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Abstract

We examine competition and collaboration between banks and fintech firms in a market with

adverse selection. Banks have cheaper funding, while fintechs have better screening technology.

Our innovation is to allow the bank to lend to the fintech, i.e., to finance its competitors.

This partnership lowers fintech funding costs and reduces bank competition incentives. Lenders

collaborate when average borrower quality is low but compete when it’s high. While partnership

funding always benefits the fintech, it increases the bank’s profits only when the average borrower

quality is low and benefits the borrowers only when the average quality is high.
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1 Introduction

The rise of fintech lenders has posed serious challenges to traditional banks. According to Gopal

and Schnabl (2022), the increased lending from fintechs has crowded lending by traditional banks

after the 2008 financial crisis. Buchak et al. (2018) documented the increased market share of

fintech lenders and, more broadly, shadow banks in the residential mortgage between 2007 and

2015. Recent evidence shows that fintech lenders receive abundant venture investments and finance

themselves primarily with credit from banks (Puri et al., 2024; Jiang et al., 2020; Acharya et al.,

2024). In fact, many of these lenders obtain funding from the same banks they compete with.1

Why do banks finance and, therefore, collaborate with their competitors?

One answer is that these fintech lenders have superior lending technologies, and banks, by

financing competitors, get to share the surplus created by these technologies.2 Indeed, most fintech

lenders describe their business models as relying on cutting-edge artificial intelligence and machine

learning developments, which enable them to assess better small businesses’ creditworthiness.3

Yet, fintech firms are constrained by the higher funding costs of their primary owners, mostly

venture capital firms, hedge funds, and wealthy individuals. By contrast, traditional banks have

arguably cheaper funding due to reasons such as deposit insurance, implicit government guarantee,

broad branch networks, and better diversification. Given the respective comparative advantage,

it is natural for the two types of lenders to collaborate. However, it remains less clear when the

two types of lenders compete and when they collaborate. Moreover, how does such collaborative

partnership funding affect the borrowers’ payoff, lenders’ profits, and overall efficiency?

1In Appendix B, we describe the case of OnDeck – a top fintech lender – who joins forces with Utah-based Celtic

Bank – a top ten SBA (Small Business Administration) lender – to provide loans to small businesses. Additional

examples include Avant and WebBank, Greensky and Fifth Third Bank, Funding Circle and British Business Bank,

and many others.
2There are also alternative explanations, such as regulatory arbitrage and/or convenience benefits, which we

discuss formally later in the paper. See Section 6 for details.
3Berg et al. (2020) show that digital footprints can be informative in predicting consumer default in addition to

traditional credit scores. Frost et al. (2019) show that machine learning and data from e-commerce platforms are

better at predicting losses. Also see Gambacorta et al. (2020), Agarwal et al. (2020), Di Maggio et al. (2022).
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This paper develops a model to study these questions, building upon the comparative advantages

of banks (cheaper funding) and fintech firms (better screening technology). The lenders compete

directly for borrowers under adverse selection, while fintech firms can also obtain bank funding. Our

model highlights two important channels that arise from partnership funding. On the one hand,

the reduced funding cost increases the fintech firm’s competitiveness – competition channel. On

the other hand, partnership funding offers the bank an alternative avenue to earn profits, reducing

its incentives to compete in direct lending – collusion channel. The relative magnitudes of these

channels depend on the degree of adverse selection, leading to different levels of collaboration and

competition across markets. Partnership funding always benefits fintech firms but may reduce

borrowers’ payoff via the collusion channel or bank profits via the competition channel. We show

that higher competition in the partnership funding market weakens the collusion channel. However,

it could still hurt the borrowers due to increased adverse selection in the direct lending market. In

contrast, restricting the fintech firms’ ability to partner with their direct competitors while only

allowing partnerships with third-party banks unambiguously increases borrowers’ payoff.

Let us be more specific. We model borrowers with high or low-quality projects, where only

high-quality projects have positive net present value (NPV). Banks have lower funding costs but

cannot differentiate borrower types, while fintech firms have higher costs but possess screening

technology.4 Fintech’s information advantage creates a winner’s curse problem for banks. Whenever

the bank wins the competition, it will likely lend to a low-quality borrower and suffer losses. Our

model, therefore, resembles common-value auctions under asymmetric information (Milgrom and

Weber, 1982) and their applications to bank lending (Broecker, 1990; Hauswald and Marquez,

2003), allowing for heterogeneous information technology (Von Thadden, 2004) and funding costs

as in Dell’Ariccia and Marquez (2004). A main departure of our model is that we allow banks to

lend to fintech firms, who can borrow a fraction of their funding to reduce costs. The presence of

partnership funding enables both collaboration and competition for borrowers.

Our first result shows how collaboration and competition between lenders vary with borrower

4We assume only fintech firms have the screening ability to simplify the analysis. Our main results hold if banks

can also screen, as long as fintechs maintain a relative information advantage.
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pool quality. In low-quality pools, collaboration dominates: banks avoid direct lending due to likely

losses, while fintechs’ screening technology identifies rare high-quality borrowers. Banks make prof-

its by offering partnership funding to fintechs. In high-quality pools, competition prevails: screening

becomes less critical, and banks’ funding advantage dominates. Banks lend to all borrowers, and

fintech’s presence forces lower rates. In intermediate-quality pools, competition and collaboration

coexist as fintech information advantage and bank funding advantage are comparable, resulting in

lending by both parties.

Our findings suggest fintech firms optimally target markets with moderate average borrower

quality. Specifically, fintechs’ profits exhibit a non-monotonic relationship with the average quality

of the borrower pool. In low-quality pools, the scarcity of good borrowers limits lending volume and

profitability. In high-quality pools, the intensified bank competition erodes fintech profit margins.

Thus, fintech firms achieve the highest profitability in intermediate-quality markets.

Our second result examines the impact of partnership funding on equilibrium payoffs. Partner-

ship funding always increases fintech profits via both competition and collusion channels. Somewhat

surprisingly, partnership funding can reduce borrower and bank payoffs. The collusion channel dom-

inates in low-quality markets with low competition: partnership funding increases bank profits but

reduces borrower payoffs. In high-quality markets where competition is already high, the collu-

sion channel is weak, and the competition channel dominates: it erodes bank profits but benefits

borrowers through lower rates. These results imply that policymakers concerned with financial

inclusion may have an opportunity to influence outcomes by regulating the partnership funding

between banks and fintechs.

Our third result analyzes the lenders’ incentives to establish partnership funding. We show

that the fintech firm prefers to receive partnership funding from its direct competitor to benefit

from softer competition generated by the collusion channel. At the same time, a competitor bank

strictly prefers to provide partnership funding to its competitor instead of allowing the fintech to

borrow from a third-party bank. As a result, partnership funding between direct competitors arises

endogenously. We also find that, due to higher profits from partnership funding, banks might be
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better off competing against fintech firms with better screening technology despite facing stronger

adverse selection.

Finally, we consider two alternative ways of improving borrowers’ surplus. We show that

stronger competition in the partnership funding market, while weakening the collusion channel,

might nevertheless hurt borrowers in some markets. Stronger competition in the partnership fund-

ing market reduces fintech’s funding cost. But more aggressive bidding by the privately informed

fintech creates a stronger winner’s curse for bank lending. In markets where adverse selection is

severe, the bank reduces direct lending volume and raises interest rates. As a result, the bor-

rowers might receive lower payoffs despite the increased competitiveness of partnership funding.

In contrast, a shift in the source of the partnership funding away from a competing bank to a

third-party bank without changing the degree of funding market competitiveness unambiguously

increases borrowers’ surplus. Such a shift eliminates the collusion channel without affecting the

degree of adverse selection in the direct lending market.

The rest of the paper is organized as follows: Section 2 describes the model setup, Section 3

characterizes equilibrium, Section 4 highlights the effects of partnership funding on equilibrium out-

comes, Section 5 extends the baseline model and discusses robustness of the main results, Section 6

provides broader discussion and places the paper in the literature, and Section 7 concludes.

2 The Model

We introduce a model with two dates t = 0, 1 and three sets of players. All players are risk-

neutral, have limited liabilities, and do not discount the future. One bank and one fintech firm

compete to lend to borrowers while also potentially engaging in partnership funding. Figure 1

illustrates the model structure.

2.1 Borrowers and Projects

We model a continuum i ∈ [0, 1] of penniless borrowers of two types: high and low. The

borrower’s type is private information only known by the borrower herself. Let µ be the fraction
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Figure 1: Model Overview

of high-type borrowers. Each borrower is infinitesimal and has access to a fixed-scale investment

technology that requires $1 at t = 0. Once the investment is made, the project generates R with

probability pθi and 0 with probability 1− pθi , where θi ∈ {h, l} stands for the borrower’s type. For

the rest of the paper, we assume without loss of generality that ph = 1 and pl = p ∈ (0, 1). In our

model, borrowers shall be interpreted as either small businesses or consumers who seek personal

loans.

2.2 Lenders, Partnership Funding, and Screening

One bank and one fintech firm compete to lend to borrowers. To raise $1, the bank needs to

pay a gross interest payment rB to its financiers, whereas the fintech firm needs to pay a total cost

of rF . We assume rF > rB ≥ 1 to reflect the bank has a funding advantage due to factors like

deposit insurance and government guarantees.

Even though the fintech firm has a funding disadvantage, it can borrow from the bank to

(partially) offset the disadvantage. Specifically, the fintech firm can borrow a fraction λ ≤ 15 of its

funding from the bank and finance the remaining 1−λ using its own funding. This fraction can be

motivated in various ways, such as inter-bank relationship development, search friction, or agency

frictions that require the fintech firm to have enough skin in the game. Let α and 1 − α be the

5In the baseline model, we treat λ as an exogenous parameter. However, in Section 4.1, we characterize optimal

λ from the point of view of each market participant.
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bargaining power of the fintech firm and the bank.

Whereas the bank has a funding advantage, the fintech firm has a better screening technology.

Specifically, we assume the bank can not screen any borrower, whereas the fintech firm has a

costless screening technology. In particular, the technology generates a private signal on each

borrower, either good g or bad b (we assume that the signals are i.i.d. across borrowers). For the

baseline analysis, we assume that screening generates a perfect signal.6 Moreover, for notational

convenience, we define

P (µ̃) = µ̃+ (1− µ̃)p, ∀µ̃ (1)

as the conditional probability of producing R if the average quality is µ̃. We introduce the following

assumption, which implies that for both lenders, a borrower’s project has a positive NPV under a

good signal but has a negative NPV under a bad signal.

Assumption 1. The funding costs satisfy

rF < R, rB > p ·R. (2)

2.3 Timing and Equilibrium

The timing goes as follows.

• t = 0

– The fintech firm screens borrowers, then both lenders simultaneously make interest rate

offers which borrowers accept or reject.

– The partnership funding market opens, and the fintech firm can borrow a maximum

fraction of λ of its funding from the bank.7

6Section 4.2 shows that results are robust when screening is subject to type-I or type-II error.
7In Online Appendix C.6 , we solve a version of the model where the partnership funding market opens prior

to the lending competition. We show that the equilibrium identified later is robust to such an alternative timing

arrangement. One notable difference is that with ex-ante bargaining the bank chooses not to establish partnership

funding in markets with high average quality of the borrowers. The ability to commit not to partner with the fintech

reduces the strength of the competitive force generated by the partnership funding.
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• t = 1

– The project’s outcome is realized. The borrower repays the loan, and the fintech firm

repays the partnership funding.

There are no active decisions to be made at t = 1. At t = 0, the result in the funding market is

straightforward. Let ℓF and ℓB be the lending volume extended by the fintech firm and the bank

at the lending stage. Since the partnership market operates after the lending market, the lending

decisions at this point are sunk. The partnership funding determines only the funding source for

the ℓF loans that the fintech has extended to borrowers.

For each $1 loan extended by the fintech, the partnership funding generates a surplus of λ(rF −

rB) > 0. Hence, the lenders always choose to partner whenever ℓF > 0. According to Nash

Bargaining, this surplus is split via a partnership funding rate ρ = αrB + (1 − α)rF . As a result,

the fintech firm borrows λℓF from the bank at the rate ρ and finances the remaining (1 − λ)ℓF

using its own funding. Let us define

rE = λρ+ (1− α)rF = λαrB + (1− λα)rF (3)

as the effective funding cost of the fintech firm. For each $1 loan made by the fintech firm, the

bank makes expected profits

ΠB = λ(ρ− rB) = λ(1− α)(rF − rB) (4)

through partnership funding.

Let RB and RF be the gross interest rate offer made to the borrower by the bank and the

fintech firm, respectively. Clearly, RB ∈ [0, R] ∪ {+∞}, RF ∈ [0, R] ∪ {+∞}, and both offers can

be stochastic8. When RF → +∞ (RB → +∞), the fintech firm (bank) does not make an offer. As

a result, it is convenient to define the cumulative distribution functions (CDFs) FB(·) and FF (·)
8When the bank (or fintech firm) offer is stochastic, each borrower i receives an i.i.d. realization RB(i) (or RF (i))

from the offer distribution. This result allows us to use the exact law of large numbers in the cross-section of borrowers

and obtain bank profits, borrower surplus, and welfare that are deterministic.
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to be the strategies of the bank and fintech firm. The borrower’s decision is straightforward: she

should accept the offer with the lower interest rate. For simplicity, we assume whenever there is a

tie, the borrower opts to accept the offer from the bank. This assumption can be motivated by the

other non-pecuniary services offered by the bank, and it is made without loss of generality. Results

are unchanged under alternative tie-breaking rules (see Remark 1).

Let ṼB(i) and ṼF (i) be bank’s and fintech firm’s the expected payoff from lending to an indi-

vidual borrower i ∈ [0, 1]. We have

ṼF (i) = 1RB(i)>RF (i) ·
[
(p+ (1− p)1θi=h)RF − rE

]
(5)

ṼB(i) = 1RB(i)≤RF (i) ·
[
(p+ (1− p)1θi=h)RB − rB

]
. (6)

Let us define VB and VF as the bank’s and fintech firm’s profits from lending to borrowers. Aggre-

gating across all borrowers, we have

VJ =

∫ 1

0
ṼJ(i)di, and ℓJ =

∫ 1

0
1RJ (i)>RJ′ (i)di for J ̸= J ′ ∈ {F,B}.

We look for a Bayesian Nash Equilibrium, where the fintech firm’s interest rate offer RF ∼ FF (·)

maximizes VF and the bank’s interest rate offer RB ∼ FB(·) maximizes VB+ℓFΠB. In particular, (5)

shows that while making the interest offer, the fintech firm takes into account that it has an effective

rate of rE instead of rF . Meanwhile, the bank also takes into account that if it loses borrowers to

the fintech firm, it still profits from lending to the fintech firm through offering partnership funding.

Therefore, it aims to maximize VB + ℓFΠB.

2.4 Modeling Discussion

Modeling choice behind partnership funding. The partnership funding market is modeled

as a Nash-bargaining game between the fintech firm and the bank to study different degrees of

interbank funding competition by varying the bargaining power. Moreover, it offers a way to split

the surplus between the two parties and determines the interest rates in the partnership funding.

We analyze competition in the partnership funding market in Section 4.4.

9



Merger and firm boundary. Note that we have taken the structure of financial intermediation

as given. While the two lenders could potentially merge to combine their advantages, several factors

prevent this outcome. Beyond organizational frictions and regulatory constraints, the inalienability

of human capital might also play a crucial role. The fintech’s value largely stems from intangible

assets like algorithms and machine learning expertise, which rely on specific human capital that

could leave post the merger. This makes bank acquisition of fintechs challenging. Though a deeper

analysis of optimal bank boundaries lies beyond our scope, we discuss why the lenders do not always

collude in Section 6.1.

3 Solution

3.1 Competition and Collaboration

Let us start by putting a lower bound on the bank’s payoff and, therefore, its interest-rate bid

in the lending competition. When the bank does not make an offer (equivalently RB → +∞),

the fintech firm lends to the borrower with probability µ, that is, when the realized signal from

screening is good. Subsequently, the bank’s expected profit from partnership funding is µΠB, where

ΠB has been defined in (4). Meanwhile, by offering an interest rate RB and winning the lending

competition, the bank’s expected profits are at most P (µ)RB − rB, where P (µ) defined in (1) is

the probability that the representative borrower will repay the loan. Whenever a bank makes a

potentially winning bid in the lending competition, it must be that

P (µ)RB − rB ≥ µΠB ⇒ RB ≥ RB :=
rB + µΠB

P (µ)
(7)

Depending on the parameters, RB may be greater or less than R. For the rest of this paper, we

refer to RB as the bank’s curse-free bid because it is the lowest bid by the bank, if there is no

winner’s curse effect.

Similarly, there is a lower bound on the fintech firm’s bid in the lending competition. Clearly,

a fintech firm may only bid after it has received a good signal about the borrower. An offer RF

generates expected profits RF − rE . Meanwhile, the fintech firm receives zero by not making an
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offer (or equivalently, RF → +∞). Therefore, RF must satisfy

1 ·RF − rE ≥ 0 ⇒ RF ≥ RF :=
rE
1

= rE . (8)

Clearly, RF < R follows from Assumption 1 and rE < rF . For the rest of this paper, we refer to

RF as the fintech firm’s break-even bid.

A comparison between RB and RF highlights the relative advantages of the bank and the fintech

firm. Comparing the denominators, P (µ) < 1 reflects the fintech firm’s information advantage.

Comparing the numerators, rB < rE captures the bank’s funding advantage, and a lower rB

further increases the advantage. Finally, the term µΠB captures the bank’s potential partnership

funding profits, which are the profits if the fintech firm manages to lend to all borrowers with a

good signal (so ℓF = µ).

The equilibrium outcome depends on the comparison between RB and RF . Let us elaborate.

Case 1 RB ≤ RF : dominating funding cost advantage

Knowing that the fintech firm’s bid always exceeds RF , the bank would never make any bid

RB < RF . Interestingly, the bank would never make an interest-rate offer strictly above RF , either.

This is because the bank is able and has the willingness to avoid the winner’s curse effect when its

funding advantage dominates the informational disadvantage.

Lemma 1. If RB ≤ RF , the bank offers an interest rate RF and lends with probability 1.

Given Lemma 1, the bank adopts a pure strategy by offering an interest rate RF and always

wins over the borrower. The fintech firm, even though it never wins the lending competition, must

also offer an interest rate on [RF , R]. This offer deters the bank from deviating and charging an

interest rate higher than RF , and the distribution of this offer is not uniquely determined.

Case 2 RF < RB < R: comparable funding and information advantage

Knowing that the bank’s bid always exceeds RB, the fintech firm would never make any bid

RF < RB. In this case, the bank inevitably faces the winner’s curse. In contrast to the previous
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case, both lenders must adopt mixed strategies in equilibrium.9 Lemma A.1 in the appendix rules

out the case that the bank can offer an interest rate with a positive probability mass. Therefore,

in equilibrium, the bank must adopt a mixed strategy. The only way such mixing by the bank can

be incentive compatible is that the fintech firm also randomizes its bid on the same interval. Our

next result shows that the mixed strategies must have a continuous CDF on the interval [RB, R].

Lemma 2. If RF < RB < R, both the bank and the fintech firm adopt mixed strategies with a

probability density on [RB, R]. The fintech firm must offer R with a positive probability mass.

Given the structure of the equilibrium, the CDFs of the interest rate offers can be uniquely

determined by the opposite player’s indifference condition. The bank’s bidding CDF FB makes the

fintech firm indifferent between bidding RB and winning almost for sure, and bidding R̃ ∈ [RB, R]

and winning with probability 1− FB(R̃):

RB − rE =
(
1− FB(R̃)

)
(R̃− rE). (9)

With a mass probability 1− FB(R) > 0, the bank does not bid.

