
When Protectionism Kills Talent∗

Mehmet Canayaz† Isil Erel‡ Umit G. Gurun§ Yufeng Wu¶

June 14, 2025

Abstract

Protectionist policies intended to revitalize US chip manufacturing backfired, ulti-
mately weakening the domestic workforce they aimed to rebuild. Instead of fostering
talent growth, these measures diminished hiring for critical science and engineering
roles, particularly in entry-level positions and at firms impacted by tariffs. Companies
reliant on foreign talent reduced domestic hiring and shifted recruitment to countries
with more favorable immigration policies. US protectionism also discouraged students
from pursuing chip-related degrees, contracting the domestic talent pipeline. Our con-
ceptual framework shows that high proportions of foreign workers and inelastic labor
supply in these occupations contribute to the adverse effects of protectionist policies.
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1 Introduction

The US manufacturing landscape has recently seen significant changes, notably marked

by the government’s turn toward protectionism in 2018 (Fajgelbaum et al., 2020). Trade

tariffs were introduced to revitalize domestic manufacturing and stimulate job creation and

industry growth. As US firms adjusted to tariff-induced economic pressures, their hiring and

workforce management strategies were further complicated by a tightening supply of skilled

labor. The ‘Buy American and Hire American’ Executive Order, in particular, reduced

the appeal of the US to international students and professionals, especially engineers and

scientists, aspiring to contribute to the US workforce (Song and Li, 2022).1

In this paper, we examine the combined impact of these protectionist policies on the

domestic labor markets within the US manufacturing sector, with a particular focus on the

semiconductor (chip) industry. The chip industry is our focal point due to its strategic

importance and significant vulnerability to tariffs, as a result of its intricate global supply

chains and trade dependencies.2 In addition, the sector’s reliance on skilled and specialized

international talent makes it particularly sensitive to changes in immigration policies and

domestic labor market challenges. These factors make the chip industry an ideal setting for

exploring the impact of economic protectionism on workforce composition and adaptation.

The effects of protectionist policies on labor markets are not clear ex ante. On the one

hand, these policies could increase the demand for local workers by encouraging companies

to invest more in domestic talent and training programs. This shift toward prioritizing local

workforce utilization might enhance the productivity and self-sufficiency of the domestic

1See https://bit.ly/4aoUnD3, https://bit.ly/3TvFlVq., https://bit.ly/3PxnPij, and https://

bit.ly/3voSKXb.
2Some of the semiconductor-related products affected by the tariffs include HS Codes 8486.20 (machines

and apparatus for the manufacture of semiconductor devices or of electronic integrates circuits), 8486.90
(machines and apparatus of a kind used for the manufacture of semiconductor boules or wafers, etc.),
8541.90 (parts, diodes, transistors parts of diodes, transistors and similar semiconductor devices), and 8542.31
(processors and controllers, electronic integrated circuits). Countries subject to such tariffs include China,
Taiwan, South Korea, Japan, the Netherlands, Germany, and India, in addition to 50 other countries. Source:
http://www.econ.ucla.edu/pfajgelbaum/rtp_update.pdf. See also https://bit.ly/4a5aoyc.
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labor market within the semiconductor industry. On the other hand, increased tariffs and

potential retaliatory measures from other countries could make companies more cautious in

hiring, possibly reducing recruitment and making hiring more selective. Stricter immigration

policies could further constrain the supply of specialized and skilled workers, resulting in

a labor shortage and hindering firms from fully benefiting from the intended stimulus of

protectionist policies. These effects may ultimately lead to a decrease in employment. We

develop a conceptual framework to formalize various likely effects. In our model, protectionist

policies designed to revitalize domestic manufacturing and employment can produce opposite

outcomes, with particularly severe effects in markets characterized by high reliance on foreign

workers and inelastic labor supply, key features of the chip industry.

We empirically test our model’s predictions by leveraging a comprehensive dataset con-

taining detailed employee-job-employer relationships for millions of individuals employed in

this sector globally. Our data allows us to examine the impact of US protectionist policies

on the employment landscape for scientists and engineers within US semiconductor firms,

contrasting it with other job categories within the same firm-year. Our analysis reveals a

notable downturn in employment indicators within these firms following the implementation

of protectionist measures in 2018. Specifically, we observe a 9% reduction in the recruitment

of scientists and engineers, accompanied by reduced attrition, which together contribute to a

3% reduction in the total workforce size. To provide context, the chip manufacturing sector

in the US faces an annual loss of 2,285 science and engineering positions. Between 2019

and 2022, this results in a cumulative reduction of 9,140 jobs within the industry, which

employed 76,150 scientists and engineers during this period.

The reduction in hiring occurs despite an increase in job postings for scientists and engi-

neers and is primarily driven by sharp declines in R&D scientist roles and specialized circuit

design positions, such as piping and strain engineering, which are essential to improve chip

performance. It is also especially acute in entry-level and junior positions, indicating that

protectionist policies disproportionately affect those new to the workforce, potentially im-
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pacting the industry’s future talent pipeline. Importantly, additional tests provide evidence

that our results are not driven by recent trends in career transitions of data scientists and

software engineers within the US chip manufacturing industry, who are the most likely to

move into similar roles in other industries. This finding rules out the possibility that our

observed effects merely reflect a broader shift in tech talent towards other sectors. Instead,

it reinforces that protectionist policies are having a unique and significant impact on the

semiconductor industry’s labor market dynamics.

We also study how the workforce of US chip manufacturers changes across their segments

around the world (i.e., at the firm-country-job category-year level) and based on their re-

liance on foreign talent, particularly through the H-1B program. In doing so, we introduce

high-dimensional fixed effects to account for a range of unobserved factors, including yearly

shocks at the job category level (e.g., shifts in demand for or supply of specific skills globally

and exposure of each job category to AI adoption), persistent characteristics at the firm-

job category-country level, time-invariant government incentives or interest in certain job

categories (e.g., STEM-intensive fields), and broader country-year shocks (e.g., changes in

macroeconomic conditions, broader industrial policies, and COVID-related distortions). Our

results indicate that US manufacturers reduce their domestic workforce in specific job cate-

gories in the US and increase their hiring of more experienced workers (by 3%) outside the

US, particularly for both junior and mid-senior roles, reflecting the distortionary influence

of US protectionist policies.

The reduction in US science and engineering positions is most pronounced in firms that

sponsored H-1B petitions before the ban, with the effect growing as the number of previously

sponsored petitions increases. This finding reflects US firms’ reliance on international labor

markets and the critical science and engineering expertise provided through H-1B visas.

Among the countries where US chip firms have expanded their presence are Canada, which

introduced favorable visa policies (Esterline, 2023), and European countries such as the

Netherlands, which has an established chip manufacturing industry. Furthermore, firms
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with greater exposure to tariffs experience stronger distortions in science and engineering

roles, which are closely tied to R&D and manufacturing processes reliant on global supply

chains and specialized raw materials. Higher input costs from tariffs increase production

expenses, prompting firms to reduce investments in R&D-intensive positions, where costs

are typically concentrated (Martin and Otto, 2024).

Finally, we analyze the educational and career outcomes of cohorts with chip manu-

facturing skills. Using a difference-in-differences approach, accounting for fixed effects at

the country, degree, job category, and year levels, we find a 15% decline in the number of

classmates entering engineering or scientist roles alongside individuals with chip-related ex-

pertise after the implementation of US protectionist policies in 2018. This decline is most

pronounced at the undergraduate level but is also evident among graduate students. Many of

these classmates are transitioning to higher-paying fields like finance and marketing, further

diminishing the pool of talent entering the chip industry.

Using Department of Education data, we extend our analysis to distinguish between

residents and non-residents and find that completion of bachelor’s and pre-bachelor’s degrees

in chip manufacturing has declined significantly for both groups post 2018. This indicates a

broader waning interest in chip-related fields within the US education system. Overall, these

trends suggest a concerning shrinkage in the talent pipeline for the semiconductor industry,

with fewer students choosing or persisting in careers within this critical sector.

Our paper is related to the extensive literature that studies the effects of trade frictions

on various factors including growth and labor markets. Along these lines, Irwin (2000)

discusses the effect of tariffs on growth in 19th century America. In the context of how the

2018 trade war affected companies and local economy in particular, Fajgelbaum et al. (2020)

demonstrate substantial declines in both imports and exports following the imposition of

increased tariffs in the US and retaliation by trade partners (Goldberg and Pavcnik, 2016;

Flaaen and Pierce, 2019). This led to significant losses exceeding $50 billion for US consumers

and firms purchasing imported goods, resulting in an aggregate real income reduction of $7.2
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billion (0.04% of GDP) when considering tariff revenues and gains to domestic producers.

Amiti, Redding and Weinstein (2019) similarly estimates significant losses attributable to

2018 import tariffs for US consumers and firms, amounting to approximately $3.2 billion per

month in additional tax costs and an additional $1.4 billion per month in deadweight welfare

losses. Using data from Burning Glass Technologies, Javorcik, Stapleton, Kett and O’Kane

(2022) show a 0.6% decrease in online job postings in commute zones affected by input

tariffs and retaliations from trading partners in 2018. These effects were more pronounced

for lower-skilled job postings compared to higher-skilled ones.

We also contribute to the literature on the China shock. Autor, Dorn, Hanson and Song

(2014) document the adverse effects of increased imports from China between 1992 and

2007 on employment, labor force participation, and wages within manufacturing industries

competing with more affordable imports. Despite this import shock, higher-wage workers

experience relatively better outcomes compared to their lower-wage counterparts. Pierce

and Schott (2016) study the effect of the elimination of potential tariff increases on Chinese

imports in 2000 on employment, and Autor, Dorn and Hanson (2013), Acemoglu et al. (2016),

Caliendo et al. (2019), and Autor, Dorn and Hanson (2021) analyze the impact of the China

shock on wide range of outcomes, including the labor market, between 2000 and 2019. Stanig

and Colantone (2018) argue that this China trade shock has led to political polarization and

increased nationalism around the world. Cen et al. (2023) study how US firms used their

internal capital markets to stay resilient to the five-year plans of China between 2001 and

2016, which led to significant drops in both employment and investments in the same sectors

in the US. They show that companies adjusted by shifting production to the upstream or

downstream industries, offshoring to supported industries in China. Hombert and Matray

(2018) find that Chinese imports slow growth and reduce profitability, but firms with more

R&D are less affected due to increased product differentiation, resulting in smaller cuts in

capital and employment.3

3Also see Bernard et al. (2012, 2006); Frésard and Valta (2016); Xu (2012); Valta (2012) on the effects of
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Lastly, our paper adds to the literature on economic nationalism. Dinc and Erel (2013)

provide evidence of prevalent economic nationalism in government responses to significant

corporate merger attempts in Europe, where local authorities exhibit a preference for target

companies to remain under domestic ownership rather than foreign control. Morse and Shive

(2011) analyze the impact of patriotism on equity investments, while Gupta and Yu (2007)

explore bilateral capital flows. D’Acunto, Huang, Weber, Xie and Yang (2023) show hiring

restrictions on high-skilled foreign nationals, exemplified by the 2007 Employ American

Workers Act led to reduced patent filings in FinTech, cybersecurity, and payment systems,

alongside increased wage premiums paid to retain pre-crisis foreign hires. Glennona (2024)

shows that H-1B visa restrictions for skilled workers led to an increase in foreign affiliate

employment by US multinational firms.

2 Why Semiconductor Industry?

The broad impact of protectionist policies plausibly affected many of the US manufacturing

sectors. We focus on the semiconductor sector for three reasons.4 First, the semiconductor

industry relies heavily on international talent (Ozimek and O’Brien, 2023) and collaboration

for innovation and competitiveness (Jones and Lotze, 2023; Bown and Wang, 2024). Pro-

tectionist measures, such as tariffs and immigration restrictions, disrupt the flow of skilled

professionals and hinder international collaboration, thereby impeding the industry’s ability

to innovate and adapt to changing technological landscapes. Second, the semiconductor in-

dustry operates in a highly interconnected global supply chain (Thadani and Allen, 2023).

Tariffs on imported raw materials and components increase production costs for semicon-

imports on leverage, cost of debt, capital investments, and outsourcing. Juhász, Lane and Rodrik (2023) and
Juhász and Lane (2024) provide detailed reviews on industrial policy effectiveness. See Hoberg and Phillips
(2016) on product differentiation.

4There are not many papers studying the dynamics of workforce in specific industries. The closest study
to ours is Angel (1989) which investigates the labor market and the geographic concentration of engineers
in the US semiconductor sector. Angel’s use of the survey data shows a pronounced localization of this
workforce in Silicon Valley, underscoring the region’s pivotal role in the industry.
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ductor manufacturers, making it more difficult for them to remain competitive in the global

market. Additionally, retaliatory tariffs from trading partners decrease demand for American

semiconductor products abroad, further impacting the industry’s profitability and growth

prospects. Third, our aim is to trace the career trajectories of individuals and identify their

skill sets. Analyzing how individuals adapt their careers to protectionist shocks requires

examining millions of resumes. Our data is especially appropriate for studying the semicon-

ductor industry, as many individuals in this industry voluntarily disclose their information,

which is not commonly observed in other manufacturing sectors (the top three industries that

constitute the greatest number of resumes on this platform are financial services, information

technology and services, hospital & health care).

Historically, the United States (Texas Instruments, Fairchild Manufacturing, and Intel)

led chip manufacturing until the 1980s. Japan (Toshiba, NEC, and Hitachi), followed by

South Korea (Samsung), China, Taiwan (notably TSMC), and select European countries

(such as ASML Holding from the Netherlands), have markedly expanded their market share

in recent years. Currently, the US accounts for a mere 10 percent of global commercial

chip production, yet it maintains its leadership in design, research, and development.5 Chip

production involves processing such as design, manufacturing, and packaging. Integrated

Device Manufacturer (IDM) companies like Intel encompass all these facets, while Fabless

entities like Qualcomm focus solely on design, and Foundry firms such as TSMC specialize in

manufacturing semiconductors designed by Fabless companies. The semiconductor industry

comprises both memory and logic chip markets, with the latter dominating (approximately

70 percent). While South Korea leads in memory chips, necessitating economies of scale for

mass production, the US concentrates on logic chips, demanding skilled architects leveraging

cutting-edge technology. Geographically, chip manufacturing remains highly concentrated,

posing significant supply chain risks (NIST).

The globalization wave in chip manufacturing, catalyzed by events such as China’s entry

5See http://www.chips.gov.
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into the World Trade Organization (WTO), has encountered headwinds. Trends towards

nationalist economic policies post-global financial crisis and exacerbated by the COVID-

19 pandemic have spurred a shift towards homeland economics. Recognizing the strategic

importance of chip manufacturing, particularly in bolstering national security, initiatives like

the 2021 Facilitating American-Built Semiconductors (FABS) Act and the 2022 CHIPS and

Science Act have emerged. These measures encompass substantial investment tax credits and

grants to stimulate domestic chip manufacturing and research while prioritizing investment

in American workers (see White House briefing, August 9, 2022).

3 Conceptual Framework

To motivate and provide a framework for interpreting our empirical findings, we introduce

a model in which consumers demand chips and other goods, and chip firms decide on hiring

and production amid protectionist policies. We demonstrate that protectionist policies can

lead to reduced hiring and production among US chip firms. In particular, the hiring decline

is most pronounced when the sector relies heavily on foreign workers and labor supplies are

inelastic.

Demand for chip products

There is a representative consumer who demands both chips and other products, which we

denote by YC and YO, respectively. We assume that the consumer has a standard CES

(constant elasticity of substitution) utility, like in Fajgelbaum et al. (2020). The consumer

chooses the consumption bundle to maximize its utility:

u = max
YC ,YO

(
α

1
η

CY
η−1
η

C + α
1
η

OY
η−1
η

O

) η
η−1

, (1)
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subject to the budget constraint:

YC × PC + YO × PO = I, (2)

where αC and αO are the share parameters corresponding to chips and the bundle of other

products in the consumer’s utility function. I is the consumer’s budget constraint.

We model the supply of other products as perfectly elastic at a price of PO, treated as

exogenous, primarily to simplify our equilibrium calculations. The main intuitions remain

the same if the supply is elastic. Chip products are supplied by J symmetric US firms, whose

production decisions are detailed below.

Production environment

A chip manufacturer uses domestic and foreign labor as inputs to produce chip products un-

der a Cobb-Douglas production function: y = zLθ, where z represents the firm’s total factor

productivity (TFP), and L represents workers hired by the US firm. We do not explicitly in-

clude capital in the production function, assuming instead that firms rent productive capital

from a competitive market, with these decisions optimized out.

The firm chooses its employment to maximize profit, net of wage costs.

πj = max
L

PC(1− v)zLθ −WL, (3)

where PC represents the market price for chip products, and v denotes the percentage of

variable cost, covering costs such as raw materials, shipping, delivery, and utilities, and

finally, W represents the wage rate.

Taking the first-order condition of the firm’s profit with respect to domestic and foreign
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employment yields the firm’s optimal labor demand:

(1− v)zPCθL
θ−1 = W, (4)

which suggests that, in equilibrium, the wage rate paid by the firm should equal its marginal

revenue product of labor.

The repercussion of protectionist policies

We model the effects of protectionist policies through three primary channels. First, they

provide investment subsidies, particularly targeting R&D and talent development programs,

which enhance a firm’s TFP and increase the marginal productivity of labor. Second, these

policies impose tariffs on raw materials and intermediate inputs imported from abroad,

raising domestic firms’ variable costs (v) and thereby reducing their profit margins. Lastly,

protectionist policies limit firms’ access to labor, particularly foreign workers. We denote

the labor supply curve faced by US firms as S(·), and protectionist policies shift the labor

supply inward to λS(·).

The Equilibrium

Proposition 1. There is a unique combination of equilibrium wage rate, W , and price for

chip products, PC, which are characterized by:

J ×
[

W

(1− v)zθPC

] 1
θ−1

= S(W ), (5)

and

J × z

[
W

(1− v)zθ(PC)

] θ
θ−1

= αCIP
η−1P−η

C , where P 1−η = αCP
1−η
C + αOP

1−η
O (6)
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Equation (5) is derived from the labor market clearing condition, which states that the

aggregate labor demanded by all J firms (LHS of Equation 5) must equal the total number of

workers willing and able to supply labor at the equilibrium wage rate (RHS of Equation 5).

Equation (6) is based on the product market clearing condition, which states that the

total production by domestic firms (LHS of Equation 6) must be equal to the demand of

the representative consumer (RHS of Equation 6). This demand is negatively related to the

price of chips and positively related to the overall price index P , which is a weighted average

of the price of chips and that of other products. Since we assume that the latter is supplied

elastically at a price of PO, we are left with two equations and two unknowns. We show

that this system of equations yields a unique combination of equilibrium price and wage

rate. Applying the implicit function theorem, we can then analyze the relationship between

equilibrium employment and the intensity of protectionist policies.

Proposition 2. Investment subsidies would increase equilibrium employment, whereas higher

tariffs on raw materials or more stringent restrictions on labor access would lead to a mono-

tonic decrease in equilibrium employment.

Higher investment subsidies prompt firms to adopt more advanced technology, increasing

the marginal revenue product and stimulating labor demand. However, if protectionist

policies also increase the price of raw materials, this would partially offset the increase in

the marginal revenue product of labor, creating an opposite effect. We refer to these two

effects as the “firm demand channel,” because they primarily influence the profitability of

production for firms.

When access to labor becomes more restricted, the labor supply curve shifts inward,

reducing the available workforce. As a result, firms must move up the supply curve to attract

additional workers, leading to higher wages, higher production costs, and lower equilibrium

quantities demanded. The overall impact of protectionist policies is thus uncertain ex-ante,

as it depends on the relative strengths of the firm demand channel and the restricted labor
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access channel.

Proposition 3. The stimulative effect of the firm demand channel will be dampened when

the labor supply is less elastic. Meanwhile, the adverse effect of restricted labor access is

amplified when the labor supply is less elastic and when the labor force relies more heavily on

foreign workers.

