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1 Introduction

This paper provides a general methodology to formally estimate and test for the economic signif-

icance of asset pricing anomalies, within conditional asset pricing models, when both risk premia

and risk exposures are allowed to be time-varying.

Asset pricing theory implies that the cross-sectional variation in expected returns should be

explained by the loadings to systematic risk factors (Sharpe (1964) and Lintner (1965)). However,

over decades, researchers have identified many “anomalies”, where some firm- or asset-specific

characteristics can predict the cross-section of expected returns, even after controlling for risk

factors and their risk exposures. Examples of such anomalies include momentum (Jegadeesh and

Titman (1993)), the NASDAQ anomaly (Brennan, Chordia, and Subrahmanyam (1998)), firm size

and the book-to-market ratio (Fama and French (1993)), liquidity (Acharya and Pedersen (2005)

and Brennan, Chordia, Subrahmanyam, and Tong (2012)), carry (Koijen, Moskowitz, Pedersen,

and Vrugt (2018)), and idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang (2006)), among

many others. Hou, Chen, and Zhang (2020) document 452 anomalies.

Despite the very extensive literature on asset pricing anomalies, identifying and understand-

ing such seemingly anomalous predictability represents one of the biggest challenges in empirical

asset pricing theory, as it is essential for commanding what an investor considers to be risk. The

availability of rigorous methodological approaches to estimate and test for anomalies is therefore

of paramount importance. As highlighted by Fama and French (2008) and Hou, Chen, and Zhang

(2020), the main difficulties in detecting anomalies are very often related to the availability of

methodologies with which anomalies are identified. Broadly speaking, there are two main standard

approaches to test for anomalies: (i) sorting average returns on anomaly variables, and (ii) using

anomaly variables as additional regressors in the Fama and MacBeth (1973) two-pass regression.

In this latter case, the conventional approach involves T cross-sectional ordinary least squares re-

gressions (CSR OLS hereafter) of asset returns on the anomaly variables, one for each time period,

and then interpreting the average of the T slopes’ estimates as the anomaly’s premia.1

While sorting offers an immediate picture of how returns vary across the spectrum of the

anomaly variable(s), it becomes unfeasible when the sort is made on more than three variables

1This coincides with the second step of the two-pass Fama and MacBeth (1973) regression where, however, one
omits the estimated factor loadings (i.e, the betas) from the first pass regression.
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at the time and, even more importantly, it does not allow to make inference on the significance

of the anomalies. On the other hand, the two-pass regression provides direct estimates of the

marginal effects of each anomaly (together with their standard errors), offering a formal way to

make inference on the potential existence of anomalies. However, in this paper we show that the

conditions and assumptions required for its validity are very stringent and sometimes hard to justify

in practice, hence invalidating many of the inferential results on the anomalies’ premia.

In particular, we show that the conventional approach - based on the large-T sampling scheme

- provides an accurate estimation of the average anomaly premium only if one is willing to assume

orthogonality between the factor betas and the anomalies. This condition appears to be at odds

with our empirical evidence, where we very often find statistically-significant non-zero correlation

between the estimated betas and the anomalies. Moreover, we show that the conventional ap-

proach remains ill-suited to estimate time-varying premia, because any potential time-variation in

the premia would be completely obscured by averaging the T estimates. Averaging the premia

estimates over very short rolling time windows would partially resolve this problem but at the

cost of invalidating the large-T asymptotic theory, which underlies all the inferential results of the

conventional approach. In particular, when T is asymptotically large, we show that the classical

t-ratio of the average premium is downward biased whenever one assumes that the (true) anomaly

premium varies over time. In other words, we could reject the null hypothesis of a zero average

premium more often than we should, unless we assume that the premium is constant for every time

period (and orthogonality between the factor betas and the anomalies holds).

Introducing a new methodology that resolves all these challenges is the objective of this paper.

First, given the overwhelming evidence of time-varying risk premia in the empirical asset pricing

literature, we design our methodology to capture time-variation in the anomalies’ premia, leav-

ing their dynamics unspecified (i.e., nonparametrically). This is accomplished by exploiting large

cross-sections of size N of asset returns while keeping their time series dimension (T ) fixed and

possibly very small. Given the large availability of individual securities, such setting has gained

significant attention in recent years, thanks also to its flexibility to handle time variation of any

(non-parametric) form, hence mitigating the risk of model misspecification and potential structural

breaks in the data.2 Moreover, by allowing the use of short (i.e., small T ) unbalanced panels, our

2Large-T asymptotic results require fully-specified parametric assumptions to capture time-variation of loadings
and risk premia, such as e g., by assuming them to be linear functions of some observed state variables (see, e.g.,
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small-T approach allows one to mitigate the issue of missing data, which is a frequent, yet often

overlooked, feature of company fundamentals. This problem affects the time-series availability of

almost any characteristic and becomes extremely severe when one needs to analyze multiple charac-

teristics over the same time span (see, for example, the recent contributions of Bryzgalova, Lerner,

Lettau, and Pelger (2022) and Freyberger, Höppner, Neuhierl, and Weber (2021) for methodologies

that tackle missing financial data).

Our methodology builds on the classical Fama and MacBeth (1973) two-pass procedure and

maintains its computational ease and interpretability, despite not relying on its strict assumptions.

In particular, we derive novel OLS-type estimators of both risk and anomaly time-varying premia

and establish their asymptotic properties, showing how to derive closed-form standard errors to

conduct correct inference on model’s premia. The large-N and fixed-T setting allows us to work

under very mild assumptions, which can now accommodate the more realistic case of both cross-

and time-correlation between returns and anomalies, in contrast to existing methodologies.

We also extend our analysis in three main directions. The first extension introduces a new

weighted least square (WLS) version of the estimator. This idea is strongly motivated by the recent

literature that shows that microcaps can adversely affect the significance of anomalies. Indeed, as

reported by Hou, Chen, and Zhang (2020), microcaps represent only 3.2% of the aggregate NYSE-

Amex-NASDAQ market capitalization, but they account for more than 60% of the traded stocks

in the market.3 In this case, performing a simple CSR of returns on anomaly variables would

make the estimates very sensitive to microcap outliers (see Hou, Chen, and Zhang (2020), Green,

Hand, and Zhang (2017), and Fama and French (2008)). This impact could be mitigated by a WLS

estimation, which minimizes a weighted sum of squared errors. The derivation of a WLS estimator

is technically challenging, due to the potential presence of both time- and cross-sectional-correlation

between weights and asset returns. This is very likely especially if the weights are defined to be

equal (or proportional) to assets’ market capitalization. We address these challenges and establish

the limiting properties of our novel WLS estimator, providing its standard errors in closed-form.

The second extension of our analysis is about robustifying our inferential results to the case of

Gagliardini, Ossola, and Scaillet (2016)).
3In Hou, Chen, and Zhang (2020), microcaps identify all stocks with a market capitalization smaller than the 20th

percentile in the distribution of all the NYSE stock market equity.
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global model misspecification.4 Indeed, the significance of premia estimates can be dramatically

affected by the degree of model misspecification, which could arise due to the omission of poten-

tially relevant risk factors from the model, or because one selects the wrong (or incomplete) set of

anomalies.5 To mitigate this risk, we provide asymptotically-valid standard errors of the anomalies’

premia estimates, which are robust to global model misspecification.