While the fintech’s bidding CDF FF makes the bank indifferent between not bidding at all and

collecting profits µΠB from the partnership funding market, and bidding any R̃ ∈ [RB, R]. As a

result, ∀R̃ ∈ [RB, R)

µΠB = (1− µ)
(
pR̃− rB

)
+ µ

[
FF (R̃)ΠB +

(
1− FF (R̃)

)(
R̃− rB

)]
. (10)

With a mass probability 1− FF (R) > 0, the fintech firm bids R.10

Case 3 RF < R < RB: dominating information advantage

In this remaining case, the bank strictly prefers to lose the bidding game even with the highest

feasible interest rate R. As a result, the bank does not participate in the lending competition, and

the fintech firm always offers R to a good-signal borrower and nothing to a bad-signal one.

9Mixed strategy equilibrium is not unique to our setting. It is a standard feature of settings with common values

and asymmetrically informed bidders, e.g., Broecker (1990), Hauswald and Marquez (2003), Von Thadden (2004).
10Both numerator and denominator in (10) are negative since µΠB−(P (µ)R̃−rB) < 0, ∀R̃ > RB and is a stronger

condition than ΠB − (R̃− rB) < 0.
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Results Summary

Note that the comparison among RF , RB, and R depends on µ. Given that RB decreases with

µ,11 let us define

µ̄ ≡ (1− λαp)rB − p(1− λα)rF
λ(1− αp)rB + [(1− p)− λ(1− αp)]rF

µ ≡ rB − pR

(1− p)R− λ(1− α)(rF − rB)
.

Under Assumption 1, it is clear that 0 < µ < µ̄ ≤ 1. Simple derivations show that RB ≤ RF for

µ > µ̄, RF < RB < R for µ ∈ (µ, µ̄), and RF < R ≤ RB for µ ≤ µ. Given this result, we summarize

the preceding discussion below.

Proposition 1 (Equilibrium Lending Competition and Funding Collaboration). The lending bid-

ding game has an essentially unique equilibrium.

1. Collaboration: for µ ∈ [0, µ], the bank never bids, and the fintech firm lends to a good-signal

borrower at a rate R and does not lend to a bad-signal borrower.

2. Collaboration/Competition: for µ ∈ (µ, µ̄), the bank randomizes between the bids in [RB, R]

with CDF FB characterized by (9). With probability 1− FB(R), the bank does not bid at all.

The fintech firm’s bid distribution on [RB, R) follows FF characterized by (10). With a mass

probability 1− FF (R), the fintech firm bids R.

3. Competition: for µ ∈ [µ̄, 1], the bank bids RF and lends to all borrowers with probability 1.

Proposition 1 shows how equilibrium outcomes vary with borrower pool quality. For low quality

(µ < µ), the bank does not participate in the lending competition, and the fintech firm charges

R after observing good signals. Three factors affect this decision: (a) the low quality of the pool

implies that lending blindly to an average borrower is not very profitable, to begin with, (b) the

11We can show
dRB
dµ

is proportional to

p(1− α)λ(rF − rB)− (1− p)rB < p(R− rB)− (1− p)rB = pR− rB < 0.
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winner’s curse effect implies that the pool of borrowers attracted to the bank’s offer is even worse

than the average, further reducing potential profits from lending, and finally (c) the option to lend

to the borrowers indirectly through the partnership funding market crowds out the incentives to

participate in the lending competition.

For high quality (µ > µ̄), banks’ funding advantage dominates fintech’s information advantage.

In equilibrium, the bank always outbids the fintech firm in equilibrium and provides lending. Al-

though the fintech firm does not lend, its presence prevents the bank from acting like a monopolist,

introducing competition.

Finally, in the intermediate region (µ < µ < µ̄), the information advantage of the fintech firm

and the funding cost advantage of the bank are comparable. In this case, both institutions lend

in equilibrium. Therefore, Proposition 1 implies that the competition between the bank and the

fintech firm should only be observed by an econometrician in borrower pools whose average quality

is neither too high nor too low. The bank retreats from borrower pools with low average quality,

whereas the fintech firm retreats from those with high average quality.

3.2 Payoffs and Efficiency

The first-best benchmark entails banks funding only high-quality borrowers, with no funding

for low-quality ones. Our equilibrium, therefore, introduces two types of inefficiency: funding in-

efficiency, arising from costly fintech lending, and lending inefficiency, resulting from banks’ blind

lending to negative NPV projects. This subsection describes the equilibrium payoff and the asso-

ciated efficiencies.

When the average quality of the pool is very low µ < µ, the fintech firm is effectively a monopolist

and lends at an interest rate R after receiving a good signal. Therefore, a mass µ of all borrowers

can receive funding, and all borrowers receive a zero payoff. The fintech firm makes expected profits

VF = µ · (R− rE) ,

and the bank earns partnership funding profits µΠB. Therefore, the (equal-weighted) total welfare
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is

W = µΠB + µ · (R− rE) = µ · (R− (1− λ)rF − λrB) . (11)

Equation (11) shows that in this region, the welfare loss is driven by the funding inefficiency, i.e.,

the fact that the fintech firm must finance a fraction 1−λ of its loans using its own funding, which

is more costly.

When the average quality of the pool is very high µ > µ̄, the bank always wins by bidding RF .

In this case, the fintech firm makes zero profit, whereas a borrower of type θi ∈ {h, l} receives a

payoff pθi(R−RF ). The bank receives no profits from partnership funding but earns P (µ)RF − rB

from directly lending to the borrowers. The resulting (equal-weighted) welfare is

W = P (µ)R− rB. (12)

Equation (12) shows that in this region, the welfare loss is driven by lending inefficiency, i.e.,

low-type borrowers also receive funding.

In the intermediate region µ < µ < µ̄, both the bank and the fintech firm actively bid and

win with positive probabilities. A borrower with a good signal can always receive financing and

therefore receives a payoff VH =
∫ R
RB

(R − R̃)d
(
1− (1− FB(R̃)) · (1− FF (R̃))

)
.12 By contrast,

a borrower with a bad signal can only be financed by the bank, so that the expected payoff is

VL =
∫ R
RB

(R− R̃)dFB(R̃). Under the mixed strategies, the fintech’s profit must be the same as the

one when it bids R̃F = RB and always wins:

VF = µ
(
RB − rE

)
(13)

Similarly, the bank’s total profit must be µ · ΠB, the same as the one when it only receives profit

from partnership funding. Summing up, we get the (equal-weighted) total welfare

W = µ

[
R− (λrB + (1− λ)rF )

∫ R

RB

(
1− FB(R̃F )

)
dFF (R̃F )− rB

∫ R

RB

FB(R̃F )dFF (R̃F )

]

+ (1− µ)FB(R)(pR− rB). (14)

12Since CDF for Pr(min{RF , RB} ≤ R̃) = 1− (1− FF (R̃))(1− FB(R̃)).
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The next proposition describes how equilibrium objects, bank profits, partnership funding prof-

its, borrower and total welfare vary with the average quality of the borrower pool µ.

Proposition 2. The bank’s total profit strictly increases in µ. By contrast, the fintech firm’s profit

is non-monotonic in µ: it increases for µ < µ and decreases as µ approaches µ̄. The payoff of both

high- and low-type borrowers increases in µ.
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Figure 2: Profits, Welfare, and Lending under Different µ

This figure describes the equilibrium profits and welfare when the average quality of the borrower pool µ varies.

The left panel plots the profits and welfare, and the right panel decomposes the bank profits into direct lending and

partnership funding. The parameters in this figure are as follows: R = 2.0, p = 0.1, rF = 1.5, rB = 1.0, λ = 0.8,

α = 0.2.

Figure 2 plots the profits and welfare when the average quality of the borrower pool varies. The

top-left panel describes the profits of the bank and the fintech firm, as well as the total welfare.
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There are a few interesting observations. First, the fintech firm’s profits are non-monotonic in

µ: it increases for µ < µ; for µ ∈ [µ, µ̄], it could also be non-monotonic. Intuitively, this result

holds because for µ < µ, there is no competition, and, as a result, the fintech firm is a monopoly.

An increase in µ results in the fintech firm lending to and profiting from a larger pool of high-

type borrowers. By contrast, for µ ∈ [µ, µ̄], there are both competition and collaboration. A

higher µ in general leads to more high-type borrowers, which increases the fintech firm’s potential

profits. Meanwhile, a higher µ intensifies the bank’s competition, which reduces the fintech firm’s

per-borrower profits RB − rE . Combining these effects, the overall profits (µ(RB − rE)) can be

non-monotonic in µ.13 Finally, when µ rises above µ̄, the fintech firm completely retreats from

lending and therefore makes zero profits. By contrast, the bank’s total profits always increase in

µ, and the slope becomes even higher for µ > µ̄.

The top-right panel of Figure 2 decomposes the bank’s total profits into direct lending and

partnership funding. Whereas the profits from direct lending increase in µ, the profits from part-

nership funding are, again, non-monotonic in µ. This is because the bank’s profits from partnership

funding depend on the fintech’s lending volume. When µ goes up, there are more high types, but

the fintech also faces more lending competition.

The bottom-left panel decomposes welfare losses into lending and funding inefficiency. The red

line measures funding inefficiency, defined as the equilibrium amount of fintech firm lending times

(1 − λ) · (rF − rB). The blue line measures lending inefficiency, defined as the probability of low

types being financed times rB − pR. Clearly, both inefficiencies are non-monotonic in µ. On one

hand, a higher µ means that the fraction of low-type borrowers gets lower. On the other hand,

a higher µ increases lending competition by banks, which results in a higher probability that low

types get financed. Finally, as illustrated in the bottom-right panel, the borrower’s payoff increases

13In our model with binary borrower types, the parameter µ simultaneously represents both the mean and variance

of the borrower quality distribution. The fact that payoffs do not peak when either µ = 0.5 (where variance in type

µ(1 − µ) is highest) or µ = 1−2p
2(1−p)

(where variance in project outcome (µ+ (1− µ)p) ((1− µ)(1− p)) is highest)

indicates that our results are not solely driven by changes in variance, but also by changes in the average borrower

quality.
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in µ, and the high-type borrower receives a higher payoff than a low-type borrower.

4 Implications of Partnership Funding

This section explores the effects of partnership funding. Our analysis reveals several findings.

In subsection 4.1, we show that partnership funding always benefits the fintech. At the same time,

borrowers and the bank can be either better off or worse off.14 As a result, the socially optimal

size of partnership funding depends on the Pareto weights of the different parties.

In the baseline model, we assume that the fintech’s screening technology is perfect. Subsection

4.2 introduces both type-I and type-II errors and studies how each interacts with partnership

funding. Results show that with partnership funding, type-I errors reduce profits for both lenders,

while type-II errors reduce the fintech’s but increase total bank profits.

Next, we examine the incentives to provide partnership funding. Subsection 4.3 shows that

borrower welfare improves when partnership funding comes from a third-party bank not involved

in direct lending. However, both the fintech and the competing bank prefer direct partnership

arrangements between themselves rather than involving third parties. Finally, in subsection 4.4, we

find that increased competition in partnership funding might counterintuitively harm borrowers.

4.1 Who Benefits from Partnership Funding

In this subsection, we explore the effect of the partnership funding between the bank and the

fintech firm on the payoffs of market participants. Somewhat surprisingly, introducing partnership

funding can make the borrowers or the bank worse off. We consider the two corner cases λ ∈ {0, 1},

corresponding to the situations without and with partnership funding.15

Proposition 3 (The Effect of Partnership Funding).

1. A type-θ borrower is better off with the partnership funding if and only if µ ≥ µ∗
θ;

14The result that the bank could be worse off with partnership funding depends on the bank’s lack of commitment

to extend partnership funding to the fintech.
15In Appendix A.3 we show how a local increase in λ affects the payoff in a given market.
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2. The fintech firm always receives more profits with the partnership funding;

3. The bank receives more profits with the partnership funding if and only if µ < µ∗
B;

where the thresholds µ∗
θ and µ∗

B are defined in equations (A.7) and (A.13) of Appendix.

In general, the presence of partnership funding introduces two channels. On the one hand, it

reduces the fintech firm’s funding cost so that it can better compete with the bank. Competition

allows the lower funding cost to be passed on to borrowers. We refer to this channel as the

competition channel for the rest of the paper. On the other hand, partnership funding allows the

bank to make profits when it loses the borrower to the fintech: when the bank receives profits from

partnership funding, it has lower incentives to compete with the fintech firm in the direct lending

market. We refer to this channel as the collusion channel for the rest of the paper. Proposition 3

shows that the strength of these two channels depends on the average quality of borrowers in the

market. When µ is low, there is not much competition, and the collusion channel dominates. A

higher λ increases the bank’s profits and reduces the borrower’s payoff. By contrast, the competition

channel dominates when µ is very high. The partnership funding passes through the fintech’s lower

funding cost, which benefits the borrower but reduces the bank’s profits.

The results of Proposition 3 are illustrated in Figure 3. The top-left panel compares a high-type

borrower’s payoff with and without partnership funding. Results are similar for a low-type borrower.

Partnership funding benefits borrowers in a high µ pool more than borrowers in a low µ pool. The

top-right panel compares the fintech firm’s profits. Unsurprisingly, the fintech firm is always better

off with the partnership. Intuitively, both channels favor the fintech firm: the lower funding cost

allows it to compete more aggressively, and the partnership funding reduces the competition from

the bank. Therefore, the fintech firm is better off for any µ. Turning to the bottom-left panel.

Interestingly, the bank receives higher (lower) profits with partnership funding when µ is low (high)

due to the relative magnitude of the competition and the collusion channel. Finally, the bottom-

right panel compares the total inefficiencies, i.e., the sum of lending and funding inefficiencies. The

result is intuitive: under λ = 1, partnership funding eliminates funding inefficiency and mitigates

lending inefficiency. Therefore, it leads to a lower level of total inefficiencies.
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Figure 3: Profits and Welfare with and without partnership funding

This figure describes the equilibrium profits and welfare with and without partnership funding when the average

quality of the borrower pool µ varies. The left panel plots the profits and welfare, and the right panel decomposes

the bank profits into direct lending and partnership funding. The parameters in this figure are as follows: R = 2.0,

p = 0.1, rF = 1.5, rB = 1.0, α = 0.2. λ = 1 and λ = 0 respectively stand for with and without partnership funding.

The next result shows how partnership funding affects the equilibrium thresholds µ and µ̄ that

determine the regions of competition and collaboration.

Corollary 1. Equilibrium cutoffs µ and µ̄ are increasing in the fraction of funds λ provided via

the partnership funding. When λ = 1, µ̄ = 1 and the competition region disappears.

An increase in the fraction of funds λ provided via partnership funding strengthens competition

and collusion channels at the same time. A stronger collusion channel increases the collaboration

region [0, µ]. The region of bank dominance [µ̄, 1] shrinks due to both more aggressive bidding by
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the fintech (competition channel) and voluntary retreat of the bank (collusion channel).

Optimal Size of Partnership Funding

We conclude this subsection by examining market participants’ preferences for different part-

nership funding arrangements. Figure 4 illustrates each party’s optimal funding size depending on

the average quality of the borrower pool µ. Formal proofs and derivations are in Appendix A.3.

The fintech firm always prefers λ = 1 as this reduces both its effective funding costs and bank

competition. For the bank, there exists a threshold µo
B such that it prefers λ = 1 when µ < µo

B

and λ = 0 otherwise. This result reflects the relative strength of the collusion and competition

channels across different borrower pools. When µ is low, the collusion channel dominates, and the

bank’s profits primarily derive from partnership funding, so it prefers to lend as much as possible to

the fintech firm. By contrast, when µ is high, the competition channel dominates, and the bank’s

profits mainly come from direct lending.

Figure 4: Optimal Size of Partnership Funding

High-type borrowers prefer λ = 1 when µ is high because partnership funding increases com-

petition and forces the bank to reduce its equilibrium interest rate. In the intermediate region,

high-type borrowers prefer an interior solution for λ. This intermediate level of partnership funding
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balances the competition and collusion forces: a lower λ weakens the competition channel, allowing

the bank to charge a higher interest rate, while a higher λ increases the bank’s collusion incen-

tives, resulting in the higher equilibrium interest rate. Finally, when µ is low, this borrower always

receives a payoff of zero and, therefore, is indifferent to the choice of λ.

4.2 Screening Technology and Partnership Funding

We now consider the model in which the fintech firm’s screening technology is subject to errors

Pr(b|h) = e1, Pr(g|l) = e2, (15)

where e1 and e2 are the probability of a type-I and type-II error, respectively. Let qg (qb) be the

total measure of borrowers who receive a good (bad) signal. Following the law of large numbers,

qg = µ(1− e1) + (1− µ)e2, qb = µe1 + (1− µ)(1− e2). (16)

Conditional on a good/bad signal, the fintech firm’s posterior of a borrower being a high type is

µg =
µ (1− e1)

qg
, µb =

µe1
qb

. (17)

We assume e1+e2 < 1 so that µb < µ < µg. In addition, we modify Assumption 1 to rF < P (µg) ·R

and rB > P (µb) ·R.

Appendix A.4 solves the model, and we briefly discuss the results here. The equilibrium

structure characterized in our baseline model—with collaboration, competition, and mixed re-

gions—remains robust and can still be characterized by two thresholds in µ. However, the two

types of errors have different implications for lender profits. Type-I errors (missing high-quality

borrowers) reduce bank and fintech profits by decreasing the volume of good signals and lending

opportunities. By contrast, type-II errors (misclassifying low-quality borrowers as high-quality)

increase bank profits while reducing fintech profits. This asymmetric impact occurs because type-

II errors diminish the fintech’s information advantage while potentially increasing lending volume,

benefiting banks through both direct lending and partnership funding.
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Without partnership funding, screening errors only directly affect lending through signal quality.

However, partnership funding creates an additional mechanism: type-I errors reduce the potential

partnership funding size and increase bank competition incentives, while type-II errors have the

opposite effect. This interaction between screening error and partnership funding represents a novel

channel through which information technology affects market structure, different from traditional

models of lending competition under asymmetric information.

4.3 Who Provides Partnership Funding

Next, we show that the effect of partnership funding on the equilibrium in the lending market

depends on the source of the partnership funding. So far, we have assumed that partnership funding

is provided by a bank that directly competes with fintech in the lending market. Instead, consider

when fintech obtains funding from a non-competing third-party bank. One can think of this bank

as a lender that only actively lends in a different geographical location. Borrowing from the third-

party bank allows the fintech firm to reduce its funding cost from rF to rE without affecting the

competing bank’s incentives via partnership funding profits. In other words, ΠB = 0 holds for the

competing bank.

Proposition 4 (Partnership Financing from a Non-Competing Bank).

If the fintech firm obtains financing from a non-competing bank as opposed to a competitor bank,

1. The fintech firm and the competing bank both receive (weakly) lower profits,

2. The borrowers are (weakly) better off.

Proposition 4 highlights the fintech and the competing bank’s strong preference towards estab-

lishing partnership funding arrangements despite directly competing for borrowers. Conditional

on the fintech already receiving partnership funding, a competing bank would like to become the

provider of such funds to benefit from the fintech’s screening technology. When given a choice, the

fintech is willing to switch its partnership funding provider away from non-competing to competing
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banks. Even if such a change does not affect fintech’s funding cost, fintech’s profits will be higher

thanks to the collusion channel.