Although Proposition 2 focuses on the direct effects (first-order derivatives) of protec-

tionist policies, this analysis explores how these effects interact with labor market conditions

(captured by the cross-derivative of firm production or employment with respect to protec-

tionist policies and labor market conditions). Any stimulative impact through the demand

channel encourages firms to invest in technology and improve production efficiency, thereby

lowering the per-unit cost of chip products. As households increase their chip consumption,

companies expand production, requiring them to hire more workers. This surge in labor

demand drives up wages for chip workers, raising production costs for firms. When the labor

supply is relatively inelastic, wage increases become more pronounced, pushing chip prices

higher. These price increases partially counteract the initial cost reductions from efficiency

improvements. Under such circumstances, the stimulative effects of the firm demand channel

are likely to be diminished.

On the other hand, increased restrictions on labor access force firms to raise wages to

address the labor shortage created by these restrictions. This shortage is more severe when

foreign workers make up a larger portion of the labor force. Furthermore, the wage increase

becomes more pronounced when the labor supply is less elastic, leading to higher production

costs and higher chip prices. These increased costs dampen demand, constrain production,

and ultimately result in lower levels of equilibrium employment.

The results of Proposition 3 suggest that for two firms facing the same investment subsidy,

input tariff, and labor access restrictions, equilibrium employment will decline more for

the one with a less elastic labor supply. Similarly, within the same firm, employment will
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decline more in the sector with a less elastic labor supply. These findings can be tested in a

difference-in-differences regression framework, which compares employment changes across

job categories within the same firm. In this setup, the direct effects of the protectionist

policies are absorbed by firm fixed effects. However, the cross-elasticity results established

in this proposition imply that employment is likely to decline more significantly for scientists

and engineers—likely due to the specialized skills and challenging work conditions required,

which limit the pool of eligible workers and contribute to an inelastic labor supply—–relative

to other professions within the same firm. The diff-in-diff results thus reflect the cross-

elasticities of the firm demand and the labor restriction channels discussed above.

US residents versus foreign workers

Previously, we discussed the effect of protectionist policies on the equilibrium employment

of US firms, discussing conditions under which the policies will lead to a decrease in firm

employment, especially employment in occupations with an inelastic labor supply (such as

scientists and engineers). In this section, we dive deeper into firms’ hiring strategies and

analyze how these policies would lead to a change in the composition of workers, i.e., US

residents versus foreign workers with H-1B visas. We use d and h to denote the number of

US residents and foreign workers hired by US manufacturers, which satisfy:

L =

(
α

1
ρ

d d
ρ−1
ρ + α

1
ρ

hh
ρ−1
ρ

) ρ
ρ−1

, (7)

Here, L represents total employment, as analyzed in the previous sections. We further model

total employment as a CES production aggregator of US residents and foreign workers, with

αd and αh capturing their respective productivity levels. These parameters may differ due

to the unique skill sets of each group, which we will show empirically in Section 4.1.1. This

functional form is flexible, allowing workers from these two groups to function as complements

or substitutes, depending on their skill sets.
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In the extreme case where ρ → +∞, total employment becomes a linear combination of

US residents and foreign workers, implying that the two types of labor are perfect substitutes.

Under this condition, stricter labor access restrictions, such as reducing the H-1B quota,

would prompt firms to replace foreign workers with US residents. Consequently, while overall

employment in US firms might decrease, the number of US residents employed could actually

rise.

In contrast, in the other extreme where ρ → 0, the production function becomes Leon-

tief, implying that the two groups of workers are perfect complements. Restricting access

to foreign workers reduces the hiring of both US residents and H-1B visa holders, as the

complementary nature of the workforce makes one group essential to the productivity of the

other.

In general, when US and foreign workers are more complementary in the production

function (e.g., due to differences in skills or roles), protectionist policies are more likely to

result in simultaneous declines in the hiring of both US residents and foreign workers.

4 Data

We use Revelio Labs database to obtain detailed information on employee, employer, and job

characteristics.6 Revelio Labs positions itself as a company that collects and standardizes

hundreds of millions of publicly available employment records to create the “world’s first

universal HR database,” enabling users to track the workforce dynamics and trends of any

organization. The data includes nearly a billion employees around the world across all

industries, scraped as of March 2023. In this data, we narrow our focus on the workforce

with chip-related skills or workforce that have ever worked in the chip industry as well as

their classmates from college or graduate schools (irrespective of the industries of their jobs).

The data allows us to observe each employee’s current and past jobs, skills, location, ed-

6Recent papers using the same data vendor include Amanzadeh et al. (2024), among others.
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ucational background, job category, seniority, various personal characteristics like estimated

age and gender, as well as employer characteristics. Using these data, we first provide various

statistics on the workforce in the global chip manufacturing industry before moving on to

testing the specific hypothesis laid out above. Section 4.1 provides key summary statistics

on active semiconductor workforce around the world, in addition to employment character-

istics within the US chip manufacturing industry (Section 4.2), and job market outcomes for

cohorts of potential chip manufacturing talent after graduation (Section 4.1.3). We provide

a detailed summary of our data collection process in Appendix Section B.1.

4.1 Active Semiconductor Workforce

Table 1 provides the distribution of the physical location of 1.6 million active employees

with chip manufacturing skills as of March 2023 in the world. Note that these people are not

necessarily working for a chips company, nor are they necessarily working for a local company,

all of which we will address later. United States is at the top of the list of countries that

host these skills, with 680,602 employees physically living in the United States.7 8 A large

fraction (480,193) of these employees work as an engineer, while 49,515 are scientists. An

average employee has been at her current job, which is the 5.5th one over her career, for

2,819 days (almost 8 years), with an average seniority of level 3 (associate level) out of 7.

[Table 1 about here]

India has 165,352 employees with chip skills, and a larger fraction of these people (almost

7To assess Revelio’s coverage, we compared its data with the Statistics of US Businesses (SUSB) Annual
Data Tables, focusing on five 6-digit NAICS codes relevant to our study: 333242, 333994, 334413, 334418,
and 334515. In 2017, Revelio reported 2,070 firms in these categories, while the US Census documented 2,653.
This comparison indicates that Revelio’s dataset captures a substantial portion of the US chip manufacturing
industry, providing a reliable representation of the sector.

8The strong presence of the US in the rankings likely reflects LinkedIn’s user demographics, which are
heavily skewed toward individuals seeking employment in the US or with US-based companies. Major
competitors in the semiconductor industry, such as those in Taiwan, China, and South Korea, may not be
fully represented due to LinkedIn’s limited penetration in these regions. Consequently, Table 1 may not
provide a fully accurate depiction of the global labor market.
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130,000) are engineers. The United Kingdom ranks third with a total of 88,527 employees,

heavily skewed towards engineering roles with 57,927 engineers. Table 1 further illustrates

that countries such as India, Brazil, Pakistan, Turkey, and Malaysia have a significant number

of engineers with chip manufacturing skills and experience, as indicated by their job positions

and tenure lengths. We discuss the detailed characteristics of these countries and the rest

of the world in Section B.1.2 of the Appendix to save space. Figure 1 further illustrates the

global distribution of employees with chip manufacturing skills who are actively employed

as of March 2023, including countries not shown in Table 1.

[Figure 1 about here]

4.1.1 Chip Manufacturing Skills in the US

While Table 1 shows the United States as the leading country in terms of the number of em-

ployees skilled in chip manufacturing, it does not specify the particular skills these employees

possess. Therefore, Figure 2 highlights the list of skills utilized to identify individuals with

chip manufacturing expertise, alongside the percentage representation of each skill among

employees in the US. The variation in skill distribution reveals both the core and peripheral

abilities that contribute to the US chip manufacturing sector’s operational breadth.

[Figure 2 about here]

As shown in Figure 2, skills such as Plasma Etch (71.99%), which is a critical skill in

the fabrication of semiconductors for carving fine patterns on the surface of silicon wafers,

and Design Of Experiments (67.67%), another important skill for estimating defect and

scrap rates, which is critical to maximize profitability, exhibit substantial prevalence in the

American workforce.9 Similarly, Chemical Vapor Deposition (67.39%), used to create high-

quality thin films, underscores its importance. Beyond these specialized skills, our data set

9These skills, often associated with manufacturing, are crucial in R&D and design, particularly for op-
timizing designs for manufacturability, minimizing defects, and ensuring seamless scalability in production.
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encompasses broader skill categories, including Semiconductor Manufacturing, where 57.58%

of the global workforce is based in the US.

On the other end of the spectrum, other skills such as Proteus (9.98%), an important

skill for reducing carbon footprint of semiconductor manufacturing, Autosar (11.32%), a

critical skill in the design and development of automotive electronics, which are increasingly

dependent on sophisticated semiconductor devices, and Electrical Machines (15.18%), which

refers to knowledge in operating electrical machinery, reveal a lesser extent of representa-

tion.10 Overall, Figure 2 indicates that the US holds a leading role in certain key skills

within the chip manufacturing sector, yet there remains room for expanding its presence in

additional skill areas.11

The above findings indicate that while the US has the highest number of employees with

chip manufacturing skills, it does not dominate in all specific skills within the chip manu-

facturing sector. A considerable portion of these skills are found in the workforce outside

the US. This leads to questions about the utilization of individuals who possess chip-making

skills. To address this, our subsequent analysis focuses on the employment distribution of

chip manufacturing talent. We begin by identifying the companies that employ these indi-

viduals and then assess their distribution across various industries, comparing those directly

involved in chip manufacturing with those in unrelated sectors.

[Table 2 about here]

Moreover, the LinkedIn dataset likely captures roles across the semiconductor ecosystem, including US-based
operations of global firms involved in advanced packaging, testing, and process development. This reflects
the interconnected nature of design, R&D, and manufacturing processes in the industry

10In February 2024, the Biden-Harris Administration announced a deal to allocate $1.5 billion from
the CHIPS and Science Act to enhance semiconductor production related to the US auto industry. See
https://bit.ly/3I3e3R1.

11See, e.g., more information on Plasma Etch, Design of Experiments, Chemical Vapor Deposition, and
Autosar by clicking on each item.
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4.1.2 Top Employers of Top Chip Manufacturing Skills

Table 2 provides the list of top employers of the global workforce with chip manufactur-

ing skills. Intel Corporation is not surprisingly the number one, and the US government,

perhaps more surprisingly, is the number two on the list, with almost 30,000 and 13,400

employees, respectively.12 Government entities such as the United States Navy, US Air

Force, The United States Army, Sandia National Laboratories, Jet Propulsion Laboratory,

Federal Aviation Administration, US Department of Defense, Lawrence Livermore National

Laboratory, and the National Aeronautics & Space Administration are notable employers of

individuals skilled in chip manufacturing. Qualcomm is in the top five of employers, with

a similar number of employees (10,000–11,000) to Apple and Amazon, which seem to have

hired individuals with these skills. This said, based on the composition of seniority in Table

2, Apple and Amazon hired employees with chip skills before the protectionist era and/or

primarily for senior roles, rather than junior roles.

There are also non-US companies like Siemens from Germany and NPX Semiconductors

from the Netherlands at the top of the list. The “Other Employers” category encompasses

a significant portion of the workforce, highlighting the extensive demand and versatility of

chip manufacturing skills across diverse sets of companies and sectors. In general, the table

illustrates a wide-ranging employment spectrum for professionals with chip manufacturing

capabilities, extending from conventional chip manufacturing firms to governmental agencies

and software companies worldwide.

Table 2 also showcases the concentration of expertise and experience within these or-

ganizations. Intel Corp stands out with the majority of its 15,397 employees at Seniority

Level 2, emphasizing strong mid-level expertise in its workforce. Qualcomm Inc, with 3,461

employees, sees its largest group at Seniority Level 4, suggesting a workforce with advanced

12We conducted additional analyses to validate our employee count data, focusing on key chip manufac-
turers central to our study (not tabulated). For example, our records show Intel with over 119,000 employees
in 2022, aligning closely with publicly reported figures of approximately 120,000 employees.
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experience and expertise. At the more advanced Seniority Levels 5, 6, and 7, Intel Corp

leads, highlighting its leadership in highly experienced and specialized personnel.

[Table 3 about here]

Table 3 focuses on the industry composition of 680,602 active workforce with chip manu-

facturing in the US. Panel A identifies core chip manufacturing sectors, with “Semiconductor

and Related Device Manufacturing” leading at 72,512 employees, followed by “Semiconduc-

tor Machinery Manufacturing” and “Instrument Manufacturing for Electricity & Electrical

Signal Testing” with 7,943 and 6,514 employees, respectively. Panel B explores employment

in non-chip manufacturing industries, where “Software Publishers” top the list with 35,572

professionals, and “Colleges, Universities, and Professional Schools” employ 27,661. These

include academic positions, postdocs, researcher roles at universities, and related labs. Other

important sectors include “Radio/TV Broadcasting & Wireless Communications Equipment

Manufacturing” and “Internet Publishing and Broadcasting and Web Search Portals,” hous-

ing 14,591 and 13,512 professionals, respectively.

To summarize, this section shows that the US is at the forefront in terms of active chip

manufacturing workforce, housing approximately 600,000 of the global 1.6 million experts in

this field. However, it appears that the US does not fully capitalize on its chip manufacturing

workforce’s potential because many individuals with chip manufacturing skills work at jobs

outside the chip manufacturing industry.

4.1.3 Yearly Cohorts of Students Proficient in Chip Manufacturing Skills

Using our unique data covering the educational characteristics of various cohorts of students

around the world, we also present summary statistics on related education and job outcomes.

Panel A of Figure 3 offers a look into the first career steps taken by US graduates who shared

the same graduation year, program, and university with individuals possessing chip manu-

facturing skills. This analysis is segmented by degree type and initial job category chosen
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post-graduation. For job category classification, we employ Revelio’s clustering algorithms,

which sort jobs into seven primary categories: Admin, Engineer, Finance, Marketing, Oper-

ations, Sales, and Scientist. The data is as of the end of 2017, and the figure excludes counts

of classmates below 1,000 to enhance readability.

[Figure 3 about here]

The cohort size for 2017 totals 109,126. Bachelor’s degree holders (65,290) predomi-

nantly pursued engineering, with 42,100 graduates, followed by roles in science (6,184) and

sales (5,862). For those with doctoral degrees, there is a pronounced preference for scien-

tific (2,180) and engineering (1,282) positions, underscoring a career focus on research and

technical development within the chip manufacturing field. Master’s degree recipients show

a preference for engineering (25,693) and science (3,600), with additional graduates moving

into administrative, financial, marketing, operational, and sales positions. MBA graduates

show a diverse range of initial job preferences, with significant numbers entering engineering

(1,136) and sales (1,043), along with finance (801) and operations (543).

Overall, Panel A of Figure 3 illustrates that prior to US protectionist policies, individuals

with a Bachelor’s degree exhibited a preference for roles within the technical and commercial

sectors. Those with doctorate and master’s degrees predominantly pursued careers in science

and engineering. On the other hand, there is a tendency among MBA graduates to seek

positions that combine technical expertise with strategic and commercial insight.

4.2 US Chip Manufacturer Firms

In this section, we provide descriptive statistics for US manufacturing firms over the period

from 2014 to 2022. Unlike in the previous section, we do not focus on the workforce with

chip manufacturing skills nor their education cohorts but instead on every employee who

works at chip manufacturers independently of the skills reported. The data set is organized

by firm, job category, and year. For job category classification, again, we employ Revelio’s
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clustering algorithms, which sort jobs into seven primary categories: Admin, Engineer, Fi-

nance, Marketing, Operations, Sales, and Scientist. In particular, the categories include a

broader range of roles beyond engineers and scientists, reflecting the diverse workforce within

US chip-maker firms around the globe.

Panel B of Figure 3 displays the aggregate number of employees classified by job descrip-

tions as of the end of 2017. As shown, total employment across all job categories in the

chip manufacturing industry is 170,636.13 This suggests an average of 148 employees per

firm, or alternatively, 21 employees for each firm-job position tuple. The largest single group

is engineers, holding 66,382 positions. Administrative roles make up 16,822 of these posi-

tions, while Operations and Sales roles account for 20,072 and 30,890 positions, respectively.

Furthermore, Marketing and Finance roles contribute 12,710 and 13,992 positions, respec-

tively. Additionally, there are 9,768 Scientist roles, emphasizing the industry’s investment

in research and development.

[Table 4 about here]

Panel A of Table 4 provides further summary statistics for various employment met-

rics in 68,949 firm-job category-year observations over the period 2014-2022. We focus on

the logged values of employee counts, hiring, separation, and turnover rates, alongside spe-

cific hiring categories. The average of Log(Empi,j,t) stands at 1.76, with a median of 1.39.

The means for Log(Hiringi,j,t) and Log(Separationi,j,t) are 0.62 and 0.59, respectively, while

Log(Turnoveri,j,t) has a higher average at 0.88. In terms of specific rates, the Hiring Ratei,j,t

averages at 0.16, whereas the Separation Ratei,j,t is slightly lower at 0.12, suggesting a trend

of more hiring than separation. The Turnover Ratei,j,t is higher at 0.28.

Break down into specific hiring categories shows that experienced (first-time) employees

have a mean log value of 1.56 (0.95), suggesting that firms are more inclined toward hiring

13US Census Bureau reports 207,377 chip manufacturing employees in 2017. Source: Annual Data Tables
from the Statistics of US Businesses (SUSB) with 6-digit NAICS codes of 333242, 333994, 334413, 334418,
and 334515.
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experienced individuals. Employees with junior and mid-senior positions exhibit lower aver-

ages, indicating a lesser but significant volume of hiring in these categories. These statistics

collectively provide insights into the hiring patterns and workforce dynamics within firms,

highlighting the prevalence of experienced hires and the general trends in employee turnover.

Panel B displays similar statistics for the US firms across its domestic and international seg-

ments.

5 Empirical Strategy and Main Findings

In this section, we discuss our empirical methodologies and main findings. We start with our

approach to estimating the impact of US protectionism on worldwide employment in science

and engineering roles within US chip manufacturing companies.14

We estimate the average treatment effect of post-2018 US protectionism on science and en-

gineering jobs at US semiconductor manufacturing firms by running the following difference-

in-differences regression:

yi,j,t = βTreatedj × Postt + αi,t + δi,j + ϵi,j,t, (8)

where i denotes the firm, j denotes the job category, and t represents the year. We focus on

several key dependent variables yi,j,t, which include the logarithm of the number of employees,

hiring, separation, and turnover. We also examine hiring, separation, net hiring, and the

turnover rate in different job categories and time periods.

The variable Treated j is assigned a value of one for science and engineering job categories,

and it is equal to zero for finance, marketing, sales, operations, and administrative job

categories. Post t takes a value of one for the years post-2018 and zero for the preceding

years, and ϵi,j,t is the disturbance term. The coefficient of interest in Equation (8) is β,

14In this section, our sample contains employees of US semiconductor companies around the world, rather
than people with chip skills who might be working in any company.
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associated with Treated j × Post t. It quantifies the homogeneous average treatment effect of

US protectionism on science and engineering jobs at US chip manufacturing firms.

The main challenge in estimating the directional effect of US protectionism is discern-

ing how firms’ anticipatory actions, like strategic hiring, stockpiling, lobbying, or supply

chain diversification, might skew our understanding of protectionism’s effect on science and

engineering employment. We therefore incorporate firm-job category fixed effects δi,j and

firm-year fixed effects αi,t. The former adjusts for fixed characteristics of firms’ departments,

recognizing that, for instance, some might naturally have large engineering/research or sales

teams.

Firm-year fixed effects allow for an intra-firm comparison of employment across various

job categories, using nonengineering and nonscientist roles within the same year as counter-

factual. For example, they allow us to compare the number of people working in Qualcomm’s

science and engineering teams with the number of people in Qualcomm’s sales, marketing,

operations, and admin teams in the same year.

The sample period covers years between 2014 and 2022, leaving four years before and

after the 2018 shock. All specifications include firm-job category as well as firm-year fixed

effects. Standard errors are corrected for clustering of observations at the firm level.15

5.1 Main Findings

We present our main findings on the impact of US protectionism on the employment of scien-

tists and engineers, in comparison to other job categories, within the US semiconductor firms

– i.e., findings from the main difference-in-differences specification as detailed in Equation

(8)– in Table 5.