As a third extension, we propose a cross-sectional R-squared measure, that can be used to

quantify the joint effect of anomalies on the cross-section of expected returns. Indeed, although our

t-ratios can be correctly used to assess the significance of a premium estimate corresponding to the

single anomaly, a cross-sectional R-squared test permits quantifying the portion of the total asset

variability jointly explained by the anomalies. For example, one might be interested in the joint

effect of anomalies belonging to the category (say, e.g., all the momentum anomalies). Specifically,

we establish the limiting distribution of the proposed R-squared measure under both the null

hypothesis of zero anomalies’ premia and the alternative hypothesis of priced anomalies.

We present an extensive empirical application using data provided by Chen and Zimmermann

(2019), from which we extract 170 anomalies at the monthly frequency (January 1986 - December

2020). We find patterns of time-variation according to which the importance of anomalies emerge

often during financial crises (about 70% of the times). Although statistically the contribution of

anomalies appear significant (at 5% level) for about half of cases, anomalies explain a very small

fraction of the cross-sectional variation of expected returns, with only 4% of them explaining above

20%, and more than half contributing to less than 1%. In contrast, the estimated betas do not show

the same pattern across time, although explain a similar fraction to anomalies of the cross-section

of asset returns. The large majority of the variation in the cross-section of asset returns remains

unexplained.

The paper is structured as follows. Section 2 describes the main literature, while Section 3

introduces our conditional asset pricing framework. In Section 4 we provide both analytical and

numerical evidence that highlights the pitfalls of the conventional large-T method used to detect

anomalies. Our methodology is formalized in Sections 5 and 6, where we present our OLS-type and

4By global misspecification in the context of beta-pricing models, we refer to deviations, of unspecified form, from
exact pricing.

5See, e.g., Jagannathan and Wang (1998) for the implications of model misspecification using the two-pass method-
ology, valid under the large-T set up.

4



WLS-type estimators, respectively, with their corresponding statistical analysis. Section 7 shows

how to robustify our methodology to global misspecification, while Section 8 describes our cross-

sectional R-square test. The empirical application is contained in Section 9. Section 10 concludes.

2 Literature Review

The literature on asset pricing anomalies is very extensive, with a list of more than 400 papers

proposing (or dissecting) anomalies thought to be relevant in explaining the cross-sectional variation

of stock returns (see Hou, Chen, and Zhang (2020) for a detailed list). These empirical findings

have spurred a growing literature that tries to summarize (or digest) this cross-sectional variation

with new risk factors.6 However, it seems that there are still many asset-specific characteristics that

cannot be explained by any common risk factors, and that still represent the major determinants

of average equity returns (Daniel and Titman (1997), Lewellen (2015), and Dong, Yan, Rapach,

and Zhou (2021)).

The apparent significance of such a wide range of anomalies can be in part attributed to a

lack of proper statistical methodologies. A recent example is Hou, Chen, and Zhang (2020), which

cast doubts on the empirical validity of 452 anomalies proposed in asset pricing and accounting

literature, showing that 65% of them fail to explain the cross-section of average stock returns, with

the biggest failure (96%) being observed in the trading frictions literature. This empirical finding

is even more severe if one allows for multiple testing approaches (see Harvey, Liu, and Zhu (2016)).

The two-pass methodology augmented with anomalies has been studied and extended by the

literature in many directions. Important results, valid under large-T and the assumption of time-

invariant premia, have been provided by Jagannathan and Wang (1998), who derived the limiting

distribution of the CSR OLS estimator under the null hypothesis of no effect of anomalies. Brennan,

Chordia, and Subrahmanyam (1998) propose to first net out average returns from the risk exposure

to common risk factors, and then to regress these risk-adjusted average returns on observed firms’

characteristics, to test for the potential effect of anomalies. Their approach has been further ex-

tended by Avramov and Chordia (2006), allowing for time variation in the factors’ loadings through

6Prominent examples are the Fama and French (1993) and Fama and French (2015) factors, Carhart (1997) and
Jegadeesh and Titman (1993) momentum factors, the liquidity factors of Pástor and Stambaugh (2003) and Acharya
and Pedersen (2005), the Ang, Hodrick, Xing, and Zhang (2006) idiosyncratic risk factor, the Hou, Chen, and Zhang
(2015) four q-factors, and the Stambaugh and Yuan (2017) lucky factors, among many others.
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observed state variables. Chordia, Goyal, and Shanken (2015) examine the two-pass estimator in

situations when N is much larger than T , and where the anomaly variables are also allowed to vary

over time. However, in their work, a bootstrap procedure is proposed to derive the standard errors

of the premia estimator.

Going beyond linearity imposed by the two-pass methodology, alternative approaches have been

also proposed to quantify the economic relevance of anomalies. Important examples are the semi-

parametric estimation of Connor and Linton (2007), the Projected Principal Component Analysis

of Fan, Liao, and Wang (2016), the Instrumented Principal Component analysis of Kelly, Pruitt,

and Su (2019), and the Bayesian approach of Kozak, Nagel, and Santosh (2020). Other studies

have also quantified the impact of firms’ characteristics on investors’ portfolio choices (see, e.g.,

DeMiguel, Martin-Utrera, Nogales, and Uppal (2020) and Kim, Korajczyk, and Neuhierl (2021)).

Using non-parametric methods, Freyberger, Neuhierl, and Weber (2020) show that characteristics

play a crucial role in terms of model selection and return predictability.

Moreover, most of the empirical asset pricing literature that deals with anomalies uses portfolio

data constructed from a relatively small subset of asset-specific predictors. However, although

the use of portfolios reduces the sampling variability of estimated loadings, it sensibly reduces

returns’ heterogeneity (see Ang, Liu, and Schwarz (2020)) and makes it impossible to investigate

the joint effect of a high-dimensional set of anomalies. In addition, portfolio data could be highly

sensitive to data-snooping biases, especially when the same data set is repetitively examined (see

Lo and MacKinlay (1990), Brennan, Chordia, and Subrahmanyam (1998), Conrad, Cooper, and

Kaul (2003), Barras, Scaillet, and Wermers (2010), McLean and Pontiff (2016), and Chen (2021)).

These issues can be sensibly mitigated (if not entirely avoided) using our approach, which applies

to large cross-sections of individual assets, much less scrutinized than portfolio data sets.

3 Conditional Asset Pricing with Anomalies

Given our objective of estimating and testing for anomalies in a time-varying setting, the first step

of our analysis requires the introduction of a conditional asset pricing factor model that admits

the presence of anomalies. We assume that asset returns are governed by the following conditional
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asset pricing factor model:

Rit = αi,t−1 + β′ift + εit, for i = 1, · · · , N, t = 1, . . . , T (1)

where Rit represents the gross return of stock i at time t, αi,t−1 is a potentially time-varying and

asset specific intercept, βi = (βi1, . . . , βiKf
)′ is the vector of constant loadings on Kf observed risk

factors ft = (f1t, . . . , fKf t)
′, and εit is the asset-specific error component.7 Using matrix notation,

the asset pricing model in (1) can be re-written as

Rt = αt−1 + Bft + εt, (2)

where Rt denotes the N × 1 vector of asset returns at time t, αt−1 ≡ [α1,t−1, . . . , αN,t−1]
′, B ≡

(β1, . . . ,βN )′, and εt ≡ (ε1t, . . . , εNt)
′.