Non-competing bank financing isolates the effect of the fintech funding cost from the lending

competition. Relative to the case without partnership funding, non-competing bank financing

reduces the effective funding cost of the fintech firm without introducing the collusion channel.

Borrowers benefit from the absence of the collusion channel due to increased competition between

banks and fintech firms.

4.4 Competition for Partnership Funding

The collusion channel arises in our setting due to imperfect competition in the partnership

funding market. An increased competition in the partnership funding market reduces bank part-

nership profits ΠB and incentivizes the bank to compete more aggressively in direct lending market.

Despite of this fact, we show that increased competition in partnership funding does not always

benefit the borrowers.

To model the competitiveness of partnership funding directly, we allow the fintech to obtain

partnership funding from the incumbent competing bank and the third-party non-competing bank,

up to a limit ϕλ. Parameter ϕ ∈ [12 , 1] captures the degree of partnership funding competition:

higher ϕ implies a more competitive market. For a fraction (2ϕ − 1)λ of its funding, the fintech

can elicit (Bertrand) competition and pays rB; for the fraction [1− (2ϕ− 1)]λ, it needs to bargain

individually with each bank so that it pays αrB + (1 − α)rF ; for the remaining 1 − λ, it must

self-finance so that the cost is rF .
16 In such a setting, similar to Section 3, the equilibrium is

characterized by two thresholds µ(ϕ) and µ̄(ϕ), derived in Appendix A.6, that depend on the

degree of competition in partnership funding ϕ.

Our next proposition shows that a marginal increase in the competitiveness of partnership

16Note that if ϕ = 0.5, which corresponds to the case that the fintech must borrow half of the partnership funding

from each bank, then fintech’s effective funding cost is rE from the baseline model. If ϕ = 1, which corresponds to

the case of Bertrand competition in partnership funding, then the fintech’s effective funding cost is λrB + (1− λ)rS .

Therefore, higher ϕ captures stronger competition in partnership funding.
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funding might hurt the high-type borrowers.

Proposition 5. A marginal increase in partnership funding market competitiveness ϕ reduces high-

type borrower’s expected payoff in markets with µ close to µ̄(ϕ), that is

∂

∂ϕ
VH(µ, ϕ) < 0,

for all µ ∈ (µ̂(ϕ), µ̄(ϕ)] where µ̂(ϕ) < µ̄(ϕ).

Increased partnership market competitiveness ϕ generates two effects in the direct lending mar-

ket. On the one hand, it weakens the collusion channel by reducing the bank partnership profits

ΠB and increases competition in the direct lending market. On the other hand, it reduces fintech’s

effective funding cost. Lower funding cost coupled with fintech’s information advantage increases

the adverse selection in markets below µ̄(ϕ). Faced with a stronger adverse selection, the bank

reduces direct lending volume and raises interest rates to avoid incurring losses. As a result, com-

petition in the direct lending market decreases. In markets with µ close to µ̄(ϕ), the collusive

channel is weak (since the bank does the lion’s share of lending), and the adverse selection effect

dominates. Consequently, the borrowers receive lower payoffs despite the increased competitiveness

of partnership funding. This result is unique to the asymmetric information setting, and it is also

in sharp contrast to the industrial organization approach to vertical integration, which typically

predicts that the borrowers (or downstream customers) benefit from more upstream competition.

5 Extensions and Robustness

5.1 Costly Screening and Entry

Screening and Entry Cost for Fintech

In the benchmark model, we study equilibrium lending outcomes when both the bank and the

fintech firm are already present in the market. We now take a step back and discuss the incentives

of a fintech firm to enter a market with a given borrower quality and compete with an incumbent
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bank17. Recall that the fintech firm’s profits are non-monotonic: it peaks when the average quality

of the borrower pool is neither too high nor too low. The reason is, when the average quality gets

too low, there are not many high-type borrowers to begin with, so the fintech firm’s profits are low.

By contrast, when the average quality gets too high, the competition from the bank intensifies, and

the fintech firm’s profits are low again. Therefore, if either screening or entry entails a cost to the

fintech firm, our model predicts that the fintech firm will be active in markets where the average

quality is moderate.

The equilibrium when the fintech firm has either entry or screening cost is as follows. Neither

lender is active when the average quality is low, and borrowers are credit rationed. When the average

quality gets a bit higher, the fintech firm charges high interest rates to high-quality borrowers, with

partnership funding from the bank. Even though the perceived credit quality is low, the ex-post

default rates of loans are also very low. When the average quality improves, both lenders compete to

lend and collaborate via partnership funding. Because the bank lends blindly, low-quality borrowers

might also receive financing. Therefore, compared to the previous region, loan defaults are more

likely. Finally, only the bank lends to all borrowers when the average quality reaches the highest

region. Overall, these lending patterns generate a unique empirical prediction that ex-post loan

default rates are a non-monotonic function of the ex-ante perceived credit quality.

Screening Technology Adoption by Bank

Suppose that by paying a fixed cost, the bank could acquire the same screening technology as

the fintech firm and eliminate its own information disadvantage. After paying the cost, the bank

can always outbid the fintech firm and earn expected profits µ(rE − rB). The difference in the

bank’s expected profits with and without the screening technology is
µ(rE − rB)− µΠB = µ(1− λ)(rF − rB) µ < µ̄

µ(rE − rB)− (P (µ)rE − rB) = µ (prE − rB)︸ ︷︷ ︸
<0

+(rB − prE) µ > µ̄.

17See Philippon (2016) for a broader discussion of the fintech entry.
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Simple calculations show that this difference peaks at µ̄. Therefore, our model predicts that if there

is a fixed cost to adopting the screening technology, the bank will choose to do so if the average

quality of the borrower pool is neither too high nor too low. Intuitively, when µ is low, there are

too few high types to begin with, so the equilibrium amount of lending is low. Meanwhile, when

µ is high, the bank’s informational disadvantage is less critical, so the incentives to acquire the

informational technology are also lower.

5.2 Bank Competition

This subsection discusses how bank competition affects our results. We consider a model with

two identical uninformed banks with funding cost rB and one informed fintech firm with funding

cost rF . Both banks compete with the fintech firm in the direct lending market and compete

against each other in the partnership funding market. In this case, the fintech firm naturally has

the bargaining power in the partnership funding market, so that rE = λrB+(1−λ)rF and ΠB = 0.

The rest of the model can be solved similarly to the benchmark under the assumption α = 1.

In such a setting, the three-region equilibrium structure continues to hold. Moreover, the

qualitative patterns of fintech profits and borrower payoffs across different µ remain similar to the

baseline model. In contrast, in equilibrium, the banks never profit for any µ. Due to the lack of

partnership profits for banks, the collusion channel is absent in this model, and partnership funding

only reduces the fintech’s funding cost. However, the lower funding cost of the fintech always hurts

the borrowers due to increased adverse selection, as discussed in Section 4.4.

5.3 Fintech Competition

Let us introduce fintech competition into the model. Specifically, we extend the benchmark

model to one with one bank and two fintech firms. Results are straightforward when both fintech

firms observe the same signals from one borrower. The two fintech firms engage in Bertrand

competition, driving their expected profits to zero. That is, the fintech firms will offer interest

rates RF = rE
P (µg)

upon observing a good signal but retreat from lending upon observing a bad
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signal. The bank, as before, would like to offer an interest rate that is at least RB. The equilibrium

turns out straightforward. If RB ≤ RF , the bank lends at an interest rate RF and earns positive

rents due to its lower funding cost. If RB > RF , the two fintech firms lend and offer an interest

rate RF while the bank retreats from direct lending to the partnership funding market.

Results are more interesting when the two fintech firms’ signals are not perfectly correlated. In

this case, the results will be isomorphic to those in the benchmark model. To see this, let us assume

the two fintech firms receive signals that are conditionally independent and are subject to type-I

error: a high-type borrower could receive a bad signal with probability e1, and the distribution of

this type-I error is independent across the two fintech firms.

Our next result summarizes the equilibrium, which shows that our benchmark result on collab-

oration and competition are robust.

Proposition 6 (Equilibrium with Fintech Competition).

1. Collaboration: for µ ∈ [0, µ2F ], the bank never bids. For each fintech firm, it offers a random

random interest rate on [e1R+(1−e1)R
2F
F , R] after observing a good signal and does not lend

after observing a bad signal.

2. Collaboration/Competition: for µ ∈ [µ2F , µ̄2F ], the bank offers a random interest rate in

[R2F
B , R̄2F

B ] for some R̄2F
B < R and does not bid at all with a positive prob. The fintech firm’s

bid distribution on [R2F
B , R].

3. Competition: for µ ∈ [µ̄2F , 1], the bank always bids R2F
F and lends to all borrowers with

probability 1.

The thresholds R2F
B , R̄2F

B , R2F
F , µ2F , and µ̄2F are characterized in the Online Appendix C.2.

Before concluding, let us briefly describe the results of the two fintech firms receiving condition-

ally independent signals that are subject to type-II errors. Results are largely identical to those in

Proposition 6, and we can define the thresholds µ̄2F and µ2F similarly. Besides, there exists another

threshold e2(rE/R−p)
1−p−(1−e2)(rE/R−p) below µ2F , such that if µ < e2(rE/R−p)

1−p−(1−e2)(rE/R−p) , where fintechs would
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not lend even after receiving a good signal, because it is very likely that the good signal comes

from a low-type borrower who populates the majority of the borrower pool.18

5.4 Dissecting Mean and Variance Effects

In our baseline model, the parameter µ simultaneously affects both the mean and variance of

the borrower pool’s quality. To understand whether the equilibrium structure is primarily driven

by the first or the second moment, we augment our model by introducing uncertainty in fintech’s in-

formation advantage. Specifically, we assume the fintech firm receives a signal only with probability

γ but remains uninformed with probability 1− γ.

This modification effectively creates a three-type setting with high (H), uninformed (U), and

low (L) types occurring with probabilities γµ, 1 − γ, and γ(1 − µ) respectively. While the first

moment – the average probability of repayment – continues to be captured by P (µ) = µ+(1−µ)p,

the second moment – the variance of repayment probability – is now given by V ar[pθ] = γµ[1 −

P (µ)]2 + γ(1 − µ)[p − P (µ)]2. Therefore, we can analyze the effects of changes in mean versus

variance separately.

We solve the model in Online Appendix C.3, and our analysis yields two main findings. First,

our baseline results prove robust to this modification, i.e., for any given γ: (i) we observe the same

three-region equilibrium structure – collaboration for low µ, both competition and collaboration for

intermediate µ, and competition for high µ, as can be seen in Figure 5; (ii) the qualitative patterns

of lender profits and borrower payoffs across different µ remain similar to our baseline model; and

(iii) the effects of partnership funding maintain their baseline characteristics, i.e., the comparison

of market participants’ payoffs with and without partnership funding is similar to Proposition 3.

Second, we find that the equilibrium structure in our baseline model is primarily driven by the

mean rather than variance. When we increase µ while varying γ to keep the variance constant,

we obtain results similar to those from varying µ in the baseline model19. However, varying the

18When µ = e2(rE/R−p)
1−p−(1−e2)(rE/R−p)

, conditional on a good signal, we have
(

µ
µ+(1−µ)e2

+ (1−µ)e2
µ+(1−µ)e2

p
)
·R = rE .

19A notable difference is that the fintech profits can be decreasing in µ in the low µ region. This happens because

the probability that the fintech can discover the high-type borrower µ · γ(µ) decreases in µ when µ is low along the
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Figure 5: Equilibrium regions in the model with three types

This figure describes the equilibrium lending outcomes as a function of the average quality of the borrower pool µ

and probability of fintech receiving informative signal γ. The parameters in this figure are as follows: R = 2.0,

p = 0.4, rF = 1.5, rB = 1.0, α = 0.5, and λ = 0.9.
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variance (γ) alone while keeping the mean (µ) constant produces more nuanced effects on lending

competition. When µ is low, higher γ reduces lending competition as increased adverse selection

leads banks to retreat from direct lending and focus on partnership funding. Conversely, when

µ is high, higher γ can intensify lending competition. This second effect arises in markets with

high (but not maximum) µ and low γ, where banks initially lend only to U and L-type borrowers,

while fintech firms capture H-type borrowers. As γ increases, adverse selection makes lending to U

and L-type borrowers less profitable, pushing banks to compete for all borrower types rather than

accepting the segmented market structure.

6 Discussion and Related Literature

6.1 Why Don’t Lenders Always Collude?

Given the model’s setup, it is natural to anticipate the two lenders colluding and always collab-

orating. The collusion outcome, which corresponds in our model to the first-best, is as follows: the

fintech firm charges an interest rate of R to a high-type borrower and does not lend to a low-type

borrower. Moreover, all the funding comes from the bank, and the bank and fintech firm split the

collusion profits. This arrangement features only collaboration, which is our equilibrium for µ < µ.

This subsection shows that the collusion outcome cannot be implemented for µ ≥ µ20. Through-

out, we assume λ = 1 and α = 0, so the fintech firm can, in principle, finance the entire loan by

borrowing from the bank at an interest rate rB.
21 Note that µ̄ = 1 under λ = 1, so that the

equilibrium is characterized by one threshold µ: there is collaboration for µ < µ, whereas both

collaboration and competition exist for µ > µ.

Why wouldn’t the two lenders collude for µ > µ? The bank’s profits from collusion are at most

µ(rF − rB), since for each $1 borrowed from the bank, the fintech firm cannot commit to sharing

more than rF − rB of profits with the bank (otherwise, the fintech prefers to finance the loan using

path of constant variance.
20For model details, see Online Appendix C.1.
21A lower λ and a higher α would make collusion more difficult.
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Figure 6: Equilibrium Illustration under convenience benefits

its own funding). Instead of sticking to the collusive outcome, the bank may deviate and privately

offer an interest R to all borrowers and undercut the fintech. Such deviation generates profits close

to P (µ)R− rB, which exceed µ(rF − rB) for any µ > µ. Given this, the bank always has incentives

to deviate from the collusion arrangement if µ > µ.

To summarize, two factors prevent the collusion outcome under µ > µ. First, the bank may

have incentives to deviate, offer an interest rate slightly below R, and lend to all borrowers. Second,

the fintech always has the option to use its own funding, which essentially sets a cap on the bank’s

shared profits from collusion. We supplement the details in Online Appendix C.1.

6.2 Convenience Benefits and Sticky Banking Relationships

We interpret borrowers as either consumers or small-business owners who, in practice, may

value non-pecuniary benefits from different lenders. For example, it has been well-documented

that the rise of fintech lending has been partially attributed to the convenience and speed offered

by these lenders (Jiang, 2019). This section shows that the equilibrium results differ if the fintech

firm only has convenience advantages. In contrast, the results are qualitatively unchanged if it has

both convenience and informational advantages. Online Appendix C.4 contains formal results and

proofs.

Fintech Convenience Benefits without Screening Advantage

Consider first when the fintech firm has no informational advantage but offers convenience

benefits ∆F > 0, requiring bank bids to satisfy RB < RF −∆F to win borrowers.

The equilibrium features three thresholds {µ
C
, µ̂C , µ̄C}: no lending occurs below µ

C
, bank lend-

ing dominates between µ
C
and µ̄C , and fintech lending prevails above µ̄C . Banks enjoy monopoly
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profits below µ̂C , while they face competition above it. This structure contrasts sharply with our

baseline model in Proposition 1, as convenience benefits generate profits P (µ) · ∆F that increase

with µ, leading fintech firms to dominate high-quality markets. Figure 6 illustrates the equilibrium

market.

Fintech Convenience Benefits with Screening Advantage

Next, we turn to the case of the fintech firm, which has both convenience benefits and infor-

mational advantages. When the convenience benefits are not too big,22 the equilibrium turns out

very similar to the one described by Proposition 1, with the only exception that µ̄ is defined as the

threshold such that RB = RF −∆F holds. Intuitively, the convenience benefit reduces the fintech

firm’s effective funding cost by ∆F , further increasing its competitiveness.
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Figure 7: Comparative Statics in fintech benefit ∆F (µ = 0.8).

Remark 1. As ∆F ↓ 0, results converge to our benchmark model with ties favoring fintech firms,

demonstrating robustness to tie-breaking rules.

Sticky Banking Relationships

Banks may offer their own convenience benefits ∆B > 0 through branch networks and payment

services. Now we consider the case that the bank offers non-pecuniary benefits in that the fintech

22More precisely, when (1− p)(rE −∆F ) > ΠB .
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firm can only outbid the bank if its bid satisfies RF < RB − ∆B, where ∆B > 0. When these

benefits are moderate (RF + ∆B ≤ R), the equilibrium structure remains similar to Section 3

but with adjusted thresholds and bidding strategies. Figure 8 illustrates how bank benefits affect

market structure and profits. The broader takeaway from this exercise is that the convenience

benefit essentially offers monopoly power to the bank, which stifles lending competition.
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Figure 8: Comparative Statics in bank benefit ∆B (µ = 0.4).

6.3 Regulatory Benefits

Regulatory requirements are often cited as a primary factor in banks’ reduced lending to specific

borrowers. While a model with regulatory costs for banks lending to risky borrowers could generate

equilibrium patterns similar to Proposition 1, it would yield distinct empirical predictions regarding

credit quality.

A regulation-focused model would predict that fintech firms lend to low-quality borrowers,

leading to higher ex-post default rates than bank loans. In contrast, our model predicts that while

fintech firms target borrowers with low average observable quality, their superior screening ability

should result in lower ex-post default rates than bank credit. These contrasting predictions about

default patterns provide a basis for empirical tests to differentiate between regulatory costs and

information asymmetry as driving forces behind observed lending patterns.
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6.4 Cream Skimming

The literature on lending competition under asymmetric information has highlighted the cream-

skimming effect, where informed lenders capture high-quality borrowers first, leaving uninformed

lenders with an adversely selected pool (e.g., Fishman and Parker (2015), Bolton et al. (2016)).

While these models rely on sequential lending, our framework features simultaneous lending and

generates different results.

To explore these differences, we adapt our model to a two-stage game where the fintech firm

first makes offers based on noisy signals23, followed by bank offers to remaining borrowers. This

sequential setting differs from our model in two ways. First, the fintech firm gains a first-mover ad-

vantage regardless of borrower pool quality. Second, sequential timing eliminates the direct impact

of partnership funding on the bank’s bidding strategies, the collusion channel in the benchmark

model. The collusion channel disappears because the set of borrowers funded by the fintech and,

consequently, the magnitude of the partnership profits are determined in the first stage. In the

second stage, the bank can only lend to the remaining borrowers, and its interest rate offer does

not affect the magnitude of partnership lending.

This sequential structure generates distinct predictions. First, high-quality markets feature only

fintech lending due to the first-mover advantage, contrary to our benchmark model. Second, part-

nership funding affects bank profits differently across market segments: it increases profits in both

high and low-quality markets (through first-mover advantage and screening benefits, respectively).

Still, it can reduce profits in intermediate-quality markets by strengthening cream-skimming effects.

This contrasts with our baseline model, where partnership funding reduces bank profits in high-

quality markets but increases them in intermediate-quality ones. Detailed solutions are provided

in Appendix C.524.

23With perfectly informative signals, the equilibrium is independent of the average quality of the pool. The fintech

always cream-skims all the good borrowers, leaving only the bad borrowers to the banks. As a result, the bank refuses

to lend.
24In Appendix C.5 we also solve a cream-skimming version of the model where the second stage bidding features

two perfectly competitive banks and discuss the differences in implications of such setup relative to our baseline
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6.5 Related Literature

Literature on Lending Competition under Asymmetric Information. Our modeling

framework builds upon the literature on common-value auctions with asymmetric information (Mil-

grom and Weber, 1982), particularly its applications to bank lending in Broecker (1990), Hauswald

and Marquez (2003), Dell’Ariccia and Marquez (2004), and Von Thadden (2004). We depart from

this literature by introducing partnership funding that enables collaboration between lenders, al-

lowing us to analyze how competitive and collaborative forces vary with borrower pool quality.