[Table 5 about here]

15This method accounts for unobserved correlations within a firm, possibly causing correlated disturbances
in our analyses. Such correlations might arise from changes in firm policies, fundamentals, or other factors
that influence multiple job categories within the same firm simultaneously.
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As shown, the coefficient on the treated-post interaction is negative and significant at

the 1% level in all specifications in Panel A, with -0.03 for the log employment (Column

1), -0.09 for log hiring (Column 2), -0.04 for log separation (Column 3), and -0.09 for log

turnover (Column 4). In other words, firms in the chip manufacturing industries experienced

a significant decline in employment and hiring counts. They also experienced a similar decline

in attrition, leading to a significantly smaller turnover of engineers and scientists starting in

2018. In Appendix Table B6, we confirm that our results hold after using Poisson regression

analysis.16

Based on our findings shown in column (1) of Table 5 along with descriptive statis-

tics from Figure 3, the US experiences a yearly loss of 2,285 science and engineering jobs

(3%×(66, 382 + 9, 768)) in the chip manufacturing sector. From 2019 to 2022, during the

post-treatment period, this amounts to a total reduction of 9,138 jobs in this industry. Ac-

cording to Figure 3, 67,793 engineers (42, 100+ 25, 693) and 9,784 scientists (6, 184+ 3, 600)

graduate with undergraduate and master’s degrees each year, positioning them as ideal can-

didates for these roles. While the decrease in job opportunities in the chip manufacturing

industry doesn’t necessarily imply these students will be unemployed, it does indicate a

considerable reduction in their employment prospects within the chip manufacturing field.

[Figure 4 about here]

Figure 4 provides evidence supporting the observable counterpart of the parallel trends

assumption, which is essential for the difference-in-differences method we used in Table

5. It shows the time-specific treatment effects of protectionism on the number of science

and engineering jobs at US chip manufacturers, revealing no discernible pre-trends in either

variable. Post-treatment, the number of science and engineering jobs experiences a rapid and

sustained decline.17 The second panel of the figure separates the fitted trends into treated

16Our findings, based on using midpoint growth rates and excluding zeros, are also available upon request.
17The drop in employment in 2020 raises the possibility of COVID-19-related disruptions affecting the
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and control groups.18 This panel is crucial to counter the argument that the estimated

effects on science and engineering jobs might be due to a rise in nontechnical roles, such as

marketing or legal positions, within the control group. This said, given the broad impact of

protectionism, it is also reasonable to anticipate a general decline in job numbers, suggesting

our estimates could be conservative. This panel helps us understand which argument is

supported by the data.

The second part of Figure 4 shows strikingly parallel trends for treatment and control

job categories before the beginning of US protectionism. However, for the treated group,

there is a clear drop in job numbers after the beginning of US protectionism. In contrast,

control units continue to exhibit trends consistent with the period before the beginning of US

protectionism, showing little to no change in their persistence. For brevity, we only present

the effect dynamics of column (1) here. Figures B5 and B6 of the Appendix document the

effect dynamics associated with other variables.

Overall, these findings are consistent with our conceptual framework, demonstrating that

protectionist policies can negatively impact the labor dynamics of US chip firms. Specifically,

we find no significant change in employment growth for non-science and engineering roles but

observe a sharp decline in science and engineering employment. This decline occurs when the

reduction in labor supply caused by protectionist measures outweighs their stimulative effect

on firm demand. Furthermore, a comparison of occupations within the same firm reveals

that these policies, intended to promote production and employment in the semiconductor

results. While it is plausible that the pandemic contributed to some of the observed decline, this is unlikely
to fully explain the findings including the ones on effect heterogeneity. The parallel trends in employment
data up until 2019 indicate that the divergence began following the implementation of protectionist policies,
aligning with the treatment effect. Moreover, the sharp decline in treated groups relative to control groups
post-2018 suggests a policy-driven impact distinct from pandemic-related factors.

18Using fitted trends is advantageous because it ensures treated and control groups start from the same
point, making it easier to check if their trends were parallel before the treatment. This method clearly
shows where these trends begin and end. For more details on fitted trends, see estat trendplots: https:
//www.stata.com/manuals/tedidregresspostestimation.pdf. Due to convergence issues with Stata’s
xtdidregress command, we limit our trend analysis to fixed effects for both firm-job category and year.
Figure B1 in the Appendix plots observed means using the same command.
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industry, disproportionately harm workers in key roles. Through the lens of our model, this

happens because these roles rely heavily on foreign labor and face an inelastic labor supply,

likely due to the extensive training required associated with these roles. Our model predicts

that the most significant declines are likely to occur in these occupations.

Next, we study the hiring and attrition rates, using a similar estimation method as in

Panel A of Table 5. As shown in Panel B of Table 5, we see a significant post-2018 drop not

only in the hiring rate but also in the attrition rate for engineers and scientists, compared

to other job categories within the same firm-years. The coefficients are -0.03 and -0.01, both

statistically significant at the 1% level. When we use the net hiring rate, which is defined

as the difference between the two, we still see a statistically and economically significant

coefficient of -0.02. In the last column, we present results for the turnover rate, which is the

sum of the hiring and attrition rates, which once again leads to a negative and significant

coefficient. All results provide strong evidence that both hiring and employee retention in

these job categories declined with the start of the rise in US protectionism in 2018.

Figure B2 in the Appendix provides additional information on which types of jobs were

most affected by the rise in protectionism. When using the role k1000 classification within

mechanical engineering roles, the largest effects are estimated for Stress Engineer (-22.76%),

Piping Designer (-16.61%), Design Engineer (-12.41%), Operations Engineer (-8.53%), Elec-

trical Design Engineer (-7.86%), Technical Designer (-5.76%), and Mechanical Design Engi-

neer (-5.55%), among others. In untabulated analyses, we find that, in terms of economic

magnitude, the largest estimated reductions were in the following job categories: Scientist (-

8.55%), IT Project Manager (-5.58%), and Mechanical Engineer (-4.8%), based on Revelio’s

role k50 classification.

We also examine job postings for scientist and engineering roles by merging LinkUp’s

job postings database with Revelio’s job categories.19 Using this data, Appendix Table B3

19LinkUp dataset, previously utilized in recent studies (Campello et al., 2020; Cohen et al., 2020; Gutiérrez
et al., 2020), contains 250+ million records from nearly 60,000 company websites, covering public and private
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shows an increase in active job postings in the US for engineering and scientist roles, even

after excluding software, IT, and data science jobs postings from our sample. This indicates

that the decrease in US scientists and engineers persists despite firms actively seeking to hire

for these roles.

Our results so far reveal a decrease in science and engineering positions at US manu-

facturing firms following the start of US protectionism. Further analysis indicates that this

reduction comes from fewer hirings rather than an increase in attrition. In fact, we find an

overall decrease in turnover. These results are robust to looking at logged counts along with

rates. Motivated by these findings, we next examine what drives the reduction in hiring.

One wonders, for example, whether the reduction in hiring is due to changes in the entry of

new employees in this sector or changes in the experienced ones.

[Table 6 about here]

Table 6 highlights a significant decrease in first-job employees (with a coefficient of -0.03,

significant at the 1% level) and a statistically insignificant and economically small decrease in

the hiring of experienced personnel. In line with this finding, we also observe a 2% reduction

in junior positions and no significant change in mid-senior positions.

[Figure 5 about here]

Figure 5 provides evidence on the dynamics of the effect along with trends for the treated

and control units in the event time. It shows further evidence supporting the observable

counterpart of the parallel-trend assumption. There is a significant drop in the job categories

affected, which makes up a big part of the observed changes. Overall, the figure highlights

that companies are not just shifting to hire more newcomers in non-technical positions;

rather, they’re actually hiring fewer science and engineering staff after the beginning of the

entities globally. Each entry includes job location, employer details, key dates, and O*NET occupation
codes. We match the O*NET occupation codes with Revelio’s job categories using a linking table provided
by Revelio.
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era of US protectionism. Figure B7 of the Appendix presents additional effect dynamics

associated with other variables.

5.2 Disentangling Industry-Specific Effects from Broader Tech Trends

In this section, we investigate whether our baseline results hold after excluding roles related

to data science and programming. Remember that our primary analyses compare engineers

and scientists to non-technical staff within each US chip manufacturing firm in a given

year, examining changes before and after the onset of protectionist policies in the US. The

engineer and scientist positions include a broad spectrum of technical roles, including various

engineering disciplines (e.g. manufacturing, automation, system test, mechanical), as well as

technician roles (e.g., assembly, quality inspection, technical support) and R&D positions.

Within the engineer and scientist category, we recognize the presence of data science

and software roles.20 Although these positions constitute a small portion of the chip manu-

facturing workforce, their increasing prominence, coinciding with US protectionist policies,

warrants careful analysis. For instance, the decline in the number of scientists and engineers

may be partially attributed to individuals transitioning from the chip manufacturing sector

to roles in data science or technology companies. To ensure the robustness of our findings,

we conduct a targeted analysis of job titles, systematically identifying and excluding data

science and programming roles.21 This strategic exclusion serves a dual purpose: it allows us

to isolate the true impact of protectionist policies on core chip manufacturing roles, and it

eliminates potential confounding effects from broader tech industry trends. By focusing on

employees most likely to transition to data science and programming roles in other sectors,

20For example, we estimate a reduction of -5.58% in IT Project Manager roles in Appendix Figure B2.
21In particular, we search for job titles containing terms such as “data,” “software,” and “programming,”

which leads us to the following job titles: “advisory software engineer,” “analyst programmer,” “business
data analyst,” “clinical data,” “computer programmer,” “data analyst,” “data architect,” “data center,”
“data engineer,” “data science,” “data scientist,” “database administrator,” “database developer,” “embed-
ded software engineer,” “java software developer,” “oracle database administrator,” “software architect,”
“software developer,” “software engineer,” “software quality assurance engineer,” and “systems program-
mer.”
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we effectively control for cross-industry labor flows. This refined approach strengthens our

analysis, providing a more precise measure of the impact of protectionist policies on the chip

manufacturing workforce. We then reestimate our regressions using this adjusted dataset,

reinforcing the validity and specificity of our results.

[Table 7 about here]

As shown in Panel A of Table 7, the estimated effects on the log number of scientists and

engineers, as well as on hiring, separation and turnover, remain economically and statistically

significant. Importantly, these estimates closely align with those presented in Panel A of

Table 5. Panels B and C of Table 7 further report estimates on employment growth rates and

the heterogeneity of effects by career progression, which closely echo the estimates provided

in Panel B of Table 5 and Table 6. These collective results reinforce the robustness of our

findings presented in Section 5.1. They demonstrate that our main findings persist even

when accounting for potential career transitions of data scientists and software engineers

– the groups most prone to migrating to similar roles outside of the chip manufacturing

industry. This consistency highlights the specific impact of protectionist policies on the

semiconductor workforce, distinct from broader tech sector trends.

6 Mechanism and Effect Heterogeneity

In this section, we study mechanism and effect heterogeneity. In Section 6.1, we analyze the

geographic variation in the dynamics of the workforce between US chip manufacturers in

response to the increased US protectionist measures. This approach allows us to benchmark

scientist and engineer roles at US chip manufacturing firms in the US against the same types

of roles in different geographic segments of the same firm within the same year. Then in

Section 6.2, we study the influence of the H-1B ban on US segments of US chip manufacturers

that rely on foreign labor. Then, we examine the role of tariff exposures in Section 6.3.
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Finally, in Section 6.4, we explore how protectionism influences the career trajectories of

people educated alongside those with chip manufacturing skills.

6.1 Effect Heterogeneity by Location

In this section, we extend our analysis of how protectionist policies affect engineers and

scientists in US semiconductor manufacturing by examining global workforce changes across

US chip manufacturers at the country-job category-year level. This additional analysis helps

us determine whether the effects documented in Section 5.1 are primarily driven by changes

in domestic (US) employment. To do so, we first run regressions on

yi,c,j,t = ωTreatedj × Postt × USc + αi,t + πc,t + ρj,t + δi,c,j + ϵi,c,j,t, (9)

where i denotes the firm, c denotes country, j denotes the job category, and t represents the

year. Although the unit of observation is now at a finer level (as it includes the country),

the dependent variables remain the same as those in Section 5. The coefficient of interest in

Equation (9) is ω, associated with Treatedj × Postt × USc. It quantifies the homogeneous

average treatment effect of US protectionism on science and engineering jobs at US chip

manufacturing firms within the United States.

Beyond examining US-specific effects, Equation (9) offers a key advantage: it allows us

to control for job category-year level endogeneity, which was not feasible in Equation (8).

With ρj,t, we can estimate protectionist effects both within and outside the United States,

capturing their dynamic patterns in a unified empirical framework.

6.1.1 Global Workforce Dynamics of US Chip Manufacturers

Panel A of Table 8 presents two key findings. First, the interaction term Treatedj × Postt

shows that American semiconductor companies modestly increased their employment outside

the United States (2%, t-stat = 2.17). Second, the triple interaction with USc reveals
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that these same companies significantly reduced their US employment (-5%, t-stat = 4.76).

The decline in US employment stems from decreased hiring, which persists despite lower

separation rates. These results are robust across various fixed effects specifications, including

firm-country-job category, firm-year, country-year, and job category-year fixed effects.

[Table 8 about here]

The findings shown in Panel A corroborate the observations outlined in Section 5.1,

highlighting a decrease in the overall employment of engineers and scientists by US firms,

primarily driven by reductions within the US. In contrast, outside the United States, there

is a minor increase in employee numbers. Panel B of Table 8 confirms that the findings of

Panel A are robust to using rates rather than logged employee counts. Furthermore, the

effect dynamics, as illustrated in Figure 6, shows that the pretreatment employment trends

for both the US and non-US segments were parallel to those of their control units. There is

a significant post-treatment decrease in scientist and engineer employment within the US,

suggesting a distinct shift in employment strategies in the post-2018 protectionist era.

[Figure 6 about here]

Panel C reveals that the growth in non-US employment is partly driven by a 3% increase

in experienced workers taking junior and mid-senior positions overseas. This pattern suggests

firms are strategically enhancing the skill composition of their international workforce. The

results in columns 5 through 8 of Panel C corroborate our earlier findings from Table 6 across

multiple specifications, reinforcing the robustness of these patterns.

The primary objective of Table 8 is to utilize trends in non-US segments as additional

counterfactuals. This involves, for instance, comparing scientist and engineer counts of

firms like Intel within the same fiscal year in the United States versus the ones in other

geographic segment countries such as Canada and Mexico. To illuminate the effect of US

protectionism on each country, however, we perform subsample analyses. The results of
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these analyses are shown in Figure B3 in the Appendix. As shown in this figure, US chip

manufacturers significantly expanded their labor force in Canada, strategically amending its

immigration policies to welcome more foreign engineers and scientists in 2017, as well as in

several European countries including the Netherlands. Interestingly, 27. 1% of the segment

countries of US chip firms in our sample exhibit a statistically significant positive effect. Of

the remainder, 35.7% experience a positive but insignificant effect, and 22.9% see a negative

but insignificant effect. A combined total of 14.3% of the segment countries, including the

US, experience a statistically significant negative impact.22

[Table 9 about here]

6.2 Effect Heterogeneity by H-1B Sponsorship

Next, we examine the influence of the H-1B ban on US segments of US chip manufacturers,

specifically focusing on firms that rely on foreign labor. We do so by running the regres-

sion model below, incorporating an additional interaction term into our triple difference

framework in Equation (9).

yi,c,j,t = ϕTreatedj × Postt × USc × Sponsori

+ γTreatedj × Postt × USc

+ ηTreatedj × Postt × Sponsori

+ θPostt × USc × Sponsori

+ αi,t + πc,t + ρj,t + δi,c,j + ϵi,c,j,t,

(10)

Sponsor i is equal to one for the US chip manufacturing firm i that sponsored H-1B peti-

tions in fiscal year 2017 and zero otherwise. The coefficient of interest is ϕ, associated with

the interaction term Treated j×Post t×US c×Sponsor i, and γ from Treated j×Post t×US c. ϕ

22Based on Esterline (2023) estimates, the US lost 45,000 college graduates to Canada’s high-skill visa
from 2017 to 2021.

32



estimates the influence of protectionist policies on the US labor force of chip manufacturing

firms that rely on foreign talent based on their recent H-1B sponsorship activity. In an al-

ternative specification, we replace Sponsor i with Log(Petitions i), which reflects the number

of H-1B petitions filed by the firm i in 2017, allowing for analysis on the intensive margin.

Equation (10) also provides information on the effect of protectionism on US segments

of firms that do not sponsor H-1B visas, captured by γ, on non-US segments of firms that

sponsor H-1B visas, represented by η, and on the nonengineering labor force in the US

for firms that sponsor H-1B visas, represented by θ. This approach allows us to provide a

mechanism through which protectionism influences chip manufacturing workforce dynamics

in the US.

6.2.1 H-1B Exposure and Workforce Dynamics

We present evidence on the influence of the H-1B ban on US chip manufacturers using

Equation (10) in Table 9. In Panel A, we estimate an 8% reduction in hires for firms that

previously employed foreign workers before the H-1B ban. Panel B, column 1, supports this

result when looking at the hiring rate instead of the total number of hires, while column 3

confirms a reduction in the net hiring rate, with decreases of 2% and 3%, respectively. These

findings remain consistent when fixed effects for the job category by year are included, as

shown in columns 5 to 9 in both panels. Overall, the results suggest that US firms, which

previously hired scientists and engineers through the H-1B visa program, have now reduced

their hiring for these roles in the US. Panel C of Table 9 further shows that the H-1B ban

has particularly affected hiring for nonentry-level positions, as these workers tend to have

stronger qualifications compared to other workers in the chip manufacturing industry. Table

B2 of the Appendix provides additional supporting evidence on the intensive margins.

Our findings in this section carry three important implications. First, methodologically,

incorporating geographic variation at the firm-year-job category level enables more rigorous
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fixed-effect structures, allowing us to precisely isolate how US protectionism affects the em-

ployment of scientists and engineers within the United States. Second, we uncover how US

firms strategically responded to rising protectionism in 2018 by restructuring their global

workforce. While these firms reduced their US hiring, they simultaneously increased re-

cruitment of experienced workers overseas to fill junior and mid-senior positions—roles that

were declining domestically amid waning student interest in semiconductor manufacturing

skills. Third, our analysis of H-1B exposure illuminates the mechanism driving employment

declines among US chip manufacturers, highlighting how restricted access to foreign labor

produces substantial adverse effects. These patterns align with our conceptual framework,

which predicts that labor access restrictions are particularly detrimental in occupations like

scientific and engineering roles that heavily depend on foreign workers and face a relatively

inelastic labor supply.

6.3 Tariff Exposures

In this section, we examine another channel that could potentially lead to a decline in

scientist and engineering employment—the import tariffs. Science and engineering roles,

particularly in the semiconductor industry, are tied to R&D and manufacturing processes

that depend on global supply chains and specialized raw materials. Tariffs on these inputs

increase production costs, leading firms to curtail investments in R&D-heavy positions, where

costs are often concentrated. In contrast, roles in administration, marketing, and sales are

less directly linked to the production cycle and are often considered operational or support

functions. These positions are less immediately affected by cost fluctuations in the supply

chain and are not as dependent on specialized materials or international collaboration.

To explore the influence of tariffs on science and engineering jobs within the chip industry,

we employ tariff data from Fajgelbaum et al. (2020), who report US-imposed tariffs on foreign

countries at the 10-digit HS code level (As a robustness check, we replicate our analysis using
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China-specific tariff rates and find consistent results.) Our first step involves calculating the

average maximum and scaled tariff rates by the HS-10 code and year. Our primary analysis

focuses on tariffs as of 2018, considering that the post-2018 period is the post-treatment

period in our analyses.