When conditional no-arbitrage and full diversification of the mean-variance frontier hold (see

Chamberlain and Rothschild (1983, Corollary 1) and Hansen and Richard (1987) for an extension

to a conditional asset pricing setup), exact pricing follows. That is:

E [Rit|It−1,Π] = γ0,t−1 + γ ′f,t−1βi, (3)

where E[·] denotes the expectation operator, It represents the information set available up to time

t, and Π defines the complete set of parameters, known to the agent when evaluating expected

returns, with {γ0,γf ,B} ⊂ Π, where γ0 = (γ0,1, · · · , γ0,T−1)′ denotes the zero-beta rate vector, and

γf = (γf,1, · · · ,γf,T−1)′ denotes the risk premia matrix associated with the observed risk factors ft.

However, we are specifically interested in situations where (3) might not hold and, in fact, we

replace it by

E [Rit|It−1,Π] = ai,t−1 + γ0,t−1 + γ ′f,t−1βi, (4)

for some time-varying and asset-specific pricing errors a ⊂ Π, with a = (a1, · · · ,aT−1)′, and where

at−1 = (a1,t−1, · · · , aN,t−1)′.
7 The assumption of time-invariant loadings βi is without loss of generality. In fact, our theory applies to a fixed,

possibly short, time window T . Therefore, the population loadings are allowed to vary, from one time window to
the other, without any constraint. Alternatively, one could assumes that time variation in the loadings is driven by
some observed Kg-dimensional state variables gt−1, such as βi,t−1 = Bigt−1 for a suitable matrix of coefficients Bi.
In this case, the model in (1) can be rewritten as an asset pricing model with constant loadings with respect to the
Kf +Kg risk factors (ft ⊗ gt−1) (see Gagliardini, Ossola, and Scaillet (2016)).
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In this paper, we assume that the pricing errors ai,t−1 are governed by some observed character-

istics, represented by a Kz × 1 vector of asset-specific and possibly time-varying variables, zi,t−1,

which we refer to as anomalies. Formally, we assume that

ai,t−1 = γ ′z,t−1zi,t−1, for i = 1, · · · , N, t = 1, . . . , T (5)

for some vector of coefficients γz ⊂ Π, where γz = (γz,1, · · · ,γz,T−1)′ denotes the anomalies’ premia

matrix. Clealry, should all the elements of γz be zero, then exact pricing (3) holds, and no anomaly

affects the cross-section of expected returns.

Using (5), the asset pricing relationship in (4) becomes

E [Rit|It−1,Π] = γ0,t−1 + γ ′f,t−1βi + γ ′z,t−1zi,t−1. (6)

The expression in (6) represents our new asset pricing restriction.8 It is worth noticing that, while

allowing for anomalies, condition (6) does not necessarily represent a deviation from no-arbitrage,

but only from exact pricing (see Proposition OA.5 in Section OA.9 of the Online Appendix for

more details).

Now, under (6), the asset pricing model in (2) generalizes to

Rt = γ0,t−11N + Zt−1γz,t−1 + Bδf,t−1 + εt, (7)

where 1N denotes a N×1 vector of ones, Zt−1 = (z1,t−1, · · · , zN,t−1)′ represents the N×Kz matrix

of anomalies at time t− 1, and where we set

δf,t−1 ≡ γf,t−1 + ft − E [ft|It−1,Π] , (8)

which we denominate as the vector of ex-post risk premia.9 An important special case of (7) arises

when the risk factors represent returns of traded portfolios, in which case one simply replaces γ0,t−1

with the gross risk-free rate (Rf,t−1), and sets γf,t−1 = E [ft|It−1,Π]− γ0,t−11Kf
.

Whenever the vector of anomalies’ premia γz,t−1 in (7) is non-zero, we say that the anomalies

affect (or, are priced in) the cross-section of expected returns through (6). The objective of this

8Condition (6) implies that the agent has full information on the anomaly variables zi,t−1 for every stock. If one
suspects that the agent’s information is not complete (for example, because firm’s balance sheet data is released less
frequently or with delays), then the asset pricing restriction (6) generalizes to E [Ri,t|It−1,Π] = γ0,t−1 + γ′f,t−1βi +
γ′z,t−1E [zi,t−1|It−1,Π], and all our arguments continue to be valid.

9The notion of ex-post risk premia was originally coined by Shanken (1992) to denote a noisy version of the ex-ante
risk premia γf,t−1 due to the unexpected factor outcomes ft−E [ft|It−1,Π], arising whenever one considers the fixed-T
case.
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paper is to provide a formal methodology to estimate the anomalies’ premia γz,t−1 and test for

their statistical significance, using the model specification in (7).

Before introducing our results, however, some clarifications are needed to avoid possible identi-

fication issues. In our setting, time variation in the anomaly premia γz,t−1 drives the time variation

in the pricing errors through (4) and (5), yielding the asset pricing model in (7). However, an

observationally-equivalent specification to (7) would arise if one assumes that the betas - rather

than the pricing errors - were time-varying in the anomalies. For example, consider the case where,

instead of (4)-(5), one assumes that

E [Rit|It−1,Π] = γ0,t−1 + γ ′f,t−1βi,t−1, with βi,t−1 = β0,i + B1zi,t−1, (9)

for a Kf × 1 vector β0,i and a Kf × Kz matrix B1.
10 Then, the asset pricing model in (7) is

re-obtained whenever

γz,t−1 = B′1γf,t−1. (10)

Although the restriction in (10) could be, in principle, tested for - allowing one to differentiate

between time-variation of the anomaly premia through the loadings (as in (9)) and time-variation

through the pricing errors (as in (5)) - we prefer to simplify the analysis and build our methodology

on the hypothesis of constant betas, hence allowing for time-varying anomaly premia only trough

the vector of pricing errors as in (5).

4 Two-Pass Methodology for Anomalies: Conventional Approach

The most common and intuitive approach to test for the presence of anomalies is based on the

estimation of model (7) by means of the two-pass Fama and MacBeth (1973) regression. It first

entails obtaining the estimated matrix of loadings B̂ from (2) through time-series OLS regressions

(one for each asset) of asset returns on observed risk factors ft, and then estimating the premia

parameters (γ0,t−1, δf,t−1, and γz,t−1) through CSR OLS (one for each period of time), using B̂ in

(7).