Moreover, we highlight the interaction between private information and partnership funding

that generates novel results. For example, banks may prefer competing against fintechs with better

screening technology despite facing a stronger winner’s curse, as shown in Section 4.2.

Literature on Fintech Lending. Our paper contributes to the literature on fintech lending by

analyzing the interaction between competition and collaboration with traditional banks. While em-

pirical studies document fintech lending substituting for bank lending (Tang, 2019; De Roure et al.,

2022), we also introduce a collaboration force. Two other papers also emphasized the collaboration

between banks and fintech. Puri et al. (2024) show that banks make venture investments in fintech

startups to reduce direct competition for customers and facilitate strategic business collaboration.

These empirical findings support our model’s theoretical assumptions. Jiang (2019) examines part-

nership funding in a context without adverse selection, where banks and shadow banks provide

differentiated products. By contrast, our model focuses on information asymmetry, yielding new

insights into market competition and collaboration. As shown in subsection 6.2, our model differs

from Jiang (2019) in several predictions: patterns of fintech entry, relative default rates, and the

impact of partnership funding on borrowers’ surplus.

Several recent theoretical papers have studied the relationship between traditional banks and

emerging lender types. Huang (2022) analyzes competition between a traditional bank and fintech,

who rely on different lending technologies (collateral for bank and information for fintech). In

model.
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contrast, in our model, both the fintech firm and the bank lend based on information but differ

in the quality of information acquisition technology and funding costs. Li and Pegoraro (2023)

study competition between a bank and a big-tech platform where the platform has the superior

ability to enforce the debt repayments under moral hazard. Relative to both papers, we allow

the lenders to also collaborate via the partnership funding market. Boualam and Yoo (2022) also

examine bank-fintech competition and partnership. While their study emphasizes differences in

enforcement technology, our paper focuses on information technology disparities. Vives and Ye

(2024) apply a spatial model to study the competition between banks that rely on physical lending

distance and fintechs that do not. Our paper also emphasizes the collaboration between the two

lenders. More broadly, our paper is also related to the recent literature on open banking, which

allows customers to share information across lenders (He et al., forthcoming; Goldstein et al.,

2022). These papers highlight the potential downsides of consumer data portability. We do not

allow for information sharing but instead focus on the effects of partnership funding and the welfare

implications. Similarly, our analysis presents a cautionary tale of how the presence of partnership

funding can hurt borrowers. Our paper is also related to Corbae and Gofman (2019), whereby a

funding-constrained bank commits not to compete by lending funds to a competitor. In our paper,

the bank still has the funding to compete after lending funds to a competitor.

Literature on Industrial Organization. Finally, our paper relates to the industrial organiza-

tion literature on vertical mergers and foreclosure. In this literature, foreclosure refers to a situation

in which a firm merges with its supplier and uses its market power to restrict its competitors’ access

to (or raise their costs of) intermediate goods. By controlling the supply through a vertical merger,

the firm can weaken competition in the downstream market. In our model, the bank operates as a

vertically integrated firm with a lending unit competing with fintech firms and an upstream funding

unit. The bank can strategically soften competition in the downstream lending market by charging

a higher rate for partnership funding. This connects to the work by Ordover et al. (1990), Chen

(2001), and Jiang (2019) on the collusive effects of vertical integration. Notably, Chen (2001) shows

that a rival firm might prefer an integrated firm as a supplier despite higher costs – paralleling our
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finding that fintech firms choose partnership funding from competing banks over non-competing

ones, even at higher costs. Our paper extends this literature by incorporating asymmetric infor-

mation in the downstream direct market. This allows us to analyze how the collusion channel

endogenously interacts with the competition channel under varying degrees of adverse selection.

Moreover, in Section 4.4, we show that increased competition in the upstream market might hurt

the borrowers in the downstream market – a finding unique to our asymmetric information setting.

6.6 Empirical Predictions

Our model generates several interesting and testable implications on fintech lending, bank com-

petition, and their interactions through partnership funding. We summarize them below.

On fintech entry and competition patterns. Our model predicts that fintech firms will

primarily enter markets with moderate average borrower quality. When average borrower quality

is low, banks tend to avoid direct lending competition and instead offer partnership funding to

fintech firms. Conversely, in high-quality markets, banks still dominate in direct lending. The most

active competition between banks and fintechs should be observable in markets with intermediate

borrower quality, where their relative advantages in screening and funding costs are most closely

balanced. Finally, our model predicts that banks are most likely to develop their own machine-

learning-based screening technology to catch up with the fintech if their lending concentrates on

moderate average borrower quality.

On loan performance by different lenders. Despite targeting borrowers with lower average

observable quality, fintech loans should have lower ex-post default rates than bank loans due to

superior screening technology. Our model also predicts that the overall default rate could be non-

monotone in observable credit quality due to varying market shares of bank and fintech lending.

Moreover, when screening is imperfect, Type-II errors (misclassifying low-quality borrowers as

high-quality) benefit banks through direct lending and partnership funding channels.
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On partnership funding. Our model predicts that both fintech firms and competing banks

should prefer direct partnership arrangements between themselves rather than involving third-

party banks, as this allows them to internalize competitive externalities. Moreover, partnership

funding between competing lenders should be more prevalent in markets with lower average bor-

rower quality, where banks find direct lending less attractive. Finally, when partnership funding

comes from non-competing banks, borrower interest rates should be lower compared to funding

from competing banks.

7 Conclusion

Motivated by the rise of fintech firms in the financial industry, we developed a theory examin-

ing competition and collaboration between fintech firms and traditional banks. Our model reveals

that collaboration occurs when borrower pool quality is low, while competition emerges when qual-

ity is high. Partnership funding enhances fintech competitiveness and reduces bank competition,

benefiting borrowers only when pool quality is sufficiently high. Banks profit more in low-quality

scenarios.

Our model assumes low-type projects have negative NPV, which is plausible in bank lending

contexts. Results can be different if even those projects can have positive NPV. In such cases,

when average quality is very low, the winner’s curse effect diminishes, potentially making banks the

dominant lenders. This scenario offers an interesting alternative perspective, though less plausible

in typical bank lending situations.

Our model does not have aggregate uncertainty. Given this, the law of large numbers implies

that the profits of both lenders are deterministic. Therefore, there is no associated risk of default

on partnership funding. Extending the model with aggregate shocks and more dynamics can be an

interesting future direction.

For tractability, our model assumes binary distributions for borrower types and project cash

flows. The results remain qualitatively similar if we allow continuous cash flows with binary bor-

rower types, or continuous borrower types with binary project outcomes. This consistency stems
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from the lenders’ risk-neutral focus on expected profits. However, the model becomes significantly

more complex if both borrower types and fintech screening signals are continuous. These sim-

plifications enable us to maintain analytical clarity while preserving the essential insights of our

study.
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A Appendix

A.1 Proofs of Results from Section 3.

Proof of Lemma 1

Proof. We prove by contradiction. There are two cases: R̂B ∈ (RF , R) and R̂B = R.

Suppose the bank bids some R̂B ∈ (RF , R) with a probability mass ∆B, then for any ε > 0, the

fintech firm must bid with a strictly positive probability on (R̂B, R̂B + ε]. If instead there exists

an ε∗ such that FB(R̂B + ε∗)−FB(R̂B) = 0, then the bank earns strictly higher profits by bidding

R̂B + ε∗

2 compared to bidding R̂B, a contradiction. Next we show, that instead of bidding R̂B + ε

the fintech could undercut the bank and bid R̂B − ε and increase its expected proffits. By bidding

R̂B+ε, a fintech firm with a good signal receives profits
(
1− FB(R̂B + ε)

)
(R̂B+ε)−rE . By bidding

R̂B − ε, a fintech firm with a good signal receives profits
(
1− FB(R̂B − ε)

)
(R̂B − ε) − rE . The

difference between the two
(
1− FB(R̂B − ε)

)
(R̂B−ε)−

(
1− FB(R̂B + ε)

)
(R̂B+ε) → ∆BR̂B > 0

as ε ↓ 0, a deviation.

Suppose the bank bids R̂B = R with a probability mass ∆B. Then bidding R − ε strictly

dominates R for the fintech firm. Therefore, the fintech firm never bids R in equilibrium. As a

result, by bidding R, the bank only lends to a borrower with a bad signal and makes a loss, a

contradiction.

To rule out intervals, we prove by contradiction. Let (R1, R2) be the interval where the right

boundary R2 is closest to R.25 This implies the bank is indifferent between any bid R̂B ∈ (R1, R2).

Then the fintech firm must also bid on the same interval (R1, R2) without any gaps (R̂1, R̂2).

Otherwise, bidding R̂2 strictly dominates R̂1 for the bank.

Next, it must be that R2 = R. If not, bidding R is dominated by bidding R2 from the perspective

of the fintech firm (it implies the same win probability with higher conditional profits).

Finally, we show that R2 = R leads to a contradiction. Depending on whether the fintech firm

bids R with a probability mass or not, there are two cases. If the fintech firm does not bid R

25Since we have ruled out mass probabilities, the same result holds if the interval is half-open or open.
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with a probability mass, then by bidding R the bank almost surely lends to a borrower with a bad

signal, which results in a loss - a contradiction. If the fintech firm bids R with a probability mass,

by bidding R, it can only win if the bank does not bid at all with a positive probability (since the

ties are broken in favor of the bank, and any bank bid RB ≤ R would win against fintech firm’s

RF = R). The fact that not bidding is part of the bank’s equilibrium strategy is a contradiction

because not bidding and getting zero expected profits is strictly dominated by bidding RF and

receiving positive expected profits. Hence, by bidding R the fintech firm never wins and receives

zero profits. Since the fintech firm is indifferent between any bids it makes it must be that fintech

firm makes zero profits for any bid RF ∈ (R1, R). This is possible only if the fintech firm never

wins for any of those bids which is impossible when the bank is also bidding in (R1, R) without

mass points.

Lemma A.1. If RF < RB < R, the bank can not offer an interest rate with a positive probability

mass.

Proof of Lemma A.1

Proof. The proof is the same as Lemma 1.

Proof of Lemma 2

Proof. We begin by arguing that the fintech firm must also adopt a mixed strategy when receiving

a good signal. Suppose on the contrary that the fintech firm chooses a pure strategy RF ∈ [RB, R]

when receiving a good signal, and do not bid when receiving a bad signal. Then, any bid of the

bank RB ∈ (RF , R] wins if and only if the borrower is of the low type, which incurs a loss. This is

the winner’s curse problem, implying that the bank cannot attach positive probability on bidding

(RF , R]. On the other hand, if the bank only attaches positive probability on bidding [RB, RF ]

then bidding RF generates 0 profits for the fintech firm and it has an incentive to deviate to RF −ε

to get positive expected profits. This is a contradiction. Hence, the fintech firm has to play a mixed

strategy.
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We follow similar steps as the proof in Lemma 1 to show that there are no holes, and the right

boundary of the interval must be R. Therefore, when both institutions randomize their bids, the

interval is [R1, R] for R1 ≥ RB since the bank must make non-negative profits.

When both the bank and the fintech firm randomize their bids in [R1, R2], it must be that

R2 = R. Otherwise, offering R2 is strictly dominated by bidding R and the fintech firm would

prefer to bid R instead of mixing in [R1, R2]. Randomizing by both parties in [R1, R] also implies

that the fintech firm must have a positive mass of bids at R. This is to assure the bank’s incentive

by alleviating the winner’s curse problem. Absent such a mass, when the bank’s bid gets close to

R, almost surely it can only win when the fintech firm receives a bad signal, which results in a loss.

To pin down R1 we exploit the indifference condition of the fintech firm. On the one hand,

the fintech firm can bid R1 and win the bidding game almost for sure, generating expected profits

P (µg)R1 − rE > 0. On the other hand, the fintech firm can bid R and win whenever the bank bids

above R (or, equivalently, does not bid), generating expected profits (1− FB(R)) · (P (µg)R− rE).

Indifference between the two options implies that FB(R) < 1, i.e., that the bank does not bid at

all with a positive probability. This can only happen when the bank is indifferent between winning

and losing for every bid it submits. As a result, R1 = RB.

Proof of Proposition 1

Proof. Lemma 1 establishes the equilibrium structure for RB < RF , Lemma A.1 establishes the

equilibrium structure for RF < RB < R, and the equilibrium structure for case RF < R < RB is

described in the main text of the paper.

Under Assumption 1, it is clear that 0 < µ < µ̄ ≤ 1. Simple derivations show that RB ≤ RF

for µ > µ̄, RF < RB < R for µ ∈ (µ, µ̄), and RF < R ≤ RB for µ ≤ µ. The results of Proposition

1 follows directly from the above.
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Proof of Proposition 2

Proof. Start with total bank profits:

VB + VP =


µΠB for µ ≤ µ̄

P (µ)rE − rB for µ ≥ µ̄

(A.1)

where we used that for µ < µ we have VB = 0 and VP = µΠB. For µ ∈ (µ, µ̄) the bank is indifferent

between losing and winning the bidding competition, hence the total profits are equal to profits

when the bank always loses, i.e. µΠB. Finally, for µ > µ̄ the bank always bids RF = rE and wins.

Clearly, VB(µ) + VP (µ) is continuous and increasing.

Next, turn to fintech firm profits:

VF =


µ(R− rE) for µ ≤ µ

µ(RB − rE) for µ ∈ (µ, µ̄)

0 for µ ≥ µ̄

(A.2)

Clearly, VF is positive and increasing for 0 < µ < µ. And it equal to 0 for µ > µ̄. So, overall it

is non-monotone.

In µ ∈ (µ, µ̄) the fintech firm’s profits are

VF = µ(RB − rE)

= µ

(
rB + µΠB

p+ µ(1− p)
− rE

)
= µ

rB + µΠB − (p+ µ(1− p)rE
p+ µ(1− p)

= µ
rB − prE − µ((1− p)rE −ΠB)

p+ µ(1− p)

∼ a · µ · b− µ

µ+ c

At µ = µ̄ the fintech firm profit should be decreasing in µ, since VF (µ̄) = 0 and VF (µ) > 0 for

µ < µ̄. Given the shape of VF as a function of µ (linear minus a 1/µ term) the fintech firm profits

can either be (a) decreasing everywhere in (µ, µ̄) or (b) be hump-shaped, i.e., increasing in (µ, µ∗)

and decreasing in (µ∗, µ̄).
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Next we consider the borrower surplus. To prove that it is increasing in µ we will rely on first

order dominance of the cdfs FB and FF .

FB(x) =
x−RB

x−RF

=
x−RB(µ)

x− rE

Since RB(µ) is decreasing in µ, we have FB(x) is increasing in µ. Hence FB at µ′ dominates FB at

µ < µ′ in the FOSD sense.

Similarly,

FF (x) =
P (µ)x− rB − µΠB

µ(x− rB −ΠB)

1− FF (x) =
1− µ

µ
· rB − px

x− rB −ΠB
.

Since (1− µ)/µ = 1/µ− 1 is decreasing in µ, FF (x) is increasing in µ. Hence FF at µ′ dominates

FF at µ < µ′ in the FOSD sense.

Since both cdfs increase in the FOSD with µ, both types of borrowers prefer lower rates to

higher, their surplus is increasing in µ.

A.2 Analysis of Section 4.1 (Who Benefits from Partnership Funding)

Proof of Corollary 1.

Proof. Direct calculations give

dµ̄

dλ
=

(rF − rB)[(1− pα)rB − p(1− α)rF ]

{λ(1− αp)rB + [(1− p)− λ(1− αp)]rF }2

Notice that

(1− pα)rB − p(1− α)rF >

(
(1− pα)p(1− λα)

1− λαp
− p(1− α)

)
rF =

(1− p)pα(1− λ)

1− λαp
rF > 0,

as a result dµ̄
dλ > 0.

The comparative statics
dµ

dλ > 0 is fairly obvious since λ shows up only in the denominator.

A.5



When λ = 1 we have

µ̄ =
(1− αp)rB − p(1− α)rF

(1− αp)rB + [(1− p)− (1− αp)]rF
= 1.

Proof of Proposition 3.

Proof. First, establish the cutoffs of different lending regions. Define µ
λ
as a solution to

RB(µ, λ) = R (A.3)

and µ̄λ as a solution to

RB(µ, λ) = RF (µ, λ). (A.4)

Then

µ
0
=

rB/R− p

1− p
µ̄0 =

rB/rF − p

1− p
µ
1
=

rB/R− p

1− p− (1− α)(rF − rB)/R
µ̄1 = 1 (A.5)

1. Start with borrowers.

Two cases are possible. If at µ̄0 < µ
1
then only the fintech firm participates and bids R in

which case the both types of borrowers get a zero payoff. Clearly, they are better at µ = µ̄0

without the partnership funding market.

If µ̄0 > µ
1
then both parties bid with CDFs FB and FF at µ = µ̄0 with λ = 1 and the high

type’s payoff is

VH = R−E[min(R̃B, R̃F )]. (A.6)

A.6



First, let’s simplify the expected minimal bid:

E[min(R̃F , R̃F )] =

∫ R

RB

xd[1− (1− FF (x))(1− FB(x))]

= −
∫ R

RB

xd[(1− FF (x))(1− FB(x))]

= R(FF (R)− FF (R−))(1− FB(R−))−
∫ R−

RB

xd[(1− FF (x))(1− FB(x))]

= R(FF (R)− FF (R−))(1− FB(R−))− x[(1− FF (x))(1− FB(x))]
∣∣∣R−

RB

+

∫ R−

RB

[(1− FF (x))(1− FB(x))]dx

= R(FF (R)− FF (R−))(1− FB(R−))−R[(1− FF (R−))(1− FB(R−))]︸ ︷︷ ︸
=0

+RB

+

∫ R−

RB

[(1− FF (x))(1− FB(x))]dx

= RB +

∫ R−

RB

[(1− FF (x))(1− FB(x))]dx.

The high-type borrower in a pool characterized by µ̄0 is better off without the partnership

funding market if

rF < RB +

∫ R−

RB

[(1− FF (x))(1− FB(x))]dx

rF −RB <

∫ R−

RB

[(1− FF (x))(1− FB(x))]dx.

We evaluate the LHS at µ̄0:

rF −RB = rF − rB + µ̄0ΠB

rB/rF
= − µ̄0ΠB

rB/rF
< 0.

For the RHS, we know it is positive, so the inequality always holds at µ̄0.
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For the low-type borrower, the payoff with partnership funding market is

VL(λ = 1) = (1− FB(R)) · p(R−E[R̃B |R̃B < ∞])

< p(R−E[R̃B |R̃B < ∞])

< p(R−E[min(R̃F , R̃B)])

< p(R− rF )

= VL(λ = 0).

We have established that when Vθ(λ = 1) < Vθ(λ = 0) at µ = µ̄0. For µ > µ̄0 borrower’s

surplus Vθ(λ = 0) is constant, while Vθ(λ = 1) is strictly increasing.

When µ = 1 the bank always bids rE and always wins. With λ = 1 we have rE = rB and

with λ = 0 we have rE = rF , hence Vθ(λ = 1) > Vθ(λ = 0). As a result, there exists µ∗
θ > µ̄0

such that

Vθ(λ = 1, µ∗
θ) = Vθ(λ = 0, µ∗

θ). (A.7)

Borrowers are better off with partnership funding market for µ > µ∗
θ and better off without

partnership funding market for µ < µ∗
θ

For µ
1
< µ < µ̄0 we have non-trivial bidding by both bank and fintech firm regardless of λ.