To calculate tariff exposure, we use the Pierce and Schott (2012) concordance tables,

which provide a mapping between NAICS codes and HS-10 codes. This allows for useful

industry-year level variation, as some NAICs codes are exposed to significantly more tariffs.23

Based on this variation, we categorize industries into high and low tariff exposure groups.

NAICS code 334413 represents the high exposure category, which includes approximately

half of our sample, while the remaining industries fall under low exposure (e.g., 333994,

334515, 333242, and 334418). Including the industry with the second largest tariffs in the

high-exposure group does not change our findings. We perform regressions using specification

(8) on these subsamples and examine the logged number of employees and net employee entry

rate as dependent variables.

In Appendix Table B5, industries with high tariff exposure show substantial declines

in employment: 4% for scientists and 2% for engineers. While industries with low tariff

exposure also experience significant declines, the effects are more modest at 2% and 1%,

respectively. Our results remain robust when incorporating retaliatory tariffs (available at

the HS-8 level) into the analysis.

6.4 Effects on Chip Manufacturing Talent

Our data set allows us to track undergraduate and graduate classmates of employees with

chip skills around the world. By analyzing these classmates, we can investigate the reasons

23For instance, NAICS code 334413 is subject to 45 different tariffs, while NAICS code 333242 is exposed
to only 14. There is also heterogeneity in average scaled tariffs across industries: NAICS code 334413 has
an average tariff exposure of 13.18% (averaged across matched HS-10 codes and countries in 2018), with
a maximum average tariff of 24.4%, whereas NAICS code 334418 has a maximum tariff of 17.9% and an
average tariff of 8.31%.
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behind the declines in both the number and the rate of hiring in the semiconductor sector.

Could these significant declines be attributed to the reduced student interest in fields related

to semiconductors? Are students with similar educational backgrounds now leaning towards

other industries, such as finance and marketing, instead of chip manufacturing?

We start with presenting summary statistics for cohorts in Panel C of Table 4, using

35,496 observations between 2014 and 2022 at the country-degree-job category-year level

that capture the size of each cohort that take job type j after graduating from the same

degree d from the same university in country c in year t, along with their average salary,

seniority, and tenure in their first jobs, respectively. As shown, the average logged classmate

size choosing job type j –Log(Cohort Sizec,d,j,t)– is equal to 1.21. While the average logged

salary is equal to 6.02, the average seniority stands at 1.51, with a close median of 1.50,

reflecting a relatively uniform early career progression among these individuals. Meanwhile,

the tenure of these positions, Log(Tenurec,d,j,t), has a mean (median) of 3.18 (5.02).

To explore how US protectionism influences the entry of graduates into their first jobs

in science and engineering fields, we track the career paths of individuals who graduated

alongside those with chip manufacturing skills, within the same year, and who earned the

same degree from the same university in the same country. Our goal is to analyze the career

decisions of these peers in science and engineering jobs versus other fields, both before and

after the protectionist era. To achieve this, we employ the below difference-in-differences

specification:

yc,d,j,t = τTreatedj × Postt + γc,d,j + θc,t + ζd,t + ϵc,d,j,t. (11)

Our analysis focuses on yc,d,j,t, a set of dependent variables capturing various labor market

outcomes. Specifically, Log(Classmatesc,d,j,t) measures the number of individuals, sharing

the same graduation country (c), degree type (d) from the same university, and year (t)

alongside those with chip manufacturing skills, entered job category j after graduation.

Log(Avg. Salaryc,d,j,t), Avg. Seniorityc,d,j,t, and Log(Tenurec,d,j,t) detail the average salary,
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seniority level, and tenure duration of these classmates in their first jobs after graduation.

In specification (11), Treated j is assigned a value of one for science and engineering jobs,

while it is equal to zero for finance, marketing, sales, operations, and administrative jobs.

Post t takes a value of one for the years post-2018 and zero for the preceding years. We denote

the disturbance term as ϵc,d,j,t. The coefficient of interest in specification (11) is τ , which is

associated with the interaction term Treated j × Post t. This coefficient quantifies the homo-

geneous average treatment effect of protectionism on the number of science and engineering

jobs taken by different educational cohorts—i.e., classmates of people with semiconductor

skills—upon graduation.

To account for endogeneity, we incorporate a strong fixed effects structure, including

country-degree-job category fixed effects (γc,d,j), country-year fixed effects (θc,t), and degree-

year fixed effects (ζd,t). The country-degree-job category fixed effects help isolate variation at

the country-degree-job category level, e.g., due to targeted government subsidies, while the

country-year and degree-year fixed effects control for annual shocks specific to each country

and degree, e.g. due to visa policies or educational trends. Once again, our key identifying

assumption is parallel trends, and we support it by showcasing effect dynamics plots and

trend plots for both treated and control job categories. We cluster standard errors at the

country level to address potential serial correlation within countries.

6.4.1 Decreasing Interest in Science and Engineering Careers

Table 10 presents the changes in the number of classmates doing engineering and science jobs

(Panel A), salaries (Panel B), seniority (Panel C), and length of first employment (Panel D)

of the classmates of employees skilled in chips manufacturing post 2018. In each panel, we

include country-job category-degree fixed effects. We also add year (in Column 1), country-

year (in Column 2), degree-year (in Column 3), and finally both country-year and degree-year

fixed effects (in Column 4). This table includes classmates from both undergraduate and
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graduate degrees.

[Table 10 about here]

Our difference-in-differences specification shows that, with the beginning of the high

protectionism era in 2018, we see fewer number of the remaining classmates get engineering or

scientist jobs. The coefficients in all four specifications of Panel A of Table 10 are negatively

significant at the 1% level. The economic significance is high as well. We see 14–17% drop

in the log number of classmates. The classmates of the talent in the chips industry that skip

engineering and science jobs, likely take finance, marketing, or other higher-paying jobs.

Panel B shows the effect on their salaries. Classmates seem to have been enjoying not only

higher salaries but also higher seniority (Panel C) post-2018.

As shown in Section B.1.5, our findings are robust to using a different dataset from

the Department of Education on the number of graduate cohorts in the US. Our Revelio

data align closely with the Department of Education data, with which we estimate a 14%

decline in the number of graduates from bachelor and pre-bachelor degrees in the US and a

15% decline in postgraduate degrees. Furthermore, the reduction in the number of non-US

resident graduates is significant, amounting to nearly 17% and 29% in undergraduate and

postgraduate programs. More interestingly, though, despite a small increase in graduate

degree completions (by 5%, significant at the 10% level), the completions by US residents of

bachelor and pre-bachelor degrees dropped significantly by 14% (also statistically significant

at the 1% level). These findings, presented in Table B4 of the Appendix, are consistent

with our conceptual framework, which suggests that protectionist policies restricting access

to foreign workers can paradoxically harm the hiring of US residents, especially when the

two groups possess distinct skill sets and demonstrate a degree of complementarity in the

production function. Furthermore, additional untabulated results indicate a decrease in the

number of declared majors (in addition to degree completions) based on Department of

Education data. These results are available upon request.
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To sum up, following the post-2018 period, we document two key shifts in education

patterns: first, a marked decline in undergraduate and graduate cohort sizes among peers

of students with semiconductor manufacturing skills, suggesting diminishing US student

interest in the industry; and second, among those who remain in these academic programs,

an increasing tendency to pursue careers outside science and engineering.

7 Conclusion

We document profound consequences of US protectionist policies on the semiconductor in-

dustry, particularly their impact on workforce dynamics, talent pipelines, and global hir-

ing strategies. Despite the stated goal of revitalizing domestic manufacturing, our findings

demonstrate a significant decline in employment opportunities for scientists and engineers,

particularly in entry-level and junior roles. This contraction is driven by the interaction of re-

stricted access to foreign labor and the industry’s dependence on a global and interconnected

supply chain.

We show that US semiconductor firms, constrained by protectionist measures, reduced do-

mestic hiring while simultaneously increasing overseas recruitment, particularly in countries

like Canada and the Netherlands that adopted more favorable immigration policies. Firms

heavily reliant on H-1B visas experienced the sharpest declines in US-based employment,

underscoring the critical role of foreign talent in maintaining innovation and operational ca-

pacity. The reduction in H-1B-sponsored positions further strained the industry’s ability to

attract and retain skilled workers, amplifying workforce shortages in critical technical roles.

While our main specification focuses on the four years before and after 2018, our mech-

anisms have significant implications for longer-term effects. It is natural to assume that

supply curves tend to flatten over time, which, in our context, suggests that the adverse

impact of restricted labor access might diminish as the workforce gradually adapts to the

new policy regime. However, our setting is unique in its focus on skilled labor. If workers
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foresee an outflow of foreign talent, they may be less motivated to join the field due to

the lack of colleagues with complementary skills. This could lead to further declines in the

number of prospective employees pursuing related degrees and majors. As a result, if skill

complementarity exists among chip workers, an initial restriction on labor access could set

off an amplification effect, causing a more prolonged and significant outflow in the long run.

Indeed, our findings highlight impacts that go beyond immediate workforce metrics to

reveal shifts in educational and career trajectories. The data show a decline in enrollment and

graduation rates for chip-related fields, as prospective students and graduates increasingly

seek alternative, higher-paying opportunities in finance, marketing, and other industries.

This trend poses long-term risks to the domestic talent pipeline and could undermine US

leadership in semiconductor innovation.

Our findings have significant implications for the 2021 Facilitating American-Built Semi-

conductors (FABS) Act and the 2022 CHIPS and Science Act, which aim to bolster the US

semiconductor industry through extensive investments to enhance US competitiveness glob-

ally. A report from the Semiconductor Industry Association (SIA) anticipates a significant

expansion in the semiconductor workforce by 2030, with projections indicating a growth of

nearly 115,000 jobs.24 They also estimate that around 60% of these new positions, predom-

inantly technical roles, may remain unfilled based on current degree completion rates. Our

estimates suggest that unless measures are taken to address the labor shortage by attract-

ing and retaining domestic and international talent, the CHIPS Act may struggle to fully

realize its objectives. Overcoming these challenges requires an approach that considers the

combined effects of trade policies, immigration reforms, and educational investments.25

24See https://bit.ly/3SDPD5j. Other forecasts indicate a projected shortfall of 300,000 engineers and
90,000 technical workers in our country by 2030. See https://bit.ly/3OTd35B.

25See the ‘Chipmaker’s Visa’ for H-1B program: https://bit.ly/49dum9E.
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Table 1. Active Chip Manufacturing Workforce

This table shows the global distribution of employees, who possess skills in chip manufacturing and are actively employed as of March 2023. Panel A aggregates
the total count of these employees across locations of employees and distributes them into various job categories (Admin, Engineer, Finance, Marketing,
Operations, Sales, and Scientist), as defined by Revelio’s clustering algorithms. Total Emp. refers to the total number employees with chip manufacturing skills.
Panel B outlines employment characteristics for each country: Tenure is the average number of days active employees with chip manufacturing skills have spent
in their current position; RN represents the average order of a job within an employee’s career; Salary is the average annual income in USD; and Seniority refers
to the average seniority level, categorized into seven levels. For more details on the data collection methodology and the definition of chip manufacturing skills,
refer to Section B.1.1. For detailed variable definitions, please see Section B.2.

Panel A: Employee Count by Job Category Panel B: Economic Characteristics

Rank Country Total Emp. Admin Engineer Finance Marketing Operations Sales Scientist Tenure RN Salary Seniority

1 United States 680,602 26,373 480,193 8,531 11,578 31,790 72,622 49,515 2,819.03 5.47 100,384.72 2.95
2 India 165,352 9,880 122,978 2,476 2,728 7,216 11,946 8,128 1,986.43 4.11 12,750.81 2.79
3 United Kingdom 88,527 3,728 57,927 1,033 2,121 5,687 10,888 7,143 2,543.08 5.7 58,110.89 3.02
4 Canada 63,376 2,784 44,752 758 1,223 2,770 6,229 4,860 2,407.60 5.58 61,114.26 2.70
5 Germany 43,597 1,272 28,759 261 682 1,725 4,665 6,233 2,037.52 5.7 79,377.39 2.97
6 France 38,024 1,476 25,422 349 916 1,572 3,600 4,689 2,089.61 6.08 52,630.56 2.92
7 Italy 30,545 1,236 20,301 237 697 1,557 3,660 2,857 2,832.06 5.15 55,721.32 2.81
8 Australia 30,199 1,456 20,703 407 603 1,523 3,264 2,243 2,286.17 5.88 80,238.36 2.79
9 China 28,664 1,930 16,330 306 586 1,817 5,320 2,375 3,330.75 3.66 28,236.07 3.19
10 Netherlands 28,320 1,180 18,415 225 755 1,501 2,913 3,331 2,513.68 6.31 64,067.80 2.89
11 Brazil 25,968 1,999 17,787 466 497 1,415 2,396 1,408 2,711.02 5.48 14,588.81 2.51
12 Israel 21,956 572 16,511 103 275 889 1,516 2,090 2,395.99 4.99 73,976.56 3.16
13 Spain 20,989 1,166 14,450 176 493 724 1,708 2,272 2,413.65 5.62 50,341.81 2.72
14 Singapore 18,648 607 12,547 291 244 1,238 2,215 1,506 2,395.93 4.86 46,346.70 3.2
15 Pakistan 18,232 1,820 12,539 198 380 925 1,290 1,080 2,453.57 4.13 13,330.76 2.64
16 Mexico 18,137 843 13,291 175 260 1,237 1,464 867 2,643.00 5.01 29,523.58 2.79
17 Sweden 17,869 561 12,241 83 269 837 1,691 2,187 2,164.33 6.55 66,023.95 2.91
18 Turkey 16,575 885 11,537 125 290 589 1,626 1,523 2,034.55 5.02 20,327.08 2.69
19 Taiwan 16,312 565 10,919 142 221 960 2,320 1,185 3,233.21 3.86 76,870.21 3.25
20 Malaysia 13,874 706 10,613 168 141 730 948 568 2,654.82 4.13 21,392.26 2.85

Other Countries 285,143 16,541 195,247 2,763 5,505 13,647 26,783 24,657 2,524.85 5.07 48,186.61 2.78
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Table 2. Top 25 Employers of Active Chip Manufacturing Workforce

This table ranks the top 25 firms by the number of active employees around the globe with chip manufacturing skills as of March 2023. Total Emp. refers to
the total number employees with chip manufacturing skills. Seniority is classified into seven levels, reflecting the hierarchical position within the company. In
the case of multiple employers for a given employee, we keep the employer matching with the employee’s highest job seniority. Further information on how data
was gathered and the specific criteria used to identify chip manufacturing skills can be found in Section B.1.1. For detailed variable definitions, please see Section B.2.

Seniority

Rank Employer Total Emp. 1 2 3 4 5 6 7

1 Intel Corp. 29,178 1,268 15,397 3,658 3,787 4,344 697 27
2 Government of the USA 13,361 4,893 5,590 891 1,001 914 41 31
3 Apple, Inc. 11,956 449 7,589 1,259 1,177 1,382 96 4
4 Amazon.com, Inc. 10,976 327 4,115 1,677 2,325 2,188 338 6
5 QUALCOMM, Inc. 10,427 78 2,233 2,330 3,461 1,783 539 3
6 Siemens AG 9,063 540 3,977 1,618 1,551 1,203 153 21
7 Alphabet, Inc. 7,877 119 5,561 716 701 686 91 3
8 Raytheon Technologies Corp. 7,455 674 2,784 1,000 1,390 1,497 108 2
9 Advanced Micro Devices, Inc. 7,148 79 2,420 1,234 1,887 1,130 392 6
10 Microsoft Corp. 6,849 150 4,274 582 640 948 243 12
11 NXP Semiconductors NV 6,546 296 2,319 1,068 1,246 1,362 248 7
12 Robert Bosch Stiftung GmbH 6,457 523 3,819 740 658 587 124 6
13 Infineon Technologies AG 6,196 373 2,534 817 891 1,377 183 21
14 Texas Instruments Inc. 6,059 279 2,372 698 1,186 1,293 225 6
15 Samsung Electronics Co., Ltd. 5,996 395 2,615 580 666 1,520 213 7
16 Schneider Electric SE 5,560 572 2,532 727 810 771 138 10
17 Honeywell International, Inc. 5,434 593 3,064 489 609 586 85 8
18 STMicroelectronics NV 5,363 257 2,283 966 1,090 678 85 4
19 IBM Corp. 5,220 126 1,748 798 1,429 978 118 23
20 Analog Devices, Inc. 5,083 351 2,139 743 902 802 142 4
21 Broadcom, Inc. 5,076 159 1,537 647 802 1,799 127 5
22 NVIDIA Corp. 5,057 41 2,188 927 747 946 206 2
23 ABB Ltd. 4,960 378 2,313 693 809 703 57 7
24 Micron Technology, Inc. 4,883 236 1,260 595 1,056 1,427 302 7
25 Applied Materials, Inc. 4,693 163 1,343 680 936 1,236 316 19

Other Employers 1,371,038 189,604 538,598 158,650 200,048 215,743 39,044 29,351
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Table 3. Industry Composition of Active Chip Manufacturing Workforce

This table displays the industries employing the 680,602 active professionals in the US with chip manufacturing skills. Panel A focuses on industries directly
involved in chip manufacturing, while Panel B highlights the top 10 industries outside of chip manufacturing that also utilize US chip manufacturing talent pool.
Total Emp. refers to the total number employees with chip manufacturing skills. Tenure is the average number of days active employees with chip manufacturing
skills have spent in their current position; RN represents the average order of a job within an employee’s career; Salary is the average annual income in USD;
and Seniority refers to the average seniority level, categorized into seven levels. For more details on the data collection methodology and the definition of chip
manufacturing skills, refer to Section B.1.1. For detailed variable definitions, please see Section B.2.

Panel A: Chip Manufacturing Industries

Rank Industry NAICS Total Emp. Tenure RN Salary Seniority

1 Semiconductor and Related Device Manufacturing 334413 72,512 3,035.24 4.9 113,197.25 3.24
2 Semiconductor Machinery Manufacturing 333242 7,943 3,159.26 4.99 109,462.64 3.34
3 Instrument Mfg. for Electricity & Electrical Signal Testing 334515 6,514 3,719.29 4.73 101,481.78 2.97
4 Printed Circuit Assembly (Electronic Assembly) Manufacturing 334418 1,526 4,054.05 4.32 98,851.70 3.16

Panel B: Other Industries

Rank Industry NAICS Total Emp. Tenure RN Salary Seniority

1 Software Publishers 511210 35,572 1,811.93 6.42 122,691.03 3.22
2 Colleges, Universities, and Professional Schools 611310 27,661 2,905.84 5.3 78,354.48 2.46
3 Radio/TV Broadcasting & Wireless Communications Equipment Mfg. 334220 14,591 2,227.03 5.55 125,834.12 2.8
4 Internet Publishing and Broadcasting and Web Search Portals 519130 13,512 1,270.00 6.67 136,641.06 2.74
5 Search & Navigation System Instrument Mfg. 334511 12,868 2,978.82 5.28 96,177.27 2.72
6 Other Computer Related Services 541519 10,877 2,421.91 5.89 109,739.59 3.34
7 Engineering Services 541330 10,593 2,565.56 5.4 94,665.02 2.67
8 Surgical and Medical Instrument Manufacturing 339112 9,991 2,822.09 5.69 102,990.94 3.17
9 Other Electronic Component Manufacturing 334419 9,230 3,534.28 4.82 98,744.39 3.03
10 Automobile Manufacturing 336111 8,664 2,253.57 5.92 93,032.16 2.74
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Table 4. Summary Statistics

This table provides a detailed overview of the variables utilized in our empirical analysis. Panel A offers summary
statistics related to US chip manufacturing firms, Panel B presents these at the geographic segment level, while
Panel C focuses on classmates of individuals with chip manufacturing skills. These classmates are defined as
students who graduated with the same degree, from the same university, in the same country, and year. For detailed
information on data collection methods and detailed definitions of the variables, please see Sections B.1.3, B.1.4, and B.2.