However, recognizing that inference would necessarily be affected by the error-in-variable (EIV)

problem due to the use of B̂ in (7) (see Shanken (1992)), Fama and French (2008) advocate

10When time variation in the loadings βi,t−1 is driven by variables other than anomalies, no identification issue
arises. See Gagliardini, Ossola, and Scaillet (2016) for a similar specification.
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estimation of the anomalies’ premia by simple OLS cross-sectional regressions (one for each period

of time) of Rt on Zt−1 and an intercept, hence excluding the estimated B from (7), yielding the

time-varying anomaly premium estimator

γ̃z,t−1 ≡ (Z′t−1M1N Zt−1)
−1Z′t−1M1N Rt, (11)

where M1N ≡ IN − 1N1′N/N is used to de-mean the data, with IN denoting an identity matrix

of dimension N . This implies that M1N Rt = Rt − 1N R̄t, with R̄t ≡
∑N

i=1Rit/N denoting the

cross-sectional sample average of returns. Similarly, M1N Zt−1 = Zt−1 − 1N Z̄′t−1, setting Z̄t−1 ≡∑N
i=1 zi,t−1/N . Fama and French (2008) justify the approach in (11) by recognizing that γ̃z,t−1 is

equivalent to the two-pass estimator applied to (7), whenever the loadings B and the anomalies Zt−1

in (7) are orthogonal to each other, an assumption claimed to hold empirically. This orthogonality

condition is implied when the loadings are cross-sectionally invariant.

Inference is typically carried out in terms of the average premium, taking the time-series average

of the premia estimates γ̃z,t−1 in (11). This yields the conventional average premium estimator

¯̃γz ≡
1

T − 1

T∑
t=2

γ̃z,t−1 (12)

for which the corresponding t-ratios is evaluated. To illustrate, consider the case of univariate

regressions (i.e. Kz = 1). In this case, the t-ratio of the average premium associated to the z-th

anomaly is simply

tz ≡
¯̃γz√

Σ̃γz/(T − 1)
, (13)

where Σ̃γz is the sample variance of the CSR OLS estimates γ̃z,t−1, namely:

Σ̃γz =
1

T − 1

T∑
t=2

(γ̃z,t−1 − ¯̃γz)
2. (14)

The t-ratio in (13) is then compared with the critical values of the standard Normal distribu-

tion, conjecturing that the inference on ¯̃γz is valid as T → ∞. We denote this approach as the

conventional approach.

Given the extensive use of the conventional approach in empirical studies (see Fama and French

(2008) and Hou, Chen, and Zhang (2020), among others), it seems essential to understand the
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inferential properties of both the time-varying estimator in (11) and the average estimator in (12),

as well as their ability to capture time-variation in the (true) premia, and the potential consequences

of omitting factors’ loadings from the estimation of model (7).

We now show that the statistical validity of the conventional approach is not always warranted,

unless extremely strict conditions are applied. In particular, we show below that the asymptotic

properties of the conventional approach crucially depend on the sampling scheme under consider-

ation, namely the relative magnitude of N and T . Moreover, regardless of the adopted sampling

scheme, the conventional t-ratios are never appropriate whenever one faces a model with time-

varying premia parameters, making standard inference seriously problematic. To show our results,

throughout this section for simplicity we assume that Kz = 1 and consider three different sampling

schemes: (i) the large-T–fixed-N case, (ii) the large-N–fixed-T case, and (iii) the large-T–large-N

case. Formal derivations of the following results, including the generalization to the case of Kz > 1,

are reported in the Online Appendix OA.6.

Let us consider first the case (i) of T → ∞ with fixed N . This situation applies, for example,

when one uses a panel consisting of a small number of portfolios, for which a long time-series of data

is available. As N is kept fixed in this sampling scheme, it follows that no asymptotic properties can

be established for the time-varying estimator γ̃t−1,z in (11). One can only assert the unbiasedness

of the estimator (11), which can be established only under some regularity conditions that include,

among others, the finite-N orthogonality condition:

Z′t−1M1N B = 0N×Kf
, (15)

namely the (in sample) cross-sectional orthogonality between factor betas and the anomaly variable

Zt−1, with 0N×Kf
representing the zero matrix of dimension N ×Kf .

Under the same sampling scheme, instead, the average premium estimator (12) satisfies:

¯̃γz →p γ̄
0
z ≡ lim

T→∞
γ̄z, with γ̄z ≡

1

T − 1

T∑
t=2

γz,t−1 (16)

It follows that ¯̃γz converges to a constant quantity, γ̄0z , which we refer to as the long-run anomaly

premium. Alternatively, (16) tells us that ¯̃γz consistently estimates the constant premium γz,

whenever γz,t−1 = γz, for every t = 1, .., T − 1. It is important to note that the results in (16)

are valid under some regularity conditions, including again the orthogonality condition in (15).
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Moreover, under some further regularity conditions (See Theorem OA.4 of the Online Appendix

OA.6.1), as T →∞ and N is fixed, ¯̃γz is also asympotically normally distributed, such that

√
T (¯̃γz − γ̄z)→d N (0, VN ) ,

with VN denoting the large-T asymptotic variance of the estimator, and where the subscript N is

used to remark its dependency on the N -dimension as well. To conduct inference, one needs to

consistently estimate VN , which is typically done in the literature by using the the sample variance

Σ̃γz of the CSR OLS estimates, as defined in (14). However, we show that Σ̃γz can only work in

the case where the true anomaly premium is assumed to be time-invariant, i.e., when one assumes

that γz,t = γz for every t in (7). More formally, we show that

Σ̃γz →p σ
2
γz

+ VN , with σ2γz
≡ lim

T→∞

1

(T − 1)

T∑
t=2

(γz,t−1 − γ̄z)2. (17)

From (17), it is immediate to see that Σ̃γz will consistently estimate VN only when σ2γz
≡ 0, which

happens if, and only if, γz,t−1 = γz for every t = 2, ..., T . Whenever this condition is violated, then

σ2γz
will be a positive quantity, implying that the t-ratio in (13) is downward biased. In other words,

whenever one assumes that the true premia in (7) are time-varying and uses the conventional t-ratio

in (13) to make inference on the average anomaly premium, then one tends to under-reject the null

hypothesis of zero (long-run) premium than prescribed by the chosen nominal size. Therefore, a

statistically significant t-ratio could provide a strong indication of a non-zero average premium, even

though it leaves inference undetermined when it is found to be not significant. This is an important

and crucial result, which could invalidate or raise doubts on many of the findings established in the

empirical literature on anomalies.

To demonstrate the potential implications of this result, we consider a simple simulation exercise,

where the true anomaly premium has been generated using a time-varying scheme. Specifically,

using N = 25 and T = 360, we simulate B=2,000 samples of asset returns, using the data generating

process Rt = γ0,t−11N + Zt−1γz,t−1εt, where Kz = 1 and εt ∼ N (0N , σ
2
ε IN ), with σ2ε = 0.1.

