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Abstract

To avoid endogeneity, financial economists often construct alternate regressors using values

from other observations, with lagged and leave-out variables being common examples. We

examine a bias in these “constructed regressors” that is induced by overlapping fixed effects.

We show that inclusion of fixed effects can reintroduce the focal observation’s bias through

de-meaning. We show generally that the size of the bias is determined by level of overlap and

provide an intuitive test for the significance of the bias. We illustrate the bias’s magnitude

via simulation and with patent examiner data in a Judge FE design. Even when scrambling

the patent examiners, thus removing any instrument validity, the bias leads to a first-stage F-

statistic over 1,000. We provide general solutions through either adjustment of the fixed effects

or construction sets and detail other, case-specific, solutions.
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1 Introduction

Consider a financial economist who wants to estimate the causal effect of xi,t on yi,t, but worries

that xi,t is endogenous. A common strategy to overcome this endogeneity is to look for another

variable v that correlates with xi,t, but doesn’t directly impact yi,t. Having found v, it is often the

case that vi,t remains endogenous to yi,t while other values of v, either along the i or t dimension

more plausibly satisfy the exclusion restriction. The economist will use the average of these other

values to “construct” a proxy or instrument for xi,t. Perhaps the original, and most common,

version of this “constructed regressor” strategy is to exploit exogeneity induced by time and use

lagged values, either of x itself or some other variable, instead of the contemporaneous value.1

More recently, econometricians have developed “leave-out” constructions, which average other

observations along a data dimension besides time to utilize plausibly exogenous disturbances in

the broader data category to circumvent bias within individual observations.

The leave-out strategy originated with the “Hausman” instrument, which averages a firm’s

prices in other markets in the same year to instrument for prices in the focal market (e.g., Haus-

man, 1996; Nevo, 2001). “Judge fixed effects” are a similar style of leave-out instrument where an

individual judge’s average rulings on other cases are used as an instrument for the current case

(e.g., Aizer and Doyle, 2015; Dobbie et al., 2018). “Peer effects” are constructed in a similar man-

ner through averaging other observations along a dimension such as social network or school, but

are often used directly instead of as an instrument (e.g., Fruehwirth et al., 2019; Lavy and Mega-

lokonomou, 2024). “Supply restriction” instruments also have a similar construction but rely on

a different kind of exogenous shock, are also increasingly common (e.g., Ma et al., 2022; Gabaix

and Koijen, 2024).2 Though largely originating in other fields, leave-out instruments have been

increasingly exploited by financial economists across a diverse range of topics including: inno-

vation (Farre-Mensa et al., 2020), mortgage servicing (Aiello, 2022), bank supervision (Eisenbach

et al., 2022), broker financial crimes (Honigsberg and Jacob, 2021), and manager promotion (Ben-

son et al., 2019).

Even more common in finance research is the use of fixed effects, often Firm and/or Year , to

control for unobserved variables that are invariant along some dimension. Leave-out instruments

in particular typically require fixed effects to be plausibly exogenous. With Hausman instruments,

1A related strategy is the use of “deterministic” contemporaneous variables (whose value in time t is determined
only by events prior to t), to motivate the exclusion restriction (e.g., Koijen and Yogo, 2022).

2For supply restriction instruments, the correlation relies on aggregate supply constraints such that a positive shock
to other observations in the same year will lead to a negative shock to the focal observation. These variables can also
be used for direct inference, as is the case in Paravisini et al. (2023). We also note that Gabaix and Koijen (2024) are very
careful in properly detailing how their instrument should be constructed in the presence of fixed effects.
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it is important to include (at least) Firm effects to ensure that characteristics such as general firm

quality do not bleed into the instrument (Nevo, 2001). Judge designs also require fixed effects,

since judges are typically only randomly assigned within a court, county or, in the case of patents,

art units (Chyn et al., 2024; Farre-Mensa et al., 2020).

We explore a potential pitfall of these identification strategies: when constructed regressors are

combined with overlapping fixed effects—where observations within a fixed effect share common

terms from the constructed regressor—they become mechanically correlated with the exact value

they are trying to avoid, leading to bias.3 This result holds even if the constructed regressor by

itself satisfies the exclusion restriction. Furthermore, when used as an instrument, this bias leads

to an increase in the apparent “strength” of the first stage, even if the identifying shock does not

actually exist, with a larger bias mechanically leading to a larger first stage F-Statistic.

After showing generally that the bias exists when fixed effects overlap, and does not exist when

they don’t, we develop a resampling-based test for the significance of the bias. Next, we develop

general, though potentially restrictive, solutions. We also detail existing, case-specific, solutions

for the most popular construction strategies (lags and leave-outs) that do not seem to have made

their way to finance research. Finally, we provide an empirical example with commonly used

patent examiner data. We find that the inclusion of overlapping fixed effects biases the coefficient

by over 20% relative to the bias of OLS. Even when scrambling the patent examiners, thus remov-

ing any identifying variation, the overlapping fixed effects bias induces a first-stage F-statistic of

over 1,000.

Constructed regressors, including lags and leave-out instruments, all share a common iden-

tification strategy: leveraging plausibly exogenous disturbances from related data categories to

avoid bias within individual observations. Since these disturbances cannot be directly observed,

they are estimated from other observations. As a result, each individual estimate of the distur-

bance incorporates both the actual disturbance and the error terms of all the observations used

in the construction. However, when overlapping fixed effects are included, the de-meaning pro-

cess reintroduces the focal observation’s error term, thereby reintroducing the exact bias that the

identification strategy seeks to eliminate.

The extent of this bias is determined by the structure of the data dimensions used for both the

fixed effects and the constructed regressor. The most extreme version of the bias appears in leave-

out instruments when fixed effects are included such that every observation used to calculate the

3For example, a constructed regressor of zi,t−1 overlaps with Firm(i) fixed effects since zi,t is the constructed re-
gressor for zi,t+1, which shares the same fixed effect.
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fixed effect, except the focal observation, is also used to construct the instrument.4 In this case, the

instrument fully reduces to a multiplicative transformation of the de-meaned focal observation

and is equivalent to not instrumenting at all. The intuition for the result is simple. The mean of

all leave-out instruments within a perfectly overlapping fixed effect is simply the average of all

of the observations within that fixed effect. When this mean is subtracted from each individual

leave-out instrument, the only thing remaining is the focal observation.

A more common case in empirical applications is when the observations used in the con-

structed regressor do not perfectly overlap with the fixed effects. Here, we find that the size of

the bias will be proportional to the degree of overlap with more overlap leading to more bias. For

example, with T time periods the degree of overlap for a lagged regressor with Firm fixed effects

is, approximately, 1
T and the number of firms is irrelevant. We can turn to the “within” interpreta-

tion for intuition – after projecting out the fixed effect, the lagged value is compared only to that

firm’s other T observations. The focal value is one of those values and thus, by construction, any

bias it contains bleeds over.

We develop a simple and intuitive test for the existence of this bias. The test relies on de-

veloping a placebo regressor that shares the same construction strategy, but has no identifying

information. This is achieved though scrambling observations along the relevant construction di-

mension and then re-running the original regression. In the case of judge fixed effects, judges

within a court-year are randomly re-sampled. In the case of lagged variables, the lagged values

are randomly chosen from a different firm in the same (lagged) year. Because this resampling re-

moves any identifying variation conditional on observables, any significance that remains in the

regression must originate from the bias.

We derive general solutions to the bias from the fact that if the observations used in the in-

strument and those used in the fixed effect do not overlap, then the de-meaning process has no

negative consequences for the instrument’s validity. This can be achieved in two ways. First, by

increasing the fixed effects’ granularity through interacting the fixed effect’s desired dimension

with a separate fixed effect at the level of the group orthogonal to the instrument group. For ex-

ample, in the Hausman IV, the researcher could include Market × Firm fixed effects instead of

simply Firm . The other option is to change the calculation of the instrument by leaving out all

observations also used in the fixed effect. In practice, this will often involve an “imputation” ap-

4This occurs when the set that defines an observation’s fixed effect (also called “cell” below) is equal to, or a strict
subset of, the set used for instrument construction (also called “group” below).
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proach, estimating the instrument on one part of the sample, and then the primary regressions on

a separate part of the sample. However, it may be the case that an “outside-sample” exists that is

relevant for the instrument, but not relevant to the primary regression.

There are also case-specific solutions that have been offered in other literatures. In the case of

leave-out instruments, the model can be re-framed as a jacknife IV (JIVE) and the researcher can

use the IJIVE or UJIVE estimators of Ackerberg and Devereux (2009) and Kolesár (2013), which

runs the estimation as a JIVE, but projects out the controlling fixed effects before running the

first stage. In the case of lagged independent variables, researchers can turn to “weak exogeneity”

literature and use either the half-panel jacknife of Chudik et al. (2018) or the consistent IV estimator

of Mikusheva and Sølvsten (2023). Finally, in the case of lagged dependent variables, known as

the “Nickell Bias” (Nickell, 1981), researchers can use the dynamic panel estimators of Blundell

and Bond (1998) and Arellano and Bond (1991).5

Monte Carlo simulations show that the magnitude of the bias can be substantial and, in some

cases, worse than just running OLS on the focal observation. Moreover, we demonstrate this in an

empirical example using commonly analyzed patent examiner data from the U.S. Patent Office to

illustrate the potential magnitude of the bias. We attempt to estimate the causal impact of having

your first patent approved on the probability of applying for a second patent. We use two in-

struments for first-application approval: (1) a traditional leave-out instrument where we average

the approval rates of all other patent applications with the same examiner and (2) an “outside-

sample” leave-out instrument where we average the approval rates of the non-first-application

patents with the same examiner. We combine these instruments with Art Unit - Year fixed effects.6

Both instruments appear strong, with first-stage F-statistics of 50,000 and 5,000, respectively. We

find that the estimated effect using the traditional instrument is 20% larger than when using the

outside-sample instrument, with the bias in the direction of OLS.

In order to separate the level of bias from the setting’s underlying instrument strength, we

perform our suggested test and scramble the patent examiner identifiers within each fixed ef-

fect group, effectively removing any actual identifying variation. In this case, the outside-sample

instrument correctly shows a first-stage F-statistic near zero and a statistically insignificant sec-

ond stage. Strikingly, even though the instrument is not valid by construction, the mechanical

5Klosin (2024) examines, and provides a solution to, a similar form of bias that they dub “dynamic bias” which
occurs when include unit fixed effects in a static panel and the treatment variable is dependent on past values of the
outcome variable.

6Patent examiners are separated into “art units” which can be viewed as courts. See Sampat and Williams (2019) for
a more thorough discussion.
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correlation induced by the overlapping fixed effects gives the traditional leave-out instrument a

first-stage F-statistic over 1,000 and a statistically significant second stage with an estimated effect

almost exactly the same as OLS.

Our primary contribution is to further financial economists’ understanding of the potential

bias in this extremely common empirical design. We also make a novel contribution to the method-

ological literature. Case-specific versions of the bias we explore have been identified by other work

(e.g., Nickell, 1981; Chudik et al., 2018; Kolesár, 2013; Angrist et al., 1999). While that work proves

that the bias exists for any general set of control variables, with the bias increasing in the number

of controls, our focus on fixed effects (the most common “many controls” setting) allows us to

create a general theory that encompasses all cases. We use this general theory to show that, in

contrast to the results of existing work, it is the overlap that determines the bias, and not the gen-

eral number of fixed effects. Indeed, there are cases where multiplying two fixed effects together

can fully remove the bias, even though the number of controls increases dramatically. We also

develop an intuitive and simple test for the existence of this bias, which can inform researchers if

pursuing potentially costly solutions are necessary.

