.001) (0.004) (0.005) (0.015) (8.074)

1st Stage F-Stat. - 36,191 4,901 1,260 0.02183
Fixed effects Art unit x Art unit x Art unit x Art unit x Art unit x

Year Year Year Year Year
Instrument Group ) All Non-first All Non-first

Applications Applications Applications Applications

Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 1,112,915 1,112,915 1,112,915 1,112,915 1,112,915

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
on the probability of the inventor applying for at least one additional patent in the data after the decision on the initial
application has been rendered. We consider all inventors who filed for their first patent application in the years 2001
through 2009. 2SLS estimations use a leave-out instrument based on examiner generosity in all patents of that examiner
in the year the focal patent is filed (columns (2) and (4)) or all applications without any first-time applicant on them in
the same time frame (columns (3) and (5)). The analyses in columns (4) and (5) use examiner IDs scrambled within the
fixed effect cell such that the instrument is uninformative. Standard errors are clustered on the level of the Art unit in
each estimation. Stars *, **, and *** denote statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

Results are comparable to the main analysis with one important difference. While the main
analysis shows the 2SLS coefficient to be smaller than the OLS one, the results of the robustness
analysis show the opposite pattern. This shows that on the one hand, the identification of the
dependent variable is difficult given the present data, on the other hand, there could be two com-
peting endogenous effects. The main analysis shows a quality effect in the sense that inventors
with higher-quality patents are both more likely to have a successful application and more likely
to have multiple applications. The current analysis implies that higher-quality patents are more
likely to succeed in their application and, at the same time, might require fewer follow-up patents
because they are already comprehensive. Which of these effects dominates then depends on the
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exact measurement of the dependent variable. Aside from the difference between OLS and 2SLS
estimates, the results are remarkably similar. The canonical instrument has a 23% relative bias
compared to that of OLS. More importantly, the scrambled analysis returns a coefficient about
equal to that of the OLS estimation with the canonical instrument and an uninformative instru-
ment otherwise. As before, the canonical instrument seems highly valid in the scrambled analysis,
with an F-statistic above 1000.

One way to make sure that fewer different inventors are combined in a single person for the
sake of the estimation is to instead look for unique inventor-name-by-art-unit combinations. Such

a process leads to a significantly increased sample size with roughly 3.86 million such combina-

tions.
Table D2: Estimation Results with Alternative Identification of Individual Inventors
) ) 3) (4) 5)
OLS 2SLS 2SLS 2SLS 2SLS
Success 0.072*** 0.063*** 0.053*** 0.079*** —-2.097
(0.002) (0.006) (0.009) (0.011) (2.461)
1st Stage F-Stat. - 75,512 1,525 2,214 0.999
Fixed effect Art unit x Art unit x Art unit x Art unit x Art unit x
xed ettects Year Year Year Year Year
Instrument Grou All Non-first All Non-first
P Applications Applications Applications Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 3,861,718 3,861,718 3,861,718 3,861,718 3,861,718

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
in a given Art unit on the probability of the inventor applying for at least one additional patent in the same Art unit.
We consider all inventors who filed for their first patent application in the years 2001 through 2009. 2SLS estimations
use a leave-out instrument based on examiner generosity in all patents of that examiner in the year the focal patent is
filed (columns (2) and (4)) or all applications without any first-time applicant on them in the same time frame (columns
(3) and (5)). The analyses in columns (4) and (5) use examiner IDs scrambled within the fixed effect cell such that the
instrument is uninformative. Standard errors are clustered on the level of the Art unit in each estimation. Stars *, **,
and *** denote statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

Results are given in Table D2 and show the same pattern as in the main analysis. The bias
is now more pronounced, it is 54% relative to OLS. The analysis with scrambled examiner IDs is
remarkably consistent between all three analyses. The coefficient when using the canonical leave-
out instrument is close to that of OLS, and the instrument has a first-stage F-statistic above 1000.
However, when the outside-sample instrument is used, the F-statistic is essentially 0 and the weak
instrument leads to a statistically insignificant coefficient.
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Online Appendix E Discussion and Relationship to Judge FE Tests

In this appendix, we will briefly discuss how our argument here relates to other critiques and tests

of leave-out instruments.