Panel A: US Chip Manufacturer Workforce

N Mean Median SD P5 P95

Log(Empi,j,t) 68,949 1.76 1.39 1.47 0.00 4.86
Log(Hiringi,j,t) 68,949 0.62 0.00 0.96 0.00 2.89
Log(Separationi,j,t) 68,949 0.59 0.00 0.92 0.00 2.77
Log(Turnoveri,j,t) 68,949 0.88 0.69 1.16 0.00 3.50
Hiring Ratei,j,t 56,497 0.16 0.00 0.38 0.00 0.83
Separation Ratei,j,t 56,497 0.12 0.00 0.22 0.00 0.50
Net Hiring Ratei,j,t 56,497 0.04 0.00 0.38 -0.33 0.50
Turnover Ratei,j,t 56,497 0.28 0.14 0.49 0.00 1.00
Log(FirstJobEmpi,j,t) 68,949 0.95 0.69 1.23 0.00 3.50
Log(ExprEmpi,j,t) 68,949 1.56 1.10 1.52 0.00 4.60
Log(JunPosEmpi,j,t) 68,949 1.45 1.10 1.50 0.00 4.47
Log(MidSenPosEmpi,j,t) 68,949 1.04 0.69 1.29 0.00 3.66

Panel B: Regional US Chip Manufacturer Workforce

N Mean Median SD P5 P95

Log(Empi,c,j,t) 231,696 1.24 0.69 1.24 0.00 3.83
Log(Hiringi,c,j,t) 231,696 0.36 0.00 0.72 0.00 2.08
Log(Separationi,c,j,t) 231,696 0.33 0.00 0.67 0.00 1.79
Log(Turnoveri,c,j,t) 231,696 0.53 0.00 0.89 0.00 2.56
Hiring Ratei,c,j,t 166,411 0.12 0.00 0.27 0.00 0.75
Separation Ratei,c,j,t 166,411 0.10 0.00 0.22 0.00 0.50
Net Hiring Ratei,c,j,t 166,411 0.01 0.00 0.29 -0.46 0.50
Turnover Ratei,c,j,t 166,411 0.23 0.00 0.39 0.00 1.00
Log(FirstJobEmpi,c,j,t) 231,696 0.60 0.00 0.86 0.00 2.40
Log(ExprEmpi,c,j,t) 231,696 1.02 0.69 1.20 0.00 3.58
Log(JunPosEmpi,c,j,t) 231,696 0.98 0.69 1.15 0.00 3.43
Log(MidSenPosEmpi,c,j,t) 231,696 0.65 0.00 0.93 0.00 2.71

Panel C: Educational Cohorts of Chip Manufacturing Employees

N Mean Median SD P5 P95

Log(Classmatesc,d,j,t) 35,496 1.21 0.69 1.56 0.00 4.44
Log(Avg. Salaryc,d,j,t) 35,496 6.02 9.42 5.14 0.00 11.29
Avg. Seniorityc,d,j,t 35,496 1.51 1.50 1.56 0.00 4.33
Log(Tenurec,d,j,t) 35,496 3.18 5.02 2.79 0.00 6.19
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Table 5. Science and Engineering Employment in US Chip Manufacturing Companies

This table presents our findings on how US protectionism has influenced science and engineering employment at US chip manufacturing companies. Utilizing the
difference-in-differences approach outlined in Equation (8), we analyze the effects on employment metrics. Panel A shows the effects on employee count, hiring
practices, separation, and turnover, while Panel B focuses on these metrics in rate form instead of logged numbers. We set missing rate variables to zero and
control for them with an untabulated dummy variable. For information on how data was collected and definitions of the variables used, refer to Sections B.1.3
and B.2, respectively. The analysis spans from 2014 to 2022, with standard errors clustered by firm. Significance levels of 1%, 5%, and 10% are denoted by ⋆ ⋆ ⋆,
⋆⋆, and ⋆, respectively.

Panel A: Analyses of Chip Manufacturing Workforce

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.09*** -0.04*** -0.09***

(-3.45) (-8.93) (-4.19) (-7.73)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949
R-squared 0.975 0.874 0.863 0.889

Panel B: Analyses of Employment Growth

Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.01*** -0.02*** -0.04***

(-4.70) (-3.54) (-3.16) (-5.16)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949
R-squared 0.393 0.390 0.342 0.421
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Table 6. Science and Engineering Employment by Career Progression

This table presents the impact of US protectionism on science and engineering employment within US chip manufacturing companies, segmented by experience
and seniority. Utilizing the difference-in-differences methodology outlined in Equation (8), column 1 shows the number of employees hired for the first time,
and column 2 focuses on employees with prior work experience. Columns 3 and 4 present results from categorizing employees based on seniority. For details on
data collection and variable definitions, see Sections B.1.3 and B.2. The analysis, covering 2014 to 2022, uses firm-level clustered standard errors. Statistical
significance at 1%, 5%, and 10% levels is indicated by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.01 -0.02** -0.01

(-4.27) (-1.55) (-2.04) (-0.81)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949
R-squared 0.983 0.974 0.974 0.973
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Table 7. Main Findings After Excluding Data Science and Programming Roles

This table presents our main findings after excluding all data and programming related roles at US chip manufacturing companies, as explained in Section 6.4.1.
Panel A shows the effects on employee count, hiring, separation, and turnover, and Panel B focuses on these metrics in rate form instead of logged numbers.
Panel C presents our findings by career progression. We set missing rate variables to zero and control for them with an untabulated dummy variable. For
information on how data was collected and definitions of the variables used, refer to Sections B.1.3 and B.2, respectively. The analysis spans from 2014 to 2022,
with standard errors clustered by firm. Significance levels of 1%, 5%, and 10% are denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Analyses of Chip Manufacturing Workforce

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.08*** -0.04*** -0.08***

(-3.51) (-8.46) (-4.10) (-7.52)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,886 68,886 68,886 68,886
R-squared 0.975 0.872 0.861 0.887

Panel B: Analyses of Employment Growth

Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.01*** -0.02*** -0.04***

(-4.55) (-3.64) (-2.86) (-5.08)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,886 68,886 68,886 68,886
R-squared 0.395 0.390 0.343 0.422

Panel C: Analyses of Chip Manufacturing Workforce by Career Progression

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.02 -0.02** -0.01

(-4.46) (-1.64) (-2.09) (-0.99)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,886 68,886 68,886 68,886
R-squared 0.983 0.973 0.974 0.973
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Table 8. Effect Heterogeneity: US vs. Non-US Workforce Dynamics

This table presents our findings on how US protectionism has influenced the geography of science and engineering employees at US chip manufacturing companies.
Utilizing the difference-in-differences approach outlined in Equation (9), Panel A presents the effects on employee count, hiring practices, separation, and turnover,
Panel B focuses on these metrics in rate form instead of absolute numbers, and Panel C focuses on metrics by career progression. We set missing rate variables
to zero and control for them with an untabulated dummy variable. FirstJobEmp, JunPosEmp and MidSenPosEmp are shortened to FirstEmp, JunEmp and
MidSenEmp for brevity. For information on how data was collected and definitions of the variables used, refer to Sections B.1.3 and B.2, respectively. The analysis
spans the years 2014 to 2022. Standard errors are clustered two-way by firm and country. Significance levels of 1%, 5%, and 10% are denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆,
respectively.

Panel A: Analyses of Chip Manufacturing Workforce (N=231,696)

Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t) Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc -0.05*** -0.07*** -0.04*** -0.07*** -0.05*** -0.07*** -0.04*** -0.06***

(-4.76) (-4.92) (-3.23) (-4.21) (-4.74) (-4.71) (-3.12) (-4.00)
Treatedj × Postt 0.02** -0.03** -0.01 -0.04**

(2.17) (-2.39) (-1.00) (-2.28)

Firm × Country × Job Cat. FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category × Year FE No No No No Yes Yes Yes Yes

R-squared 0.948 0.781 0.760 0.806 0.948 0.781 0.760 0.807

Panel B: Analyses of Employment Growth (N=231,696)

Hiring Ratei,c,j,t Separation Ratei,c,j,t Net Hiring Ratei,c,j,t Turnover Ratei,c,j,t Hiring Ratei,c,j,t Separation Ratei,c,j,t Net Hiring Ratei,c,j,t Turnover Ratei,c,j,t

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc -0.01*** -0.01*** -0.01** -0.02*** -0.01*** -0.01** -0.01** -0.02***

(-3.83) (-2.68) (-2.62) (-3.88) (-3.60) (-2.64) (-2.40) (-3.72)
Treatedj × Postt -0.01*** -0.00 -0.01** -0.02***

(-4.03) (-1.43) (-2.62) (-3.46)

Firm × Country × Job Cat. FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category × Year FE No No No No Yes Yes Yes Yes

R-squared 0.329 0.281 0.211 0.349 0.329 0.281 0.212 0.350

Panel C: Analyses of Chip Manufacturing Workforce by Career Progression (N=231,696)

Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t) Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc -0.01*** -0.06*** -0.04*** -0.03*** -0.01*** -0.06*** -0.05*** -0.03***

(-2.69) (-4.90) (-4.23) (-3.15) (-2.90) (-4.88) (-4.28) (-3.15)
Treatedj × Postt -0.01 0.03*** 0.02** 0.02**

(-1.51) (3.04) (2.10) (2.36)

Firm × Country × Job Cat. FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category × Year FE No No No No Yes Yes Yes Yes

R-squared 0.961 0.940 0.943 0.939 0.961 0.940 0.943 0.939
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Table 9. Effect Heterogeneity: US vs. Non-US Workforce and the Role of H-1B Hiring

This table reports our estimates of the heterogeneous effect of US protectionism on workforce dynamics in US chip manufacturing firms, both domestically and
internationally, as well as among firms that rely on foreign talent and those that do not. The results are based on Equation (10). Sponsori indicates whether firm
i sponsored H1B petitions in fiscal year 2017 based on USCIS’s H-1B Employer Data Hub. The remaining variables are explained in Table 8. The analysis spans
the years 2014 to 2022. Standard errors are clustered two-way by firm and country. Statistical significance at 1%, 5%, and 10% levels are indicated by ⋆ ⋆ ⋆, ⋆⋆,
and ⋆, respectively.

Panel A: Analyses of Chip Manufacturing Workforce (N=231,696)

Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t) Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc × Sponsori -0.03 -0.08*** -0.03* -0.06** -0.03 -0.09*** -0.03* -0.06**

(-1.54) (-4.09) (-1.79) (-2.47) (-1.54) (-4.09) (-1.79) (-2.47)
Treatedj × Postt ×USc -0.03*** -0.05*** -0.02 -0.04*** -0.03*** -0.04*** -0.01 -0.04**

(-2.93) (-4.14) (-1.51) (-2.66) (-2.94) (-3.87) (-1.41) (-2.43)
Treatedj × Postt × Sponsori 0.05** 0.02 0.06*** 0.07*** 0.05** 0.02 0.06*** 0.07***

(2.53) (0.97) (3.47) (2.72) (2.54) (1.00) (3.49) (2.75)
Postt ×USc × Sponsori -0.02 -0.01 0.02 0.01 -0.02 -0.01 0.02 0.01

(-1.03) (-0.50) (0.69) (0.37) (-1.00) (-0.48) (0.70) (0.39)
Treatedj × Postt -0.00 -0.04*** -0.04*** -0.07***

(-0.01) (-3.68) (-3.42) (-4.51)

R-squared 0.948 0.781 0.760 0.807 0.948 0.781 0.760 0.807

Panel B: Analyses of Employment Growth (N=231,696)

Hiring Ratei,c,j,t Separation Ratei,c,j,t Net Hiring Ratei,c,j,t Turnover Ratei,c,j,t Hiring Ratei,c,j,t Separation Ratei,c,j,t Net Hiring Ratei,c,j,t Turnover Ratei,c,j,t

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc × Sponsori -0.02*** 0.01 -0.03*** -0.01 -0.02*** 0.01 -0.03*** -0.01

(-2.80) (1.49) (-4.28) (-1.18) (-2.80) (1.48) (-4.27) (-1.19)
Treatedj × Postt ×USc -0.01* -0.01*** -0.00 -0.02** -0.01 -0.01*** -0.00 -0.01**

(-1.78) (-2.77) (-0.56) (-2.48) (-1.59) (-2.72) (-0.39) (-2.34)
Treatedj × Postt × Sponsori 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01

(0.77) (0.62) (0.77) (0.75) (0.81) (0.63) (0.81) (0.78)
Postt ×USc × Sponsori -0.00 -0.00 0.00 -0.01 -0.00 -0.00 0.00 -0.01

(-0.55) (-1.01) (0.01) (-0.89) (-0.53) (-1.00) (0.03) (-0.87)
Treatedj × Postt -0.02*** -0.00* -0.01*** -0.02***

(-3.67) (-1.80) (-2.77) (-3.36)

R-squared 0.329 0.281 0.211 0.349 0.329 0.281 0.212 0.350

Panel C: Analyses of Chip Manufacturing Workforce by Career Progression (N=231,696)

Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t) Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc × Sponsori -0.02* -0.05** -0.02 -0.04** -0.02* -0.05** -0.02 -0.04**

(-1.83) (-2.04) (-1.03) (-2.52) (-1.82) (-2.04) (-1.04) (-2.52)
Treatedj × Postt ×USc -0.01 -0.03** -0.03*** -0.01 -0.01* -0.03** -0.03*** -0.01

(-1.65) (-2.56) (-2.86) (-1.01) (-1.89) (-2.57) (-2.94) (-1.02)
Treatedj × Postt × Sponsori 0.01 0.06*** 0.04** 0.05*** 0.01 0.06*** 0.04** 0.05***

(0.77) (2.90) (2.05) (3.15) (0.76) (2.91) (2.05) (3.17)
Postt ×USc × Sponsori -0.01 -0.02 -0.03 0.02 -0.01 -0.02 -0.03 0.02

(-0.77) (-0.98) (-1.46) (0.78) (-0.75) (-0.96) (-1.44) (0.80)
Treatedj × Postt -0.01** 0.01 0.00 -0.00

(-2.07) (0.54) (0.25) (-0.19)

R-squared 0.961 0.940 0.943 0.939 0.961 0.940 0.943 0.939

Panel D: Controls for Panels A, B, and C

Firm × Country × Job Cat. FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category × Year FE No No No No Yes Yes Yes Yes
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Table 10. Career Choices of Students Graduating with Chip Manufacturing Skills

This table presents our findings on the effect of US protectionism on the unique number of students who complete their
education equipped with relevant skills in chip manufacturing and find jobs. To pinpoint these students, we identify the
peers of individuals with chip manufacturing skills who graduated in the same year, pursued the same degree at the
same university of the same country. We then examine these peers’ career choices both before and after the beginning
of US protectionism in 2018. We use the difference-in-differences methodology outlined in Equation (11). In Panel
A, we display the number of peers who secured initial jobs in various job categories, distinguishing between science
and engineering positions and other categories. Panel B provides information on the salaries of peers in different job
categories. Panels C and D analyze the starting seniority levels and tenure, which measures the number of days these
peers work in their first jobs across different job categories after graduating with the same degree, year, and country as
those with chip manufacturing skills. For detailed insights into data collection and variable definitions, please refer to
Sections B.1.4 and B.2. Our analysis spans the period from 2014 to 2022 and employs country-level clustered standard
errors. Statistical significance at 1%, 5%, and 10% levels is indicated by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Regressions of Log(Classmatesc,d,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.14*** -0.15*** -0.14*** -0.17***

(-11.92) (-13.61) (-11.63) (-14.10)

Observations 35,496 35,424 35,496 35,424
R-squared 0.940 0.950 0.945 0.956

Panel B: Regressions of Log(Salaryc,d,j,t)

(1) (2) (3) (4)
Treatedj × Postt 0.03*** 0.03*** 0.04*** 0.04***

(3.05) (3.06) (3.48) (3.51)

Observations 35,496 35,424 35,496 35,424
R-squared 0.994 0.995 0.994 0.995

Panel C: Regressions of Seniorityc,d,j,t

(1) (2) (3) (4)
Treatedj × Postt 0.11*** 0.10*** 0.11*** 0.11***

(6.47) (6.28) (7.00) (6.86)

Observations 35,496 35,424 35,496 35,424
R-squared 0.769 0.780 0.770 0.781

Panel D: Regressions of Log(Tenurec,d,j,t)

(1) (2) (3) (4)
Treatedj × Postt 0.02 0.02 0.02 0.00

(1.59) (1.14) (0.98) (0.25)

Observations 35,496 35,424 35,496 35,424
R-squared 0.943 0.946 0.943 0.947

Panel E: Controls for Panels A, B, C, and D

(1) (2) (3) (4)
Country × Job Category × Degree FE Yes Yes Yes Yes
Year FE Yes No No No
Country × Year FE No Yes No Yes
Degree × Year FE No No Yes Yes
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Figure 1. Active Employees with Chip Manufacturing Skills

This figure illustrates the global distribution of employees with chip manufacturing skills who are actively employed as of March 2023. Methodological details
and definitions regarding chip manufacturing skills are available in Section B.1.1.
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Figure 2. US Share of Chip Manufacturing Skills

This figure presents the list of skills utilized to identify individuals with chip manufacturing expertise, alongside the percentage representation of each skill among
employees in the US. Methodological details and definitions regarding chip manufacturing skills are available in Section B.1.1.
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Figure 3. U.S. Chip Manufacturing: Workforce Distribution by Job Category

The figure in Panel A shows the first jobs of students who graduated in the same year, program, and university as individuals with chip manufacturing skills. The
analysis is grouped by degree type and initial job category after graduation. Data are as of the end of 2017, excluding categories with fewer than 1,000 classmates.
The figure in Panel B displays the aggregate number of employees categorized by job descriptions at US chip manufacturing firms as of the end of 2017. For
details on the methodology and variable definitions, please refer to Sections B.1 and B.2.