Lastly, we contribute to the general literature examining biases that may be induced by fixed

effects. Such biases have been shown in other settings, such as the incidental parameters problem

in maximum likelihood estimation (Neyman and Scott, 1948; Lancaster, 2000) or difference-in-

differences with staggered roll-outs (Goodman-Bacon, 2021; Borusyak et al., 2024; Sun and Abra-

ham, 2021). Fixed effects are popular, because they can solve important econometric problems

(Petersen, 2008). At the same time, however, they can often lead to problems in a non-intuitive

way when combined naïvely with other estimations strategies. We show that such an effect can

appear with constructed regressors, but, at the same time, highlight several ways in which a com-

bination of these instruments with fixed effects is still possible.

2 Theory

2.1 General Result

We consider fixed effects (FE) estimation of a linear regression model featuring a constructed re-

gressor. This estimation can either be the direct test of a hypothesis, or the first stage of a two-stage

least squares design, in which case the constructed regressor acts as the instrument. Both types of

analyses are common in the literature. We assume the following general model to derive our main
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results:

yi = βzi + xxx′iδδδ + ηC(i) + εi, (1)

zi =
1

|G(i)|
∑

j∈G(i)

vj , (2)

for i = 1, 2, ..., n. Here, index i uniquely identifies one of a total of n observations. zi is the con-

structed regressor which is based on the underlying, endogenous variable v. The constructed re-

gressor for observation i is calculated using a set of observations that we call construction “group”,

denoted by G(i). The constructed regressor is calculated as the mean of variable v in G(i). Note

that by the nature of constructed regressors, i /∈ G(i). We denote the cardinality of any set A with

the commonly used operator |A|. Note that our set-up allows for the case of vi = yi such that our

results subsume the Judge Fixed Effect instrument for case outcomes, among other applications.

xi = (xi1, xi2, ..., xik)
′ is a k × 1 vector of further regressors and δδδ is the associated coefficient vec-

tor. The estimation features fixed effects. For observation i, the set of all observations used for

the calculation of the fixed effect is called the “cell”, denoted by C(i) ∈ C. C is a partition of the

data such that each observation belongs to exactly one cell. In Equation (1), the fixed effect for

cell C(i) is denoted by ηC(i). While not typically used in this fashion, this notation subsumes all

common panel structures, including those with multiple fixed effects (such as the common Firm

and Year two-way fixed effects). Using this notation is helpful for our purposes, because it makes

transparent which fixed effect cell is used to de-mean observations in the estimation.

For ease of notation, we use lower-case bold fonts for vectors and upper-case bold fonts for

matrices. All vectors are column vectors. We may rewrite Equation (1) in matrix notation, such

that yyy = βzzz +XδXδXδ + ηηη + εεε.7 Let the average of any variable xi over elements of set C(i) be x̄C(i) =

|C(i)|−1∑
j∈C(i) xj . Then we can define de-meaned versions of any variable xi as x̃i = xi − x̄C(i).

Lastly, define cij = I [i ∈ G(j)] with I(.) being an indicator function.

We consider a simple illustrative set-up for the endogeneity of v, given by Assumption 1 be-

low, and a general regularity requirements on errors and regressors given by Assumption 4 in

Appendix .1. Our endogeneity assumption is not just for ease of exposition, but more importantly

our aim is to show that the bias we explore here can appear even if conditions for estimation are

otherwise optimal.

7y = (y1, y2, ..., yn)
′, z = (z1, z2, ..., zn)

′, X =(x1,x2, ...,xn)
′, η =

(
ηC(1), ηC(2), ..., ηC(n)

)′, and ε = (ε1, ε2, ..., εn)
′.
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Assumption 1 (Endogenous v). For all i, j = 1, 2, ..., n, we have

E(viεj) =

0 for i ̸= j

σvεi for i = j
(3)

where σvεi ̸= 0.

We thus explore the case where vi is only correlated with the error term of observation i and

not with any other error term. Note that this correlation does not have to be homogeneous across

different observations, but can take different values for different i. This assumption corresponds

to the best possible situation one could have while using constructed regressors. If σvεi = 0 for all

observations, then constructed regressors would be unnecessary in the first place. The very idea

of the constructed regressor is to take advantage of E(viεj) = 0 for i ̸= j.

Let β̂ be the fixed effects (FE) estimator of β in model (1),

β̂ =
(
z̃′MX̃ z̃

)
z̃′MX̃ ỹ, (4)

where MX̃ = In − X̃
(
X̃′X̃

)−1
X̃′. We begin by stating the general result for the consistency of

the FE estimator when the sets C(i) and G(i) overlap in an arbitrary way. The result allows for

cases in which each set has observations that are not in the other but also for cases in which one is

a subset of the other.

Proposition 1. Let yi, zi be given by (1)-(2), and suppose Assumptions 1 and 4 hold. Consider the FE

estimator β̂ given by (4). Then, as n → ∞,

β̂ →p β0 −Q−1
zx∆β , (5)

where

∆β = lim
n→∞

∆β,n = lim
n→∞

1

n

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
,

in which cji = I [j ∈ G(i)] and I(.) is an indicator function.

All proofs are provided in the appendix.
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This proposition shows that the overlap between the sets C(i) and G(i), given by
∑

j∈C(i) cji =

|(i) ∩ C(i)|, can lead to inconsistency of β̂.8 For illustrative purposes, assume σvεi = σvε for all i.

Then ∆β,n reduces to

∆β,n = σvε
1

n

n∑
i=1

∑
j∈C(i) cji

|G(i)| |C(i)|
= σvε

1

n

n∑
i=1

θi = σvεθ̄,

where θ̄ = n−1
∑n

i=1 θi, and

θi =
|G(i) ∩ C(i)|
|G(i)| |C(i)|

, 0 ≤ θi ≤ 1.

Clearly, θ̄ can tend to zero or a positive nonzero value (≤ 1), as n → ∞, depending on given

empirical setting. For instance, as long as |C(i)| and |G(i)| do not change with n then the bias of

β̂ will not dimish in n and β̂ will be inconsistent so long as |G(i) ∩ C(i)| ̸= 0. A specific example

of this case is when the constructed regressor is calculated from lagged past observations of the

same firm and there are Firm level fixed effects, then adding new firms changes nothing about the

size of the construction group or the fixed effect cell. Only adding more years, and thus increasing

|C(i)|, will decrease the bias.

In general, θ̄ can be of order n−α, for some value of the exponent α in the range 0 ≤ α ≤ 1,

namely θ̄ = O (n−α). Then β̂ is consistent if α > 0. However, even if β̂ is consistent, this does not

mean inference would be valid. Under the usual regularity assumptions for
√
n convergence rate

of β̂, we would need α > 1/2 for the asymptotic distribution to be correctly centered at zero. This

is a much stronger requirement than simply α > 0. In Monte Carlo section we illustrate how bad

inference could be even if the bias of β̂ is asymptotically negligible (namely when β̂ →p β0).

When thinking of Equation (1) as the first stage in an instrumental variable estimation, then

important implication of Proposition 1 is that the first stage F-Statistic can be spuriously large

when β0 = 0. If the data sample is increased along the C(i) dimension, holding |C(i)| and |G(i)|
constant, then the bias does not diminish in n while the standard error of the estimated coefficient

will approach zero, leading the first-stage F-Statistic to approach infinity. A common case where

the data increase but |C(i)| and |G(i)| are constant is in the Judge Fixed Effects case, where C(i)

is constructed at the Court-Year Level. G(i) is constructed Judge-Year level. Adding more Court-

Years while keeping the number of cases per Judge-Year and Judges per Court-Year constant will

not change the bias, but it will lower the standard error.9

8This bias occurs even if E(viεj) = 0 for all i ̸= j. If this condition is relaxed, then the expression for the bias will be
more complex.

9A similar argument is made by Kolesár (2013).
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2.2 Lagged Construction Example

One way in which regressors can be constructed is the use of lags. We consider a very simple

panel data model that uses a single lag, this time indexing observations as (f, t) to indicate both

the unit f and the time period t. One can think of the data structure as a panel of F firms (indexed

by f = 1, 2, ..., F ) observed for T time periods (indexed by t = 1, 2, ..., T ), but the data can also be

any other type of panel. For illustrative purposes, we focus on the case without additional control

variables. The equation to be estimated is

yft = βvf,t−1 + ηf + εft, (6)

which is a special case of (1)-(2) with the datapoint i given by the pair (f, t), xi = 0 (no additional

regressors), zft = vf,t−1, and G (f, t) = {(f, t− 1)}.

The constructed regressor is thus given by zf,t = vf,t−1, so in terms of Equation (2), we are tak-

ing the average over a single observation (formally: |G(f, t)| = 1). This is the most common way

of including lags in empirical literature, though there are some application in which the average

is taken over multiple lags (see, e.g., Gao et al., 2024) and the result extends to such estimations.

We focus on a balanced panel, which is again for illustrative purposes. Assuming vf,0 is not

observed, then T − 1 periods are available for estimation (t = 2, 3, ..., T ), and we have C (f, t) =

{(f, 1) , (f, 2) , ..., (f, T )}. Hence |C (f, t)| = T − 1. The following corollary shows FE estimator is

not consistent when T is fixed, and the bias is of order T−1.

Corollary 1. Consider the special case of model (1)-(2) given by (6), and suppose conditions of

Proposition 1 hold, with E (vftεft) = σvε,f for all t. Let β̂ be the FE estimator of β in (6), using a

balanced sample on T time periods and F firms. Then, as F → ∞ and T is fixed,

β̂ →p β0 −Q−1
v,T∆β,T , (7)

where

∆β,T =
T − 2

(T − 1)2
σ̄vε,

σ̄vε = limF→∞ F−1
∑F

f=1 σvε,f and Qv,T = plimF→∞F−1 (T − 1)−1∑F
f=1

∑T
t=2 ṽ

2
f,t−1.

We can thus see that the bias described in Section 2.1 leads to a very tangible result in the

commonly used regression specifications where lagged regressors are combined with unit-level

fixed effects. The overlap between the fixed effect cell (all observations for a unit f ) and the
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construction group (lagged value of v for unit f ) is given by (T−2)(T−1)−2. This is approximately

equal to 1/T and only slightly smaller for very small values of T .10 As can be seen in Figure 1, the

bias can be quite sizeable and is be particularly strong for panels with short T .

Figure 1: Extent of bias in the FE estimation of illustrative panel regression with a single lag

Note: The graph shows the size of the factor (T − 2)(T − 1)−2 from the result in Corollary 1 for given number of time
periods in the estimation. The blue dashed line shows the approximation 1/T . The graph starts at T = 3. With T = 2
only one period is used in the estimation, thus not allowing for unit-level fixed effects.

The result in Corollary 1 is not qualitatively new. It is reminiscent of Nickell bias (Nickell,

1981) and it is a special case of the weak exogeneity bias derived in Chudik et al. (2018). The

intuition is the same as for the general result. Including the unit-level fixed effects is equivalent to

demeaning the lagged regressor. Because about 1/T of this mean is the focal observation’s value of

the regressor, this share of the covariance between vf,t and εf,t biases the estimate of the coefficient

β.

Under the usual regularity conditions FE estimator of β in Equation (6) will converge at the

rate of
√
FT . As long as both dimensions F, T → ∞, β̂ is consistent. However,the asymptotic

distribution of β̂ will be correctly centered at zero only if
√
FTQ−1

v,T∆β,T → 0. Since ∆β,T in

Corollary 1 is of order 1/T , this condition is met only when F/T → 0 as F, T → ∞. Hence, the

inference will be valid only if F is small relative to T . This rules out many applications where F

(the number of firms) is typically quite large in comparison with T (the number of time periods).