Some applications of instrumental variable estimation employ a test in which control variables
are added step-wise to the first stage estimation and the econometrician observes whether the
coefficient on the instrument changes in the process. This could, in theory, detect the problems
identified in this paper, but in practice, it likely is not a reliable test. When considering a wholly
uninformative constructed regressor as an instrument that contains mechanical correlation, the
instrumented variables (call it x) is essentially instrumented with itself and noise. Introducing an
independent control variable that is correlated with x can change the coefficient on the instrument,
because the control variable is correlated with both x and the mechanical correlation part in the
instrument. However, as can be seen in the numerical results of Section 3 the bias can affect the
estimated coefficient both positively and negatively and it is unclear which of these effects will be
affected the newly included independent variable. Thus, the problem might exist but, at the same
time, might not be detected by the test. The test has an even higher chance to become unreliable
if the instrument is informative, because if the included control variable is also correlated with
the shock that the instrument is measuring, the net effect might again not be noticeable. Further,
if v # z, then such a test would be equivalent to including control variables in order to detect
endogeneity of an independent variable, which is not a valid exercise.

There has been extensive work on leave-out constructions as instruments, already. Focusing on
the use of spatial instruments and spillovers, Betz et al. (2018) and Huber (2023) consider various
necessary conditions for the identification strategy through leave-out instruments to hold. These
important conditions are complimentary to our analysis. That is, even if their conditions are met,
the instruments can be biased mechanically through the presence of fixed effects and, vice versa,
even if the fixed effects are specified correctly, the conditions recounted in these studies still need
to be met. As such, these two studies also act as a stand-in for a larger set of conditions which
may apply in a given research application (see, e.g, Angrist, 2014, for analyses of peer effects).
Because most conditions focus on the instrument itself and not on the broader estimation strategy
(including the choice of fixed effects), the results derived here are typically complementary to
other necessary conditions.

Given the extension of our results to judge fixed effects, it is natural to ask how the critique im-
pacts the test designed by Frandsen et al. (2023) for such situations. The two aspects are, however,
also completely complementary to each other. The test in Frandsen et al. (2023) tests the general
admissibility of using judges as identifying variation with regards to the exclusion restriction and
monotonicity of the instrument. The test does not consider the typical leave-out construction in
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the identification strategy but uses means of each judge’s propensity for a specific decision directly.
As such, an empirical strategy can pass the test of Frandsen et al. (2023) and still use a problematic
combination of leave-out instrument and fixed effects as detailed in this paper. Vice versa, a cor-
rect construction of the data structure in our sense has no impact on whether the Frandsen et al.
(2023) test gets rejected or not.

Online Appendix F  Structured Literature Review

We conducted a structured literature review of the issues 75, 76, and 77 (years 2020 through 2022)
of the Journal of Finance. We differentiated papers into four possible categories: empirical, theoreti-
cal, structural, and other. The last category being comprised of replications/ corrigenda, methods

papers, and similar types of research.

We included all papers that had the potential for the bias. This means, the paper featured a
constructed regressor (like a lag structure or a leave-out) and a fixed effect that leads to potential
overlap of the construction set and the set used for de-meaning. We excluded cases in which the
overlap was too small. These were mostly cases with time fixed effects in which the number of
tirms or comparable entities was large. For all papers listed below, we cannot say for certain, how
large the bias will be. We simply listed those papers in which the bias could potentially appear.

An overview of the results of the literature review is given in Table 1. Throughout the review,
we focused on empirical and structured papers which made causal claims based on their data
analysis. This excluded most asset pricing papers, because here the goal commonly is to predict
asset prices rather than to make causal claims. This, however, does not mean that panel data anal-
yses with fixed effects and constructed regressors in asset pricing are without problems. Lagged
regressors in particular are common in asset pricing and combining them with fixed effects can
lead the contemporaneous values to bleed through into the lagged values. This leads to the po-

tential use of contemporaneous values in prediction exercises which is obviously problematic.

We list all 33 identified papers in Table F1. Here we also indicate what type of construction
the paper uses, whether it is utilized in an instrumental variable estimation and whether the bias
appears in the hypothesis variable or in control variables. We also give an example of where in
the paper the bias can be found, but these examples are obviously not always limited to the places
named in the table.