Panel A: Classmates of Chip Experts and Their Careers Panel B: Job Categories in US Chip Manufacturing Firms
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Figure 4. Effect Dynamics: Science and Engineering Positions at US Chip Manufacturers

The initial figure illustrates the time-varying effects of US protectionism on the logarithm of the number of employees
in engineering and science roles. These effects are calculated using a difference in differences model as in specification
(8), which controls for both firm × job category and firm × job year dummies. Each point estimate is accompanied by a
95% confidence interval. The second figure displays the fitted trend comparisons between the treated group (employees
in engineering and science) and the control group (employees in administration, finance, marketing, operations, and
sales) employees of the same firm in the same year. In these trend analyses, data are adjusted by removing the effects of
firm × job category, as well as year fixed effects. See Section 5.1 for more details on this methodology. For information
on how data was collected and definitions of the variables used, refer to Sections B.1.3 and B.2, respectively.
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Figure 5. Effect Dynamics: First Science and Engineering Jobs at US Chip Manufacturers

The initial figure illustrates the time-varying effects of US protectionism on the logarithm of the number of first-job
employees in engineering and science roles. These effects are calculated using a difference in differences model as in
specification (8), which controls for both firm × job category and firm × job year dummies. Each point estimate is
accompanied by a 95% confidence interval. The second figure displays the trend comparisons between the treated
group (employees in engineering and science) and the control group (employees in administration, finance, marketing,
operations, and sales) employees of the same firm in the same year. In these trend analyses, data are adjusted by
removing the effects of firm × job category, as well as year fixed effects. See Section 5.1 for more details on this
methodology. For information on how data was collected and definitions of the variables used, refer to Sections B.1.3
and B.2, respectively.
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Figure 6. Effect Dynamics: Global Workforce Trends in US Chip Manufacturers

The figure illustrates the dynamic effect of US protectionist policies on the logarithmic scale of employment counts
in science and engineering positions, both within (represented by orange squares) and outside (represented by blue
triangles) the United States. This analysis is conducted using a difference-in-differences approach as outlined in
specification (9), accounting for interactions between firm, country, and job category, as well as firm × year and country
× year fixed effects. Each point estimate is accompanied by a 95% confidence interval. For information on how data
was collected and definitions of the variables used, refer to Sections B.1.3 and B.2, respectively.
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Figure 7. Effect Dynamics: Classmates’ Shift Away from Chip Manufacturing Jobs

The first figure highlights time-varying effects of US protectionism on the number of classmates of individuals skilled
in chip manufacturing, landing science and engineering jobs. These estimates are based on a difference in differences
approach according to specification (11), which accounts for fixed effects across country × job category × degree,
country × year, and degree × year. Each point estimate is provided alongside a 95% confidence interval. The second
figure illustrates trend comparisons between the treated group (classmates who find engineering and science jobs) and
the control group (classmates entering jobs in administration, finance, marketing, operations, and sales). In these trend
analyses, data adjustments are made to exclude the influences of fixed effects for country × job category × degree,
country × year, and degree × year. Details on the data collection methodology and the definitions of variables employed
can be found in Sections B.1.4 and B.2, respectively.
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Internet Appendix for

When Protectionism Kills Talent

A Proof of Propositions

Proposition 1

Take the first-order conditions of the representative consumer’s utility w.r.t chip and other

products, and we have:

Y
1
ηα

1
η

CY
− 1

η

C = λPC ⇒ YC = (λPC)
−ηαCY (A.1)

Y
1
ηα

1
η

OY
− 1

η

O = λPO ⇒ YO = (λPO)
−ηαOY, (A.2)

where Y ≡
(
α

1
η

CY
η−1
η

C + α
1
η

OY
η−1
η

O

) η
η−1

, and λ is the Lagrange multiplier associated with the

consumer’s budget constraint. Substitute Equations (A.1) and (A.2) into the consumer’s

budget constraint (Equation 2 ), we have:

I = PO(λPO)
−ηαOY + PC(λPC)

−ηαCY

= λ−η [PO(1− η)αO + PC(1− η)αC ]Y

= λ−ηP 1−ηY, (A.3)

where P =
[
P 1−η
O αO + P 1−η

C αC

] 1
1−η is the composite price index. Substitue Equation (A.3)

into Equation (A.1), we get:

YC = I(P 1−ηY )−1P−η
C αCY = αCIP

η−1P−η
C . (A.4)
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Use the firm’s first-order conditions in Equation (4), we can express firm j’s labor demand

as:

L =

[
W

z(1− v)θPC

] 1
θ−1

. (A.5)

We have J symmetric firms in the economy, equating their total labor demand to the labor

supply in the economy, we have the labor market clearing condition in Equation (5). Give

firms’ optimal labor demand, we can express the total output of domestic chip products as:

YC = Jy = JzLθ = Jz

[
W

z(1− v)θPC

] θ
θ−1

, (A.6)

which we substitute into Equation (A.4) to obtain the product market clearing condition in

Equation (6), which we reproduce below:

Jz

[
W

z(1− v)θPC

] θ
θ−1

= αCIP
η−1P−η

C , (A.7)

which we can rewrite into:

Jz
1

1−θ

(
W

θ

) θ
θ−1

= αCI(1− v)
θ

θ−1P
θ

θ−1

C P η−1P−η
C = αCI(1− v)

θ
θ−1P

1
θ−1

C

(
P

PC

)η−1

. (A.8)

We can verify that the RHS of Equation (A.8) is strictly decreasing in PC for all θ ∈ (0, 1)

and η ≥ 1. Therefore, Equation (A.8) implies that the equilibrium wage rate W is a strictly

increasing function of the domestic output price, PC , and similarly, we can show that W is

strictly increasing in z, and strictly decreasing in v. We can also verify these relationships
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using the Implicit Function Theorem by calculating:

∂W

∂PC

=
W

θPC

+
W (θ − 1)

θ
(1− η)αO

(
PO

P

)1−η

P−1
C > 0 (A.9)

∂W

∂z
=

W

θz
> 0 (A.10)

∂W

∂v
=

−W

1− v
< 0. (A.11)

Thus, we can write W = w(PC , z, v), with
∂w(PC ,z,v)

∂PC
> 0, ∂w(PC ,z,v)

∂z
> 0, and ∂w(PC ,z,v)

∂v
< 0.

In the subsequent analysis, we use w to denote the implicit function W = w(PC , z, v). We

plug this relationship into the labor market clearing condition (Equation 5) to obtain:

J

(
αCIP

η−1P−η
C

Jz

) 1
θ

= λS [w(PC , z, v)]

⇔ Az
−1
θ P

−1
θ

C

(
P

PC

) η−1
θ

= λS [w(PC , z, v)] , (A.12)

where A ≡ J(αCI
J
)
1
θ is a constant. The LHS of Equation (A.12) is strictly decreasing in PC ,

and the RHS is strictly increasing in PC , implying a unique combination of product price

and wage rate.

Proposition 2

We define the following based on Equation (A.12)

Γ ≡ Az
−1
θ P

−1
θ

C

(
P

PC

) η−1
θ

− λS [w(PC , z, v)] = 0. (A.13)
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Take first order condition of Γ w.r.t the equilibrium product price, and protectionist policies,

as represented by z, v, and λ, we have:

∂Γ

∂PC

= Az−
1
θ

∂

[
P

−1
θ

C

(
P
PC

) η−1
θ

]
∂PC

− λ
∂S

∂w

∂w
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< 0 (A.14)

∂Γ
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= −1

θ
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1
θ
−1A

[
P

−1
θ

C

(
P
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) η−1
θ

]
− λ

∂S

∂w

∂w

∂z
< 0 (A.15)

∂Γ

∂v
= −λ

∂S

∂w

∂w

∂v
> 0 (A.16)

∂Γ

∂λ
= −S < 0 (A.17)

From the above equations, we can conclude that ∂PC

∂z
= −

(
∂Γ
∂z

) (
∂Γ
∂PC

)−1

< 0. Similarly, we

can show that ∂PC

∂λ
< 0, and ∂PC

∂v
> 0. Plugging this result back into the consumer’s optimal

demand Equation (A.1). We can conclude that the higher subsidy (larger z) increases firms’

equilibrium production, while higher tariffs on raw materials (larger v) and tighter labor

access restrictions (smaller λ) lower equilibrium output.
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Proposition 3

we calculate the employment effect of greater subsidy, z, as the following:

∂λS
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, (A.18)

where we define:

B ≡ ∂w

∂PC

1

θ
z−

1
θ
−1 θz

w
A

[
P

−1
θ

C

(
P

PC

) η−1
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C ≡ −z−
1
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∂

[
P

−1
θ

C

(
P
PC

) η−1
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]
∂PC
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Using Equation (A.9), we can verify that B < C. We also know that ∂w
∂PC

> 0, which leads

us to conclude that ∂λS
∂z

is strictly increasing in λ ∂S
∂w

. This implies that a labor market with

a higher proportion of foreign workers (smaller λ) or less elastic labor supply (smaller ∂S
∂w

)

would diminish the effect of stimulative subsidies.
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Proposition 4

Finally, we examine the employment effect of more restrictive labor market protectionist

policies. Note that the policy shifts the labor supply curve from S(·) to λS(·), so (1 − λ)

measures the intensity of the policy.
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where we define:
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1
θA
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−1
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P
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) η−1
θ

]
∂PC

[
λ
∂S

∂w
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]−1

− 1 < −1. (A.20)

Because A > 0 and
∂

[
P

−1
θ

C

(
P
PC

) η−1
θ

]
∂PC

< 0, it follows that ∂λS
∂(1−λ)

is increasing in λ ∂S
∂w

. This

implies that a labor market with a higher proportion of foreign workers (smaller λ) or less

elastic labor supply (smaller ∂S
∂w

) would exacerbate the negative impact of restricted labor

access on equilibrium employment.
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B Data Description

In this section, we outline the methodology behind our data collection process (see Sec-

tion B.1) and provide detailed descriptions of the variables used in our study (see Sec-

tion B.2).

B.1 Methodology for Constructing Dataframes from Revelio Labs and Addi-

tional Descriptive Statistics

The data set used in our study comes from Revelio Labs, which specializes in providing

individual-level granular employment data26 This data set includes extensive user-specific

details, including current and past employment positions, educational background, names,

skill sets, and demographic information, with a temporal benchmark of March 2023. We

construct three principal dataframes for analysis: (i) the active labor force possessing chip

manufacturing skills, (ii) the dynamics within the labor force of chip manufacturers, and

(iii) annual cohorts of students who share educational affiliations with individuals skilled in

chip manufacturing. Sections B.1.1,B.1.3, and B.1.4 below describe the methodology used

to develop these dataframes, respectively. We also provide detailed descriptive statistics in

each section to supplement the discussion in the main text.

B.1.1 The Active Labor Force Possessing Chip Manufacturing Skills

The process begins with identifying individuals with semiconductor skills within the Reve-

lio dataset. This is achieved by filtering the skill file dataset to include only those entries

where the ‘skill k75’ variable—Revelio’s proprietary method for clustering skills reported by

26A detailed description of dataframes can be found on Revelio website: https://www.data-dictionary.
reveliolabs.com/.
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individuals or their connections—equals “electronics / semiconductors / design of experi-

ments.” This category encompasses a broad spectrum of skills related to the semiconductor

field, including electronics, circuit design, semiconductor fabrication, and integrated circuit

design, among others. Specifically, these skills are: logic design, circuit design, pcb design,

soc, semiconductors, verilog, ic, asic, digital electronics, vhdl, doe (design of experiments),

metrology, failure analysis, power supplies, semiconductor industry, integrated circuits (ic),

thin films, silicon, analog, electro-mechanical, hardware development, embedded c, fpga, ca-

dence, vlsi, ni multisim, microcontrollers, power electronics, connectors, tcl, xilinx, digital

signal processors, proteus, rtl coding, xilinx ise, orcad, field-programmable gate arrays (fpga),

rtl design, altera, product engineering, mplab, pspice, autosar, pcie, schematic capture, mixed

signal, analog circuit design, signal integrity, x86, synopsys tools, semiconductor fabrication,

cadence virtuoso, intel, photolithography, mems, ncsim, modelsim, electronics, formal verifi-

cation, systemverilog, integrated circuit design, functional verification, hardware architecture,

multisim, microelectronics, microprocessors, microchip pic, vacuum, electronic engineering,

computer architecture, processors, electrical machines, 8051 microcontroller, pcb layout de-

sign, application-specific integrated circuits (asic), system on a chip (soc), circuit analysis,

keil, logic synthesis, cst microwave studio, hardware design, agilent ads, pll, cmos, power

management, hfss, eda, embedded software programming, sputtering, semiconductor process,

electronics hardware design, physical verification, can, tcl-tk, fpga prototyping, pvd, process

integration, cvd, plasma etch, pecvd, computer engineering, spice, orcad capture cis, physical

design, low-power design, arm cortex-m, very-large-scale integration, canoe, static timing

analysis, dft, dsp, drc, semiconductor device, device characterization, cadence spectre, ana-

log circuits, timing closure, ltspice, can bus, digital circuit design, very-large-scale integration

(vlsi), electronic circuit design, yield, uvm, field-programmable gate arrays, system verilog,

69



inverters, serdes, compilers, gage r&r, primetime, systemc, embedded c++, flash memory,

semiconductor manufacturing, integrated circuits, application-specific integrated circuits, sys-

tem on a chip.

Given the repetition in a few skill labels, such as ‘integrated circuits appearing in various

forms, we later consolidate similar skills into unified categories for clarity. Using these

refined data, we construct a dataframe centered on Revelio’s unique individual identifiers.

This dataframe includes dummy variables for each skill, indicating whether an individual

possesses that particular skill. For instance, if an individual has listed only ’orcad capture

cis’ as their skill, then all dummy variables except for ’orcad capture cis’ will be set to zero,

while the dummy for ’orcad capture cis’ will be marked as one. This methodical approach

enables us to systematically categorize and analyze the semiconductor skills present within

the dataset.

We then merge the above dataframe with position file, which contains the individual level

position data, and company ref, which contains static firm data. We remove rows lacking

‘naics code’ data (0.09% of the firms), which are essential for mapping into two- and six-digit

NAICS codes. The resulting data set comprises records of job positions held by individuals

identified by their chip manufacturing skills, indicated through dummy variables. To isolate

active employees within this dataset, we apply filters to select only those whose positions

were active as of March 1, 2023, and whose records include a valid name for the ultimate

parent company. Additionally, we exclude records where the country field is marked as

’empty’.

In this refined dataset, we determine the distinct number of individuals according to

country, firm, and industry. When conducting analyses at the firm level, which involve cat-

egorizing employees based on their seniority, we adopt two key strategies: positions missing
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seniority information are omitted and we set guidelines for handling cases where an indi-

vidual holds more than one position simultaneously. For instance, should an individual be

documented as having concurrent employment (such as an academic with a role at Penn

State University and another at Intel within the same period), we exclusively retain the

position that ranks higher in seniority. This method ensures the accuracy of our data by

eliminating the potential for missing data and double-counting individuals.

In the context of employment within US government entities, our analysis identifies sig-

nificant numbers of individuals working for various departments and agencies, showcasing

the breadth of employment within this sector. Notable employers include the United States

Navy, the United States Air Force, the United States Army, Sandia National Laboratories,

Jet Propulsion Laboratory, the Federal Aviation Administration, the United States Depart-

ment of Defense, Lawrence Livermore National Laboratory, National Aeronautics & Space

Administration, and the United States Marine Corps.

B.1.2 Active Semiconductor Workforce Descriptive Statistics – Continues

In this section, we discuss the characteristics of the active semiconductor workforce around

the world, to augment the discussion dedicated in Section 4.1 to mainly the workforce in

the US to save space. Table 1 provides the distribution of the physical location of 1.6

million active employees with chip manufacturing skills as of March 2023 across the world.

United States is at the top of the list of countries hosting these skills, with 680,602 employees

physically in the US, with a large fraction (480,193) of these employees working as engineers,

while 49,515 are scientists. India has 165,352 employees with chip skills and a larger fraction

of these people (almost 130,000) are engineers. Their job as of March 2023 is their 4th

job on average, and the average seniority is similarly at around 3, that is, at the associate
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level. However, the average salary is much lower, at $12, 751.27 Table 1 also highlights the

employment and economic characteristics in prominent European countries. For example,

the United Kingdom ranks third with a total of 88,527 employees, heavily geared toward

engineering roles with 57,927 engineers, and an average salary of $58,110.89. Germany

follows, with 43,597 total employees, 28,759 of whom are engineers, boasting a higher average

salary of $79,377.39. France and Italy also show significant figures, with total employment

of 38,024 and 30,545, respectively, and engineers forming the largest job category in each

country. Canada ranks fourth, surpassing all European countries in the number of active

employees, 63,376 in total, except the UK.28

Table 1 further illustrates that countries such as India, Brazil, Pakistan, Turkey, and

Malaysia have a significant number of engineers with chip manufacturing skills and experi-

ence, as indicated by their job positions and tenure lengths. However, these engineers are

compensated at a lower rate compared to their counterparts in other countries. For China,

the data indicate a total employment of 28,664 individuals with chip manufacturing skills.

Among these, engineers represent the largest job category with 16,330 jobs, highlighting

China’s substantial focus on engineering talent within the industry. The average tenure for

these positions in China is reported at 3,330.75 days, suggesting a relatively experienced

workforce. Despite this expertise, the average salary is $28, 236.07, which is also lower com-

pared to western countries. Figure 1 further illustrates the global distribution of chip-making

employees who are actively employed in March 2023, including countries not shown in Table

1.

27India has a 2022 PPP conversion factor of 22.88. See, e.g., https://data.worldbank.org/indicator/
PA.NUS.PPP.

28As of 2022, United Kingdom, Germany, France, Italy, China, and Canada have (World Bank) PPP
conversion factors of 0.68, 0.73, 0.70, 0.63, 3.99, and 1.23, respectively.
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B.1.3 Labor Force Dynamics of US Chip Manufacturers

In our study, we delineate chip manufacturing firms using specific NAICS codes as the basis

for classification. The initial step in our methodology involves processing the data from

the company ref dataframe, which entails iterating through rows to eliminate those lacking

NAICS codes. Out of the 19,448,263 rows processed, 1,361,625 are retained, corresponding

to firms identified by their NAICS codes, while 18,086,638 rows are discarded. The firms

preserved in this filtered dataset are those associated with NAICS codes [334413, 334515,

334418, 333242, 333295, 333248, 333994], which are relevant to the chip manufacturing

industry. Revelio’s sample contains the following NAICS codes: 333242, 333994, 334413,

334418, and 334515.

Subsequent to this filtration, we integrate this refined list of firms with data from po-

sition file, which contains detailed information on individual employment positions. This

integration aims to construct a person-firm-year panel, enabling a longitudinal study of em-

ployment patterns. To refine this panel further, we implement the following filters: we

exclude records with undefined start dates (i.e., labeled as ‘\\N’), ensure that the start date

precedes the end date, and remove entries where the country field is empty.

The transformation process then involves expanding each row of the dataframe to account

for each year an individual held a position, thus adding a temporal dimension to the dataset.

Consider, for example, a record which details the employment of an individual assigned

user ID 301252435 and position ID 6893505588650110490 at ”hohenloher spezialmöbelwerk

schaffitzel gmbh” (identified by Revelio company ID 872817 and FactSet entity ID 08QGZ3-

E), a German-based company. The tenure was extended from January 1, 2016, to March 1,

2023. In this period, the individual served as the “Assistent der Geschäftsleitung” (Assistant

to the Executive Management), a role within the accounting and finance job category of the
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finance sector. Characterized by a high level of entry (seniority level 1), this position was

offered an annual salary of e37,108.413. The data concerning this employment will be

expanded into panel data covering the years 2016 to 2023.

We emphasize the use of annual panels over monthly panels to mitigate the introduction

of noise from inaccurately reported start dates on professional platforms like LinkedIn. This

approach addresses the issue of ‘false’ turnover observed at the start and end of years, a com-

mon artifact when individuals do not specify the exact month of employment commencement

or termination. Our methodological choice is validated by the close alignment of our yearly

employment counts with those reported by LinkedIn, indicating the reliability of our data

aggregation technique.

The final step in our analysis involves aggregating the unique number of individuals

employed at each firm within a given year across different categories, thereby providing a

comprehensive overview of employment trends in the chip manufacturing sector based on a

person-firm-year panel. These aggregate data serve as the basis for our empirical analysis,

offering insights into the dynamics of the labor market within this industry.

After transforming individual data into a person-firm-year panel format, we proceed to

calculate the number of employees at each US manufacturing firm by job category (such

as Admin, Engineer, Finance, Marketing, Operations, Sales, and Scientist) for each year,

creating a detailed firm-job category-year dataset. From 2014 onwards, this dataset encom-

passes 5,436 distinct firms. To refine our analysis and exclude very small (micro) firms,

and to ensure reliable counterfactual units (i.e., alternative job categories), we apply the

following criteria: only firms that have been operational for at least three years by 2014,

determined by the earliest LinkedIn profiles of their employees, are included. Additionally,

we only consider firm-years that feature at least five job categories. This approach ensures
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the availability of at least three alternative job categories for scenarios where engineering

and scientific positions are considered treated. Following these restrictions, the data set is

reduced to 1,153 unique firms, resulting in 68,949 data points. To further enhance data

quality, we apply winorization to all variables in the firm-job category year at the level of 2.

5% to eliminate outliers.

In the dataset related to firm-country-job category-year (referenced in Table 8 and de-

scribed in Panel B of Table 4), we apply additional criteria to exclude ‘phantom’ segment

countries. These criteria involve removing countries that have data for fewer than 50 unique

firms during the sampling period. Additionally, we exclude any firm-country-year group that

contains fewer than two observations. This is to ensure that within a given year and country,

firms are represented in at least two job categories.

B.1.4 Annual Cohorts of Students Who Share Educational Affiliations With

Individuals Skilled in Chip Manufacturing

We also construct a dataset focusing on the classmates of individuals possessing chip man-

ufacturing skills, drawing on various data sources provided by Revelio. This data set is

formulated by initially creating a data frame of individuals with chip manufacturing expe-

rience, as detailed in Section B.1.1, with the notable distinction that our selection does not

limit itself to individuals currently employed. We begin by filtering for the latest educational

degrees of these individuals using the education file. With this filtered data, we further an-

alyze the education file to pinpoint individuals who graduated from the same school and

program in the same year. During this process, we apply stringent filters to ensure data

quality, excluding rows where details such as ‘school’, ‘enddate’, ‘field raw’, and ‘degree’ are

either not provided, marked as “\N”, or labeled as “empty”. After these exclusions, we only
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keep those rows with valid ‘enddate’.