10It is not exactly 1/T because the vf,T does not appear in any constructed regressors and vf,1 never appears in a
fixed effect cell so there is no overlap for these observations.
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2.3 Jackknife IVs: The Leave-Out Construction Example

One of the other main applications of constructed regressors are leave-out means. These underlay

the common “judge fixed effects” estimation strategy that is popular in both finance and eco-

nomics (e.g., Dobbie et al., 2018; Farre-Mensa et al., 2020). Angrist et al. (1999) show that they are

equivalent to Jackknife IV estimators (or JIVEs) which is why they are also sometimes referred

to as such. The difference to the general result of Proposition 1 is that the construction groups

are now set in a less flexible structure. Specifically, the estimation uses a leave-out setting if the

following assumption is fulfilled

Assumption 2 (Leave-out setting). For each i it holds that G(i) = J(i) \ i with J(i) ∈ J and J being

a partition of the data.

We call J(i) the jackknife set. In the leave-out setting the construction group of observation i is

comprised of all observations in J(i) except i itself. Thus, within a jackknife set, the construction

groups of two observations differ only regarding a single observation: their own.

The idea is best exemplified by a concrete data application. For this, we borrow the setting of

our empirical application described in Section 4. Here, examiners grant or refuse patent applica-

tions. Examiners differ in their strictness and the allocation of patent applications to examiners is

random within the so-called art units. For causal inference, researchers estimate the average strict-

ness of an application’s examiner leaving out only the focal application. The applications handled

by one examiner thus forms the jackknife set. A counterexample can make clear how the leave-

out setting differs from the general case: When corporate finance researchers are interested in peer

effects, they might define a company’s peers as the competitors for the company’s main product.

Because company A being a competitor for company B’s main product does not have to mean that

said product is also company A’s main product, this definition would violate Assumption 2.

Because the leave-out setting is a special case of the general model, Proposition 1 carries over.

The extent of the bias is now determined by the overlap of the jackknife set with the fixed effect

cell. In the above example, if the OLS estimation was combined with Art Unit fixed effects, then

the bias is determined by the share of applications an examiner handles within their own art unit.

This special case does, however, allow for interesting further results. Specifically, if the data

is balanced in the sense that each jackknife set is of equal cardinality, then we can derive a series

of small sample properties. In particular, we can derive equivalent estimators that show how the

fixed effects allow for the focal observation to bleed over into the constructed regressor. The small
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sample results cover six possible cases in which the data can be arranged. The cases are depicted

in Figure 2 and cover different arrangements of how C(i) and J(i) can overlap. If the relationship

between these sets is the same for all observations, the six shown cases are exhaustive.

Figure 2: Venn diagrams of possible cases for J(i) (Jackknife set) and C(i) (fixed effect cell)

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

Note: The diagrams show the schematic possibilities for the sets J(i) (in blue) and C(i) (in black). The tangency of the
two sets in Case 5 indicates a single observation shared between both sets. The jackknife set J(i) is used to calculate the
constructed regressor in a leave-out mean, while the estimator is demeaned over the fixed effect cell C(i). For all cases
we only consider non-trivial structures such that |J(i)| ≥ 2 and |C(i)| ≥ 2 and in Case 4 that |J(i)| ≥ 3 and |C(i)| ≥ 3.
The six cases can be described as J(i) = C(i) (Case 1), C(i) ⊂ J(i) (Case 2), J(i) ⊂ C(i) (Case 3), |J(i) ∩ C(i)| ≥ 2 ∧
J(i) \ C(i) ̸= ∅ ∧ C(i) \ J(i) ̸= ∅ (Case 4), |J(i) ∩ C(i)| = 1 (Case 5), and J(i) ∩ C(i) = ∅ (Case 6).

The cases are sorted by the severity of the problem. In Cases 1 and 2, de-meaning due to fixed

effects leads to an instrument solely consisting of the focal value. In Cases 3 and 4, the focal value

is still contained in the equivalent instrument, but to a lesser degree. Here, Case 4 has a less severe

bias than Case 3. Cases 5 and 6 show no bias. Case 5 allows combining a leave-out instrument

with fixed effects, but requires additional dimensions in the panel. Case 6, which does not occur

naturally, structures the instrument in a way such that the overlap is removed.

We now state these results formally. For notational convenience, we split J(i) into two subsets.

That which has shared elements with C(i), denoted as Ĵ(i), and that which does not, which we

denote J̌(i). Formally, Ĵ(i) = J(i) ∩ C(i) and J̌(i) = J(i) \ Ĵ(i). Because observation i always

needs to be in C(i), it is clear that i ∈ Ĵ(i) and i /∈ J̌(i). The small sample properties of the JIVE

estimator with fixed effects can be derived under a balanced data structure. Letting k1 and k2

denote a generic constants that do not depend on the data structure, this is summarized in the

next assumption.

12



Assumption 3 (Balanced leave-out data). For each observation i it holds that |J(i)| = k1 and |Ĵ(i)| =
k2. We exclude trivial cases such that k1 ≥ 2.

We can then state the results.

Proposition 2. Under Assumptions ?? through 1 and Assumptions 2 and 3, estimating Equation (1) with

OLS is equivalent to

1. estimating Equation (1) with OLS and using

zi = − 1

|G(i)|
vi

if J(i) = C(i) (Case 1) or C(i) ⊂ J(i) (Case 2).

2. estimating Equation (1) with OLS and using

zi = − 1

|G(i)|

vi +
∑

j∈C(i)\J(i)

vj


if J(i) ⊂ C(i) (Case 3).

3. estimating Equation (1) with OLS and using

zi = − 1

|G(i)|

vi +
∑

j∈C(i)\J(i)

vj −
∑

j∈J̌(i)

vj


if |J(i) ∩ C(i)| ≥ 2, J(i) \ C(i) ̸= ∅, and C(i) \ J(i) ̸= ∅ (Case 4).

Further, the estimation is unbiased if |J(i) ∩ C(i)| = 1 (Case 5) or J(i) ∩ C(i) = ∅ (Case 6).

There are several takeaways from this proposition. Item 1 shows that the leave-out instrument

with fixed effects on the same or smaller level as the jackknife set is not an instrument at all.

Instead, using it is equivalent to a multiplicative transformation on the focal value. Intuitively, the

mean of the leave-out instrument contains all observations in J(i) equally often. The leave-out

instrument itself also includes all of these observations except the focal one. By subtracting one

from the other, what is left is the focal observation and its mean across the set J(i). If vi = yi ∀ i,

then the first stage is perfectly collinear.11

11It should be noted that most statistical programs will not treat this estimation as perfectly collinear. Rather, it will
return a highly significant first stage and proceed with the estimation. For vi = xi and |Ji| = k1 ∀ i, an easy way to see
whether the instrument reduces to the focal value is to check whether the coefficient on the instrument in the first stage
is equal to − 1

k1−1
.
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The intuition from Cases 1 and 2 carries over to Cases 3 and 4 in items 2 and 3 of Proposition 2,

but the problem is not as severe as it is with granular fixed effects. Because the de-meaning is now

on a broader scale – there is less shared information between construction group and fixed effect

cell – the instrument does not fully reduce to information about the focal observation.

Case 3 is particularly likely to appear. The patent examiner application introduced above is

one example for this. Another one is a set of Hausman instruments for firms operating in multiple

markets where the estimation features Firm or Year fixed effects, or both.12 The commonplace

appearance of Case 3 highlights the importance of our result. Even though the bias can disappear

if the data becomes larger, this is only the case if the instrument itself is informative. The problem

is, however, that if the instrument is not informative, the other element of the weighted sum will

simply add noise orthogonal to the value that is to be instrumented. In this case, the focal market

component will be the main determinant of the instrument’s coefficient, leading to a persistent

bias. Increasing the sample along the relevant dimension will only increase the standard error.

Thus, adding more data potentially only makes the fit of the first stage worse. A researcher un-

aware of our result might remove (or re-weight, as recommended by Coussens and Spiess, 2021)

portions of their data to seemingly achieve a better fit in the first stage, while in actuality, all

explanatory variation is coming from the bias introduced by the focal market component.

Case 4 (and thus item 3 of Proposition 2) appears when there are observations in the Jackknife

set which are not contained in the fixed effect cell. This makes the equivalent instrument include a

part which is not biased by the de-meaning process, improving the performance of the estimator.

In the example of the patent examiners Case 4 would appear if individual examiners handled

patents in multiple art units.

The last part of the proposition shows a way towards potential solutions for the bias. If there is

only a single observation shared by the Jackknife set and the fixed effect cell (Case 5), then that ob-

servation has to be the focal one. Since that implies that there are no shared observations between

G(i) and C(i), there will be no bias in the estimation as can be seen in Equation (5). The intuition

for this is straightforward. If i is the only observation shared between the two sets, then it never

enters the mean of the other observations within the same fixed effect cell. Stated differently, none

of the observations in C(i) use observation i in the calculation of their leave-out instrument. Ob-

servation i is only used in the leave-out instrument for observations that are both not observation

i and in J(i) at the same time. By the definition of the case, these observations are not part of C(i).

Similarly, no bias appears in Case 6 when there are no shared observations between J(i) and C(i).

An interesting aspect of both Case 5 and 6 is that these solutions to the biased estimation are not

12We provide a technical treatment of the two-way fixed effects case in Online Appendix A.
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tied to the number of fixed effect cells, i.e., they are not associated with fewer control variables.

This is a new result in comparison to the extant literature on JIVE estimators, which generally

considers the bias to be increasing in the number of control variables (Ackerberg and Devereux,

2009; Kolesár, 2013).

2.4 A Test for Existence of the Bias

The formal results and their intuitive explanations make clear that the bias reintroduces the focal

value in the estimation mechanically. This interferes with the otherwise informative nature of the

construction set. The estimate of coefficient, b, thus features both the informative component and

the bias. A simple test for the existence of the bias is thus to remove the informative component

from the constructed regressor and then test the estimated coefficient on the newly constructed

regressor for statistical significance. If all informative components were removed successfully, a

statistically significant coefficient implies the existence of the bias. Specifically, we propose the

following two-step test:

Test 1 (for existence of the bias). The test has two steps

1. For each observation i, generate a new construction group G̃(i) such that |G̃(i)| = |G(i)|, |G̃(i) ∩
C(i)| = |G(i) ∩ C(i)|, G̃(i) ∩ G(i) = ∅, and for each i ∈ G̃(i) and each j ∈ G(i) it holds that

Cov(vi, vj |XXXi, ηC(i)) = 0.

2. Estimate Equation (1) with zi =
1

|G̃(i)|
∑

j∈G̃(i) vj and test b for significance.

The conditions for the new construction set in the first step ensure that the potential bias is of

equal magnitude as in the primary estimation since it overlaps with the fixed effect cell to the same

degree. The new and original construction sets should not share observations and there should

be no correlation between the values of v in the new and the original set when conditioning on

control variables and fixed effects.

In practice, G̃(i) can be generated by scrambling the data on the adequate dimension. In the

lagged regressor case, the researcher can, for example, simply choose the lagged value of v for

a different firm.13 In the judge fixed effect case, the researcher can scramble judge ids and then

re-estimate the first stage. The procedure is used in Section 4.

13This can be achieved easily by scrambling firm ids within a year and then resetting the panel.
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2.5 Solutions

Proposition 1 and the discussion of Cases 5 and 6 in Section 2.3 provide an obvious path to a

solution for the bias. Any estimation with a data structure such that G(i) and C(i) do not overlap

will be unbiased. There are several generic ways in which this data structure can be implemented

and we introduce them with the help of examples below. In addition, specific situations may have

specific solutions, which we discuss at the end of the section.