For simplicity, we set γ0,t−1 = γ0 = 0, while γz,t−1 has been generated using an AR(1) model

γz,t−1 = µz(1− φz) + φzγz,t−1 + uz, with uz ∼ N (0, σ2u). This implies that the variance σ2γz
in (17)

is equivalent to σ2u. The parameters µz and φz have been calibrated by fitting an AR(1) model

on the estimated time series of γ̃z,t, obtained by regressing observed monthly returns Rt on the

12



book leverage anomaly variable Zt−1, while for σ2u we consider different increasing values, from

σ2u = s, up to σ2u = 10s, with s = 0.001. Then, for each simulated sample, and for each different

value of σ2u, we estimate the anomaly average premium with (12) and construct the corresponding

t-ratio in (13), which we plot in Figure 1. The figure clearly shows the inferential consequences

of time-varying premia. When there is very little time variation, the classical approach works

quite well (see the light green dotted curve). As the time-variation (i.e., the variance) of γz,t−1

increases, the distribution of the corresponding t-ratio departs substantially from the standard

normal distribution, pointing to a severe under-rejection.
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Figure 1: Conventional t-ratios under a time-varying setting. The figure shows the dis-
tribution of the conventional t-ratios in (13), when the true anomaly premium γz,t−1 follows a
time-varying process. Specifically, using N = 25 and T = 360, we simulate B=2,000 samples of
asset returns, using the data generating process Rt = γ0,t−11N + Zt−1γz,t−1εt, where Kz = 1 and
εt ∼ N (0N , σ

2
ε IN ), with σ2ε = 0.1. For simplicity, we set γ0,t−1 = γ0 = 0, while γz,t−1 has been

generated using an AR(1) process γz,t−1 = µz(1 − φz) + φzγz,t−1 + uz, with uz ∼ N (0, σ2u). This
implies that the variance σ2γz

in (17) is equivalent to σ2u/(1 − φ2z). The parameters σ2u, µz and φz
have been calibrated by fitting an AR(1) process on the estimated time series of γ̃z,t, obtained by
regressing observed monthly returns Rt on the book leverage anomaly variable Zt−1. Then, for each
simulated sample, we estimate the anomaly average premium using the conventional estimator in
(12) and construct the corresponding t-ratio in (13). We then plot the distribution of the B=2,000
t-ratios and repeat the same exercise for increasing values of σ2u. Monthly returns are from the
Center for Research in Security Prices (CRSP), while data on the anomaly variables are provided
by Chen and Zimmermann (2019).
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The results presented above have clearly strong inferential implications which, however, provide

only a partial view of the overall picture. In fact, the previous exercise assumes that the true model

contains only the anomaly variables, thus excluding the estimated B from the return generating

process. This would coincide with the two-pass estimator applied to (7), whenever the loadings

B and the anomalies Zt−1 in (7) are orthogonal to each other. Whenever this assumption is not

satisfied, the accuracy of the results could be even more compromised. The inferential consequences

of excluding B from the estimated model are presented in Figure 2. The figure depicts the outcomes

of a simulation exercise where now the true return generating process follows the model in (7), but

where γz,t−1 is still estimated using (11) - hence omitting the loadings B. Specifically, using the

same parameters of the above exercise with Kf = 1, we generate asset returns using the process

Rt = γ0,t−11N + Zt−1γz,t−1 + Bδf,t−1 + εt−1, where δf,t−1 and B have been calibrated using

data on the market factor and its loadings on observed monthly returns Rt, respectively. To

account for different degrees of correlation between B and Zt−1, we define the anomaly variable

Zt−1 = [θMB + (1 − θ)PB]Z̃t−1, where Z̃t−1 has been calibrated using firms’ book leverage data

and where we set PB = B(B′B)−1B, and MB = IN −PB. The parameter θ ranges between 0

and 1, where θ = 0 represents the case of perfect correlation between B and Zt−1, while θ = 1

indicates no correlation between the loadings and the anomaly variable. In our experiment, we

consider different degrees of correlation by setting θ = {1, 0.75, 0.25, 0}. As before, for each of the

B = 2, 000 simulated samples and for each different value of θ and σ2u, we estimate the average

anomaly premium as in (12) and construct the corresponding t-ratios defined in (13), which we then

plot in Figure 2. Each panel in Figure 2 corresponds to a different value of the parameter θ, namely

θ = 1 (top-left panel), θ = 0.75 (top-right panel), θ = 0.25 (bottom-left panel), and θ = 0 (bottom-

right panel). As expected, when θ = 1, we re-obtain the same results of Figure 1, confirming

the fact that the estimator in (11) coincides with the conventional two-pass estimator applied to

(7), whenever B and Zt−1 are orthogonal to each other. However, as the correlation between the

anomaly variable and the loadings increases, the estimation bias becomes more pronounced and

combines with the downward bias arising from time variation in the anomaly premium process.
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Figure 2: The figure shows the outcomes of a simulation exercise where the true return generating
process follows the model in (7), but where γz,t−1 is estimated using (11) - hence omitting the
loadings B. Specifically, using the same parameters of the exercise described in Figure 1 with
Kf = 1, asset returns have generated using the process Rt = γ0,t−11N +Zt−1γz,t−1 +Bδf,t−1 +εt−1,
where δf,t−1 and B have been calibrated using data on the market factor and its loadings on
observed monthly returns Rt, respectively. To account for different degrees of correlation between
B and Zt−1, the anomaly variable has been generate as Zt−1 = [θMB + (1 − θ)PB]Z̃t−1, where
Z̃t−1 has been calibrated using firms’ book leverage data and where we set PB = B(B′B)−1B,
and MB = IN − PB. The parameter θ ranges between 0 and 1, where θ = 0 represents the
case of perfect correlation between B and Zt−1, while θ = 1 indicates no correlation between the
loadings and the anomaly variable. The experiment considers different degrees of correlation, setting
θ = {1, 0.75, 0.25, 0}. Then, for each of the B = 2, 000 simulated samples and for each different
value of θ and σ2u, the average anomaly premium is estimated using (12) and the corresponding
t-ratios defined in (13) have been plotted. Each panel of the figure corresponds to a different
value of the parameter θ, namely θ = 1 (top-left panel), θ = 0.75 (top-right panel), θ = 0.25
(bottom-left panel), and θ = 0 (bottom-right panel). Monthly returns are from the Center for
Research in Security Prices (CRSP), while data on the anomaly variables are provided by Chen
and Zimmermann (2019).
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Let us now consider the case of estimating (7) using the time-varying estimator in (11) and the

average estimator in (12), when now N → ∞ with fixed T . This situation commonly arises when

one uses data on the thousands of individual stock returns - rather than portfolios - over short time

windows. Under suitable regularity conditions, and assuming the large-N orthogonality condition

Z′t−1M1N B

N
→p 0N×Kf

, (18)

then, the time-varying estimator in (11) and the average estimator in (12) satisfy:

γ̃z,t−1 →p γz,t−1 and ¯̃γz →p γ̄z. (19)

The results in (19) imply that the time-varying estimator (11) is now able to capture the true time-

varying anomaly premium, with the average estimator in (12) now converging to the local average

premium, defined over a fixed (and possibly small) time window of length T . Moreover, when the

condition in (18) is replaced by the stronger assumption in (15) - namely when the cross-sectional

orthogonality condition between the factor betas and the anomaly holds in sample - we get