Hence the payoff of the low type player is determined via the expected minimal bid

E[min(R̃F , R̃F )] = RB +

∫ R−

RB

[(1− FF (x))(1− FB(x))]dx. (A.8)

To see how the expected minimal bid varies with λ notice that we need to take only the

derivative inside of the integral since the derivative w.r.t. RB in the above expression cancels

out.

Recall that

FB(x) =
x−RB

x− rE
.

Since RB is increasing in λ and rE is decreasing in λ, the cdf FB(x) is decreasing in λ. As a

result, 1− FB(x) term is increasing in λ.
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Similarly
∂

∂µ
FF (x) ∼

∂

∂ΠB
FF (x) ∼

px− rB
()2

< 0.

As a result, the term 1− FF (x) is increasing in µ.

Hence, the whole integral above is increasing in µ (it is a product of two non-negative increas-

ing terms). Since the expected minimum bid is increasing in µ the payoff of the high type is

decreasing in µ.

For the low type the welfare comparison comes from the fact that FB(x) is decreasing in λ.

Hence FB(x) for λ = 0 dominates in the FOSD sense FB(x) for λ = 1. Since the low type

prefers lower bids, it prefers the cdf FB at λ = 0.

2. Next, consider the fintech firm. For λ = 1 the fintech firm profits are given by

VF =


µ(R− rE) for µ ≤ µ

1

µ(RB − rE) for µ ≥ µ
1

(A.9)

with rE = αrB + (1 − α)rF and RB = rB+µ(1−α)(rF−rB)
P (µ) . Note that VF = 0 at µ = 0 and at

µ = 1 and reaches it’s maximum at µ = µ
1
.

For λ = 0 the fintech firm profits are given by

VF =


µ(R− rF ) for µ ≤ µ

0

µ
(

rB
P (µ) − rF

)
for µ ∈ (µ

0
, µ̄0)

0 for µ ≥ µ̄0

(A.10)

Note that VF = 0 at µ = µ̄0 and reaches it’s maximum at µ = µ
0
.

Comparison of VF with and without the partnership funding market is obvious: for λ = 1 VF

starts with a higher slope, at µ = 0, reaches its peak later (at µ
1
> µ

0
) and stays positive for

longer. Moreover, for µ ∈ [µ
1
, µ̄0], we have

VF (λ = 1)− VF (λ = 0) = µ(RB − rE)− µ

(
rB

P (µ)
− rF

)
.
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To show this is positive, we need

RB − rE >
rB

P (µ)
− rF

rB + µ(1− α)(rF − rB)

P (µ)
− rE >

rB
P (µ)

− rF

rB + µ(1− α)(rF − rB)− P (µ)rE > rB − P (µ)rF

µ(1− α)(rF − rB) > P (µ) (rE − rF ) .

The last inequality holds because the LHS is positive whereas the RHS is negative. Hence, it

dominates VF for λ = 0 everywhere.

3. Next, consider the bank. When λ = 1, then the total bank profits are

VB + VP = µΠB = µ(1− α)(rF − rB). (A.11)

For µ < µ
1
this is correct since VB = 0 and for µ > µ

1
this is correct since the bank is

indifferent between winning and losing the bidding game.

When λ = 0, then the total bank profits are

VB + VP =


0 for µ ≤ µ̄0

P (µ)rF − rB for µ ≥ µ̄0

(A.12)

For µ < µ
0
this is correct since VB = VP = 0 and for µ ∈ (µ

0
, µ̄0) this is correct since the

bank is indifferent between winning and losing the bidding game. Finally, for µ > µ̄0 the

bank simply bids rF and always wins.

To compare the total profits of the bank, we only need to check that at µ = 1 the bank is better

off without the partnership funding markets. This is true, since rF − rB > (1− α)(rF − rB).

Hence, there exists a µ∗
B ∈ (µ̄0, 1) such that

µ∗
B(1− α)(rF − rB) = P (µ∗

B)rF − rB (A.13)

and the bank is better off without partnership funding market for µ > µ∗
B and is better off

with partnership funding market for µ < µ∗
B.
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4. Finally, consider overall welfare.

Welfare is clearly higher with λ = 1 vs. λ = 0. With λ = 1 the high type projects are always

funded at a cost rB, hence the funding inefficiency does not exist, while it strictly positive

for λ = 0.

Similarly, lending inefficiency with λ = 1 is also smaller, since the probability that the bank

bids FB(x) is decreasing in λ.

A.3 Analysis of Section 4.1 (Optimal Size of Partnership Funding)

Proof. Throughout this proof we write µ̄(λ) and µ(λ) to highlight that equilibrium thresholds

depend on the volume of partnership λ.

Fintech preferred λo
F . The fintech’s profit is

VF =


µ(R− rE(λ)), µ < µ(λ)

µ(RB(µ)− rE(λ)), µ ∈ [µ(λ), µ̄(λ)]

0, µ > µ̄(λ)

Clearly, for any µ we have the fintech’s profit is increasing in λ, hence its preference is

λo
F = 1.

Bank preferred λo
B. The total bank’s profit is

VB + VP =


µλ(1− α)(rF − rB), µ ≤ µ̄(λ)

P (µ)rE(λ)− rB, µ > µ̄(λ).

Clearly, the bank’s profit in increasing in λ when µ < µ̄(λ) and is decreasing in λ when µ > µ̄(λ).

Moreover, µ̄(λ) is increasing in λ. Hence, for a given µ the bank’s payoff either is always increasing

in λ (when µ ≥ µ̄(0)), or is always decreasing in λ (when µ ≥ µ̄(1)), or is V-shaped in λ (when

µ ∈ (µ̄(0), µ̄(1))). Consequently, the bank-optimal λ ∈ {0, 1}.

A.11



Comparing the bank payoffs for λ = 0 and λ = 1 explicitly, it is easy to shows that there exists

µo
B such that the bank-optimal λo

B is

λo
B =


1, µ ≤ µo

B

0, µ > µo
B,

where

µo
B =

rB − prF
(1− p)rF − (1− α)(rF − rB)

solves

µo
B(1− α)(rF − rB) = [µo

B + (1− µo
B)p]rF − rB.

High-type borrower preferred λo
H . The high-type borrower’s payoff can be written as

VH =


0, µ < µ(λ)

R− E[min(R̃F , R̃B)], µ ∈ [µ(λ), µ̄(λ)]

R− rE(λ), µ > µ̄(λ)

where the R̃B and R̃F are stochastic bank and fintech bids with CDFs

FB(R̃) =
R̃−RB

R̃− rE
, R̃ ∈ [RB, R]

FF (R̃) =
µΠB −

(
P (µ)R̃− rB

)
µ
[
ΠB −

(
R̃− rB

)] , R̃ ∈ [RB, R).

The bank bidding cdf is decreasing in λ (since rE is increasing and RB(λ)) are decreasing), i.e.,

the distribution of bids for high λ first-order stochastic dominates the distribution of bids for lower

λ). The fintech’s bidding cdf is also decreasing in λ (it takes a form of (λ− a)/(λ− b) with a < b),

i.e., the distribution of bids for high λ first-order stochastic dominates the distribution of bids for

lower λ).

Since both of the bidding distributions are first-order stochastically increasing, the high-type

borrower payoff is decreasing in λ for µ ∈ [µ(λ), µ̄(λ)]. It is clearly increasing in λ for µ > µ̄(λ).
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Since both cut-offs µ(λ) and µ̄(λ) are increasing in λ, the high-type borrower optimal λ is either 0,

or 1, or λ̄ such that µ̄)(λ̄) = µ. The high-type borrower optimal λ is

λo
H =


0, µ < µ̄(0),

λ̄(µ), µ ∈ [µ̄(0), µ̄(1)],

1, µ > µ̄(1),

where

λ̄ =
rB − prF − µ(1− p)rF

(rB − rF )[αp+ µ(1− α)p]

solves

µ =
(1− λ̄αp)rB − p(1− λ̄α)rF

λ̄(1− αp)rB + [(1− p)− λ̄(1− αp)]rF
.

A.4 Analysis of Section 4.2 (Screening Technology and Partnership Funding)

In this subsection, we examine how the two types of errors, e1 and e2 affect the equilibrium

outcome and welfare.

Corollary A.1 shows the effect that type-I error e1 has on equilibrium outcomes and lenders’

profits. Intuitively, a higher type-I error e1 reduces the likelihood of good signals, and as a result,

it also reduces the equilibrium amount of lending by the fintech firm. Lower fintech firm lending

volume implies lower demand for partnership funding and lower partnership funding profits for

the bank. Consequently, the bank has more incentives to compete with the fintech firm than

offering partnership funding. With lower e1, the bank faces a stronger winners curse, but its profits

are nevertheless higher. In this case, the bank prefers to compete against a fintech with a more

precise screening technology despite facing a stronger winner’s curse. This effect highlights the

novelty of the interaction between the adverse selection created by fintech’s information advantage

and partnership funding and separates our paper from the literature that focuses on information

technology and lending competition (Hauswald and Marquez, 2003).
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Corollary A.2 shows the effect that type-II error e2 has on equilibrium outcomes and lenders’

profits .An increase in type-II error has two effects. First, it reduces the average quality of the pool

conditional on good signal µg. As a result, the fintech firm’s informational advantage is mitigated,

and it bids less aggressively (direct effect). Second, higher e2 increases the likelihood of observing

the good signal qg. Keeping the bidding strategies fixed would translate into an increase in the

volume of fintech firm lending and, consequently, partnership funding profits, reducing the bank’s

incentives to compete (indirect effect).

Total bank profits are affected in the same direction by both forces. The bank benefits from a

less competitive fintech firm and from a higher potential partnership funding market. Hence, its

profits are increasing in e2. For the fintech firm, the two forces are working in opposite directions.

However, the direct channel dominates, and the fintech firm profits are decreasing in e2. To see

the intuition, consider the two corner cases µ = µ̄2 and µ = µ
2
. As discussed earlier, partnership

funding profits are zero at µ = µ̄2, and the indirect channel is absent. Hence the fintech firm profits

are decreasing in e2 due to the direct effect. At µ = µ
2
, the partnership funding profits are high,

and the indirect effect should increase the probability of the fintech firm winning the bidding game.

However, the fintech firm wins it with a probability 1, to begin with. Hence the indirect effect is

muted and the profits are decreasing due to the direct effect again.

Formal analysis follows below.

Assumption 1 imposes an upper and lower bound on µ. Specifically,

µ ∈
[

(rF /R− p)e2
(1− e1 − e2p)− (1− e1 − e2)rF /R

,
(1− e2)(rB/R− p)

(e1 − (1− e2)p) + (1− e1 − e2)rB/R

]
.

The lower bound comes from rF < P (µg) ·R and the upper bound comes from rB > P (µb) ·R.

Let us start with type-I error e1 > 0 and e2 = 0 so that a fintech firm might receive a bad

signal when facing a high-type borrower. In this case, qg = µ(1− e1), qb = µe1 + (1 − µ), µg = 1,

and µb = µe1
qb

. The equilibrium is still characterized by two thresholds {µ̄1, µ1
}, and we have the

following results.

Corollary A.1. With type-I error, the equilibrium consists of three regions: collaboration for
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µ < µ
1
, collaboration/competition for µ ∈ (µ

1
, µ̄1), and competition µ > µ̄1 similar to Proposition

1. Both thresholds µ̄1 and µ
1
decrease with e1.

Moreover, equilibrium fintech firm profits and bank profits are (weakly) decreasing in e1 in every

region.

Proof. With type-I error e1 > 0 the fintech is still sure that it is facing a high-type borrower upon

receiving a good signal, i.e., µg = 1. Hence, the threshold RF = rE remains unchanged.

However, curse-free bid of the bank RB is affected through the expected partnership profits.

Instead of bidding for all high-type borrowers (µ) the fintech only bids for those that are identified

by the good signal ((1− e1)µ) hence,

P (µ)RB − rB ≥ (1− e1)µΠB ⇒ RB ≥ RB :=
rB + (1− e1)µΠB

P (µ)

Direct comparison of RB vs. RF and RB vs. R give rise to the µ̄ and µ respectively:

µ̄1 =
rB(1− λαp)− p(1− λα)rF

(1− p)rE − (1− e1)λ(1− α)(rF − rB)

µ
1
=

rB − pR

(1− p)R− (1− α)(1− e1)(rF − rB)
.

Equilibrium construction closely follows the proof of Proposition 1 via Lemmas 1 and 2.

Comparative statics of µ̄1 and µ
1
in e1 is obvious - both thresholds are decreasing in e1.

Next, turn to equilibrium profits. For µ < µ
1
the fintech’s and bank’s profits are

VF = (1− e1)µ(R− rE) VB + VP = (1− e1)µΠB

respectively, and both are decreasing in e1.

For µ
1
< µ < µ̄1 the fintech’s and bank’s profits are

VF = (1− e1)µ(RB − rE) VB + VP = (1− e1)µΠB

respectively, and both are decreasing in e1 because RB is also decreasing in e1.

For µ > µ̄1 the fintech’s and bank’s profits are

VF = 0 VB + VP = P (µ)rE − rB

respectively - the are not affected by e1.
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Now, we turn to the case of type-II error e1 = 0 and e2 > 0, so that a fintech firm might receive

a good signal when facing a low-type borrower. In this case, qg = µ+(1−µ)e2, qb = (1−µ)(1−e2),

µg = µ
qg
, and µb = 0. The equilibrium is again characterized by two thresholds {µ̄2, µ2

}, and we

have the following results.

Corollary A.2. With type-II error, the equilibrium consists of three regions: collaboration for

µ < µ
2
, collaboration/competition for µ ∈ (µ

2
, µ̄2), and competition µ > µ̄2 similar to Proposition

1. The upper threshold µ̄2 is decreasing in e2 and the lower threshold µ
2
is increasing with e2.

Moreover, for e2 small enough, equilibrium fintech firm profits are decreasing and bank profits

are increasing in e2 in every region.

Proof. With type-II error e2 > 0 the fintech is no longer sure that it is facing a high-type borrower

upon receiving a good signal, i.e., µg = µ/[µ+ e2(1− µ)] < µ. Hence, the fintech’s zero profit bid

is RF = rE
P (µg)

.

The curse-free bid of the bank RB is affected through the expected partnership profits. Instead

of bidding for only high-type borrowers (µ) the fintech bids for all borrowers those that are identified

by the good signal (µ+ e2(1− µ)) hence,

P (µ)RB − rB ≥ [µ+ e2(1− µ)]ΠB ⇒ RB ≥ RB :=
rB + [µ+ e2(1− µ)]ΠB

P (µ)

Direct comparison of RB vs. RF and RB vs. R give rise to the µ̄ and µ respectively:

µ̄2 =
(1− λαp)rB − p(1− λα)rF + e2ΠB

λ(1− αp)rB + [1− p− λ(1− αp)]rF + e2ΠB

µ
2
=

rB − pR+ e2ΠB

(1− p)R−ΠB + e2ΠB
.

Explicit derivations show that µ
2
is increasing in e2 (since collaborating is becoming more attractive

for the bank) and µ̄2 is decreasing in e2 (since fintech is becoming less competitive).

Equilibrium construction closely follows the proof of Proposition 1 via Lemmas 1 and 2.

Next, turn to equilibrium profits. For µ < µ
2
the fintech’s and bank’s profits are

VF = µ(R− rE) + e2(1− µ)(pR− rE) VB + VP = [µ+ e2(1− µ)]ΠB
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respectively. Bank’s profits are increasing in e2 due to higher volume of partnership lending and

fintech’s profits are decreasing in e2 since low-type borrowers are negative NPV.

For µ
2
< µ < µ̄2 the fintech’s and bank’s profits are

VF = µ(RB − rE) + e2(1− µ)(pRB − rE) VB + VP = [µ+ e2(1− µ)]ΠB

respectively. Bank’s profits are increasing in e2 due to higher volume of partnership lending.

Fintech’s profits are decreasing because

d

de2
VF = (1− µ)

(
µ

ΠB

P (µ)
+ (pRB − rE) + e2p

(1− µ)ΠB

P (µ)

)
< 0

for small enough e2.

For µ > µ̄1 the fintech’s and bank’s profits are

VF = 0 VB + VP = P (µ)
rE

P (µg)
− rB

respectively. Clearly, bank’s profit is increasing in e2.

A.5 Analysis of Section 4.3 (Who Provides Partnership Funding)

The bank’s curse-free bid becomes RB = rB
P (µ) , whereas the fintech firm’s break-even bid RF

stays unchanged. The two critical thresholds in the average quality are

µ
NC

=
rB/R− p

1− p
< µ µ̄NC =

rB/rE − p

1− p
< µ̄,

where the subscripts NC stand for non-competing.

Proof of Proposition 4

Proof. Start with the fintech firm. In case of borrowing from a non-competing bank, fintech’s

profits are

V NC
F =


µ(R− rE) for µ < µ

NC
;

µ
(

rB
P (µ) − rE

)
for µ ∈ [µ

NC
, µ̄NC ];

0 for µ > µ̄NC .
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And in case of a partnership the profits are

VF =


µ(R− rE) for µ < µ;

µ
(
rB+µΠB

P (µ) − rE

)
for µ ∈ [µ, µ̄];

0 for µ > µ̄.

Both profit functions have a hump shape, and have the same linear part for µ close to 0. However,

VF has a longer linear part (µ > µ
NC

), has a higher non-linear part ((rB+µΠB)/P (µ) > rB/P (µ)),

and hits zero later (µ̄ > µ̄NC). Hence, we have VF (µ) ≥ V NC
F (µ) for all µ ∈ [0, 1]. Moreover, for

µ ∈ (µ
NC

, µ̄) the profits in case of partnership are strictly higher, i.e., VF (µ) > V NC
F (µ).

Next, consider the bank. With third party financing the total bank profits are given by

V NC
B + V NC

P =


0, if µ < µ̄NC

P (µ)rE − rB, if µ > µ̄NC

And in case of a partnership the profits are

VB + VP =


µΠB if µ < µ̄;

P (µ)rE − rB, if µ > µ̄

Both profit functions have a piece-wise linear shape, and are equal to each other for µ > µ̄.

However, in case of partnership lending the bank earns positive profits for µ < µ̄NC (as opposed to

0) and has higher joint direct and partnership profits if µ ∈ (µ̄NC , µ̄). Hence, we have VB+VP (µ) ≥

V NC
B + V NC

P (µ) for all µ ∈ [0, 1]. Moreover, for µ ∈ (0, µ̄) the profits in case of partnership are

strictly higher, i.e., VB + VP (µ) > V NC
B + V NC

P (µ).

Finally, consider the borrowers who face the bid distributions

FNC
F (x) =

P (µ)x− rB
µ(x− rB)

FNC
B (x) =

x− rB/P (µ)

x− rE

FF (x) =
P (µ)x− rB − µΠB

µ(x− rB −ΠB)
FB(x) =

x− (rB + µΠB)/P (µ)

x− rE

Moving from third party lending to the case with partnership funding reduces both FF and FB

in the FOSD sense. Hence the borrowers suffer from higher bids by both the fintech firm and the

bank.
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A.6 Analysis of Section 4.4 (Competition for Partnership Funding)

In total, the fintech’s effective funding cost is

rϕE = (2ϕ− 1)λrB + 2(1− ϕ)λ[αrB + (1− α)rF ] + (1− λ)rS .