If the data is sufficiently rich, one way to ensure that there is no overlap between construction

group and fixed effect cell is to interact the existing fixed effect with another fixed effect that is

orthogonal to the construction group. Orthogonal in this context means that for each construc-

tion group, each observation is in a different cell of the new fixed effect. Consider the Hausman

instruments case as an example. Let the regressor be constructed from observations of the same

firm in the same year but in different markets and let the estimation feature Firm fixed effects. If,

instead of only including the raw Firm fixed effects, we interact them with fixed effects for the

market dimension (so Firm×Market fixed effects), then the G(i) and C(i) will not overlap for any

observation i.14 Thus, the estimation will be unbiased as long as the other assumptions necessary

for leave-out instruments are met.15. This is a good example of how adding more control variables

can actually reduce (or, in this case, eliminate) the bias.

If the data are not rich enough to introduce a fixed effect orthogonal to the construction group,

one can separate the construction group and fixed effect cell altogether. In the leave-out setting,

this would be Case 6. However, this data structure does not occur naturally, and must be induced

by the econometrician through alternate construction of the instrument or fixed effects. We detail

three potential ways to do this.

The easiest way to separate construction and fixed effects can be used when there exists “outside-

sample” data that is irrelevant to the direct research question, but helpful in estimating the identi-

fying shock. In this case, the researcher can define the construction group on this outside-sample,

which is data that is not used for the later estimation of Equation (1). This reduces the overlap

of G(i) and C(i) to zero by constructions. A concrete example of this is given by Sampat and

Williams (2019) who study the effect of patent protection on follow-on innovation in the human

genome. They compare follow-on innovation across successful and unsuccessful patent appli-

cations, instrumenting for the success of applications using the strictness of the assigned patent

examiner for patents that do not relate to the human genome. Because there is no overlap between

14Note that using Firm +Market fixed effects will not reduce the bias at all.
15See, among others, Angrist (2014), Betz et al. (2018), and Borusyak and Hull (2023) for the discussion of the neces-

sary assumptions.
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the instrument construction and the fixed effects, there is no bias. This solution is a type of two-

sample, two-stage least squares estimation (Angrist and Krueger, 1992; Inoue and Solon, 2010).

Another example of such a procedure is given in Section 4.

When there is no outside-sample instrument available and the identifying variation is a subset

of the necessary fixed effect, a split-sample, imputation approach is possible. The basic idea is to

separate the data into a regressor construction sample and an estimation sample. Data used for

the construction of the regressor is then simply not used for the estimation of the equation and

there can be no overlap between G(i) and C(i). As an example, consider the lagged regressor of

Section 2.2. If the constructed regressor is the simple one-period lag, then the econometrician can

limit the estimation to every second period. This way, the data used for regressor construction

never appears in the fixed effect cell.

This approach is part of a set of recently developed estimators that take advantage of split

samples and separated prediction and estimation procedures to circumvent econometric prob-

lems (e.g. Chernozhukov et al., 2018; Wager and Athey, 2018; Borusyak et al., 2024; Abadie et al.,

2024). This solution requires the most out of the data, since it must be large enough to support

the separate estimation of the instrument and the (potentially 2SLS) regression on individual par-

titions, but unlike the other solutions, it can used in any data structure.16

It is worth noting that some specific data structures with constructed regressors have idiosyn-

cratic solutions available to them. The lagged regressor case can be treated with dynamic panel

procedures such as the estimators proposed by Arellano and Bond (1991), Blundell and Bond

(1998), and others. Note, however, that such methods can suffer from weak- or many-instrument

problems and thus might not be suitable to every data structure (Chudik et al., 2018). The half-

panel jackknife estimator of Dhaene and Jochmans (2015) has been applied to the weak exogene-

ity problem in general by Chudik et al. (2018) and is shown to only have a bias of a magnitude

of approximately 1
T 2 , offering another candidate for a (partial) solution. The leave-out case from

Section 2.3 can be treated by using improved JIVE estimators, specifically the IJIVE (Ackerberg

and Devereux, 2009) and the UJIVE (Kolesár, 2013) in addition to the methods introduced above.
16The optimal size of the split will depend on the power of the instrument as well as the power of the primary

regression. We leave this calculation as an interesting avenue for future research.
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3 Monte Carlo Evidence

To illustrate the magnitude of the potential bias and to show the relative impact of model/data

specifications, we employ a Monte Carlo simulation in a realistic setting comparable to our ex-

amples above. Our data-generating process is as follows. We label the explanatory hypothesis

variable as xf,m,t for firm f ∈ F , market m ∈ M , and year t ∈ T . We also allow a potential

firm-level fixed effect ηf in both x and y. We simulate data according to

xf,m,t = α · xf,m,t−1 + γ · cf,t + ν · qf,m,t + ηf + εxf,m,t (8)

yf,m,t = β · xf,m,t + ν · qf,m,t + ηf + εyf,m,t (9)

εx,yf,m,t, cf,t, qf,m,t ∼ N(0, 1) (10)

where yf,m,t is the dependent variable of interest, qf,m,t is the firm-market-year quality which is

correlated with yf,m,t, and cf,t is the firm-year level cost shock which is uncorrelated with yf,m,t.

qf,m,t and cf,t are unobserved by the econometrician.

Our goal is to recover β. Our first strategy is to exploit that x is auto-correlated and q is not.

We approach this through two different methods. First, we take the most common approach and

simply proxy for xf,m,t by replacing it in equation (9) with xf,m,t−1 and running OLS. Next, we

use xf,m,t−1 as an instrument for xf,m,t in a 2SLS set up. Our second strategy is to use the average

of x’s for the same firm in the same year, but in other markets, to estimate cf,t, use this as an IV for

xf,m,t, and then estimate β via 2SLS. We will attempt all of these methods combined with various

forms of fixed effects. In order to isolate the bias induced by fixed effects, we initially abstract

away from the reason to include fixed effects (time-invariant omitted variables) and set ηf = 0.

Unless stated otherwise, all following regressions feature ν = 10, γ = α = 1, and β = 0.5.

Figure 3 presents the results of our first set of Monte Carlo simulations, showing the bias of

various lagged estimators, calculated as the difference between the true parameter β and its es-

timate β̂, relative to the bias of the OLS estimator. We scale the relative bias by the OLS bias to

provide a clear comparison of the different estimators’ performance, abstracting from the overall

level of endogeneity in the data-generating process.17 For the lagged-variable construction exam-

ples, we utilize 1 Market and treat the data as a Firm − Year panel. In Panels (a) and (b), the

simulation features 20 Years and 400 Firms . In Panels (c) and (d), the simulation features 4 Years

and 1600 Firms . Both panels feature 8,000 total observations. Panels (a) and (c) feature a unit-root

(α = 1), so that E[xt−1] = xt. In panels (b) and (d), the autocorrelation is slightly weaker at α = .6.

17Specifically, we calculate the bias of a given estimation strategy S as BiasS = (β̂S − β)/(β̂OLS − β).
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Figure 3: Relative Bias: Lags

(a) High T, Unit Root (b) High T, α = .6

(c) Low T, Unit Root (d) Low T, α = .6

Note: Results of a Monte Carlo simulation with the data generating process described in Equations (8) through (10) with
ηf = 0. This figure shows the bias, relative to OLS, of separate models across 500 simulations. Each box represents a
separate model specification, and cases are denoted by color. Boxes show the inter-quartile range of the relative bias for
each model. The diamond in the middle of each plot denotes the median value. Whiskers indicate variability outside of
the inter-quartile range. Note that the y-axis is “log”-scaled both above and below zero for better visual presentation.
All simulations have a bias that is ten times larger than the instrument strength. Panel (a) has 20 years, 20 firms, and 20
markets. Panel (b) has 4 years, 100 firms, and 20 markets.
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For panels (a) and (c), all estimators without Firm fixed effects are unbiased. This is true even

when including year fixed effects, since the construction groups contain values from t − 1 while

the fixed effect cell only contain values from t, so there is no overlap. All of the estimators that

include Firm fixed effects (including two-way fixed effects) are biased, with the proxy strategy

performing slightly worse than the IV strategy.

For panels (b) and (d), we lower the autocorrelation coefficient slightly, so that E[xt−1] ̸= xt.

This causes a bias in the proxy variables regardless of fixed effects and the “raw” level of this bias

can be see in the 2nd estimation strategy across all panels. With a higher T , in panel (b), the lower

autocorrelation has little impact on the IV estimators, since they properly account for the altered

relationship in the first stage. However, in a low T setting, the lower autocorrelation magnifies

the overlapping fixed effects bias, leading the IV to be worse than the proxy in panel (d).

Figure 4 next presents the results of our leave-out Monte Carlo simulations, showing the bias

of various leave-out estimators. In Panel (a), the simulation features 20 Years , 20 Firms , and 20

Markets . In Panel (b), the simulation features 4 Years , 100 Firms , and 20 Markets . Both panels

feature 8,000 total observations. For Panel (a), the standard leave-out IV estimator, the Case 5

estimator, which combines the leave-out instrument with Firm × Market fixed effects, and the

IJIVE estimator show no bias, on average. As shown in item 1 of Proposition 2, the Case 1 estimator

is exactly equivalent to running OLS. The first two Case 3 estimators, which use either Firm fixed

effects or Year fixed effects exhibit a median bias of around 20% relative to OLS while the third

Case 3 estimator, which uses Firm + Year fixed effects, exhibits double this bias.

In Panel (b), which features the same number of overall observations but different time and

firm dimensions, the bias is remarkably different. While the normal IV, Case 5, and the IJIVE

remain unbiased, all specifications that involve Firm fixed effects are now worse estimators than

simply not instrumenting at all.18 In contrast, the estimator for Case 3b, which features Year

instead of Firm fixed effects, shows almost no bias due to the increasing Firm dimension. This

pattern is exactly what was predicted by our theoretical analysis.

We next modify the simulation to include time-invariant characteristics to both x and y by set-

ting ηf ∼ N(0, 1), which necessitates the inclusion of Firm fixed effects. Similar to Figure 4, Panel

(a) of Figure 5 shows simulations with a balanced T and N , while Panel (b) shows simulations

with a low T and higher N . Both panels feature 8,000 observations, and the bias is now reported

relative to an OLS regression that includes Firm fixed effects.

18In similar simulations, but with an uninformative instrument, the median first stage F -statistic for the cases with
Firm fixed effects is over 20 while all of the rest are all well under 10.
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Figure 4: Relative Bias: Leave-outs

(a) Balanced T and N (b) Low T and High N

Note: Results of a Monte Carlo simulation with the data generating process described in Equations (8) through (10) with
ηf = 0. This figure shows the bias, relative to OLS, of separate models across 500 simulations. Each box represents a
separate model specification, and cases are denoted by color. Boxes show the inter-quartile range of the relative bias for
each model. The diamond in the middle of each plot denotes the median value. Whiskers indicate variability outside of
the inter-quartile range. Note that the y-axis is “log”-scaled both above and below zero for better visual presentation.
All simulations have a bias that is ten times larger than the instrument strength. Panel (a) has 20 years; 20 firms; and 20
markets. Panel (b) has 4 years; 100 firms; and 20 markets.

For Panel (a), the IV is now biased because it does not include firm effects. Cases 3a and

3c feature nearly identical biases to those in Figure 4, because they are accounting for the time-

invariant effects, while Cases 5 and the IJIVE remain unbiased. Interestingly, the omitted fixed

effect bias and the overlapping fixed effect bias for the specification with Y ear fixed effects have

partially offset, and the bias has flipped signs from Figure 4. However, this offsetting is just a

feature of our simulation and, in practice, the biases may be additive.

Next, we further examine the dynamics of changing the cardinality of the Year dimension.