To identify a person’s classmates accurately, we apply criteria ensuring they share the

same ‘school’, ‘degree’, and ‘field raw’, and have graduated in the same year. This method-

ological approach allows us to comprehensively map out the educational networks surround-

ing individuals skilled in semiconductor manufacturing. Subsequently, we explore the po-

sition file, which contains data on the jobs the classmates take after their graduation. We

impose certain restrictions on the initial positions these classmates take after graduating

from the same programs as the people with chip manufacturing skills. This includes keeping

jobs that are acquired only after graduation date, focusing on positions obtained within two

years of graduating, prioritizing the first job started if multiple jobs are taken simultane-

ously, and excluding jobs without specified ‘country’ data. We also drop classmates from

high schools and associate degree programs. Through these filters, we compile data reflect-

ing the employment characteristics of the classmates of individuals with chip manufacturing

skills. Importantly, to prevent double counting, we count the number of unique ID num-

bers associated with individuals, thereby avoiding the duplication of counts for classmates

possessing chip manufacturing skills within a specific year.

B.1.5 Additional Tests on Annual Cohorts of Chip Manufacturing Education

Using Data From The Department of Education

In the main text, we utilize Revelio data to examine cohorts of students who enter chip man-

ufacturing careers along with their classmates. In this section, we revisit this question using

data from the US Department of Education on degree completions in the US In particular,

we use the Integrated Postsecondary Education Data System (IPEDS), which is part of the

National Center for Education Statistics (NCES). This data is not self-reported and, there-
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fore, less prone to measurement issues, and it allows us to double-check our earlier findings

with a second dataset.

NCES data is publicly available at https://nces.ed.gov/ipeds/datacenter/ under

’Complete Data Files’ and ‘Completions’. These files contain detailed information on the

number of graduates from each institution in the US (identified with unique UNITID identi-

fiers) across different degrees (denoted with unique 6-digit CIPCODE identifiers) and degree

levels (AWLEVEL). The number of graduates is measured in aggregate (CTOTALT) and

based on visa status (CNRALT), which measures the number of Non-US graduates, referring

to students who are not citizens or nationals of the United States, i.e., in the country on a

visa or temporary basis without the right to remain indefinitely.

We focus on students’ initial major completions and identify degree programs (CIP codes)

related to chip manufacturing by analyzing the NCES CIP code descriptions, which explain

how each degree prepares students for specific careers.29 These files define each degree type

in the US (consistently across institutions) and describe the career preparation each degree

offers. For example, CIP code ‘15.0616’ refers to ‘Semiconductor Manufacturing Technol-

ogy/Technician’ and is described as a ‘program that prepares individuals to apply basic

engineering principles and technical skills to operate and monitor equipment for the fabrica-

tion of semiconductors or microchips from silicon wafers, and to troubleshoot, maintain, and

repair the specialized equipment used in this process. Includes instruction in AC and DC cir-

cuits, digital fundamentals, solid state devices, manufacturing processes, vacuum principles

and technology, industrial electronics, quality assurance, and semiconductor manufacturing

technology.’

Using NCES degree descriptions, we identify US engineering and technician degrees where

29These descriptions are publicly available here: https://nces.ed.gov/ipeds/cipcode/resources.

aspx?y=56. See, e.g., the CIP Codes 2020 spreadsheet.
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the CIP family (the first two digits of the CIP code) is 14, 15, 46, 47, or 48. We then

determine which of these degrees are related to chip manufacturing by searching program ti-

tles, CIP definitions, and examples for keywords chip|semicond|circuit|wafer|silicon|

microelec|fabless|microchip|MEMS|lithograph|etching|microfab|photonic|manufact

in regular expressions.

In doing so, we identify the following chip manufacturing-related engineering and tech-

nician degrees (with their corresponding CIP codes).30 We categorize these degrees in

Bachelor & Pre-Bachelor categories (i.e., 1<AWLEVEL<=5) and Graduate categories (i.e.,

AWLEVEL==7 or AWLEVEL==7):

• 140103: Applied Engineering

• 140902: Computer Hardware Engineering

• 141801: Materials Engineering

• 141901: Mechanical Engineering

• 143601: Manufacturing Engineering

• 144701: Electrical and Computer Engineering

• 150001: Applied Engineering Technolo-

gies/Technicians

• 150303: Electrical, Electronic, and Communi-

cations Engineering Technology/Technician

• 150306: Integrated Circuit Design Technol-

ogy/Technician

• 150403: Electromechanical/Electromechanical

Engineering Technology/Technician

• 150613: Manufacturing Engineering Technol-

ogy/Technician

• 150616: Semiconductor Manufacturing Tech-

nology/Technician

• 150617: Composite Materials Technol-

ogy/Technician

• 150702: Quality Control Technol-

ogy/Technician

30The following CIP codes and titles were identified as false positives and excluded from the treat-
ment group: 141004 (Telecommunications Engineering), 142001 (Metallurgical Engineering), 142801 (Tex-
tile Sciences and Engineering), 144001 (Paper Science and Engineering), 144101 (Electromechanical Engi-
neering), 144501 (Biological/Biosystems Engineering), 144802 (Power Plant Engineering), 150607 (Plastics
and Polymer Engineering Technology/Technician), 150611 (Metallurgical Technology/Technician), 150801
(Aeronautical/Aerospace Engineering Technology/Technician), 150803 (Automotive Engineering Technol-
ogy/Technician), and 150806 (Marine Engineering Technology/Technician).
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• 150805: Mechanical/Mechanical Engineering

Technology/Technician

• 151201: Computer Engineering Technol-

ogy/Technician

• 151203: Computer Hardware Technol-

ogy/Technician

• 151305: Electrical/Electronics Drafting and

Electrical/Electronics CAD/CADD

• 151306: Mechanical Drafting and Mechanical

Drafting CAD/CADD

• 151307: 3-D Modeling and Design Technol-

ogy/Technician

• 151501: Engineering/Industrial Management

• 470101: Electrical/Electronics Equipment In-

stallation and Repair Technology/Technician,

General

• 470105: Industrial Electronics Technol-

ogy/Technician

• 470302: Heavy Equipment Maintenance Tech-

nology/Technician

• 480501: Machine Tool Technology/Machinist

• 480503: Machine Shop Technology/Assistant

• 480511: Metal Fabricator

The strategy above provides a sample of students that closely matches our Revelio data in

terms of relevant programs and student numbers. For instance, Revelio data includes an un-

dergraduate cohort of 65,290 students in chip manufacturing-related education, while IPEDS

data, as of 2017, lists 60,990 students in similar programs. We classify chip manufacturing-

related degrees as treated units and all other degrees as control units, comparing both groups

before and after the onset of the protectionist era in 2018. We employ the below difference-

in-differences specification:

yd,t = τTreatedd × Postt + γd + θt + ϵd,t. (B.21)

Our analysis focuses on yd,t, which represents either Log(Completionsd,t), Log(US Resi-

dent Completionsd,t), or Log(Non-US Resident Completionsd,t). These denote, respectively,

the number of all students graduating from degree d in the US in year t, the number of US
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resident students graduating from degree d in the US in year t, and the number of non-US

resident students graduating from degree d in the US in year t. Treatedd is set to one for

the chip manufacturing-related engineering and technician degrees mentioned above, and

zero otherwise. Postt is one for years after 2018 and zero otherwise. Table B4 presents our

findings.

[Table B4 about here]

As shown in Table B4, we identify a 14% decline in the number of graduates from

bachelor and pre-bachelor degrees in the US (Panel A, Column 1) and a 14% decline in

postgraduate degrees (Panel B, Column 1). Furthermore, the reduction in the number of non-

US resident graduates is also significant, amounting to nearly 17% and 29% in undergraduate

and postgraduate programs, as shown in Columns 2 and 4, respectively. There is a decline

in degree completions among US residents at the bachelor’s and pre-bachelor levels, while

graduate-level completions have slightly increased. These can be seen in column 2 of panels

A and B. Overall, these results align with our findings based on the Revelio data shown in

Panel A of Table 10, collectively suggesting a reduction in the number of chip manufacturing

students in the post-protectionist era.

B.2 Variable Definitions

This section provides detailed descriptions of the variables used in our study. The variables

presented in Panel B of Table 4 correspond to those introduced in Panel A, yet they are

analyzed at a more granular level, encompassing firm, country, job category, and year. For

the sake of conciseness, their descriptions are not repeated here.

• Log(Empi,j,t): The natural logarithm of the sum of one and the total number of
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employees in job category j at company i in year t.

• Log(Hiringi,j,t): The natural logarithm of the sum of one and the number of new

hires in job category j at company i in year t. New hires are employees whose initial

year of work at the firm begins is year t.

• Log(Separationi,j,t): The natural logarithm of the sum of one and the number of

employees in job category j leaving company i in year t. Leaving the company refers

to the employees for whom year t marks the final year of their employment at the firm.

• Log(Turnoveri,j,t): The natural logarithm of the sum of one and the total of new

hires and leaving employees in job category j at company i in year t.

• Hiring Ratei,j,t: The ratio of the number of new hires in job category j at company

i in year t to the total number of employees in the same job category at the company

in the previous year (t− 1).

• Separation Ratei,j,t: The ratio of the number of employees leaving in job category j

at company i in year t to the total number of employees in the same job category at

the company in the previous year (t− 1).

• Net Hiring Ratei,j,t: The difference between the hiring rate and the separation rate

for job category j at company i in year t.

• Turnover Ratei,j,t: The sum of the hiring rate and the separation rate for job category

j at company i in year t.

• Log(FirstJobEmpi,j,t): The natural logarithm of the sum of one and the number of

employees in job category j at company i whose first year of employment is t and who
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are newly hired without prior work experience.

• Log(ExprEmpi,j,t): The natural logarithm of the sum of one and the number of

employees in job category j at company i who are hired in year t with previous work

experience.

• Log(JunPosEmpi,j,t): The natural logarithm of the sum of one and the number of

employees hired in year t for junior positions (seniority levels 1 to 3) in job category j

at company i.

• Log(MidSenPosEmpi,j,t): The natural logarithm of the sum of one and the number

of employees hired in year t for mid-senior positions (seniority levels 4 and 5) in job

category j at company i.

• Seniority: Defined as an ordinal variable between 1 and 7: 1. Entry Level (e.g.,

Software Engineer Trainee); 2. Junior Level (e.g., Junior Software QA Engineer); 3.

Associate Level (e.g., Lead Electrical Engineer); 4. Manager Level (e.g., Superinten-

dent Engineer); 5. Director Level (e.g., VP Network Engineering); 6. Executive Level

(e.g., Director of Engineering, Backend Systems); 7. Senior Executive Level (e.g.,CFO;

CEO)

• Log(Cohort Sizec,d,j,t): This is the logged number of classmates, who graduated

alongside individuals with chip manufacturing skills, in country c in year t, holding a

degree d, and have secured jobs within job category j.

• Log(Avg. Salaryc,d,j,t) : This is the average first-job salaries of classmates, who

graduated alongside individuals with chip manufacturing skills, in country c in year t,

holding a degree d, and have secured jobs within job category j.
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• Avg. Seniorityc,d,j,t : This is the average first-job seniority levels of classmates, who

graduated alongside individuals with chip manufacturing skills, in country c in year t,

holding a degree d, and have secured jobs within job category j.

• Log(Tenurec,d,j,t): This is the average first-job tenures of classmates, who graduated

alongside individuals with chip manufacturing skills, in country c in year t, holding a

degree d, and have secured jobs within job category j.

C Additional Findings

In this section, we present supplementary results not included but mentioned in the main

text. Appendix Table B1 shows the results of our placebo test, examining the impact of

US protectionist policies on employment in science and engineering roles within US firms,

specifically those classified under the NAICS code 423690. This sector includes businesses

primarily focused on the merchant wholesale distribution of electronic parts and equipment.

Examples of firms in this category include wholesalers of blank CDs/DVDs (as opposed to

manufacturers of wafers) and blank diskettes (as opposed to manufacturers of chips). Our

findings indicate no significant effects of US protectionism on the employment levels within

these firms.

Appendix Figures B5, B6, and B7 present effect dynamics and evidence for the observable

counterpart of the parallel trends assumption for all other dependent variables from Tables

5 and 6 that were not displayed in the main body of the text.
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Appendix Table B1. Placebo Test: Other Electronic Parts and Equipment Merchant Wholesalers

This table presents our findings from our placebo test on how protectionism has influenced science and engineering employment at US chip manufacturing
companies, based on firms with NAICS code of 423690 (i.e., merchant wholesale distributors of electronic parts and equipment; except for electrical apparatus and
equipment, wiring supplies, and construction materials, electrical and electronic appliances, and television and radio sets). Utilizing the difference-in-differences
approach outlined in Equation (8), we analyze the effects on employment metrics. Panel A shows the effect on employee count, hiring practices, separation, and
turnover, while Panel B focuses on these metrics in rate form instead of absolute numbers. For information on how data was collected and definitions of the
variables used, refer to Sections B.1.3 and B.2, respectively. The analysis spans from 2014 to 2022, with standard errors clustered by firm. Significance levels of
1%, 5%, and 10% are denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Analysis of Chip Manufacturing Workforce

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt 0.00 -0.02 -0.01 -0.02

(0.14) (-1.15) (-0.35) (-0.87)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 22,311 22,311 22,311 22,311
R-squared 0.967 0.816 0.799 0.842

Panel B: Analyses of Employment Growth

Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t

(1) (2) (3) (4)
Treatedj × Postt -0.01 -0.00 -0.01 -0.01

(-0.89) (-0.19) (-0.81) (-0.76)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 22,311 22,311 22,311 22,311
R-squared 0.394 0.367 0.344 0.414
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Appendix Table B2. Effect Heterogeneity: US vs. Non-US Workforce and the Role of H-1B Hiring (Intensive Margins)

This table reports our estimates of the heterogeneous effect of US protectionism on workforce dynamics in US chip manufacturing firms, both domestically and
internationally, as well as among firms that rely on foreign talent and those that do not. The results are based on Equation (10). Log(Petitionsi) indicates whether
firm i sponsored H1B petitions in fiscal year 2017 based on USCIS’s H-1B Employer Data Hub. Additional variable definitions are provided in Table 8. The
analysis spans the years 2014 to 2022, with standard errors clustered two ways—by firm and by country. Statistical significance at 1%, 5%, and 10% levels are
indicated by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Analyses of Chip Manufacturing Workforce (N=231,696)

Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t) Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc × Log(Petitionsi) -0.01* -0.03*** -0.02*** -0.02 -0.02* -0.03*** -0.02*** -0.02

(-1.72) (-4.83) (-2.89) (-1.59) (-1.72) (-4.78) (-2.89) (-1.59)
Treatedj × Postt ×USc -0.03*** -0.04*** -0.01 -0.04*** -0.03*** -0.04*** -0.01 -0.04**

(-2.90) (-3.95) (-1.26) (-2.78) (-2.91) (-3.71) (-1.16) (-2.55)
Treatedj × Postt × Log(Petitionsi) 0.02*** 0.02* 0.02*** 0.03*** 0.02*** 0.02* 0.02*** 0.03***

(2.84) (1.82) (4.56) (2.97) (2.84) (1.84) (4.57) (2.99)
Postt ×USc × Log(Petitionsi) -0.01 0.01 0.02** 0.02* -0.01 0.01 0.02*** 0.02*

(-1.07) (1.33) (2.63) (1.93) (-1.03) (1.36) (2.65) (1.96)
Treatedj × Postt -0.00 -0.05*** -0.04*** -0.07***

(-0.13) (-4.24) (-3.62) (-4.65)

R-squared 0.948 0.781 0.760 0.807 0.948 0.781 0.760 0.807

Panel B: Analyses of Employment Growth (N=231,696)

Hiring Ratei,c,j,t Separation Ratei,c,j,t Net Hiring Ratei,c,j,t Turnover Ratei,c,j,t Hiring Ratei,c,j,t Separation Ratei,c,j,t Net Hiring Ratei,c,j,t Turnover Ratei,c,j,t

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc × Log(Petitionsi) -0.00 0.00 -0.01*** -0.00 -0.00 0.00 -0.01*** -0.00

(-1.51) (0.58) (-3.17) (-0.79) (-1.50) (0.57) (-3.13) (-0.80)
Treatedj × Postt ×USc -0.01** -0.01** -0.01 -0.02** -0.01** -0.01** -0.00 -0.01**

(-2.43) (-2.32) (-1.54) (-2.60) (-2.23) (-2.28) (-1.33) (-2.45)
Treatedj × Postt × Log(Petitionsi) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.76) (0.85) (0.82) (0.87) (0.79) (0.86) (0.85) (0.90)
Postt ×USc × Log(Petitionsi) -0.00 0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00

(-0.69) (0.95) (-1.44) (-0.04) (-0.64) (0.96) (-1.38) (-0.00)
Treatedj × Postt -0.02*** -0.00* -0.01*** -0.02***

(-4.06) (-1.84) (-3.03) (-3.72)

R-squared 0.329 0.281 0.211 0.349 0.329 0.281 0.212 0.350

Panel C: Analyses of Chip Manufacturing Workforce by Career Progression (N=231,696)

Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t) Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj × Postt ×USc × Log(Petitionsi) -0.02*** -0.02* -0.02** -0.01** -0.02*** -0.02* -0.02** -0.01**

(-4.84) (-1.80) (-2.21) (-2.45) (-4.88) (-1.80) (-2.21) (-2.45)
Treatedj × Postt ×USc -0.00 -0.03*** -0.02** -0.01 -0.00 -0.03*** -0.02** -0.01

(-0.83) (-2.79) (-2.40) (-1.08) (-1.08) (-2.80) (-2.49) (-1.09)
Treatedj × Postt × Log(Petitionsi) 0.01* 0.02*** 0.02** 0.02*** 0.01* 0.02*** 0.02** 0.02***

(1.77) (2.97) (2.20) (4.15) (1.78) (2.98) (2.20) (4.17)
Postt ×USc × Log(Petitionsi) 0.00 -0.01 -0.01 0.01 0.00 -0.01 -0.01 0.01

(0.32) (-1.03) (-0.93) (0.93) (0.34) (-1.00) (-0.91) (0.96)
Treatedj × Postt -0.01*** 0.01 0.00 -0.00

(-2.76) (0.68) (0.15) (-0.25)

R-squared 0.961 0.940 0.943 0.939 0.961 0.940 0.943 0.939

Panel D: Controls for Panels A, B, and C

Firm × Country × Job Cat. FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category × Year FE No No No No Yes Yes Yes Yes
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Appendix Table B3. US Job Postings for Scientists and Engineers

This table presents our findings on the impact of economic protectionism on job postings in the US We report findings from difference-in-difference regressions
at the job category (j) and year (t) levels. The job posting data is sourced from LinkUp’s database, spanning 2007 to 2022. In Panel A, the treated categories
include scientist and engineering roles, while the control group comprises the remaining job categories. We exclude “Medical Representative” and “Geologist”
from the treated categories to focus specifically on engineers and scientists. In Panel B, we further refine the treated group by excluding “Data Analyst,”
“IT Project Manager,” “IT Specialist,” “Software Engineer,” and “Sustainability Specialist.” The final treated job categories include “Engineer,” “Production
Operator,” “QA Tester,” “Quality Assurance,” “Scientist,” “Technical Architect,” and “Technician.” The analysis covers the period from 2014 to 2022, with
standard errors clustered at the job category level. Statistical significance at the 1%, 5%, and 10% levels is denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Job Posts for Engineers and Scientists

Log(JobPostCreationj,t) Log(JobPostDeletionj,t) Log(ActiveJobPostsj,t)