Partnership funding from the non-competing bank also reduces the competing bank’s expected

profits in partnership lending. Specifically, these profits are

Πϕ
B = (1− ϕ)λ(1− α)(rF − rB).

If ϕ = 1
2 so that the competing bank can only provide at most half of the partnership funding, its

profits are also halved compared to the benchmark model, i.e., Π
1
2
B = 1

2ΠB. Meanwhile, if both

banks can provide all the partnership funding so that ϕ = 1, these profits are zero, i.e., Π1
B = 0.

The rest of the analysis closely follows that in Section 3. Specifically, the bank’s curse-free bid

is Rϕ
B =

rB+µΠϕ
B

P (µ) , whereas the fintech’s break-even bid becomes Rϕ
F = rϕE . The two thresholds in

average quality are

µ̄ϕ =
rB − prϕE

(1− p)rϕE − (1− ϕ)λ(1− α)(rF − rB)

µϕ =
rB − pR

(1− p)R− (1− ϕ)λ(1− α)(rF − rB)

Proof of Proposition 5

Proof. When the partnership funding market competitiveness is ϕ then borrowers at µ̄(ϕ) are

funded only by the bank at a rate rϕ.

When the partnership funding market competitiveness is ϕ′ then borrowers at µ̄(ϕ) are inside

of the collaboration-competition region and can be funded by either lender. The lenders’ bidding

cdfs are given by

F ϕ′

B (x) =
x−Rϕ′

B (µ)

x− rϕ
′

E

F ϕ′

F (x) =
P (µ)x− rB − µΠϕ′

B

µ(x− rB −Πϕ′

B )
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Consider ϕ′ sufficiently close enough to ϕ, i.e. ϕ′ = ϕ+ ε and do a Taylor expansion:

rϕ
′

E = rϕE − 2ελ(1− α)(rF − rB)

Πϕ′

B = Πϕ
B − ελ(1− α)(rF − rB)

Rϕ′

B = Rϕ
B − µ

P (µ)
ελ(1− α)(rF − rB)

Next do a Taylor expansion of the bank’s CDF:

F ϕ′

B (x) = F ϕ
B(x)−

(x− rϕE)
µ

P (µ) + 2(x−Rϕ
B(µ))

(x− rϕE)
2

ελ(1− α)(rF − rB)

That is, the bank’s bidding CDF FOSD increases, i.e., the bank offers higher interest rates.

Finally, do a Taylor expansion of the fintech’s CDF:

F ϕ′

F (x) = F ϕ
F (x) + (1− µ)

rB − px

(x− rB −Πϕ
B)

2
ελ(1− α)(rF − rB)

While the fintech’s bidding CDF FOSD decreases.

At µ = µ(ϕ) the probability of bank lending is of the order 1 + O(ε) while the probability of

fintech lending is of the order O(ε). Hence, the change in the borrower’s expected payoff is driven

(up to the first order effect) by the bank’s bidding CDF26. Due to the FOSD increase of the bank’s

bidding CDF the expected payoff goes down.

This argument proves that
∂

∂ϕ
VH(µ, ϕ) < 0,

for µ = µ̄(ϕ).

Moreover, the partial derivative ∂
∂ϕVH(µ, ϕ) is continuous in competition-collaboration region.

Hence, there exists µ̂(ϕ) ∈ (µ(ϕ), µ̄(ϕ)) such that the partial derivative is negative for all µ ∈

(µ̂(ϕ), µ̄(ϕ)).

26Since fintech wins with probability proportional to ε, it’s bid can be approximated by Fϕ
F which has a mass point

of 1 on rϕE . But r
ϕ
E is rate offered by the bank at µ̄(ϕ) when partnership funding competition is ϕ. Hence, the change

of the high-type borrower’s expected payoff is zero when fintech wins.
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B Case Studies

We present some real-world cases of competition and collaboration between banks and fintech firms.

OnDeck

OnDeck is an online small business lending company in the United States. Enova International acquired

it in 2020. Below, we will describe the credit products and funding structure of OnDeck.

Credit products. OnDeck offers both term loans (a general lien on business assets) and (unsecured)

credit lines to small businesses with low to fair credit history. The first loan was made in 2007. The limit of

the credit lines varies between $6,000 and $100,000, with a 12-month repayment schedule that is reset after

each drawdown. The size of the term loans varies between $5,000 and $250,000, with a repayment schedule

of up to 12 months. Both programs have a nice feature of instant or same-day funding transfers, which is a

big advantage over the standard ACH bank transfers that can take up to three business days.

Borrower eligibility. OnDeck imposes the following minimum requirements: 1 year in business, a

personal FICO score of 625, an annual revenue of $100,000, and a business bank account. Both credit

programs have a starting APR of around 29.9%. As of March 31, 2022, the average APR for credit lines is

48.9%, and the one for term loans is 62.1%.

Credit allocation criteria. OnDeck has a proprietary small business credit scoring system, named

“OnDeck Score”, to assess the creditworthiness of a small business in real-time. The OnDeck Score uses

machine learning and other statistical techniques to automate and optimize credit assessment, and the

algorithm evolves continuously. The data include both information submitted by the customer and data from

third parties. The data points include customer bank activity shown on their bank statements, government

filings, tax and census data, reputation, and social data. Moreover, borrowers with an excellent payment

history on prior loan products with OnDeck can enjoy the lowest rates. OnDeck claims that their OnDeck

Score system is much more accurate in assessing credit risks than using only personal credit scores.

Competition and collaboration with banks. Several banks have collaborations with OnDeck,

albeit in different forms. These include:
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• Direct funding through credit lines. In 2013, it received a credit line from Deutsche Bank, Key Bank,

and Square 1 Bank. In 2016 and 2018, OnDeck received revolving credit lines from Credit Suisse. In

2019, OnDeck established a revolving credit facility of $85 million with SunTrust Bank, Silicon Valley

Bank, MB Financial Bank, and Congressional Bank.

• Funding partnerships. OnDeck partners with Celtic, a Utah-Chartered Bank, in making small-business

loans. During the pandemic, they provide emergency relief loans to small businesses through the Pay-

check Protection Program. The loans can be issued by either OnDeck or by Celtic Bank.27 The website

of OnDeck (https://www.ondeck.com/resources/top-10-faqs) suggests that whether OnDeck or

Celtic issues the loan depends mostly on the state where the business is located and other attributes.

It remains unclear what these other attributes are. The borrowing firm will figure this out before it

signs the loan agreement. According to the 10-K Form filed by Enova in 2021, if Celtic issues the loan,

OnDeck receives marketing fees, while the issuing bank (Celtic) receives origination fees and certain

program fees. Meanwhile, OnDeck may also purchase these loans from Celtic. According to the 10-Q

form filed by Enova in 2020 Q1, OnDeck purchased loans of $109.7 million from Celtic in the three

months that ended March 31, 2020. If OnDeck originates the loan or if OnDeck purchases the loan, it

is exposed to default risks.

Besides Celtic, JP Morgan Chase also had a three-year partnership with OnDeck which began in 2015

but ended early in 2019. This partnership is also about small business loans. In 2019, JP Morgan

Chase launched its own small business lending platform called “Quick Accept”. This platform could

be seen as a competitor to OnDeck.

• Interestingly, the Celtic bank also provides financing for small businesses. In fact, the Celtic bank

has ranked in the top ten SBA lenders nationally every year since 2013.28 It issues loans to small

firms from hundreds of industries nationwide.29 Interestingly, the website of the Celtic bank does not

explicitly mention its partnership with OnDeck.

27https://www.ondeck.com/short-term-loans
28https://www.celticbank.com/company
29https://www.celticbank.com/

B.22

https://www.ondeck.com/resources/top-10-faqs
https://www.ondeck.com/short-term-loans
https://www.celticbank.com/company
https://www.celticbank.com/


C Online Appendix

C.1 Analysis of Section 6.1 (Why Don’t Lenders Collude?)

Suppose that if the bank and fintech firm cannot reach an agreement over the collusion contract, then

they proceed to compete using their own funding, i.e., the bank and fintech firm can commit to shut down

partnership funding market. Then the IR constraints can be rewritten as

V̂B + V̂i ≥ VB + Vi ⇔ µ(rC − rB) ≥ 0 (IRB)

V̂F ≥ VF ⇔ µ(R− rC) ≥ µ

(
rB

P (µ)
− rF

)
. (IRF )

for µ ∈
[
rB/R−p

1−p , rB/rF−p
1−p

]
and

V̂B + V̂i ≥ VB + Vi ⇔ µ(rC − rB) ≥ P (µ)rF − rB (IRB)

V̂F ≥ VF ⇔ µ(R− rC) ≥ 0. (IRF )

for µ ∈
(

rB/rF−p
1−p , 1

]
.

The IC constraint of the bank remain the same in both regions:

V̂B + V̂i ≥ P (µ)R− rB ⇔ µ(rC − rB) ≥ P (µ)R− rB . (ICB)

In the region
[
rB/R−p

1−p , rB/rF−p
1−p

]
collusion generates surplus of µ (R− rB) − (P (µ)rF − rB) while the

bank deviation is P (µ)R−rB− (P (µ)rF −rB). Since µ(R−rB) > P (µ)R−rB , in this region there is always

enough surplus to sustain collusion.

However, when µ is close to 1, (ICB) implies that the collusion rate rC needs to be close to R in order

to prevent the bank deviation. This feature contradicts the fintech firm IC constraint rC ≤ rF - it would

prefer to avoid using costly rC ≈ R bank funding and instead rely on its own rF < R funding source.
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C.2 Analysis of Section 5.3 (Fintech Competition)

Let us first provide the specific thresholds.

R2F
B =

rB + µ(1− e21)ΠB

µ+ (1− µ)p

R2F
F = rE

µ̄2F =
rB − prE

rE(1− p)− (1− e21)ΠB

µ2F =
rB − p[e1R+ (1− e1)rE ]

(1− p)[e1R+ (1− e1)rE ]− (1− e21)ΠB
.

The threshold R̄2F
B is determined from Equation (C.15) and (C.21) later in this subsection.

Similar to the analysis of Section 3. Define R2F
B as the lowest rate the bank is willing to bid in the

absence of the winner’s curse:

P (µ)R2F
B − rB = µ(1− e21)ΠB ⇒ R2F

B :=
rB + µ(1− e21)ΠB

µ+ (1− µ)p
,

where e1 is the Type I error. With only Type I error, conditional on receiving a good signal, a fintech is

certain that it is facing a high-quality borrower. Consequently, the lowest rate it is willing to offer is

R2F
F = rE .

The signals that the two competing fintechs receive generate three events: (g, g) - both fintechs receive good

signals, (b, b) - both fintechs receive bad signals, and (g, b) - fintechs receive conflicting signals. The ex-ante

probabilities of these events and the corresponding posteriors are as follows:

qgg = µ(1− e1)
2 qbg = µe1(1− e1) qbb = µe21 + (1− µ)

µgg = µbg = 1 µbb =
µe21
qbb

Throughout, we assume e1 is sufficiently low such that even a single negative signal turns the project into

negative NPV. Consequently, fintechs will bid only after a positive signal.

Proof of Proposition 6

Proof. Start with Case 3: suppose that R2F
B < R2F

F or, equivalently, that

µ ≥ µ̄2F :=
rB − prE

(1− p)rE − (1− e21)ΠB
. (C.14)
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In this parametric region, the bank has a dominant cost advantage. The bank always bids R2F
F and wins.

Fintechs bid in (R2F
F , R] make zero profits and sometimes do not participate.

We only need to satisfy the bank’s indifference constraint so that the bank does not bid above R2F
F :

P (µ)R2F
F − rB ≥ qgg[(1− FF (R̃))2(R̃− rB) + (1− (1− FF (R̃))2)ΠB ]

+ 2qbg[(1− FF (R̃))(R̃− rB) + FF (R̃)ΠB ] + qbb[P (µbb)R̃− rB ].

In the case that the constraint binds, we get FF (R
2F
F ) = 0 and FF (R) < 1. The remaining mass 1− FF (R)

is the probability that each fintech lender does not participate.

Case 2: next, suppose that R2F
F < R2F

B ≤ e1R + (1 − e1)R
2F
F or, equivalently, µ2F ≤ µ < µ̄2F . In this

parametric region bank’s cost advantage and fintechs’ information advantage are comparable in magnitudes.

We construct a mixed strategy equilibrium: the bank bids in [R2F
B , R̄2F

B ] and a mass probability of not

bidding and receiving µ(1 − e21)ΠB that are identical to the outside option, fintech lenders bid in [R2F
B , R]

and make positive profits.

In region [R2F
B , R̄2F

B ], everyone bids. The bank’s indifference condition is:

µ(1− e1)
2ΠB = qgg[(1− FF (R̃))2(R̃− rB) + (1− (1− FF (R̃))2)ΠB ]

+ 2qbg[(1− FF (R̃))(R̃− rB) + FF (R̃)ΠB ] + qbb[P (µbb)R̃− rB ]. (C.15)

We start with bank’s IC, for R̃ = R2F
B it holds when

FF (R
2F
B ) = 0.

Then we keep solving it for any R̃ in the interval to pin down FF (R̃) for R̃ ∈ [R2F
B , R̄2F

B ].

Next, consider the fintech’s indifference condition in R̃ ∈ [R2F
B , R̄2F

B ]:

R2F
B − rE = (1− FB(R̃)) · [(1− e1)(1− FF (R̃)) + e1](R̃− rE). (C.16)

Fintech’s IC then pins down the bank’s bidding CDF FB :

R2F
B − rE

R̃− rE
· 1

(1− e1)(1− FF (R̃)) + e1
= 1− FB(R̃), R̃ ∈ [R2F

B , R̄2F
B ]. (C.17)

In the region [R̄2F
B , R] only the fintechs bid, so only their condition is tight:

R2F
B − rE = (1− FB(R̄

2F
B )) · [(1− e1)(1− FF (R̃)) + e1](R̃− rE) (C.18)

1

1− e1
·

(
R2F

B − rE

R̃− rE
· 1

1− FB(R̄2F
B )

− e1

)
= 1− FF (R̃).
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Since we also need to have FF (R) = 1 and cannot have a mass probability at R (otherwise fintechs would

undercut each other), it must be that

R2F
B − rE
R− rE

· 1

e1
= 1− FB(R̄

2F
B ) (C.19)

Since FB(R̄
2F
B ) ≥ 0 the last equation pins down µ2F as:

R2F
B − rE
R− rE

· 1

e1
≤ 1

µ ≥ µ2F :=
rB − p[e1R+ (1− e1)rE ]

(1− p)[e1R+ (1− e1)rE ]− (1− e1)2ΠB

Moreover, plugging (C.19) into (C.18), we get

e1
1− e1

(
R− rE

R̃− rE
− 1

)
= 1− FF (R̃), R̃ ∈ [R̄2F

B , R]. (C.20)

At R̄2F
B the CDF FF needs to satisfy the bank’s IC (C.15) and the equation above, i.e.

e1
1− e1

(
R− rE

R̄2F
B − rE

− 1

)
= 1− FF (R̄

2F
B ) (C.21)

simultaneously. Notice that this constraint always pins down R̄2F
B in [R2F

B , R]. Since the solution of (C.15) is

an increasing in R̃ functions that satisfies FF (R
2F
B ) = 0 and FF (R) > 1. While e1

1−e1

(
R−rE
R̃−rE

− 1
)
is a decreas-

ing function of R̃ with an above 1 value at R2F
B (corresponding FF is negative) and 0 at R (corresponding

FF equals to 1).

To make sure that this construction is an equilibrium we only need to verify that the bank does not want

to bid in (R̄2F
B , R]. This holds by construction since R̄2F

B is the intersection of the bank’s IC with the CDF

FF implied by the fintech’s IC (which is higher). Higher CDF implies a stronger winner’s curse and makes

the outside option more attractive relative to bidding. Technically, this follows from the single crossing of

the two curves defined by equations (C.15) and (C.20) which we show below.

Case 1: finally, suppose that R2F
B > e1R + (1 − e1)R

2F
F or, equivalently, µ < µ2F . In this parametric

region, fintechs’ information advantage and resulting winner’s curse dissuade the bank from participating in

the market.

We construct a mixed strategy equilibrium: the bank never bids and fintech lenders bid in [R,R] and

make positive profits with R = (1− e1)R
2F
F + e1R. Since fintechs play a mixed strategy, their IC constraint

should bind fintech’s indifference condition:

R− rE = [(1− e1)(1− FF (R̃)) + e1](R̃− rE), (C.22)
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which gives

FF (R̃) =
R̃−R

R̃− rE
· 1

1− e1
. (C.23)

The lower bound of the fintechs’ bidding distribution is pinned down implicitly by

FF (R) = 1. (C.24)

Hence R = (1− e1)R
2F
F + e1R.

To ensure the bank’s non-participation we must have the following:

µ(1− e1)
2ΠB > qgg[(1− FF (R̃))2(R̃− rB) + (1− (1− FF (R̃))2)ΠB ] (C.25)

+ 2qbg[(1− FF (R̃))(R̃− rB) + FF (R̃)ΠB ]

+ qbb[P (µbb)R̃− rB ]

for all R̃ ∈ [R2F
B , R]. This inequality holds here by extending the argument from Case 2. It follows directly

from the single crossing of the two curves defined by equations (C.15) and (C.20) which we show below.

Single Crossing of the Two CDFs. We will now verify that the two CDF curves defined by equations

(C.15) and (C.20) satisfy single crossing property. The first CDR define by (C.15) is

µ(1− e1)
2ΠB = qgg[(1− F1(x))

2(x− rB) + (1− (1− F1(x))
2)ΠB ] (C.26)

+ 2qbg[(1− F1(x))(x− rB) + F1(x)ΠB ]

+ qbb[P (µbb)x− rB ]

Take d/dx to get

0 = qgg(1− F1(x))
2 + 2qgg[ΠB − (x− rB)](1− F1(x))F

′
1(x) (C.27)

+ 2qbg(1− F1(x)) + 2qbg[ΠB − (x− rB)]F
′
1(x)

+ qbbP (µbb)

and rewrite it as

(x− rB −ΠB)F
′
1(x)− (1− F1(x)) =

qbbP (µbb)− qgg(1− F1(x))[x− rB −ΠB ]F
′
1(x)

qgg(1− F1(x)) + 2qbg
(C.28)

The second CDF define by (C.20) is

e1(R− rE) = [(1− e1)(1− F2(x)) + e1](x− rE), (C.29)
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With d/dx equals to

0 = (1− e1)(1− F2(x)) + e1 − (1− e1)(x− rE)F
′
2(x) (C.30)

or

(x− rE)F
′
2(x)− (1− F2(x)) =

e1
1− e1

(C.31)

We want to show that F ′
2(x) > F ′

1(x) whenever F2(x) = F1(x). Notice that for small p and e1 the r.h.s.

of (C.28) is smaller than the r.h.s. of (C.31) because qbbP (µbb) ∼ e21. At the same time, the second term in

the l.h.s. of (C.28) 1− F1 is the same as the second term in the l.h.s. of (C.31) 1− F2. Finally, recall that

x − rE < x − rB − ΠB . Hence, a smaller multiplier x − rE on F ′
2(x) in (C.31) results in bigger r.h.s. than

(C.28) - this is only possible if F ′
2(x) > F ′

1(x).
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C.3 Analysis of Section 5.4 (Dissecting Mean and Variance Effects)

The following section characterizes the equilibrium outcome and lenders’ profits in the case when fintech

gets a perfectly informative signal with probability γ. Although changing µ in the main version of our model

affects both the average quality of the pool and the degree of adverse selection (via variance), changing γ

affects only the degree of adverse selection.