Panel (a) of Figure 6 shows how the median bias and its inter-quartile range change as the number

of time periods |T | increases while the number of Firms (20) and Markets (20) stays constant for

select estimators. Due to the low number of observations, the IV estimator without fixed effects

exhibits some bias initially, but quickly converges to the true value. For the estimators including

fixed effects, we can see that as |T | increases, the absolute value of the bias for all three of them

decreases. However, because the number of firms is held steady, the TWFE estimator approaches
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Figure 5: Relative Bias: Time-Invariant Effects

(a) Balanced T and N (b) Low T and High N

Note: Results of a Monte Carlo simulation with the data generating process described in Equations (8) through (10) with
ηf ∼ N(0, 1). This figure shows the bias, relative to an OLS regression that includes Firm fixed effects, of separate
models across 500 simulations. Each box represents a separate model specification, and cases are denoted by color.
Boxes show the inter-quartile range of the relative bias for each model. The diamond in the middle of each plot denotes
the median value. Whiskers indicate variability outside of the inter-quartile range. Note that the y-axis is “log”-scaled
both above and below zero for better visual presentation. All simulations have a bias that is ten times larger than the
instrument strength. Panel (a) has 20 years; 20 firms; and 20 markets evenly split into 2 regions. Panel (b) has 4 years;
100 firms; and 20 markets.

an asymptote of 30% of the OLS bias even at a |T | = 500. The panel further shows that the

bias is non-monotonic for all estimators. This is because the equilvalent instrument in item 3 of

Proposition 2 includes the true coefficient vector with a positive sign and the additional element

with a negative one. When |T | = 2 and thus |C(i)| is relatively small compared to |G(i)|, the

negative sign is so strong that the first stage leads to a negative coefficient, making the second stage

coefficient on x larger than the true value (with a mechanism similar as in OLS). As |T | increases,

the sign in the first stage eventually flips and now the mechanical correlation (which still has a

negative influence on the instrument) biases the coefficient in the second stage downwards. The

main take-away is that the sign of the bias in the estimation cannot easily be predicted ex ante.

It should be made clear that there is no specific meaning to the values of |T | in Figure 6 or

elsewhere in our numerical studies. ν = 10 and γ = 1 were chosen for expository purposes such

that the bias is apparent at lower |T | and |N |, but mostly disappears at levels around |T | = 100.
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Figure 6: Increasing Number of Periods

(a) Relative Bias

(b) First Stage F-Statistic

Note: Results of a Monte Carlo simulation with the data generating process described in Equations (8) through (10) with
ηf = 0. Panel (a) of this figure shows the median bias (relative to the bias of OLS) across 500 simulations for each level
of T . We plot the median as well as the inter-quartile range. Panel (b) shows how the bias influences the F -statistic
when there is no relevance for the instrument (γ = 0). Each color/point represents a separate model specification. Note
that the y-axis is “log”-scaled both above and below zero for better visual presentation. All simulations have a bias that
is ten times larger than the instrument strength, except for the F -statistics, which have no instrument strength; 20 firms;
and 20 Markets.
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However, in reality, there is nothing special about |T | = 100. In practice, the econometrician will

not know these values or their relative levels, and as ν increases or γ decreases the level of |T | and

|N | where the bias is minimal will increase.

Panel (b) of Figure 6 presents the median first stage F -statistics and the inter-quartile range for

a simulation in which the instrument has no strength. For this analysis we set γ = 0 in Equation (8)

and thus the correct F-statistic in the first stage is 0. The standard IV estimator consistently has an

F -statistic below 10, correctly indicating a weak instrument (Stock and Yogo, 2002). In contrast,

the Case 3 estimators have much higher F -statistics, falsely suggesting a strong instrument. The

TWFE estimator exhibits an even larger bias in the F -statistic, with at least 25% of the simulations

having a “strong” first stage. Interestingly, the bias in F-Statistics is U-shaped for two-way fixed

effects. This is because the bias from the Firm effects is large for small T while, at a large T , the

power of the first stage is strong enough to pick up the smaller bias from the Year effects. These

simulation results demonstrate the importance of carefully considering the interaction between

leave-out instruments and fixed effect structures.

4 Empirical Application: Judge Fixed Effects in USPTO Data

There is an active and important research agenda trying to understand the effects of decisions by

judges and other officials in questions such as the incarceration of a defendant, the acceptance into

a social program, the granting of patents, and other areas. The empirical challenge for such studies

is that these decisions are not made at random, and thus, exogenous variation in the independent

variable is difficult to find. Beginning with Kling (2006), a common empirical approach has been to

use the leniency of randomly assigned decision-makers as an instrument, an approach popularly

dubbed as “Judge Fixed Effects” (Frandsen et al., 2023, who also provide a literature overview of

applications).

We provide an empirical demonstration of our bias in this application of the leave-out instru-

ment using publicly available data from the U.S. Patent Office (USPTO). The data covers patent

applications and unique patent examiner identifiers for 9.23 million patent applications from 1910

until 2014. This data, or data like it, have been used in combination with leave-out instruments

to answer a variety of questions in finance, innovation research, and other areas (see, e.g., Farre-

Mensa et al., 2020; Feng and Jaravel, 2020; Melero et al., 2020). To illustrate the effects of the bias,

we consider a research question that can be answered using only the USPTO data and does not

require additional, potentially proprietary or subscription-based, data. We thus focus on the ques-

tion of whether a successful patent application makes inventors more likely to apply for another
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patent in the future. Data availability for unsuccessful patent applications requires us to focus on

applications starting 2001 (see, e.g., Sampat and Williams, 2019, for detail). We focus on first-time

applicants between 2001 and 2009, as identified by their full name on the patent application. They

are categorized as a repeating inventor if the same name appears on a later patent application.

This definition raises some measurement error concerns. However, we are focused on identifying

the estimation bias rather than finding a credible answer to the research question. Discussions of

the identification and other details of the analysis can be found in Online Appendix B.

After data restrictions, we consider 1.15 million inventors on 790,000 patent applications. The

descriptive statistics of the sample can be seen in Table 1 below. Repeated applications are com-

mon, with 53.4% of inventors applying for one or more patents after the first one. We can see

that about 64% of first applicants are successful, such that there are sufficiently many treated and

untreated inventors. The leave-out instrument to measure examiner generosity is calculated from

all examiner decisions in the year of the patent application. Notably, this also includes patent ap-

plications by inventors who are not applying for a patent for the first time. In total, we use 2.9

million patent applications for calculating the IV. Unsurprisingly, it has a mean close to 64%.19 Im-

portant for the extent of our bias, we can see that the instrument is based on a median of 77 patent

applications. This gives an indication of the magnitude of |G(i)|. We combine the analysis with

Art Unit × Year fixed effects. With a median value of 19 examiners per art unit, we can further

see that |G(i)|/|C(i)| is about 0.05 in our analysis. This provides an idea of the size of the overlap

between construction group and fixed effect cell.

To analyze the research question, we first simply regress the success of the application on the

measure for an inventor with a repeated application, using Art Unit×Year fixed effects. Column

(1) in Table 2 shows that this OLS analysis renders a positive and highly significant effect of past

success on the likelihood of further applications. This estimation, however, suffers from obvious

endogeneity problems. In column (2), we use the canonical combination of leave-out instruments

and fixed effects to address this. The results show that applying the instrument makes the coef-

ficient smaller than in OLS, but still economically meaningful and highly statistically significant.

Furthermore, a five-digit F-statistic promises a strong instrument and valid identification strategy.

However, the estimate in column (2) suffers from bias due to a reintroduction of the focal value

by the fixed effects as summarized by Proposition 1 in general and item 2 of Proposition 2 for this

case in particular. Not all solutions mentioned in Section 2.5 are feasible here. Since there is no

obvious orthogonal dimension to the examiner using a fixed effect on such a dimension in an

interaction is not possible here. Further, since most examiners are only working on applications

19See also Figure B1 in Online Appendix B for the residualized distribution.
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Table 1: Descriptive Statistics for Analysis Sample

Mean St. Dev. Median 5% Pctl 95% Pctl

Repeated Application 0.533 0.4989 - - -
Successful Application 0.6394 0.4802 - - -
Examiner Generosity 0.6515 0.2293 0.6927 0.22 0.9667
Examiner Generosity (Outside) 0.6579 0.2349 0.7041 0.2121 0.9762
Patents/ Examiner×Year 971.8 4,609 77 19 340
Patents/ Examiner×Year (Outside) 378.7 1,969 49 13 186
Examiners/ Art unit×Year 25.85 22.08 19 11 82

Note: The table shows the descriptive statistics for the main analysis of the USPTO data. The first four rows and the
last row are based on the 1.15 million inventors or 790 thousand applications in the estimation sample. Inventors have
a repeated application if their name appears on at least one more patent application filed after the first one. An appli-
cation is denoted successful if it has an issue date. Examiner generosity is the leave-out instrument. Outside stands for
outside sample and denotes instruments calculated only from applications without any first time applicant on them.
Patents/ Examiner×Year values are calculated directly from the 2.9 or 2 million patent applications which are used to
calculate the leave-out instrument or outside sample instrument, respectively.

Table 2: Estimation Results USPTO Data

Real Examiners Scrambled Examiners
(1) (2) (3) (4) (5)

OLS 2SLS 2SLS 2SLS 2SLS

Success 0.085∗∗∗ 0.054∗∗∗ 0.045∗∗∗ 0.086∗∗∗ −5.060
(0.002) (0.006) (0.008) (0.020) (41.345)

1st Stage F-Stat. - 48,046 5,712 1,309 0.01637

Fixed effects
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year

Instrument Group -
All

Applications
Non-first

Applications
All

Applications
Non-first

Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 1,146,706 1,146,706 1,146,706 1,146,706 1,146,706

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
on the probability of the inventor applying for at least one additional patent in the data. We consider all inventors who
filed for their first patent application in the years 2001 through 2009. 2SLS estimations use a leave-out instrument based
on examiner generosity in all patents of that examiner in the year the focal patent is filed (columns (2) and (4)) or all
applications without any first-time applicant on them in the same time frame (columns (3) and (5)). The analyses in
columns (4) and (5) use examiner IDs scrambled within the fixed effect cell such that the instrument is uninformative.
Standard errors are clustered on the level of the Art unit in each estimation. Stars *, **, and *** denote statistical signifi-
cance at the 0.10, 0.05, and 0.01 levels, respectively.

in a single art unit, calculating the instrument outside of the fixed effect cell is also unfeasible.

This leaves us with the “outside-sample” approach following Sampat and Williams (2019). Here,

we calculate the instrument using only patent applications in which none of the inventors are
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applying for the first time (n = 2 million). Results for this instrument are shown in column (3).

The estimated coefficient is 16.1% smaller than that in the canonical estimation and has a 29.6%

higher standard error. The standard leave-out IV thus has a bias of 21.6% relative to that of OLS.

These numbers are comparable to the numerical simulation, especially when considering that with

|G(i)|/|C(i)| at around 0.05, the situation is comparable to that with 20 time periods in Figure 6.

Most importantly, this empirical application allows us to utilize our test for existence of the

bias as it is described in Section 2.4. For step 1, we randomly scramble the examiner IDs between

patents within an Art unit × Year cell. The leave-out instrument calculated on the basis of these

scrambled examiner IDs is uninformative and should not lead to a viable identification, given

that the applications are now allocated randomly to construction groups. Nevertheless, as can be

seen in column (4) of Table 2, a regression with the canonical IV strategy leads to a coefficient that

is a) highly statistically significant, b) has a first stage F-statistic above 1000, and c) is about as

large as the OLS coefficient. At face value, the instrument thus seems reliable and the endogene-

ity minimal. However, all statistical evidence is generated by the bias. Column (5) shows that

using the correct outside-sample instrument from scrambled examiner IDs leads to a statistically

insignificant result and a first-stage F-statistic of essentially 0.20

The empirical application thus shows that even in data structures that give the ex-ante impres-

sion that the bias could be small, it can still impact results in a meaningful way. Moreover, if the

instrument is completely uninformative, the bias can make it appear informative and valid, in-

stead. In this setting, the bias can also lead to seemingly statistically significant and economically

meaningful results when there really are none.21 On a positive note, the general identification

strategy using leave-out instruments based on examiner generosity still seems valid. While first-

stage F-statistics decline by over one order of magnitude when the corrected instrument is used,

they are still very high.