Some papers listed in Table F1 need additional clarification and are marked with footnotes.

These footnotes refer to the aspects listed below.

1. Also contains Nickell (1981) Bias.
2. Structural Paper.
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Table F1: Papers with Potential Bias Identified in the 2020 to 2022 Volumes of the Journal of Finance

Paper Type v Use Example in Paper
Cookson and Niessner (2020)! Lags - Control Table 7
Frydman and Wang (2020) Lags - Hypothesis Table 3
Farre-Mensa et al. (2020)3 Leave-Out Yes Hypothesis Table 2
Hendershott et al. (2020) Lags - Hypothesis Table 5
Sialm and Zhang (2020) Lags - Hypothesis Table 3
Mian et al. (2020)} Lags - Hypothesis Table 9
Akbas et al. (2020) Lags - Hypothesis Table 7
Jagolinzer et al. (2020)! Lags - Hypothesis Table 6
Bennedsen et al. (2020) Lags - Control Table 4
Schiantarelli et al. (2020) Leave-Out Yes Hypothesis Table 5
Brauning and Ivashina (2020) Lags Yes Hypothesis Table 2
Huang et al. (2020)! Lags - Control Table 5
Dou et al. (2021) Lags - Hypothesis Table 2
Greenwald et al. (2021)124 Lags - Hypothesis Equation 42
Daniel et al. (2021) Lags - Hypothesis Table 4
Brown et al. (2021) Lags - Control Table 2
Shue and Townsend (2021) Lags - Hypothesis Table 2
Baghai et al. (2021) Lags - Control Table 4
Cenedese et al. (2021) Lags - Control Table 2
Falato et al. (2021) Leave-Out -  Hypothesis Table 2
Lee (2021) Lags - Hypothesis Table 2
Tuzel and Zhang (2021)° Lags - Hypothesis Table 11
Ge (2022) Lags Yes Hypothesis Table 3
Boguth et al. (2022) Lags - Hypothesis Table 10
Koijen and Yogo (2022) Lags Yes Hypothesis Table 4
Birru et al. (2022) Lags - Control Table 5
Eisenbach et al. (2022) Leave-Out Yes Hypothesis Table 2
Chang et al. (2022) Lags - Control Table 3
Giirkaynak et al. (2022) Lags - Hypothesis Table 5
Wang et al. (2022)12 Lags - Control Table 8
Bizjak et al. (2022) Lags - Control Table 5
Schoenherr and Starmans (2022)° Lags - Control Table 3
Meeuwis et al. (2022)” Lags - Control Table 3

Note: The table includes all papers identified in the structured literature review. The type of bias categorizes
according to the examples provided in Section 2. IV identifies whether the constructed regressor is part of an
instrumental variable estimation. Use denotes whether the bias appears in a hypothesis regressor or a control
variable. Note that papers are categorized as Hypothesis, when the bias appears in in both both hypothesis
and control variables. The example in paper is one place of possibly multiple where the bias can be identi-
fied. Footnotes on the papers are explained in the text.
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Overlap smaller than in Section 4; data allows for easy solution.

Bias appears in model calibration.

Bias appears only in robustness check.

Definition of hypothesis variable unclear and seemingly similar to leave-out variable.

NS »

Note that the control variables in question are proxies for "alternative explanations".

Table F2 shows some additional analyses showing where the potential bias appears in the
papers identified in our structural literature review. We can see that lagged regressor constructions
are much more common in finance research than leave-outs, but the latter are nevertheless present.
We also see that only about 18% of the identified papers use the biased variable in an IV estimation.
Lastly, it is common for the bias to appear in the hypothesis variable. It is limited to control
variables for only about a third of the identified papers.

Table F2: Possibly Biased Papers by Category

Type Count Relative
Leave-Out 4 12,12%
Lags 29 87,88%
Use of IV 6 18,18%
Hypothesis 21 63,64%
Control 12 36,36%
Total 33

Note: Table provides descriptive statistics of the prevalence of the Type,
IV utilization and Use of the potentially biased constructed variables
identified in the structured literature review.
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