(1) (2) (3)
Treatedj × Postt 0.11** 0.11** 0.13***

(2.40) (2.49) (2.82)

Job Category FE Yes Yes Yes
Year FE Yes Yes Yes

Observations 432 432 432
R-squared 0.981 0.981 0.983

Panel B: Findings After Excluding Job Posts for Software Engineers, IT, and Data Science

Log(JobPostCreationj,t) Log(JobPostDeletionj,t) Log(ActiveJobPostsj,t)

(1) (2) (3)
Treatedj × Postt 0.12** 0.12*** 0.13***

(2.69) (2.70) (3.18)

Job Category FE Yes Yes Yes
Year FE Yes Yes Yes

Observations 387 387 387
R-squared 0.981 0.981 0.983
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Appendix Table B4. Protectionism and US Chip Manufacturing Degree Completions: Evidence from IPEDS Data by
Residency Status

This table shows estimates of the influence of protectionism on chip manufacturing degrees obtained in the US The data is sourced from the US Department
of Education’s Integrated Postsecondary Education Data System (IPEDS), focusing on degree completions in the US for all students, US residents and non-US
residents. Treated degree categories include US engineering and technician degrees where the CIP family (the first two digits of the CIP code) is 14, 15, 46,
47, or 48. We determine which of these degrees relate to chip manufacturing by searching program titles, CIP definitions, and descriptions for keywords chip|
semicond|circuit|wafer|silicon|microelec|fabless|microchip|MEMS|lithograph|etching|microfab|photonic|manufact using regular expressions.
Control degrees include all other degrees. We analyze Log(Total Completionsd,t), Log(US Resident Completionsd,t), and Log(Non-US Resident Completionsd,t),
representing the number of all students graduating from degree d in the US in year t, the number of US resident students graduating from degree d in the
US in year t, and the number of non-US resident students graduating from degree d in the US in year t, respectively. Treatedd is set to one for the chip
manufacturing-related engineering and technician degrees mentioned above and zero otherwise, while Postt is one for years after 2018 and zero otherwise.
Clustering is done at the CIP degree family level. See Section B.1.5 for additional variable descriptions and methodology. Statistical significance at the 1%, 5%,
and 10% levels are denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Bachelor & Pre-Bachelor Degrees

Log(Total Completionsd,t) Log(US Resident Completionsd,t) Log(Non-US Resident Completionsd,t)

(1) (2) (3)
Treatedd × Postt -0.14*** -0.14*** -0.17***

(-3.87) (-3.53) (-4.83)

Degree FE Yes Yes Yes
Year FE Yes Yes Yes

Observations 10,980 10,980 10,980
R-squared 0.974 0.974 0.944

Panel B: Graduate Degrees

Log(Total Completionsd,t) Log(US Resident Completionsd,t) Log(Non-US Resident Completionsd,t)

(1) (2) (3)
Treatedd × Postt -0.14*** 0.05* -0.29***

(-3.46) (1.82) (-4.19)

Degree FE Yes Yes Yes
Year FE Yes Yes Yes

Observations 9,044 9,044 9,044
R-squared 0.965 0.965 0.940
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Appendix Table B5. Tariff Exposure and Science & Engineering Employment in US Chip Manufacturing Companies

This table presents our findings on the influence of US protectionism on science and engineering employment across industries with varying levels of tariff exposure.
Tariff data is sourced from Fajgelbaum et al. (2020), and industry concordance is based on Pierce and Schott (2012). Additional definitions can be found in Section
6.3. The analysis spans from 2014 to 2022, with standard errors clustered by firm. Significance levels of 1%, 5%, and 10% are denoted by ⋆⋆⋆, ⋆⋆, and ⋆, respectively.

Panel A: High Tariff Exposure Panel B: Low Tariff Exposure

Log(Empi,j,t) Net Hiring Ratei,j,t Log(Empi,j,t) Net Hiring Ratei,j,t

(1) (2) (3) (4)
Treatedj × Postt -0.04*** -0.02** -0.02** -0.01**

(-2.79) (-2.38) (-2.03) (-2.32)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 39,447 39,447 29,502 29,502
R-squared 0.973 0.356 0.978 0.308
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Appendix Table B6. Main Findings From Poisson Regression Analysis

This table presents our findings on how US protectionism has influenced science and engineering employment at US chip manufacturing companies. Our
estimates are derived from a Poisson pseudo-likelihood regression with multiple levels of fixed effects (Correia et al., 2020). To ensure the mean and variance
of the dependent variables are similar, we take the logarithm of the dependent variables and apply probability weights, calculated as the inverse of each firm’s
age in years as of 2014. Panels A, B, and C correspond to the main results previously reported in Tables 5 (Panel A), 6, and 8 (Panel A), respectively. For
information on how data was collected and definitions of the variables used, refer to Sections B.1.3 and B.2, respectively. The analysis covers the period from
2014 to 2022, with standard errors clustered two ways—by firm and by country—in Panel C, and by firm in Panels A and B. Significance levels of 1%, 5%, and
10% are denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Analyses of Chip Manufacturing Workforce

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.05*** -0.05** -0.03 -0.04**

(-4.25) (-2.12) (-1.40) (-2.20)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949

Panel B: Science and Engineering Employment by Career Progression

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.04*** -0.04*** -0.05*** -0.04***

(-3.57) (-3.42) (-3.86) (-3.14)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949

Panel C: Analyses of US Workforce Dynamics

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt ×USc -0.03*** -0.06** -0.09*** -0.07***

(-4.23) (-2.39) (-3.53) (-3.53)

Firm × Country × Job Cat. FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Job Category × Year FE Yes Yes Yes Yes

Observations 231,696 231,696 231,696 231,696
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Appendix Table B7. Robustness to Excluding the Largest Firms

This table re-estimates the main findings previously reported in Tables 5 and 6, excluding the top 10% of firms by
2014 total workforce size. Panel A presents results on the chip manufacturing workforce using the main specification
(Panel A.1), Poisson regressions weighted by the inverse of firm age in 2014 (Panel A.2), and unweighted Poisson
regressions (Panel A.3) following Correia et al. (2020). Panel B presents results by career progression category using
the main specification (Panel B.1), weighted Poisson regressions (Panel B.2), and unweighted Poisson regressions
(Panel B.3). All regressions include firm-by-job-category and firm-by-year fixed effects. Each panel includes 62,082
observations, covering the period from 2014 to 2022. Standard errors are clustered by firm. Significance at the 1%, 5%,
and 10% levels is denoted by ⋆ ⋆ ⋆, ⋆⋆, and ⋆, respectively.

Panel A: Analyses of Chip Manufacturing Workforce

Panel A.1: Findings Based on Main Specification

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.04*** -0.10*** -0.05*** -0.10***

(-3.78) (-9.52) (-5.02) (-8.72)

Panel A.2: Findings Based on Poisson Regressions

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.05*** -0.08*** -0.07** -0.07***

(-4.35) (-2.89) (-2.28) (-3.05)

Panel A.3: Findings Based on Unweighted Poisson Regressions

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.05** -0.03 -0.03**

(-4.83) (-2.40) (-1.52) (-2.04)

Panel B: Science and Engineering Employment by Career Progression

Panel B.1: Findings Based on Main Specification

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.02** -0.02** -0.01

(-3.81) (-2.28) (-2.26) (-1.60)

Panel B.2: Findings Based on Poisson Regressions

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.05*** -0.05*** -0.06*** -0.06***

(-3.28) (-3.66) (-3.87) (-3.45)

Panel A.3: Findings Based on Unweighted Poisson Regressions

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.04*** -0.03*** -0.04*** -0.03**

(-4.26) (-3.18) (-4.98) (-2.34)
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Appendix Table B8. Global Chip-Skill Composition in the Protectionist Era

This table presents our findings on the change in the number of chip-related skills possessed by U.S. employees following
the rise in protectionism. The sample is a country–year–skill panel drawn from Revelio’s dynamics skills dataset,
covering 245 countries and the 75 skill categories, which are derived from the raw skills listed on individuals’ LinkedIn
profiles. The analysis spans the years 2019–2022, the period for which Revelio’s dynamic skill data are available. We
report our estimates based on Poisson pseudo-likelihood regressions (Correia et al., 2020). The dependent variable,
Log(Skillss,c,t), is the natural logarithm of the number of LinkedIn users in country c who list skill s in year t, winsorised
at the 2.5% tails. The indicator ChipSkills equals one when the skill belongs to the “electronics / semiconductors /
design of experiments” category and zero otherwise. USc takes the value one for the United States and zero for all other
countries. Postt equals one for 2020–2022 and zero for 2019. Indicator variables 1[Year = t] equal to one for each year t
and are zero otherwise. Standard errors are clustered at the country level. Statistical significance at the 1%, 5%, and
10% levels is denoted by ∗ ∗ ∗, ∗∗, and ∗, respectively.

Log(Skillss,c,t) Log(Skillss,c,t) Log(Skillss,c,t) Log(Skillss,c,t)

(1) (2) (3) (4)
ChipSkills ×USc × Postt -0.04*** -0.04***

(-7.48) (-7.25)
ChipSkills × Postt 0.03***

(6.88)
ChipSkills ×USc × 1[Year=2020] -0.03*** -0.03***

(-6.95) (-6.60)
ChipSkills ×USc × 1[Year=2021] -0.04*** -0.04***

(-7.36) (-7.11)
ChipSkills ×USc × 1[Year=2022] -0.04*** -0.04***

(-6.86) (-6.73)
ChipSkills × 1[Year=2020] 0.03***

(6.38)
ChipSkills × 1[Year=2021] 0.04***

(6.62)
ChipSkills × 1[Year=2022] 0.04***

(6.45)

Country FE x Skill Category FE Yes Yes Yes Yes
Country FE x Year FE Yes Yes Yes Yes
Skill Category FE x Year FE No Yes No Yes

Observations 70,247 70,247 70,247 70,247
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Appendix Table B9. Protectionism and Patenting Activity in US Chip Manufacturing Sector

This table summarizes the estimated effect of protectionist policies on the patenting activity of chip-manufacturing firms.
The sample is a firm–year panel (2014–2022) built from Revelio’s patent–firm “Assignee matches” dataset. We retain
firms that filed at least one patent during the period, though the results are robust to including all firms. The dependent
variables—reported in the first three and last three columns of each panel, respectively—are Log(Patents Filedi,t) and
Log(Patents Grantedi,t), which equal the natural logarithm of one plus the number of patents a firm files or is granted in
year t. Sponsori indicates whether firm i sponsored H1B petitions in fiscal year 2017 based on USCIS’s H-1B Employer
Data Hub. US Firmi is equal to one if firm i is a US firm based on PatentsView (and Revelio) classificiation. Postt
takes the value one for years after 2018 and zero otherwise. Panel A presents estimates based on our main specification;
Panel B reports Poisson estimates weighted by the inverse of firm age in 2014; Panel C shows unweighted Poisson
estimates following Correia et al. (2020). All specifications include firm fixed effects and industry(NAICS)-by-year fixed
effects. Standard errors are clustered at the firm level, with ∗ ∗ ∗, ∗∗, and ∗ denoting significance at the 1%, 5%, and
10% levels, respectively.

Panel A: Findings Based on Main Specification

Log(Patents Filedi,t) Log(Patents Grantedi,t)

(1) (2) (3) (4) (5) (6)
US Firmi × Postt -0.15*** -0.11*** -0.15*** -0.14***

(-6.67) (-5.20) (-6.42) (-5.79)
Sponsori × Postt -0.26*** 0.11 -0.13** 0.09

(-4.10) (1.29) (-2.09) (1.29)
Sponsori × US Firmi × Postt -0.35*** -0.18*

(-3.22) (-1.85)

Firm FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes

Panel B: Findings Based on Poisson Regressions

Log(Patents Filedi,t) Log(Patents Grantedi,t)

(1) (2) (3) (4) (5) (6)
US Firmi × Postt -0.27*** -0.27*** -0.19** -0.18*

(-3.48) (-3.20) (-2.24) (-1.82)
Sponsori × Postt -0.10 0.21 -0.11 -0.05

(-0.94) (0.98) (-1.03) (-0.34)
Sponsori × US Firmi × Postt -0.21 0.01

(-0.88) (0.03)

Firm FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes

Panel C: Findings Based on Unweighted Poisson Regressions

Log(Patents Filedi,t) Log(Patents Grantedi,t)

(1) (2) (3) (4) (5) (6)
US Firmi × Postt -0.13*** -0.16*** -0.20*** -0.23***

(-3.02) (-3.26) (-4.83) (-4.95)
Sponsori × Postt 0.04 0.24 0.02 0.16

(0.79) (1.59) (0.44) (1.48)
Sponsori × US Firmi × Postt -0.15 -0.06

(-0.94) (-0.56)

Firm FE Yes Yes Yes Yes Yes Yes
Industry x Year FE Yes Yes Yes Yes Yes Yes
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Appendix Table B10. Main Results After Controlling for Local Labor Market Dynamics

This table presents our main findings, previously reported in Tables 5, 6, and 8, after controlling for local labor market dynamics. Panels A and B present
results after controlling for metropolitan area × year and firm × job category × metropolitan area fixed effects, and Panel C adds firm × metropolitan area ×
job category and job category × metropolitan area × year fixed effects. The sample comprises firms from Tables 5, 6, and 8 merged with Revelio’s headquarters
geolocation data. “Metropolitan Area” refers to the metropolitan area of the firm’s headquarters, including non-US locations. For further details on data
collection and variable definitions, see Sections B.1.3 and B.2. The analysis covers 2014–2022, with standard errors clustered by firm in Panels A and B., and
two-way clustered by firm and country in Panel C. Significance at the 1%, 5%, and 10% levels is indicated by ∗∗∗, ∗∗, and ∗, respectively.

Panel A: Analyses of Chip Manufacturing Workforce (N=65,772)

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.09*** -0.04*** -0.09***

(-3.49) (-8.61) (-4.36) (-7.69)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes
Metropolitan Area × Year FE Yes Yes Yes Yes
Firm × Job Category × Metropolitan Area FE Yes Yes Yes Yes

Panel B: Science and Engineering Employment by Career Progression (N=65,772)

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj × Postt -0.03*** -0.02* -0.02** -0.01

(-4.25) (-1.66) (-2.19) (-0.74)

Firm × Job Category FE Yes Yes Yes Yes
Firm × Year FE Yes Yes Yes Yes
Metropolitan Area × Year FE Yes Yes Yes Yes
Firm × Job Category × Metropolitan Area FE Yes Yes Yes Yes

Panel C: Analyses of US Workforce Dynamics (N=220,887)

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj × Postt ×USc -0.06*** -0.10*** -0.05*** -0.10***

(-4.59) (-8.41) (-5.09) (-7.10)

Firm × Country × Job Cat. FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Firm × Metropolitan Area × Job Category FE Yes Yes Yes Yes
Job Category × Metropolitan Area × Year FE Yes Yes Yes Yes
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Appendix Figure B1. Additional Trend Diagnostics

This figure provides additional diagnostics for the pre-trends in our main difference-in-differences estimation. The first
panel displays data on Log(Emp), while the second panel focuses on Log(FirstJobEmp). Both panels present observed
means along with linear trends derived from Stata’s xtdidregress command. For the linear trends model, we incorporate
firm × job category, and year fixed effects.
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Appendix Figure B2. Effect Heterogeneity Across Mechanical Engineering Job Categories

This figure presents additional evidence of effect heterogeneity across Revelio’s job categories. We show the effect
heterogeneity for roles labeled as Mechanical Engineer positions by using Revelio’s role k1000 subcategories. In both
panels, we compare the treated categories to control units, which are non-engineering and non-scientist jobs within the
same firm and year, based on Specification (8) and Table 5. Therefore, the estimated ATTs are conditional in the sense
that they measure the treatment effects only for firms that employ individuals in each role k1000 category. The y-axis
shows the average treatment effects from our analysis. Bars in darker blue represent statistically significant effects at
the 10% level or higher, while light blue bars indicate effects that are not statistically significant.
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Appendix Figure B3. Effect Heterogeneity: Global Workforce Trends in US Chip Manufacturers

This figure shows the outcomes of using Equation (9), incorporating fixed effects only for firm by country by job category and firm by year, with each country
analyzed separately. The results are shown visualized on a bivariate world map, where the estimated effects are shown on the y-axis and the t-stats of these
estimated effects on the x-axis, with different color labels distinguishing the results. The matrix within the figure indicates the percentage of countries falling into
each category, written in black. Countries with no data are shown in white.
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Appendix Figure B4. Changing Geography of Chip-Manufacturing Skills

This figure plots the change in each country’s share of the global workforce possessing chip-related skills. We draw an annual country–skill panel from Revelio Labs’
dynamics skills dataset, which offers data for 245 countries exclusively for 2019, 2020, 2021, and 2022. Chip-related skills are identified with Revelio’s Skill 75 cate-
gory, “electronics / semiconductors / design of experiments,” which categorizes and aggregates relevant raw LinkedIn skills. For each year, we compute a country’s
chip-skill share by dividing the number of its LinkedIn users listing chip-manufacturing skills by the global count of such users in that same year. We compute every
country’s 2022 share, subtract its 2019 share, and display the resulting percentage-point differences, grouping them into four bins that span from 1.05% to −8.25%.
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Appendix Figure B5. Effect Dynamics: Table 5, Panel A

The figure illustrates the dynamic effects on all other dependent variables listed in Panel A of Table 5 that have not
been included in the main text. These effects are calculated using a difference in differences model as in specification
(8), which controls for both firm × job category and firm × job year dummies. Each point estimate is accompanied
by a 95% confidence interval. For information on how data was collected and definitions of the variables used, refer to
Sections B.1.3 and B.2, respectively.
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Appendix Figure B6. Effect Dynamics: Table 5, Panel B

The figure illustrates the dynamic effects on all other dependent variables listed in Panel B of Table 5 that have not
been included in the main text. These effects are calculated using a difference in differences model as in specification
(8), which controls for both firm × job category and firm × job year dummies. Each point estimate is accompanied
by a 95% confidence interval. For information on how data was collected and definitions of the variables used, refer to
Sections B.1.3 and B.2, respectively.
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Appendix Figure B7. Effect Dynamics: Table 6

The figure illustrates the dynamic effects on all other dependent variables listed Table 6 that have not been included in
the main text. These effects are calculated using a difference in differences model as in specification (8), which controls
for both firm × job category and firm × job year dummies. Each point estimate is accompanied by a 95% confidence
interval. For information on how data was collected and definitions of the variables used, refer to Sections B.1.3 and
B.2, respectively.
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Appendix Figure B8. Effect Dynamics Using Alternative Estimation Methods and Samples

This figure presents effect dynamics on our main dependent variable, Log(Empi,j,t), using different estimation methods
and sample restrictions. We report six sets of estimates based on the specifications in Tables 5, B6, and B7. The first
uses the main specification (i.e., Log1plus). The second uses Poisson pseudo-likelihood estimation with high-dimensional
fixed effects following Correia et al. (2020), and it is labeled as Poisson. The third applies the same Poisson specification
weighted by the inverse of firm age in 2014 (labeled as Poisson (Wtd.)). The fourth, fifth, and sixth replicate these three
specifications after excluding the top 10% of firms by 2014 workforce size (denoted additionally as Excl. Large Firms).
All models include firm-year and job category fixed effects. Standard errors are clustered at the firm level. The plot
shows 95% confidence intervals.
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Appendix Figure B9. Effect Dynamics: Protectionism and Patenting Outcomes

This figure presents the dynamic effects corresponding to Table B9. Panel A shows the effects on patent filings,
while Panel B shows the effects on patents granted. Each panel reports estimates from log1plus and weighted Poisson
regressions. The effects are based on interactions between U.S. firm indicators and year dummies, following the
specifications in Table B9. All regressions include firm fixed effects and industry-by-year fixed effects, with observations
weighted by the inverse of firm age in 2014. The plots display 95% confidence intervals.

Panel A: Patent Filings by US Chip Manufacturer Firms

Panel B: Patents Granted to US Chip Manufacturer Firms
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