20We also note that this shows that the bias cannot be generated from the potential covariance structure at the
Art unit × Year level (as detailed in Frandsen et al., 2024), since the outside sample scrambled IV is constructed
from the same Art unit ×Year .

21The implications of the results are unaffected by using different definitions of the dependent variable, even if the
results themselves are somewhat different. In all analyses, the use of scrambled examiner IDs leads to an informative
canonical instrument and an uninformative corrected one. See Online Appendix B for details.
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5 Discussion

Our critique of identification via constructed regressors in combination with certain fixed effect

structures adds to a growing literature that highlights potential pitfalls of common identification

techniques in general and leave-out-related strategies in particular (e.g. Angrist, 2014; Betz et al.,

2018; Huber, 2023). In this section, we briefly cover how our bias relates to common assumptions

of unbiased identification and discuss certain possible extensions of the model.

The bias described in this study may come as a surprise because an exhaustive fixed effect

structure is typically seen as a sign of particularly robust identification. This might particularly

be the case if the constructed regressors are used as instrumental variables, as is often the case.

Here, the typical requirement is that the instrument needs to fulfill the exclusion restriction. In the

notation of Equation (1), it is obvious under Assumptions ?? and 1 that zi and εi are uncorrelated.

However, they are not uncorrelated conditional on the non-endogenous control variables (i.e. the

fixed effects). Nevertheless, that is the necessary condition to fulfill the exclusion restriction (see,

e.g., Greene, 2019, chapter 8). Thus when considering the exclusion restriction, it is important to

consider the estimation strategy holistically instead of only considering the constructed regressor

in isolation.22

An common extension of the results in Propositions 1 through 2 is that base variables are often

transformed in econometric applications. For example, researchers often take the logs of variables

or the variables are normalized into an interval such as [0,1]. How does this affect the problems

identified in Section 2?

There are two ways in which transformations are commonly applied to a constructed regressor.

The first one is that the variable v, which is underlying the leave-out instrument, is transformed

directly. In this case, there is little change to our result Proposition 1, because the transformed

version of a variable with a non-zero correlation with the error term is still likely to have a non-

zero correlation with the error term. Further, in the special case of the leave-out construction,

Proposition 2 will apply unchanged to the transformed variable.

The second way of applying transformations is that the constructed regressor is transformed

after construction. In this case, our results may not apply directly, but the way in which they

are changed introduces variation in the constructed regressor, which is likely unintended by the

econometrician. Again, the transformation will change the correlation structure, but in a way that

is unlikely to make the bias disappear. We use Case 1 from Proposition 2 to illustrate this. The

22The relationship of our bias with other identification tests, with a specific focus on using constructed regressors as
instruments, is covered in Online Appendix E.
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proof to this case boils down to

zi −
1

|C(i)|
∑

j∈C(i)

zj = b

vi −
1

|C(i)|
∑

j∈C(i)

vj

 . (11)

Let the transformation be denoted by the function φ(·). If the transformation is linear then it

holds that φ(zi) − 1
|C(i)|

∑
j∈C(i) φ(zj) = φ

(
zi − 1

|C(i)|
∑

j∈C(i) zj

)
= φ

(
b
(
vi − 1

|C(i)|
∑

j∈C(i) vj

))
= b

(
φ(vi)− 1

|C(i)|
∑

j∈C(i) ϕ(vj)
)

and the same results as before are obtained. This is, for exam-

ple, the case if the variable is normalized into [0,1]. If, however, the transformation is non-linear,

then φ(zi) − 1
|C(i)|

∑
j∈C(i) φ(zj) ̸= φ

(
zi − 1

|C(i)|
∑

j∈C(i) zj

)
and the results will not apply fully.

In this case, the extent to which they apply will solely be determined by how close the transfor-

mation is to linearity. The log transformation is a good example here, because we know it to be

close to linear if the values are close to one another (in relative terms). However, if the relative

values are spaced far apart, there will be a larger difference between φ(zi) − 1
|C(i)|

∑
j∈C(i) φ(zj)

and φ
(
zi − 1

|C(i)|
∑

j∈C(i) zj

)
and thus the constructed regressor will not fully reduce to the focal

value. Nevertheless, all variation that makes using φ(zi) different from using bφ(vi) stems from

the non-linearity of the transformation and not from the fact that zi has become more informative

as an regressor.

The theoretical results derived in Proposition 2 in Section 2.3 required the assumption that

all construction groups are of equal cardinality. Similarly, our numerical illustrations also used

fully balanced panels. In Online Appendix C, we explore numerically whether there are notice-

able changes to the results when this assumption does not hold. Technically speaking this is only

necessary for Cases 3 and 4 of Proposition 2, because all other cases can be shown to hold in un-

balanced panels analytically. However, because these two cases are the empirically most relevant,

we explore them numerically. Our findings show that our results are not limited to balanced pan-

els, but also appear when the data is unbalanced. Thus, having instrument groups of different

cardinalities does not address the issues raised in Propositions 2 even though these results are

only formulated for balanced panels. Additionally, the analysis highlights that unbalanced panels

can even exacerbate the bias and lead to more strongly misleading F -statistics associated with the

estimators.

Lastly, all our theoretical and numerical analyses consider OLS estimators, independent of

the ultimate use of the leave-out construction. In certain empirical literatures, such as demand

estimations in industrial organization, it is typical to use methods of moments estimators or other
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non-linear procedures. While we cannot provide a blanket statement for the applicability of our

results to such cases, it is clear from the proofs that if the within transformation for fixed effects is

applied before the estimation, then our critique will be valid.

6 Conclusions

In this paper, we have identified a bias that arises when constructed regressors are combined

with overlapping fixed effects. The inclusion of these fixed effects acts as a de-meaning process

that can reintroduce the focal observation into the constructed regressor, leading to mechanical

correlation and biased estimates. We show this result generally and then apply it to two often

used econometric specifications: lagged and leave-out regressors. For the latter, we categorize

the potential specifications into six cases based on the relationship between the set used for fixed

effects and the set used to create the regressor. Irrespective of the application, bias is most severe

when the fixed effect cell overlaps strongly with the construction group. Unbiasedness is achieved

only when the two sets do not share any observations. We provide a test based on scrambling and

resampling of regressor construction groups that indicates whether or not the bias exists in a given

data structure.

Our findings have important implications for researchers using constructed regressors in fi-

nance applications. Careful consideration must be given to the interaction between the fixed ef-

fects structure and construction of the regressor to avoid mechanical correlation and, in the case

of instrumental variable estimations, inflated first-stage F-statistics. When possible, researchers

should use fine-grained fixed effects such that overlap between the construction group and the

fixed effect set is avoided. If this is infeasible, the regressor should be constructed to have minimal

overlap with the fixed effects.

We illustrate the practical relevance of our results in numerical studies and an empirical appli-

cation of the judge fixed effects estimation strategy. Across both of these settings, naively combin-

ing constructed regressors with fixed effects can generate substantial bias. Our proposed reme-

dies, guided by our theoretical results, provide solutions to obtain consistent estimates.

As the use of constructed regressors continues to proliferate, our paper serves as a cautionary

note and practical guide. Econometric methods leveraging fine-grained variation can be powerful

for causal inference in financial research, but their validity depends crucially on understanding
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how that variation interacts with other dimensions of the empirical specification. We hope our

analysis enables applied financial researchers to reap the benefits of constructed regressors while

avoiding the pitfalls that arise from their interaction with fixed effects.
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This appendix is organized in two sections. Section A.1 presents additional regularity assump-
tions and remarks, and Section A.2 presents proofs.

.1 Additional Assumptions

Assumption 4. (Idiosyncratic errors and regressors) Let λi = ziε̃i − E (ziε̃i), PX̃ = X̃
(
X̃′X̃

)−1
X̃′,

and MX̃ = In −PX̃ , where In is n× n identity matrix and X̃ =(x̃1, x̃2, ..., x̃n)
′. As n → ∞,

(i) n−1
∑n

i=1 λi →p 0,

(ii) n−1z̃′MX̃ z̃ →pQzx > 0, and

(iii) n−1z̃′PX̃ ε̃ →p0.

Remark 1. Assumption 4 stipulates general high-level requirements on the idiosyncratic errors
and regressors required for the consistency of FE estimator. Condition (i) allows for heteroskedas-
tic and correlated idiosyncratic errors, but rules out strong correlations among errors. [Literature
on weak/strong cross section dependence can be cited] Condition (ii) essentially ensures suffi-
cient variation among zi once the fixed effects and regressors in X were filtered out. Condition
(iii) is an exogeneity requirement ensuring that the correlation between the regressors in X and
idiosyncratic errors is sufficiently weak for it to not affect the consistency of the FE estimator.

.2 Proofs

Proof of Proposition 1. Using y = βz +Xδ + η + ε, the vector of demeaned variables ỹ is given by
ỹ = βz̃+ X̃δ + ε̃. Substituting this expression for ỹ in (4), and noting that MX̃X̃ = 0, we obtain

β̂ − β0 =

(
z̃′MX̃ z̃

n

)−1 z̃′MX̃ ε̃

n
.

Under Assumption 4.(ii), n−1z̃′MX̃ z̃ →pQz , where Qz > 0. Consider n−1z̃′MX̃ ε̃ next. We have

z̃′MX̃ ε̃

n
=

z̃′ε̃

n
−

z̃′PX̃ ε̃

n
,

where n−1z̃′PX̃ ε̃ →p0, as n → ∞ under Assumption 4.(iii). Last but not least, consider n−1z̃′ε̃.
Let MC be the orthogonal projection matrix that filters out the fixed effects, namely z̃ = MCz, and
ε̃ = MCε. Since MC is symmetric and idempotent, we have

z̃′ε̃

n
=

z′ε̃

n
=

1

n

n∑
i=1

ziε̃i =
1

n

n∑
i=1

λi +∆β,n,
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where λi = ziε̃i − E (ziε̃i), and

∆β,n =
1

n

n∑
i=1

E (ziε̃i) .

E (λi) = 0 by construction. In addition, under Assumption 4.(i), 1
n

∑n
i=1 λi →p 0 as n → ∞.

Noting ε̃i = εi − ε̄C(i), where ε̄C(i) = |C (i)|−1∑
j∈C(i) εj , and using (2) for zi, we can write ∆β,n as

∆β,n =
1

n

n∑
i=1

 1

|G(i)|
∑

j∈G(i)

E (vjεi)


− 1

n

n∑
i=1

 1

|G(i)| |C(i)|
∑

h∈G(i)

∑
j∈C(i)

E (vhεj)

 (12)

But E (vjεi) = 0 for i ̸= j under Assumption 1. Noting i /∈ G(i), it follows
∑

j∈G(i)E (vjεi) = 0.
For the second term on the right side of (12), we obtain

1

n

n∑
i=1

 1

|G(i)| |C(i)|
∑

h∈G(i)

∑
j∈C(i)

E (vhεj)

 =
1

n

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
,

where cji = I [j ∈ G(i)], and I (.) is indicator function. These results establish

β̂ − β0 +Q−1
z ∆β,n →p 0,

as n → ∞, where

∆β,n =
1

n

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
.