Here is a quick summary of the results obtained in the model with γ:

1. The three region structure of the equilibrium (collaborate for low µ, compete and collaborate for

intermediate µ, bank dominance for high µ) remains the same for all γ ∈ (0, 1]

2. For a fixed γ the profit functions of the lenders (for different µ) look qualitatively similar to the case

of the main model, i.e., γ = 1: bank’s profits are increasing in µ and fintech’s profits peak in the

competition-collaboration region.30

3. Partnership funding has similar effect on lender’s profits across all γ > γ. That is, fintech prefers to

partner with the bank (λ = 1) instead of competing without partnership (λ = 0). While the bank

prefers partnership (λ = 1) only when µ is sufficiently high.

4. Variance effect: For a fixed µ, increasing γ (an increase in adverse selection) could decrease or increase

the amount of lending competition. The former happens when the average quality µ of the pool is

sufficiently small: higher adverse selection forces the bank to retreat from direct lending and rely more

on partnership funding. The latter happens when the average quality of the pool is sufficiently large.

Higher adverse selection reduces the bank’s profits from lending to U and L types only and increases

its incentives to capture the whole market by undercutting fintech.

5. Mean effect: to isolate the effect of the mean we can adjust γ = γ(µ) to keep the variance V ar(pθ)

constant. Along such an iso-variance curve the lending pattern is similar to our main model: bank

dominance when the average pool quality is high, competition and collaboration for intermediate

quality, and collaboration only in low quality pools.

Augment the baseline model so that fintech gets a perfectly informative signal with probability γ, and

with probability 1 − γ it gets no signal at all. With such a modification the model effectively becomes a 3

30Unlike the main model, for γ ∈ (0, 1) the profits of the lender’s might be discontinuous in µ. The discontinuity

occurs due to a discrete change in the bank’s outside option depending on whether the fintech is willing to bid after

receiving an uninformative signal.
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type model θ ∈ {H,U,L} with probabilities of repayment

pH = 1, pU = µ+ (1− µ)p, pL = p,

and prior

Pr(θ = H) = γµ, Pr(θ = U) = 1− γ, Pr(θ = L) = γ(1− µ).

Define the H break-even bids for the fintech

RH
F =

rE
1

Since in the partnership funding stage the lending decision is sunk, the fintech would have to lend to U

type regardless of whether it receives partnership funding. In this case partnership funding generates surplus

λ(rB − rF ) and we can define the U break-even bid for the fintech as

RU
F =

rE
pU

=
rE

µ+ (1− µ)p
. (C.32)

When RU
F ≥ R the fintech does not bid for the U type with certainty and when RU

F < R the fintech could

bid for the U type. This is what determines the following two cases.

Case 1: µ < µ∗, i.e., RU
F > R In this case the fintech bids only after the G signal and never bids after

a U signal or B signal.

In this region, the bank has three choices now:

1. lend to all directly (at the rate at most RH
F ) and receive no partnership funding

2. lend to U and L (at the rate R) and receive partnership funding from H

3. lend to no-one directly and receive partnership funding from H

The comparison between 1 and 3 boils down to

(µ+ (1− µ)p)RH
F − rB vs. γµΠB

RH
F vs.

rB + γµΠB

(µ+ (1− µ)p)
=: RH

B

The comparison between 2 and 3 boils down to

(1− γ)(pUR− rB) + γ(1− µ)(pR− rB) + γµΠB vs. γµΠB

[(1− γ)pU + γ(1− µ)p]R vs. [1− γ + γ(1− µ)]rB

R vs.
[1− γ + γ(1− µ)]rB
(1− γ)pU + γ(1− µ)p

=: RU
F
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The comparison between 1 and 2 boils down to

(µ+ (1− µ)p)RH
F − rB vs. (1− γ)(pUR− rB) + γ(1− µ)(pR− rB) + γµΠB

γµ(RH
F − rB) vs. [(1− γ)pU + γ(1− µ)p](R−RH

F ) + γµΠB

γµ(RH
F − rB −ΠB) vs. [(1− γ)pU + γ(1− µ)p](R−RH

F )

Recall that rE = λρ+ (1− λ)rF and ΠB = λ(ρ− rB) and as a result RU
F (µ) > RH

B (µ).

Consider all possible sub-cases:

Sub-case 1.1 1 > 3, 1 > 2 [Bank always lends to HUL] In this case lending directly (option 1) is

the dominant option. The bank bids RH
F , always wins and receives no partnership funding. The fintech bids

RH
F after good signal and does not bid otherwise. The bank does not deviate to a higher interest rate, since

it loses H type borrowers, and in the best-case scenario (when it bids R and gets U and L) it still prefers

1 > 2.

Lenders’ profits are

VF = 0 VB + VP = [µ+ (1− µ)p]RH
F − rB (C.33)

Sub-case 1.2 2 > 1, 2 > 3 [Bank always lends to UL and lenders c&c for H] Here option

2 is the dominant one. That is, the bank strictly prefers to forgo the H type and bid R lending only to U

and L as opposed to not bidding at all or undercutting the fintech at rE and lending to HUL.

Effectively the bank wants to split the market and charge R to UL as long as the fintech charges rE to

H. However, the bank just bidding R cannot be an equilibrium. If the bank were to only bid R and lend to

UL, the fintech would not bid rE for the high types, instead it would bid R − ε. But then the bank could

decrease the bid to R− 2ε, profitably undercut the fintech, and lend to HUL.

Hence, the bank cannot completely give up on the H types in equilibrium and need to put the price

pressure on the fintech to prevent it charging R to the H types. In the conjectured equilibrium (similar to

Sub-cases 2.2) the fintech and the bank bid in [R∗, R] where R∗ ∈ (rE , R) is pinned down by

[µ+ (1− µ)p]R∗ − rB = (1− γ)(pUR− rB) + γ(1− µ)(pR− rB) + γµΠB . (C.34)

That is, the bank is indifferent between charging R∗ while lending to HUL and charging R while lending to

UL only.
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The fintech’s bidding cdf, i.e., Pr(F̃ < x) for x ∈ (R∗, R) is pinned down by the bank’s indifference for

bidding x vs. R∗:

[µ+ (1− µ)p]R∗ − rB = (1− γ)(pUx− rB) + γ(1− µ)(px− rB)

+ γµ[Pr(F̃ ≥ x)(x− rB) + Pr(F̃ < x)ΠB ] (C.35)

Notice that the Pr(F̃ < R∗) = 0 and the cdf is continuous at R∗, hence, the fintech has no mass point of

bidding at R∗.

At R we have

(1− γ)(pUR− rB) + γ(1− µ)(pR− rB)

+γµ[Pr(F̃ ≥ R)(x− rB) + Pr(F̃ < R)ΠB ] = [µ+ (1− µ)p]R∗ − rB

= (1− γ)(pUR− rB) + γ(1− µ)(pR− rB) + γµΠB

Hence, Pr(F̃ < R) = 1 and the fintech does not have a mass point of bidding at R.

The bank bidding cdf, on the other hand, is pinned down by fintech’s indifference

R∗ − rE = Pr(B̃ > x) · (x− rE) x ∈ (R∗, R). (C.36)

Notice that the Pr(B̃ > R∗) = 1, i.e., the bank has no mass point of bidding at R∗, and Pr(B̃ = R) =

(R∗ − rE)/(R−RE) > 0, hence the bank has a mass point of bidding at R.

In such construction the bank bids in (R∗, R] and the fintech bids in (R∗, R). None of the lenders want to

deviate to any bid x < R∗ (since it is strictly dominated by bidding R∗). Both of the lenders are indifferent

between following their mixed strategies and deviate to bidding R∗ (by construction). Finally, the fintech’s

deviation to bidding R is strictly unprofitable due to the bank’s bidding mass point at R and borrowers

preferring the bank in case of a tie (bidding R− ε is always better than bidding R).

The Lenders’ profits are

VF = γµ(R∗ − rE) VB + VP = (1− γ)(pUR− rB) + γ(1− µ)(pR− rB) + γµΠB (C.37)

Sub-case 1.3 1 < 3, 2 < 3 Here option 3 is the dominant one. That is, the bank strictly prefers to step

away from direct lending as opposed to lending to UL at R or lending to HUL at rE .
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Sub-case 1.3a 1 < 3, 2 < 3, RH
B ≥ R [Lenders only collaborate] If the bank does not bid, then

absent competition the fintech would charge R. If

(µ+ (1− µ)p)R− rB ≤ γµΠB

R ≤ rB + γµΠB

(µ+ (1− µ)p)
=: RH

B

R ≤ RH
B

Then non-bidding by the bank is an equilibrium (this is complete collaboration case). The equilibrium profits

are:

VF = γµ(R− rE) VB + VP = γµΠB (C.38)

Sub-case 1.3b 1 < 3, 2 < 3, RH
B < R [Bank sometimes lends to UL lenders c&c for H] If,

however, RH
B < R then non-bidding by the bank is not an equilibrium. We can construct an equilibrium

similar to our competition-collaboration case of the main paper. In such equilibrium, the bank bids in

(RH
B , R) and has a mass point of not bidding at all, and the fintech bids in (RH

B , R] with a mass point at R.

The equilibrium profits are:

VF = γµ(RH
B − rE) VB + VP = γµΠB (C.39)

Case 2: µ > µ∗, i.e., RU
F < R. In this case the fintech could bid after the U signal as well.

In this region the bank has three choices now:

1. lend to all directly (at the rate at most RH
F ) and receive no partnership funding

2. lend to U and L (at the rate at most RU
F ) and receive partnership funding from H

3. lend to no-one directly and receive partnership funding from H and U

The comparison between 1 and 3 boils down to

(µ+ (1− µ)p)RH
F − rB vs. [γµ+ (1− γ)]ΠB

RH
F vs.

rB + [γµ+ (1− γ)]ΠB

(µ+ (1− µ)p)
=: RH

B
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The comparison between 2 and 3 boils down to

(1− γ)(pUR
U
F − rB) + γ(1− µ)(pRU

F − rB) + γµΠB vs. [γµ+ (1− γ)]ΠB

[(1− γ)pU + γ(1− µ)p]RU
F vs. [1− γ + γ(1− µ)]rB + (1− γ)ΠB

RU
F vs.

[1− γ + γ(1− µ)]rB + (1− γ)ΠB

(1− γ)pU + γ(1− µ)p
=: RU

B

The comparison between 1 and 2 boils down to

(µ+ (1− µ)p)RH
F − rB vs. (1− γ)(pUR

U
F − rB) + γ(1− µ)(pRU

F − rB) + γµΠB

γµ(RH
F − rB) vs. [(1− γ)pU + γ(1− µ)p](RU

F −RH
F ) + γµΠB

γµ(RH
F − rB −ΠB) vs. [(1− γ)pU + γ(1− µ)p](RU

F −RH
F )

These inequalities give rise to the following cases.

Sub-case 2.1 1 > 3, 1 > 2 [Bank always lends to HUL] In this case lending directly (option 1)

is the dominant option. The bank bids RH
F , always wins and receives no partnership funding. The fintech

bids RH
F after good signal and RU

F after no signal to prevent the bank’s deviations to higher interest rates.

Lenders’ profits are

VF = 0 VB + VP = [µ+ (1− µ)p]RH
F − rB (C.40)

Sub-case 2.2 2 > 1, 2 > 3 [Bank lends to UL and lenders c&c for H] Here option 2 is the

dominant one. That is, the bank strictly prefers to forgo the H type and bid RU
F lending only to U and L

as opposed to not bidding at all or undercutting the fintech at rE and lending to HUL.

Effectively the bank wants to split the market and charge RU
F to UL as long as the fintech charges rE

to H. However, the bank just bidding RU
F cannot be an equilibrium. If the bank were to only bid RU

F and

lend to UL, the fintech would not bid rE for the high types, instead it would bid RU
F − ε. But then the bank

could decrease the bid to RU
F − 2ε, profitably undercut the fintech, and lend to HUL.

Hence, the bank cannot completely give up on the H types in equilibrium and need to put the price

pressure on the fintech to prevent it charging RU
F to the H types. In the conjectured equilibrium (similar to

Sub-cases 1.2) the fintech and the bank bid in [R∗, RU
F ] where R∗ ∈ (rE , R

U
F ) is pinned down by

[µ+ (1− µ)p]R∗ − rB = (1− γ)(pUR
U
F − rB) + γ(1− µ)(pRU

F − rB) + γµΠB (C.41)
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That is, the bank is indifferent between charging R∗ while lending to HUL and charging RU
F while lending

to UL only.

The fintech’s bidding cdf, i.e., Pr(F̃ < x) for x ∈ (R∗, RU
F ) is pinned down by the bank’s indifference for

bidding x vs. R∗:

[µ+ (1− µ)p]R∗ − rB = (1− γ)(pUx− rB) + γ(1− µ)(px− rB)

+ γµ[Pr(F̃ ≥ x)(x− rB) + Pr(F̃ < x)ΠB ] (C.42)

Notice that the Pr(F̃ < R∗) = 0 and the cdf is continuous at R∗, hence, the fintech has no mass point of

bidding at R∗.

At RU
F we have

(1− γ)(pUR
U
F − rB) + γ(1− µ)(pRU

F − rB)

+γµ[Pr(F̃ ≥ RU
F )(x− rB) + Pr(F̃ < RU

F )ΠB ] = [µ+ (1− µ)p]R∗ − rB

= (1− γ)(pUR
U
F − rB) + γ(1− µ)(pRU

F − rB) + γµΠB

Hence, Pr(F̃ < RU
F ) = 1 and the fintech does not have a mass point of bidding at RU

F .

The bank bidding cdf, on the other hand, is pinned down by fintech’s indifference

R∗ − rE = Pr(B̃ > x) · (x− rE) x ∈ (R∗, RU
F ). (C.43)

Notice that the Pr(B̃ > R∗) = 1, i.e., the bank has no mass point of bidding at R∗, and Pr(B̃ = RU
F ) =

(R∗ − rE)/(R
U
F −RE) > 0, hence the bank has a mass point of bidding at RU

F .

In such construction the bank bids in (R∗, RU
F ] and the fintech bids in (R∗, RU

F ) after the good signal.

None of the lenders want to deviate to any bid x < R∗ (since it is strictly dominated by bidding R∗).

Both of the lenders are indifferent between following their mixed strategies and deviate to bidding R∗ (by

construction). The fintech’s deviation to bidding RU
F after the good signal is strictly unprofitable due to

the bank’s bidding mass point at RU
F and borrowers preferring the bank in case of a tie (bidding RU

F − ε is

always better than bidding RU
F ). To prevent the bank from bidding above RU

F the fintech bids RU
F after the

U signal but this bid never wins.

The Lenders’ profits are

VF = γµ(R∗ − rE) VB + VP = (1− γ)(pUR
U
F − rB) + γ(1− µ)(pRU

F − rB) + γµΠB (C.44)
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Sub-case 2.3 1 < 3, 2 < 3 Here option 3 is the dominant one. That is, the bank strictly prefers to step

away from direct lending as opposed to lending to UL at RU
F or lending to HUL at rE .

If the bank were not to bid, the fintech would bid R after both H and U signals. The bank prefers to

stay out if and only if both RH
B ≥ R and RU

B > R.

However, we have

R > RU
F =

rE
µ+ (1− µ)p

>
rB + [γµ+ (1− γ)]ΠB

µ+ (1− µ)p
= RH

B > rE ,

hence no bidding by the bank cannot be an equilibrium.

We have two possible sub-cases depending on RU
B vs R:

Sub-case 2.3a 1 < 3, 2 < 3, RU
B ≥ R [Bank sometimes lends to L lenders c&c for HU ] In

this case the bank does not want to lend to UL even at the rate of R. Construct the equilibrium as follows:

after the U signal the fintech bids R. And after the H signal the bank mixes in (RH
B , R] with a mass point

at R while the bank mixes in (RH
B , R) with a mass point of no bidding at all.

To make the fintech after the H signal indifferent the bank’s bidding cdf solves

RH
B − rE = Pr(B̃ > x) · (x− rE). (C.45)

Now check the incentives of the fintech after U signal. It is supposed to always bid R but could deviate

to x ∈ (RU
B , R):

Pr(B̃ > x)(pUx− rE) vs. Pr(B̃ > R)(pUR− rE)

Pr(B̃ > x)

Pr(B̃ > R)
vs.

pUR− rE
pUx− rE

R− rE
x− rE

vs.
pUR− rE
pUx− rE

R− rE
x− rE

<
pUR− rE
pUx− rE

Hence, the fintech after U signal does not want to deviate to x ∈ (RU
B , R) from R. Moreover, it does not to

deviate to any rate below RU
B either since it is strictly dominated by charging RU

B (which in turn is dominated

by charging R).

The fintech’s cdf after the H signal is pinned down by the bank’s indifference condition:

[γµ+ (1− γ)]ΠB = (1− γ)(pUx− rB) + γ(1− µ)(px− rB)

+ γµ[Pr(F̃ ≥ x)(x− rB) + Pr(F̃ < x)ΠB ]. (C.46)
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The lenders’ profits are

VF = γµ(RH
B − rE) + (1− γ) · R

H
B − rE
R− rE

(pUR− rE) (C.47)

VB + VP = [γµ+ (1− γ)]ΠB (C.48)

Sub-case 2.3b 1 < 3, 2 < 3, RU
B < R [Bank sometimes lends to L lenders c&c for HU ] In

this case we have rE < RH
B < RU

F < RU
B < R. Here the previous equilibrium construction does not work

since bidding R and lending to UL strictly dominates non-lending for the bank. Construct the equilibrium

as follows: after the H signal the fintech bids in (RH
B , RU

B ] with a mass point at RU
B . To make the fintech

after H signal indifferent the the bank bidding cdf in the region (RH
B , RU

B ] satisfies

RH
B − rE = Pr(B̃ > x) · (x− rE). (C.49)

After the U signal the fintech would bid in (RU
B , R] with a mass point at R (which the bank also does

not want to undercut). To make the fintech after U signal indifferent the the bank bidding cdf in the region

(RU
B , R] satisfies

pUR
U
B − rE = Pr(B̃ > x | B̃ > RU

B) · (pUx− rE). (C.50)

Bank’s bidding cdf makes sure that the fintech after H and after U signal is indifferent where to bid in

its own equilibrium bidding region. Moreover, mixing of the bank makes sure that after the U signal the

fintech does not want to bid below RU
B (just like in protected against downward deviations from R in case

2.3a). Finally, we need to check that after H signal the fintech does not want to bid x above RU
B :

Pr(B̃ > RU
B)(R

U
B − rE) vs. Pr(B̃ > x)(x− rE)

Pr(B̃ > RU
B | B̃ > RU

B)(R
U
B − rE) vs. Pr(B̃ > x | B̃ > RU

B)(x− rE)

Pr(B̃ > RU
B | B̃ > RU

B)

Pr(B̃ > x | B̃ > RU
B)

vs.
x− rE

RU
B − rE

pUx− rE

pUR
U
B − rE

vs.
x− rE

RU
B − rE

pUx− rE

pUR
U
B − rE

>
x− rE

RU
B − rE

Hence, given the bank bidding strategy the fintech does not want to deviate from the equilibrium mixing

after either U or H signal.