√
N (γ̃z,t−1 − γz,t−1) →d N (0, Vt−1) , and

√
N (¯̃γz − γ̄z) →d N

(
0, V̄

)
, with V̄ =

1

(T − 1)2

T∑
t=2

Vt−1

where Vt−1 denotes the large-N asymptotic variance of the time-varying estimator, and where we

use the subscript t−1 to emphasize its time dependence. However, in this large-N–fixed-T setting,

inference based on conventional t-ratios becomes even more problematic than the previous large-T

case, for both the time-varying and the average estimators. Indeed, the finite-T sampling scheme

implies that

Σ̃γz →p
1

(T − 1)

T∑
t=2

(γz,t−1 − γ̄z)2, (20)

which is now a positive constant that could be, in general, bigger or smaller than V̄ , making any

conclusion on the over- or under-rejection of the t-ratio in (13) impossible. Moreover, notice that the

conventional t-ratios would involve the incorrect
√
T -normalization, rather than

√
N , even though

this would be easy to rectify. Therefore, under the large-N–fixed-T sampling scheme, except for

the special circumstance when condition (18) holds, the two conventional estimators in (11) and

(12) could not be used to estimate the time-varying premia in (7) and its time-average, respectively.
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Moreover, a new inferential theory would be needed in this case, to equip the results with correct

standard errors and t-ratios. Filling this gap is one of the objective of this paper.

Finally, let us consider the case where both N and T are allowed to diverge. Under this setting, it

is easy to show that the time-varying estimator γ̃z,t−1 in (11) maintains the same identical behavior

of the large-N–fixed-T case discussed above, so we omit the discussion to avoid repetition. Instead,

for the average estimator, we get

√
NT (¯̃γz − γ̄z)→d N

(
0, V̄

)
, (21)

where V̄ denotes the large-(N,T ) asymptotic variance of the average estimator, such that (T −

1)−1
∑T

t=2 Vt−1 →p V̄ . Notice that, in this case, the average estimator ¯̃γz converges at the fast rate

O(
√
NT ) to the long-run risk premium. As for the previous case, inference remains still problematic

if one uses conventional t-ratios based on Σ̃γz .
11

To summarize, our results show that the conventional approach is unable to capture and make

inference on time-varying premia, whenever T →∞ and N is kept fixed. That is, in a model with

time-varying anomaly premia as in (7), one can only hope to consistently estimate the (long-run)

average anomaly premia γ̄z, but not the anomaly premia at each point in time γz,t. Inference is

even more complicated in this setting, with the conventional t-ratio of the average premium being

downward biased, hence making standard inferential results potentially invalid. Only in the special

case of time-constant anomaly premia, then the conventional approach works, even though it would

still require stringent assumptions.

Under the large-N–fixed-T setting, the conventional time-varying estimator in (11) could in

principle be used to consistently estimate time-varying anomaly premia, even though the validity

of this result requires that the stringent orthogonality condition (18) holds in the data. At any rate,

conventional t-ratios (of both the time-varying and the average premium estimators) are not valid,

rendering all the inferential results potentially highly misleading. The same conclusions hold if one

considers the double-asymptotic setting, where both N and T jointly diverge. In this respect, our

paper offers an important contribution to the literature to fill this gap.

Indeed, exploiting the large-N–fixed-T setting, we show below how it is possible to adjust the

11In this case, it is possible to show that inference could be carried out if one further assumes that B = 0N×K ,
that is if none of the risk factors in the model is correlated with the test assets’ returns. See Remark OA.24 in the
Online Appendix OA.6.3 for formal derivations.

18



conventional time-varying estimators (11) and (12), and make them working under the presence of

estimated betas in model (7) - hence resolving the EIV problem - and relaxing any orthogonality

assumption between factor loadings and anomalies such as (18). Moreover, we provide the limiting

distribution of a new time-varying estimator, showing how to derive closed-form standard errors to

conduct valid inference when N becomes large. Essentially, our aim is to propose a time-varying

methodology which is simple and easy to implement, and which is based on the Fama and MacBeth

(1973) two-pass principle, uncovering the required adjustments to make it work.

To conclude this section, we would like to give a quick preview of some important implications

of our new time-varying methodology, by analysing the performance of six categories of anoma-

lies, namely, Momentum, Value versus Growth, Investment, Profitability, Intangibles and Trading

Frictions, as in Hou, Chen, and Zhang (2020). We report the main results in Table I. Specifically,

we use monthly firm-level characteristics data provided by Chen and Zimmermann (2019), from

January 1986 to December 2020 and perform monthly cross-sectional regressions of each anomaly

variable on monthly returns from the Center for Research in Security Prices (CRSP) using both

the conventional approach and our proposed approach (which we define as “RZ Approach” in Table

I), described in Section 5 below. In this latter case, and contrary to the conventional approach,

cross-sectional regressions also consider the market factor in the model specification. We then

group each anomaly in one of the above six categories using the classification adopted in Hou,

Chen, and Zhang (2020) and report the main results, averaged across categories.12 We repeat the

same exercise for different time lengths, from T = 12 up to T = 360 months, using monthly rolling

widows. Then, for each category, and for both the two approaches, in Table I we report: (i) the

average percentage of times that the category has been found to be significant (Panel A), (ii) the

average |t|-statistics to test the null hypothesis that the anomaly premium is equal to zero (Panel

B), and (iii) the average anomaly premium (Panel C).

The downward bias of the conventional approach clearly emerges from Table I, especially when

T is relatively small. Indeed, for all the categories, the percentage of significance obtained by using

the conventional approach is always subtantially lower than the one we found with our approach.

Noticeably, the result is stable across T for our RZ approach, suggesting its validity, whereas it

changes sharply for the conventional approach. This is also confirmed in Panel B, where we find

12A complete list of the anomaly variables in each category is provided in Appendix OA.10.
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that the RZ approach is almost always associated with a higher average |t|-ratio. Interestingly, for

all the categories and regardless of the time-series length, the two approaches also show different

average values of the anomaly premium (Panel C), suggesting that the correlation between the

estimated betas and anomalies could be actually different from zero, rendering the conventional

approach estimates biased.

Table I: Conventional Approach versus the RZ time-varying approach

% of significance - Conventional Approach % of significance - RZ Approach
Panel A T = 12 T = 36 T = 72 T = 120 T = 240 T = 360 T = 12 T = 36 T = 72 T = 120 T = 240 T = 360

Momentum 19.48 26.99 35.36 45.01 54.53 60.00 71.07 77.77 73.22 71.89 62.11 59.44
Value VS Growth 15.04 19.67 23.97 31.19 46.09 54.76 43.87 52.36 54.27 57.07 62.61 62.18
Investment 20.19 37.79 52.50 64.50 89.59 92.00 39.38 36.87 48.58 63.92 71.11 64.61
Profitability 12.98 15.11 19.81 25.92 33.07 37.00 36.21 44.16 43.76 42.20 38.44 45.58
Intangibles 11.63 17.33 25.06 31.71 40.32 56.00 28.08 33.72 37.26 41.18 37.36 33.54
Trade Frictions 11.31 15.91 19.88 25.45 36.55 51.70 37.76 35.09 39.08 44.10 47.80 46.48

average |t| - Conventional Approach average |t| - RZ Approach
Panel B T = 12 T = 36 T = 72 T = 120 T = 240 T = 360 T = 12 T = 36 T = 72 T = 120 T = 240 T = 360