Result (5) follows.

Proof of Corollary 1. Form Proposition 1, we have

∆β,n =

n∑
i=1

∑
j∈C(i) cjiσvεj

|G(i)| |C(i)|
.
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But in the special case given by (6), |G(i)| = 1, |C(i)| = T − 1, the summation
∑n

i=1 becomes
F−1 (T − 1)−1∑F

f=1

∑T
t=2, σvεj becomes σvε,f , and we obtain

∆β,(F,T ) = F−1 (T − 1)−1
F∑

f=1

T∑
t=2

I(t < T )σvε,f
T − 1

,

=
T − 2

(T − 1)2
1

F

F∑
f=1

σvε,f .

Using σ̄vε = limF→∞ F−1
∑F

f=1 σvε,f , we have

∆β,T = lim
F→∞

∆β,(F,T ) =
T − 2

(T − 1)2
σ̄vε

In addition, n−1z̃′MX̃ z̃ reduces to F−1 (T − 1)−1∑F
f=1

∑T
t=2 ṽ

2
f,t−1. Let Qv,T = plimF→∞F−1 (T − 1)−1∑F

f=1

∑T
t=2 ṽ

2
f,t−1,

then result (7) follows.

Proof of Proposition 2. We begin by showing item 3 (Case4). The other items follow immediately
from that. From the Frisch-Waugh-Lovell Theorem, estimating Equation (1) is equivalent to esti-
mating

yRi = βzRi +XXXR
i γ + εRi (13)

We consider zRi = zi − 1
|C(i)|

∑
j ∈ C(i)zj . From Equation (2) and Assumption 2, we know that

zi =
1

|G(i)|
∑

j∈G(i) vj =
1

|J(i)|−1

∑
j∈J(i)\i vj . Substituting, we obtain

zRi =
1

|J(i)| − 1

∑
j∈J(i)\i

vj −
1

|C(i)|
∑

j∈C(i)

1

|J(j)| − 1

∑
h∈J(j)\j

vh (14)

=
1

|J(i)| − 1

 ∑
j∈Ĵ(i)

vj − vi

+
1

|J(i)| − 1

∑
j∈J̌(i)

vj

− 1

|C(i)|
∑

j∈C(i)

1

|J(j)| − 1

 ∑
h∈Ĵ(j)\j

vh +
∑

h∈J̌(j)

vh

 (15)
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By Assumption 3 it holds that |J(i)| = k1 ∀ i. It follows that

żi =
1

|J(i)| − 1

 ∑
j∈Ĵ(i)

vj − vi −
∑

j∈C(i)\Ĵ(i)

vj +
∑

j∈C(i)\Ĵ(i)

vj −
1

|C(i)|
∑

j∈C(i)

∑
h∈Ĵ(j)\j

vh


+

1

|J(i)| − 1

 ∑
j∈J̌(i)

vj −
1

|C(i)|
∑

j∈C(i)

∑
h∈J̌(j)

vh

 (16)

By Assumptions 2 and 3, J is a partition of the data and |Ĵ(i)| = k2 ∀ i. It thus holds that∑
j∈C(j)

∑
h∈Ĵ(j)\j vh = (|Ĵ(j)| − 1)

∑
j∈C(j) vj . Rearranging the terms we obtain

żi =
1

|J(i)| − 1

−vi −
∑

j∈C(i)\Ĵ(i)

vj +
|C(i)| − |Ĵ(i)|+ 1

|C(i)|
∑

j∈C(i)

vj


+

1

|J(i)| − 1

 ∑
j∈J̌(i)

vj −
1

|C(i)|
∑

j∈C(i)

∑
h∈J̌(j)

vh

 . (17)

We reverse the within transformation and obtain item 3 of the proposition. Item 2 follows by
observing that in this case J̌(i) = ∅ i. Item 1 follows from observing that in these cases both
J̌(i) = ∅ i and C(i) \ Ĵ(i) = ∅. The observations for Cases 5 and 6 follow from the original
statement in Proposition 1 and observing that for both cases G(i) ∩ C(i) = ∅.
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Online Appendix A Leave-out Case 3 for Two-way Fixed Effects Esti-
mators

We mention in Section 2.3 that two-way fixed effects estimators do not improve the situation for
leave-out constructed regressors in Case 3 when compared to one-way fixed effects estimators.
This appendix gives a formal result akin to item 2 in Proposition 2 for two-way fixed effects esti-
mators under Assumptions ?? through 1, 2, and 3. For the proof, we denote the two fixed effects
cells for observation i as C(1, i) and C(2, i) and the set of all observations as Ω. We consider a
specific balanced panel structure in which for every i the intersection of its two fixed effect cell is
equal to the jackknife group J(i). The data structure considered in the numerical simulations of
Section 3 is a possible illustration of the case covered here.

Proposition 3. Let the data be structured that for all observations i ∈ Ω it holds that J(i) ⊂ C(1, i),
J(i) ⊂ C(2, i) and C(1, i) ∩ C(2, i) = J(i). Further assume |C(1, i)| = c1 ∧ |C(2, i)| = c2 ∧ |J(i)| =
k ∀ i. Then estimating

xi = βzi + ηC(1,i) + ηC(2,i) + εi with (A1)

zi =
1

|J(i)| − 1

∑
j∈J(i)\i

vj (A2)

with OLS under Assumptions ?? through 1 is equivalent to estimating Equation (A1) with

zi =− 1

|J(i)| − 1

vi + α
∑

j∈C(1,i)\J(i)

vj + (1− α)
∑

j∈C(2,i)\J(i)

vj

 (A3)

for any α ∈ R.

Proof. From the Frisch-Waugh-Lovell Theorem, estimating Equation (A1) is equivalent to estimat-
ing

xi − x̄C(1,i) − x̄C(2,i) + x̄Ω =β(zi − z̄C(1,i) − z̄C(2,i) + z̄Ω) + εi − ε̄C(1,i) − ε̄C(2,i) + ε̄Ω. (A4)
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We denote zRi = zi − z̄C(1,i) − z̄C(2,i) + z̄Ω and substitute equation (A2)

zRi =
1

k − 1

∑
j∈J(i)\i

vj −
1

c1

∑
j∈C(1,i)

1

k − 1

∑
h∈Gj\j

vh −
1

c2

∑
j∈C(2,i)

1

k − 1

∑
h∈Gj\j

vh

+
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

1

k − 1

∑
l∈Gh\h

vl (A5)

=
1

k − 1

 ∑
j∈J(i)

vj − vi −
k − 1

c1

∑
j∈C(1,i)

vj −
k − 1

c1

∑
j∈C(2,i)

vj +
k − 1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A6)

=
1

k − 1

−vi +
1

c1

∑
j∈C(1,i)

vj +
1

c1

∑
j∈C(2,i)

vj −
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh


+

1

k − 1

 ∑
j∈J(i)

vj + α

 ∑
j∈C(1,i)\J(i)

vj −
∑

j∈C(1,i)\J(i)

vj

+ (1− α)

 ∑
j∈C(2,i)\J(i)

vj −
∑

j∈C(2,i)\J(i)

vj


− k

c1

∑
j∈C(1,i)

vj −
k

c1

∑
j∈C(2,i)

vj +
k

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A7)

=
1

k − 1

−vi +
1

c1

∑
j∈C(1,i)

vj +
1

c1

∑
j∈C(2,i)

vj −
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh


+

1

k − 1

−α
∑

j∈C(1,i)\J(i)

vj − (1− α)
∑

j∈C(1,i)\J(i)

vj +
αc1 − k

c1

∑
j∈C(1,i)

vj

+
(1− α)c2 − k

c2

∑
j∈C(2,i)

vj +
k

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A8)

=
1

k − 1

−vi +
1

c1

∑
j∈C(1,i)

vj +
1

c1

∑
j∈C(2,i)

vj −
1

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh


+

1

k − 1

−α
∑

j∈C(1,i)\J(i)

vj − (1− α)
∑

j∈C(1,i)\J(i)

vj + α
c1 − k

c1

∑
j∈C(1,i)

vj

+(1− α)
c2 − k

c2

∑
j∈C(2,i)

vj −
k(αc1 + (1− α)c2 − 1)

c1c2

∑
j∈C(1,i)

∑
h∈C2j

vh

 (A9)

Reversing the within transformation across both clusters C(1, i) and C(2, i) renders the proposi-
tion.
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The proposition can be interpreted in different ways. However, the simplest intuition for the
applied researcher is that with two-way fixed effects estimators, item 2 of Proposition 2 is true
for both fixed effects at the same time. With a standard panel of firm data, when including both
a Firm and a Y ear fixed effect, both |T | and |F | need to become large in order for the bias to
disappear.
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Online Appendix B Details on USPTO Data Analysis

We source data from the 2014 wave of the USPTO Patent Examination Research Dataset (PatEx).
We chose this wave because, in contrast to later waves, it provides a unique examiner ID for
each patent application, which reduces measurement error in the identification of the instrument
group. We combine the data on applications with that on inventors. A unique inventor is iden-
tified by their first, middle, and last name. With this procedure, it is likely that in certain cases,
multiple inventors are combined into a single person. We cannot address this measurement prob-
lem here, because we do not want to make arbitrary further data restrictions (such as focusing on a
specific type of invention) or use additional data for our empirical demonstration. As a result, the
research question is probably not identified to a satisfactory degree. However, we are interested
in identifying the bias and not the particular research question. We further remove all entries in
the data without an examiner ID and inventors with an undefined application date. This process
mostly removes older entries in the data which are not of relevance to our analysis.

In the regression analyses, we focus on the success of the first application by an inventor. Be-
cause failed applications are only reliably documented in the data for applications filed on or after
November 29th 2000 (Sampat and Williams, 2019), we focus on applications from 2001 onwards.
An application is categorized as the first application if the inventor’s name has not appeared on
any previous application in the data. If inventors have multiple first applications on the same day,
they are deleted from the data. An application is deemed successful if the patent has an issue date
in the data. The dependent variable indicates whether the inventors are repeat applicants. They
are classified as such if they file for at least one more patent after having filed for the first. We
provide a robustness check for this definition below. Because we only observe data up to the year
2014 inclusively, we limit our analysis to the years 2001 through 2009, such that later applicants
have sufficient time for a second application.

To calculate the leave-out instrument, we consider all decisions on applications by an examiner
in a given year. This includes decisions on applications that are not by first-time applicants. Let
xi,e,t be the ith decision by examiner e in year t and n(e, t) the number of decisions by examiner e
in year t, then the canonical leave out instrument is given by

zi,e,t =
1

n(e, t)− 1

n(e,t)∑
j=1

xj,e,t − xi,e,t

 . (B1)
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Figure B1: Histograms of Leave-out Instruments (Real and Scrambled Examiner IDs)

(a) All Applications (b) Only Non-First Applications

(c) All Applications - Scrambled (d) Only Non-First Applications - Scrambled

Note: The graphs show the histograms of the residualized leave-out instruments over the 1.15 million observations used
in the analysis of the USPTO data. The instrument for all applications is defined over all decisions of the examiner in the
year of the patent application (Equation (B1)) The non-first application instrument only considers examiner decisions
on applications by inventors who do not apply for a patent for the first time (Equation (B2)). Scrambled instruments
result from randomly assigned examiners within a and Art unit ×Year cell.