The fintech’s cdf after the H signal in region (RH
B , RU

B ] should make the bank indifferent between winning
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and losing H type:

[γµ+ (1− γ)]ΠB = (1− γ)(pUx− rB) + γ(1− µ)(px− rB)

+ γµ[Pr(F̃ ≥ x)(x− rB) + Pr(F̃ < x)ΠB ]. (C.51)

The fintech’s cdf after the H signal in region (RH
B , RU

B ] should make the bank indifferent between bidding

and not bidding at all:

[γµ+ (1− γ)]ΠB = (1− γ)(pUx− rB) + γ(1− µ)(px− rB)

+ γµ[Pr(F̃ ≥ x)(x− rB) + Pr(F̃ < x)ΠB ]. (C.52)

The fintech’s cdf after the U signal in region (RU
B , R

R
B ] should make the bank indifferent between bidding

and not bidding at all:

[γµ+ (1− γ)]ΠB = γµΠB + γ(1− µ)(px− rB)

+ (1− γ)[Pr(F̃ ≥ x)(pUx− rB) + Pr(F̃ < x)ΠB ]. (C.53)

The lenders’ profits are

VF = γµ(RH
B − rE) + (1− γ) · R

H
B − rE
R− rE

(pUR
U
B − rE) (C.54)

VB + VP = [γµ+ (1− γ)]ΠB (C.55)
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C.4 Analysis of Subsection 6.2 (Convenience Benefits and Sticky Banking Re-

lationships)

Fintech firm has the convenience benefits only. Consider the model in which the fintech firm

does not have information advantage and only has the convenience advantage. That is, both bank and

fintech firm share a common prior that the fraction of high-type borrowers in the pool is µ. Moreover, when

faced with a bid RB from a bank and RF from a fintech firm the borrowers will choose the bank whenever

RB < RF −∆F . The partnership funding market allows the fintech firm to obtain funding at a lower rate

and creates an additional source of profits for the bank. Similar to the main model the fintech firm’s effective

funding rate is rE and the per loan partnership funding profits of the bank are ΠB .

Define the following thresholds: µ
C
< µ̂C as the solutions of

R · P (µ
C
) = rB and R · P (µ̂C) = rE

respectively.

For µ < µ
C

we have R · P (µ) < rB < rE , hence neither lender participates.

For µ ∈ (µ
C
, µ̂C) we have rB < R · P (µ) < rE , hence only the bank participates and charges a rate R.

For µ > µ̂C we have rB < rE < R · P (µ), hence both lenders could participate. Who wins the bidding

game depends on the size of the fintech firm’s convenience advantage. Due to the presence of the partnership

funding market when µ > µ̂C , the lowest rate the bank is willing to charge is RB(µ) ≡ rB+ΠB

P (µ) (the outside

option is to retreat to the partnership funding market) and the fintech firm is willing to go as low as

RF (µ) ≡ rE
P (µ) (the outside option is not participating and generating zero profit). Note that for µ > µ̂C

we have RB(µ) ≤ RF (µ) < R and the inequality is strict whenever λ < 1. The fintech firm can undercut

the bank whenever RF (µ) < RB(µ) + ∆F or, equivalently, whenever P (µ)∆F > (1 − λ)(rF − rB). This

inequality gives rise to a cut-off µ̄C such that for µ > µ̄C the fintech firm is able to successfully undercut the

bank and lend, and for µ ∈ (µ̂C , µ̄C) the bank is able to undercut the fintech firm and lend. In particular,

µC is given by

µC ≡ (1− λ)(rF − rB)

∆F (1− p)
− p

1− p
.

Hence, generically, the equilibrium has four regions: µ < µ
C

- no lending (N); µ ∈ (µ
C
, µ̂C) - monopoly

bank lending (MB); µ ∈ (µ̂C , µ̄C) - competitive bank lending (CB); µ ∈ (µ̄C , 1] - competitive fintech lending

(CF).

Depending on the model parameters either of the regions (CB) or (CF) maybe be absent depending on

how µ̄C compares with 1 and µ̂C . If µ̄C ≥ 1, or ∆F ≤ (1− λ)(rF − rB), then the region (CF) is absent. If

C.39



µ̄C ≤ µ̂C , or ∆F ≥ (1−λ)(rF − rB) · R
rE

, then the region (CB) is absent. In the remaining case µ̄C ∈ (µ̂C , 1)

both regions (CB) and (CF) are present.

Fintech Convenience Benefits with Screening Advantage. The logic of Proposition 1 goes

through in case fintech has additional convenience benefits.

To proceed, we need to assume the fintech firm’s convenience benefit is small enough compared with the

financing cost, i.e., (1− p)(rE −∆F )−ΠB > 0. There are three cases:

1. When RB(µ) + ∆F ≥ R, or

µ ≤ µ ≡ rB − p(R−∆F )

(1− p)(R−∆F )−ΠB
,

the bank never lends and only derives profit from the partnership; the fintech firm offers a rate R if

and only if the good signal arrives.

2. When RF < RB(µ) + ∆F < R, or or µ ∈ (µ, µ) with

µ ≡ rB − p(rE −∆F )

(1− p)(rE −∆F )−ΠB
,

the bank retreats from the competition with a positive probability mass, and the fintech firm’s support

of mixed strategy starts with RB +∆F .

3. When RB(µ)+∆F < RF , or µ ∈ [µ, 1) the bank always outbids the fintech firm and offers an interest

rate RF −∆F .

Sticky Banking Relationships. Suppose now that the bank has a convenience benefit ∆B > 0, i.e.,

it wins the bid as long as RB +∆B < RF ; while the fintech firm retains the informational advantage as in

the benchmark model. This setting essentially lowers the minimal bid of the bank and extends the range of

beliefs that the bank can undercut the fintech firm. We can follow the logic of Proposition 1:

1. When RB(µ) ≥ R (low average quality, dominant information advantage), or

µ ≤ µ ≡ rB − pR

(1− p)R−ΠB
,

the bank never lends and only derives profit from the partnership; the fintech firm offers a rate R if

and only if the good signal arrives;

2. When RF +∆B < RB(µ) < R (intermediate quality, comparable banking and information advantage),

or µ ∈ (µ, µ) with

µ ≡ rB − p(rE +∆B)

(1− p)(rE +∆B)−ΠB
,
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the bank retreats from the competition with a positive probability mass, and the bank’s support of

mixed strategy starts with RB .

3. When RB(µ) ≤ RF +∆B (high average quality, dominant banking advantage), or µ ∈ [µ, 1), the bank

always outbids the fintech firm and offers an interest rate min{RF +∆B , R}.

Note that in the third range, ΠB ≡ 0 because the fintech firm never lends, and that RB(µ) should have been

changed accordingly to rB/P (µ). However, the original condition RB(µ) ≤ RF + ∆B implies rB/P (µ) <

RF +∆B , since ΠB jumps to 0 at the cutoff. As a result, this does not impact the discussion of the cutoffs

of µ.
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C.5 Analysis of Section 6.4 (Cream Skimming Model)

We modify the timing of events as follows:

• Stage 1

1. The fintech observes a signal s ∈ {b, g} for every borrower and offers an interest rate.

2. Each borrower either accepts or rejects the offer. The fintech will fund those who accept.

• Stage 2

1. The bank offers an interest rate to borrowers who remained.

2. Each borrower either accepts or rejects the offer. The bank will fund those who accept.

3. The fintech can turn to the bank to get partnership funding.

Suppose the fintech’s signal s satisfies

Pr(s = b |h) = e1 Pr(s = g | b) = 0.

In other words, we only consider the possibility of false negatives (e1 > 0), but the analysis easily extends to

the case with false positives (e2 > 0).31 The posterior beliefs, after observing the good and the bad signals

are

µg = 1 µb =
µe1

µe1 + (1− µ)
.

For the rest of the analysis, we will separately study the case of one bank and two banks.

C.5.1 One fintech and one bank

Being the monopoly lender in the second stage, the bank either offers the interest rate of R or does not

offer anything. Whenever the quality of the remaining pool is good enough, the bank offers R and extracts

all the surplus from borrowers; otherwise, it does not offer anything.

In anticipation of the bank’s strategy, the fintech always offers R after observing the good signal, and

this offer is always accepted.32 As a result, borrowers’ surplus is always zero. Whether the fintech makes

31When e1 = 0 fintech perfectly identifies all high quality borrowers and lends to them at rate R. Bank anticipate

the rejected pool consists only of low-quality borrowers and refuse to lend.
32While the borrower might be indifferent between receiving funding from the fintech or the bank at the rate R

the fintech can always bid R− ε to break this indifference.
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an interest-rate offer after a bad signal and whether the bank bids for the remaining pool depend on the

comparison between the maximum expected repayment P (µb)R and the lenders’ funding costs. There are

three cases.

Case 1: P (µb)R < rB < rE. In this case, the fintech does not bid after a bad signal, and the bank does

not offer an interest rate to the remaining pool. Lenders’ profits are:

VF = µ(1− e1)[R− rE ] VB + VP = µ(1− e1)ΠB ,

where VP are the bank’s profits from partnership funding.

Case 2: rB < P (µb)R < rE. In this case, the fintech does not bid after a bad signal, but the bank offers

R to the remaining pool. Lenders’ profits are:

VF = µ(1− e1)[R− rE ] VB + VP = (µe1 + 1− µ)[P (µb)R− rB ] + µ(1− e1)ΠB

Case 3: rB < rE < P (µb)R. In this case, the fintech offers R after a bad signal. The bank is also willing

to offer R, but the remaining pool is empty. This equilibrium is supported by the belief that any borrower

who rejects the fintech’s offer is at least as good as the one getting the bad signal. Lenders’ profits are:

VF = P (µ)R− rE VB + VP = ΠB

We plot in Figure C.1 lenders’ profits with and without partnership funding. Clearly, with partnership

funding, the fintech always receives higher profits and the bank always receives higher profits when µ is

either very high or is very low. For intermediate values of µ bank’s profits can be higher without partnership

funding (when α is high).

C.5.2 One fintech and two banks

In the second stage, banks compete away their direct lending profits to zero. They either bid the

break-even bid

RB(µ
′) =

rB
P (µ′)

,

where µ′ is the average quality of the remaining pool or do not offer any interest rate.

With two banks, we need to reexamine rE and ΠB . If the two banks can perfectly compete in the market

for partnership funding, the bargaining power of the fintech α = 1 hence rE = λrB +(1−λ)rF and ΠB = 0.

C.43



(a) Bank profits (b) Fintech profits

Figure C.1: Lenders’ profits with and without partnership funding µ (e1 = 0.1)

An alternative is that one of the two banks can sign an exclusive partnership agreement with the fintech so

that rE and ΠB would remain the same for a given α.

The equilibrium depends on how RB(µb) compares to R and rE . Again, there are three cases.

Case 1: rE < R < RB(µb). In this case, the banks do not make interest rate offers to the remaining

pool of quality µb. The fintech would also not make an interest rate offer after a bad signal. Following the

good signal, the fintech offers R. Lenders’ profits and the high-type borrower’s payoff are

VF = µ(1− e1)[R− rE ] VB + VP = µ(1− e1)ΠB VH = 0.

Case 2: rE < RB(µb) < R. In this case, the banks would make interest offers to the remaining pool of

quality µb. Given the interest rate RB(µb), the fintech would not make offers upon receiving a bad signal

(RB(µb) < RF (µb) := rE/P (µb)). Following the good signal, the fintech would offer RB(µb) to prevent the

H types from going to the banks (this is profitable since RB(µb) > rE). Lenders’ profits and the high-type

borrower’s payoff are

VF = µ(1− e1)[RB(µb)− rE ] VB + VP = µ(1− e1)ΠB VH = R−RB(µb).

Case 3: RB(µb) < rE < R. In this case, the banks would make interest offers to the remaining pool if

the quality were µb. Given the interest rate RB(µb), the fintech would not make offers after observing the

bad signal. Moreover, even following the good signal, the fintech would make losses at the rate RB(µb) < rE .
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(a) Bank profits (b) Fintech profits (c) High type payoff

Figure C.2: Payoffs with and without partnership funding µ (e1 = 0.1, α = 0.5)

If the fintech never makes offers to anyone, the quality of the remaining pool is µ. For a rejected pool of

higher quality (µ > µb) the banks are willing to bid RB(µ) which is lower than RB(µb) and, hence, smaller

than rE . In equilibrium, the banks offer RB(µ) in the second stage. Given this interest rate, the fintech

does not lend in the first stage as well. In equilibrium, the banks offer RB(µ) in the second stage, and all

borrowers accept. Lenders’ profits and the high-type borrower’s payoff are

VF = 0 VB + VP = 0 VH = R−RB(µ).

We plot in Figure C.2 lenders’ profits and the high-type borrower’s payoff with and without partnership

funding. In these graphs, α = 0.5. When α = 1, i.e., the banks perfectly compete away profits in the

partnership funding market, then the fintech profits and high type payoff look qualitatively similar. However,

the banks’ profits are zero regardless of λ. Once again, with partnership funding, the bank always receives

lower profits, and the fintech always receives higher profits.
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C.6 Ex-Ante Bargaining Over Partnership Rate

Suppose that the bank and the fintech first decide on whether to partner (keeping the size of the

partnership λ fixed) and the partnership rate ρ. Whether the lenders partner or not depends on the total

size of the lenders’ profits, while the partnership rate ρ should be used to split the surplus in the α and 1−α

proportions.

We assume limited commitment to partnership funding on the side of the fintech, that is if ρ > rF the

fintech would use its own funding sources as opposed to partnership funding.

Outside Option. Once we flip the timing, failure to establish partnership relationship leads to compe-

tition with λ = 0 just as in the out base-line model. The lenders’ profits are

VF =


µ(R− rF ),

µ
(

rB
µ+(1−µ)p − rF

)
,

0,

VB + VP =


0, if µ < µ(0)

0, if µ ∈ (µ(0), µ̄(0))

(µ+ (1− µ)p)rF − rB , if µ > µ̄(0)

Partnership Profits. Once the parties agree on λ and ρ then the lender’s profits are

VF =


µ(R− rE),

µ
(

rB+µλ(ρ−rB)
µ+(1−µ)p − rE

)
,

0,

VB + VP =


µλ(ρ− rB), if µ < µ(λ, ρ)

µλ(ρ− rB), if µ ∈ (µ(λ, ρ), µ̄(λ, ρ))

(µ+ (1− µ)p)rE − rB , if µ > µ̄(λ, ρ)

where rE = λρ+ (1− λ)rF and µ(λ, ρ) solves

rB + µλ(ρ− rB)

µ+ (1− µ)p
= R

µ(λ, ρ) =
rB −Rp

R(1− p)− λ(ρ− rB)

and µ̄(λ, ρ) solves

rB + µλ(ρ− rB)

µ+ (1− µ)p
= rE

µ̄(λ, ρ) =
rB − [λρ+ (1− λ)rF ]p

[λρ+ (1− λ)rF ](1− p)− λ(ρ− rB)
.

Case 1: µ < µ(0). Here the equilibrium outcome is the same with and without partnership. The total

surplus generated is:

S = µ(rF − rE) + µλ(ρ− rB) = µλ(rF − rB).
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And the split of profits is achieved via ρ∗(µ) = αrB + (1− α)rF .

Case 2: µ ∈ (µ(0), µ(λ, ρ)). Here the equilibrium outcome depends on whether the lenders establish

partnership funding or not. The total surplus generated is

S = −µ

(
rB

µ+ (1− µ)p
− rF

)
+ µλ(ρ− rB) + µ(R− rE)

= −µ

(
rB

µ+ (1− µ)p
−R

)
+ µλ(ρ− rB) + µ(rF − rE)

= µ

(
R− rB

µ+ (1− µ)p

)
+ µλ(rF − rB)

And the corresponding ρ solves

ρ∗(µ) = αrB + (1− α)rF +
1− α

λ

(
R− rB

µ+ (1− µ)p

)
> αrB + (1− α)rF . (C.56)

Case 3: µ ∈ (µ(λ, ρ), µ̄(0)). Here the equilibrium outcome is the same with and without partnership.

The total surplus generated is:

S = µ

(
µλ(ρ− rB)

µ+ (1− µ)p
+ rF − rE

)
+ µλ(ρ− rB)

= µ

(
µλ(ρ− rB)

µ+ (1− µ)p

)
+ µλ(rF − rB)

And the corresponding ρ solves (1− α)S = µλ(ρ− rB), or equivalently

(1− α)µ
(ρ− rB)

µ+ (1− µ)p
+ (1− α)(rF − rB) = ρ− rB .

Rearranging the terms yields

ρ∗(µ) = min

[
αrB + (1− α)rF − (1− α)µrB/(µ+ (1− µ)p)

1− (1− α)µ/(µ+ (1− µ)p)
, rF

]
(C.57)

Notice that the surplus generated by the partnership is increasing in ρ and hence is maximized at ρ = rF .

At the same time the bank’s partnership profits are also maximized at ρ = rF . Hence, if at ρ = rF the

(1 − α)S is greater than µλ(rF − rB) (which happens when α is small), then partnership rate is ρ∗ = rF ,

i.e., due to the limited commitment of the fintech to use partnership funding at a rate ρ > rF the fintech

gets more than α share of the surplus.

Case 4: µ ∈ (µ̄(0), µ̄(λ, ρ)). Here the equilibrium outcome depends on the collaboration. The total

surplus generated is:

µ

(
rB + µλ(ρ− rB)

µ+ (1− µ)p
− rE

)
+ µλ(ρ− rB)− [(µ+ (1− µ)p)rF − rB ].

C.47



and the corresponding ρ∗ solves

µλ(ρ∗ − rB) = (µ+ (1− µ)p)rF − rB + (1− α)S.

or, equivalently,

ρ∗(µ) =

rB +
(1− α)µ

(
rB

µ+(1−µ)p − rF

)
+ α((µ+ (1− µ)p)rF − rB) + (1− α)µλ(rF − rB)

µλ[1− (1− α)µ/(µ+ (1− µ)p)]
, rF

 . (C.58)

Notice that the surplus generated by the partnership is increasing in ρ and is therefore maximized at

ρ = rF . At the same time, the bank’s partnership profits are also maximized at ρ = rF . Hence, if at ρ = rF

(1−α)S is greater than µλ(rF − rB) (which happens when α is small), then the partnership rate is ρ∗ = rF ,

that is, due to the limited commitment of the fintech to use partnership funding at a rate ρ > rF the fintech

gets more than α share of the surplus. If ρ∗(µ) = rF for some µ′ < 1, then ρ∗(µ) = rF for all µ > µ′ in this

region.

Case 5: µ > µ̄(λ, ρ). Partnership funding either hurts the joint lenders’ profits (if ρ < rF ) or has no

impact on lenders’ profits (if ρ = rF since the bank dominates the market and offers rate rF ). In either case

the lenders are weakly better off not establishing partnership funding.

Equilibrium partnership rate and the corresponding payoffs are shown in Figure C.3. Notice that quali-

tatively equilibrium structure, the shape of payoffs and the effect of partnership are similar to our baseline

model. Notable difference is that in the region µ > µ̄(λ, rF ) the partnership funding rate ρ = rF and the

equilibrium together with payoffs are exactly the same with in without partnership funding. In our model

with ex-post bargaining, which implies ρ = αrB + (1 − α)rF , the bank is worse off with partnership fund-

ing when µ is sufficiently high. This difference is not driven by timing of bargaining but rather by bank’s

commitment power to not fund the fintech after the lending stage of the game. If we endow the bank with

such commitment power in the baseline model then the difference between setups with ex-ante and ex-post

bargaining would reduce to the exact determination of the partnership rate ρ.
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Figure C.3: Equilibrium payoffs and partnership funding rate with ex-ante bargaining.

The parameters in this figure are as follows: R = 2.0, p = 0.4, rF = 1.5, rB = 1.0, α = 0.6, and λ = 0.9.
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