Momentum 2.73 2.80 3.00 3.38 4.19 5.18 8.07 11.59 10.98 9.29 7.28 7.87
Value VS Growth 2.59 2.60 2.67 2.86 3.18 3.69 4.15 5.21 5.94 5.74 5.17 5.26
Investment 2.76 2.77 3.14 3.37 3.75 4.57 3.56 3.71 4.60 5.00 4.98 5.04
Profitability 2.60 2.48 2.45 2.39 2.94 3.32 4.24 4.70 4.97 4.83 3.76 3.19
Intangibles 2.69 2.64 2.79 2.82 2.98 3.38 3.67 4.40 4.90 4.89 4.61 5.76
Trade Frictions 2.93 3.03 3.37 3.19 3.05 3.43 4.64 4.52 4.53 4.10 3.81 3.82

average premia - Conventional Approach average premia- RZ Approach
Panel C T = 12 T = 36 T = 72 T = 120 T = 240 T = 360 T = 12 T = 36 T = 72 T = 120 T = 240 T = 360

Momentum 0.35 0.26 0.23 0.21 0.19 0.19 0.20 0.23 0.21 0.18 0.16 0.15
Value VS Growth 0.33 0.22 0.18 0.17 0.17 0.15 0.42 0.40 0.42 0.40 0.38 0.36
Investment 0.22 0.18 0.17 0.17 0.17 0.16 0.32 0.26 0.31 0.39 0.43 0.42
Profitability 0.30 0.19 0.15 0.13 0.12 0.12 0.58 0.52 0.50 0.45 0.44 0.38
Intangibles 0.31 0.21 0.18 0.17 0.15 0.14 0.45 0.53 0.56 0.61 0.66 0.73
Trade Frictions 0.36 0.24 0.21 0.19 0.17 0.16 0.72 0.47 0.38 0.35 0.34 0.24

5 Anomalies with Time-Varying Premia: OLS-Based Estimation

The results of the previous section show that the conventional approach is not valid whenever one

postulates time variation in the (true) anomalies’ premia and unless strict orthogonality conditions

are satisfied. We now introduce our new results, valid when N → ∞ and T remains fixed, and

show how all these challenges related to the conventional approach can be resolved, by means of a

new OLS bias-adjusted estimator of the time-varying premia δf,t−1 and γz,t−1. All the results are

established under several regularity conditions and mild assumptions that we report in Appendix

A.1.
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Consider again the conditional asset pricing model in (7), and rewrite it as

Rt = Zt−1γz,t−1 + XΓf,t−1 + εt (22)

where X = (1N ,B) and Γf,t−1 = (γ0,t−1, δ
′
f,t−1)

′, with δf,t−1 defined in (8). Since the matrix X

in (22) is unknown, one needs first to estimate the loadings B to make the estimation of (22)

feasible. The conventional two-pass approach typically advocates a simple OLS regression of Rt on

an intercept and the observed risk factors ft, that is:

B̂ ≡ R′M1T−1F(F′M1T−1F)−1 = R′P, (23)

where B̂ = (β̂1, . . . , β̂N )′, F = (f2, · · · fT )′, R = (R2, · · · ,RT )′, and P ≡M1T−1F(F′M1T−1F)−1,

where we assume that P′P = (F′M1T−1F)−1 > 0 for every T (see Assumption 2 in the Appendix

A.1). The matrix M1T−1 ≡ IT−1 − 1T−11
′
T−1/(T − 1) de-means the data, that is M1T−1R =

R− 1T−1R̄
′ and M1T−1F = F− 1T−1f̄

′, setting R̄ ≡
∑T

t=2 Rt/(T − 1) and f̄ ≡
∑T

t=2 ft/(T − 1).

It is clear that the estimator in (23) excludes the potential effect of the anomalies Zt−1, as well

as the time variation of their premia. This could induce sources of bias in the estimates, further

exacerbated if ft and Zt−1 were potentially correlated across time, making B̂ clearly invalid. The

following smoothness Assumption 1 permits to overcome these challenges, by constraining the time

variation of the premia parameters, implying their (temporal) orthogonality with the risk factors

ft. As the time-series dimension T gets small (and as long as T > Kf + 1), this assumption appears

extremely mild, especially in terms of anomalies’ premia, where the observed (time-varying) zi,t−1

could account for most of the time-variation of their overall contribution to expect returns.

Assumption 1 (smoothness of the premia parameters). The following hold:

P′γ0 = 0Kf
, P′δ̆f = 0Kf×Kf

, and P′∆z = 0Kf×N ,

setting the (T − 1) × Kf matrix δ̆f = (δ̆f,1, · · · , δ̆f,t−1)′, with δ̆f,t−1 ≡ δf,t−1 − ft = γf,t−1 −

E(ft|It−1,Π), and the (T − 1)×N matrix

∆z ≡



γ ′z,1 − γ ′z 0′Kz
. . . 0′Kz

0′Kz
γ ′z,2 − γ ′z . . . 0′Kz

...
...

. . .
...

0′Kz
0′Kz

. . . γ ′z,t−1 − γ ′z





Z′1

Z′1

...

Z′T−1

 ,

for some constant Kz × 1 vector γz satisfying N−1
∑N

i=1(Z
′
iZi)

−1Z′iRi →p γz.
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When the risk factors are traded, δ̆f,t−1 = −γ01′Kf
for every t, and Assumption 1 only concerns

the zero-beta rate. In the special case of constant premia parameters, when both the test assets and

the risk factors are expressed as excess returns, and assuming that a risk-free asset is also traded,

then Assumption 1 is always satisfied.13

The additional source of bias, arising from the presence of Zt−1 in the first-pass, is instead dealt

with by orthogonalizing the anomaly variables Zt−1 with respect to the observable factors ft, before

running the two-step procedure. Therefore, Zt−1 can be interpreted as representing the net portion

of the anomaly variables that affects expected returns, hence eliminating any indirect influence (or

confounding effect) coming from the risk factors.14

To better understand the implications of the orthogonalization on the model’s parameters and

their corresponding interpretations, consider the case where the researcher postulates a model that

involves a set of initial anomalies Z†t−1 = (z†1,t−1, · · · , z
†
N,t−1)

′, such that:

Rt = α†t−1 + Z†t−1γz,t−1 + B†ft−1 + et (24)

where B† will be, in general, different from B. Then, starting from (24), one can construct the

orthogonal anomalies Zt−1 as the residuals from projecting Z†t−1 onto the unit constant and ft,

implying a zero sample covariance between zi,t−1 and ft, and where we re-centre each zi,t−1 so that

their sample mean coincides with the sample mean of z†i,t−1, for every i = 1, ..., N . This leads to:

zi,t−1 ≡ z†i,t−1 − Σ̂
z†i f

Σ̂−1f (ft − f̄), (25)

where Σ̂
z†i f

= Ĉov(z†i,t−1, f
′) = 1

T−1Z†′i F − Z̄†i f̄
′, and Σ̂f = V̂ar(f) = 1

T−1F′F − f̄ f̄ ′, where

Z†i = (z†i,1, · · · , z
†
i,T−1)