The outside sample instrument instead considers all decisions on patents which do not have at
least one first-time applicant on them. Denoting these decisions as xi,e,t,¬1 and their total number
for examiner e in year t as n(e, t,¬1), the outside sample instrument is given by

ze,t =
1

n(e, t,¬1)

n(e,t,¬1)∑
i=1

xi,e,t,¬1

 . (B2)
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Note that in this case, all first-time applicants to examiner e in year t have the same value for
the instrument. Distributions for both instruments are given in Figure B1. The figure also shows
distributions for the scrambled examiner IDs. Note that we delete all observations from the data
in which the denominator in Equation (B1) is 0. We do this for both the real examiner IDs and the
scrambled ones such that all estimations in Table 2 are made on the same dataset.

One possible concern for the identification of the dependent variable could be that in the defi-
nition of the main analysis, we do not consider the timing of the decision. Rather, we say that any
second application by an inventor after the first one constitutes a repeated application, irrespective
of whether a decision on the first application has been rendered or not. To provide a robustness
check for this identification, we repeat the analysis from the paper with a different definition of the
dependent variable. Table B1 describes results when inventors are only categorized as repeated
applicants if they apply after the decision on the first patent has been made (that is, after the issue
date or the abandonment date).

Table B1: Estimation Results with Alternative Definition of Repeated Application

(1) (2) (3) (4) (5)
OLS 2SLS 2SLS 2SLS 2SLS

Success 0.041∗∗∗ 0.091∗∗∗ 0.106∗∗∗ 0.048∗∗∗ 0.898
(0.001) (0.004) (0.005) (0.015) (8.074)

1st Stage F-Stat. - 36,191 4,901 1,260 0.02183

Fixed effects
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year

Instrument Group -
All

Applications
Non-first

Applications
All

Applications
Non-first

Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 1,112,915 1,112,915 1,112,915 1,112,915 1,112,915

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
on the probability of the inventor applying for at least one additional patent in the data after the decision on the initial
application has been rendered. We consider all inventors who filed for their first patent application in the years 2001
through 2009. 2SLS estimations use a leave-out instrument based on examiner generosity in all patents of that examiner
in the year the focal patent is filed (columns (2) and (4)) or all applications without any first-time applicant on them in
the same time frame (columns (3) and (5)). The analyses in columns (4) and (5) use examiner IDs scrambled within the
fixed effect cell such that the instrument is uninformative. Standard errors are clustered on the level of the Art unit in
each estimation. Stars *, **, and *** denote statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

Results are comparable to the main analysis with one important difference. While the main
analysis shows the 2SLS coefficient to be smaller than the OLS one, the results of the robustness
analysis show the opposite pattern. This shows that on the one hand, the identification of the
dependent variable is difficult given the present data, on the other hand, there could be two com-
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peting endogenous effects. The main analysis shows a quality effect in the sense that inventors
with higher-quality patents are both more likely to have a successful application and more likely
to have multiple applications. The current analysis implies that higher-quality patents are more
likely to succeed in their application and, at the same time, might require fewer follow-up patents
because they are already comprehensive. Which of these effects dominates then depends on the
exact measurement of the dependent variable. Aside from the difference between OLS and 2SLS
estimates, the results are remarkably similar. The canonical instrument has a 23% relative bias
compared to that of OLS. More importantly, the scrambled analysis returns a coefficient about
equal to that of the OLS estimation with the canonical instrument and an uninformative instru-
ment otherwise. As before, the canonical instrument seems highly valid in the scrambled analysis,
with an F-statistic above 1000.

One way to make sure that fewer different inventors are combined in a single person for the
sake of the estimation is to instead look for unique inventor-name-by-art-unit combinations. Such
a process leads to a significantly increased sample size with roughly 3.86 million such combina-
tions.

Table B2: Estimation Results with Alternative Identification of

(1) (2) (3) (4) (5)
OLS 2SLS 2SLS 2SLS 2SLS

Success 0.072∗∗∗ 0.063∗∗∗ 0.053∗∗∗ 0.079∗∗∗ −2.097
(0.002) (0.006) (0.009) (0.011) (2.461)

1st Stage F-Stat. - 75,512 1,525 2,214 0.999

Fixed effects
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year
Art unit ×

Year

Instrument Group -
All

Applications
Non-first

Applications
All

Applications
Non-first

Applications
Examiner - Real Real Scrambled Scrambled
Clustered st. err. Art unit Art unit Art unit Art unit Art unit
Observations 3,861,718 3,861,718 3,861,718 3,861,718 3,861,718

Note: The table displays the results of the different estimations analyzing the effect of a successful patent application
in a given Art unit on the probability of the inventor applying for at least one additional patent in the same Art unit.
We consider all inventors who filed for their first patent application in the years 2001 through 2009. 2SLS estimations
use a leave-out instrument based on examiner generosity in all patents of that examiner in the year the focal patent is
filed (columns (2) and (4)) or all applications without any first-time applicant on them in the same time frame (columns
(3) and (5)). The analyses in columns (4) and (5) use examiner IDs scrambled within the fixed effect cell such that the
instrument is uninformative. Standard errors are clustered on the level of the Art unit in each estimation. Stars *, **,
and *** denote statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.
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Results are given in Table B2 and show the same pattern as in the main analysis. The bias is
now more pronounced, it is 54% relative to OLS. The analysis with scrambled examiner IDs is
remarkably consistent between all three analyses. The coefficient when using the canonical leave-
out instrument is close to that of OLS, and the instrument has a first-stage F-statistic above 1000.
However, when the outside-sample instrument is used, the F-statistic is essentially 0 and the weak
instrument leads to a statistically insignificant coefficient.
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Online Appendix C Unbalanced Panels in the Numerical Study

Figure C1 repeats the analysis reported in Figure 6 for Case 3, using an unbalanced panel instead.
The simulations are based on the same data-generating process as the main analysis but with
two key modifications. First, the number of markets is doubled to increase the potential for un-
balancedness. Then, half of the observations are randomly dropped, resulting in an unbalanced
panel structure with the same number of observations as the balanced one.

Panel (a) compares the median bias of the estimators between the balanced and unbalanced
panel settings. All of our estimators, which use Firm fixed effects, are worse in the unbalanced
panel, demonstrating their sensitivity to relative group sizes. Panel (b) shows the first stage F -
statistics for the unbalanced panel setting in simulations where the instrument has no strength. All
estimators have an upwardly biased F -statistic as the panel loses balance, incorrectly suggesting
a stronger instrument.

Unbalancedness exacerbates the bias for two potential reasons. Propositions 1 and Online Ap-
pendix D show that a smaller number of markets increases the bias. The first potential explana-
tion thus involves how OLS deals with heterogeneous treatment effects. As shown by Słoczyński
(2022), when different-sized groups with different treatment effects are combined into one re-
gression, the coefficients will be a weighted average of the two treatment effects, with the smaller
group receiving relatively more weight. This intuition carries to our setting. Since the bias is deter-
mined by the size of the groups, unbalanced panels will mechanically exhibit different “treatment
effects” in the first stage. Since smaller groups induce a larger bias, the groups with the most
bias will receive the most weight in estimating the first stage. Second, Online Appendix D also
indicates that the absolute value of the bias is decreasing convexly in the number of markets. An
average of biases across firms with different numbers of markets will thus be larger than the bias
for a firm in the average number of markets.
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Figure C1: Unbalanced Panels

(a) Median Bias

(b) First Stage F-Statistic

Note: Panel (a) of this figure shows the median bias of separate models, with and without balanced panels, across 500
simulations for each level of |T |. Panel (b) shows how the bias influences the F -statistic when there is no relevance
for the instrument (γ = 0). The data-generating process is summarized in Equations (8) through (10) with ηf = 0.
Panels become unbalanced by doubling the number of markets and then randomly dropping 50% of observations.
Inter-quartile ranges are also shown. Each color/point represents a separate model specification. Whiskers indicate the
inter-quartile range. Note that the y-axis is “log”-scaled both above and below zero for better visual presentation. All
simulations have 20 firms; and 20 Markets.
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Online Appendix D Varying Number of Markets

Figure D1 depicts the median bias relative to the OLS bias across 500 simulations for varying
levels of M , along with the inter-quartile range. Each color and point signifies a distinct model
specification. To enhance visual clarity, the y-axis is “log”-scaled both above and below zero. The
data-generating process for the simulations is described in Equations (8) through (10) with ηf = 0.

The standard IV estimator initially exhibits bias due to the limited number of data points but
approaches unbiasedness as the number of markets increases and remains unbiased thereafter.
In contrast, cases 3a and 3b display a non-monotonic impact of bias, with the median bias being
more pronounced when there are 20 markets compared to 10 markets. This finding underscores
the complex nature of the bias and its sensitivity to the number of markets in the sample.

Figure D1: Increasing Number of Periods

(a) Relative Bias

Note: Results of a Monte Carlo simulation with the data generating process described in Equations (8) through (10) with
ηf = 0. This figure shows the median bias (relative to the bias of OLS) across 500 simulations for each level of M . We
plot the median as well as the inter-quartile range. Each color/point represents a separate model specification. Note
that the y-axis is “log”-scaled both above and below zero for better visual presentation. All simulations have a bias that
is ten times larger than the instrument strength and contain 20 firms and 20 Years.

49



Online Appendix E Discussion and Relationship to Judge FE Tests

In this appendix, we will briefly discuss how our argument here relates to other critiques and tests
of leave-out instruments.

Some applications of instrumental variable estimation employ a test in which control variables
are added step-wise to the first stage estimation and the econometrician observes whether the
coefficient on the instrument changes in the process. This could, in theory, detect the problems
identified in this paper, but in practice, it likely is not a reliable test. When considering a wholly
uninformative constructed regressor as an instrument that contains mechanical correlation, the
instrumented variables (call it x) is essentially instrumented with itself and noise. Introducing an
independent control variable that is correlated with x can change the coefficient on the instrument,
because the control variable is correlated with both x and the mechanical correlation part in the
instrument. However, as can be seen in the numerical results of Section 3 the bias can affect the
estimated coefficient both positively and negatively and it is unclear which of these effects will be
affected the newly included independent variable. Thus, the problem might exist but, at the same
time, might not be detected by the test. The test has an even higher chance to become unreliable
if the instrument is informative, because if the included control variable is also correlated with
the shock that the instrument is measuring, the net effect might again not be noticeable. Further,
if v ̸= x, then such a test would be equivalent to including control variables in order to detect
endogeneity of an independent variable, which is not a valid exercise.

There has been extensive work on leave-out constructions as instruments, already. Focusing on
the use of spatial instruments and spillovers, Betz et al. (2018) and Huber (2023) consider various
necessary conditions for the identification strategy through leave-out instruments to hold. These
important conditions are complimentary to our analysis. That is, even if their conditions are met,
the instruments can be biased mechanically through the presence of fixed effects and, vice versa,
even if the fixed effects are specified correctly, the conditions recounted in these studies still need
to be met. As such, these two studies also act as a stand-in for a larger set of conditions which
may apply in a given research application (see, e.g, Angrist, 2014, for analyses of peer effects).
Because most conditions focus on the instrument itself and not on the broader estimation strategy
(including the choice of fixed effects), the results derived here are typically complementary to
other necessary conditions.

Given the extension of our results to judge fixed effects, it is natural to ask how the critique im-
pacts the test designed by Frandsen et al. (2023) for such situations. The two aspects are, however,
also completely complementary to each other. The test in Frandsen et al. (2023) tests the general
admissibility of using judges as identifying variation with regards to the exclusion restriction and
monotonicity of the instrument. The test does not consider the typical leave-out construction in

50



the identification strategy but uses means of each judge’s propensity for a specific decision directly.
As such, an empirical strategy can pass the test of Frandsen et al. (2023) and still use a problematic
combination of leave-out instrument and fixed effects as detailed in this paper. Vice versa, a cor-
rect construction of the data structure in our sense has no impact on whether the Frandsen et al.
(2023) test gets rejected or not.
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