′, Z̄†i = Z†′i
1T−1

T−1 , and where we use Ĉov(·) and V̂ar(·) to denote the sam-

ple covariance and sample variance estimators, respectively. Then, replacing (25) in (24), and

13One can avoid imposing the smoothness conditions of Assumption 1, and thus allowing for time-series dependence
between the time-varying premia and the risk factors, but at the cost of more complicate expressions. In particular,
(7) can be expressed as a panel data model with interactive-fixed effects:

Rt = α+ Zt−1γ̄z + Bft + ut,

where the error term satisfies ut = ξt + ∆gt for an asset-specific error ξt and a vector of zero-mean latent factors gt

possibly correlated with the observed risk factors ft, with loadings ∆, and where γ̄z = T−1∑T
t=1 γt−1,z. Assumption 1

implies orthogonality between ft and ut, resurrecting the OLS estimator B̂. However, an alternative estimator for
B exists that avoids Assumption 1 but leads to a more involved analysis of the CSR in the second pass. Details are
available upon request.

14The orthogonalization between anomalies and risk factors implies that Zt−1 are no longer pre-determined. By
standard arguments, this leads to a bias of order Op(T−1), which, however, turns out to be irrelevant in our large-
N–fixed-T sampling scheme, given the fast rate at which the bias vanishes.
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imposing the asset pricing restriction in (6), we get model (7), where, setting γ̄z ≡ Γ′z
1T−1

T−1 with

Γz = (γz,1, · · · ,γz,T−1)′,

βi ≡ β†i + Σ̂−1f Σ̂′
z†i f
γ̄z. (26)

From (26), it is easy to see that, after the orthogonalization of the anomaly variables, the (trans-

formed) B takes now into account not only the direct effect of the risk factors on the cross-section

of expected returns, but also the indirect effect of ft, trough its possible dependence with Z†t−1.

This set-up is extremely convenient and allows us to estimate the matrix B by simply using

(23), without now incurring in any source of bias coming from the exclusion of anomalies from

the first-pass regression or due to the potential correlation between risk factors and anomalies.

Therefore, the feasible version of (7) becomes

Rt = X̂Γf,t−1 + Zt−1γz,t−1 + ηt, (27)

setting X̂ = (1N , B̂), with B̂ defined in (23), ηt ≡ εt−(X̂−X)Γf,t−1, and where Zt−1 satisfies (25),

hence being uncorrelated with the risk factors. Running a single cross-sectional OLS regression on

(27) yields the time-varying OLS estimator

[
Γ̂f,t−1

γ̂z,t−1

]
≡

[
X̂′X̂ X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]−1 [
X̂′Rt

Z′t−1Rt

]
, (28)

where Γ̂f,t−1 ≡ (γ̂0,t−1, δ̂
′
f,t−1)

′. The estimator in (28) generalizes the conventional estimator γ̃z,t−1

in (11) to the case of when both anomalies and (estimated) loadings are used as regressors in the

feasible model. The two estimators coincide when X̂′Zt−1 = 0N×Kz , a condition which is, however,

not warranted in general. When such orthogonality condition is violated, then γ̂z,t−1 in (28) remains

valid, but γ̃z,t−1 in (11) becomes biased.15

Although (28) resolves the bias coming from the potential lack of orthogonality between the risk

factors and the anomalies, unfortunately other sources of bias arise in our large-N–fixed-T set-up.

The reason is that B̂ does not converge to B when T is fixed, making the OLS estimator in (28)

biased due the EIV effect.16

15To clarify, notice that the orthogonality condition that we impose between Zt−1 and ft represents a time-series
restriction, which does not imply the cross-sectional restriction X̂′Zt−1 = 0N×Kz .

16Moreover, as the estimator (28) is evaluated at each point in time, a second source of bias arises (besides the
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However, we show that such biases can be consistently estimated, leading to our new bias-

adjusted CSR OLS estimator:[
Γ̂∗f,t−1

γ̂∗z,t−1

]
≡

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]−1 [
X̂′Rt −NΛ̂2,t−1

Z′t−1Rt

]
, (29)

where Γ̂∗f,t−1 ≡ (γ̂∗0,t−1, δ̂
∗′
f,t−1)

′, and where we set

Λ̂1 ≡

[
0 0′Kf

0Kf
σ̂2P′P

]
, Λ̂2,t−1 ≡ σ̂2

[
0

P′ıt−1,T−1

]
, (30)

where ıs,T−1 denotes the s-th row of the identity matrix IT−1, and where

σ̂2 ≡ tr(ε̂′ε̂)

N(T −K − 2)
, (31)

with tr(·) denoting the trace operator, K = Kf + Kz, and where ε̂ represents the OLS residuals,

defined as ε̂i ≡MD̃i
Ri, withMD̃i

= IT−1−D̃i(D̃
′
iD̃i)

−1D̃
′
i, and D̃i ≡ (D, Z̃i), with D ≡ (1T−1,F),

and Z̃i ≡M1T−1Zi.
17

The following theorem establishes the limiting properties of our novel bias-adjusted estimator.

Let Z ≡ (z1, ..., zN )′ define the overall N × Kz(T − 1) matrix of anomalies, with zi being the

Kz(T − 1)× 1 vector zi ≡
(

z
(1)
i,1 , · · · , z

(1)
i,T−1, · · · , z

(Kz)
i,1 , · · · , z(Kz)

i,T−1

)′
, with z

(j)
i,T−1 denoting the value

of the jth anomaly for stock i at time t. Let 0a and 1a denote an a × 1 vector of zeros and ones,

respectively. The following Kz(T − 1)×Kz matrices of constants

J =
1

T − 1


1T−1 0T−1 . . . 0T−1
0T−1 1T−1 . . . 0T−1

...
...

. . .
...

0T−1 0T−1 . . . 1T−1

 =

(
IKz ⊗

1T−1
(T − 1)

)
=

1

T − 1

T−1∑
s=1

Js (32)

with

Js =


ιs,T−1 0T−1 . . . 0T−1
0T−1 ιs,T−1 . . . 0T−1

...
...

. . .
...

0T−1 0T−1 . . . ιs,T−1

 = (IKz ⊗ ιs,T−1) for 1 ≤ s ≤ T − 1, (33)

EIV) due to the fact that P′ıt−1,T−1 could be, in general, different from 0Kf . See Proposition OA.1 in the Online
Appendix for a formal proof. In remark OA.19 we also show that the OLS estimator in (28) remains biased even
when one assumes that T is large, but N is fixed. However, in this case, the bias would be a function of a random
component, making the bias term impossible to be consistently estimated, unlike our large-N case.

17Note that, while computation of the OLS estimator β̂i only requires the regressors D, the corresponding residuals
must be evaluated with respect to both Di and Z̃i, as it always happens in regressions with orthogonal independent
variables.
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are needed to evaluate the sample means of the anomaly variables and to select the s-th observation

from the Z matrix, yielding ZJs = Zs and ZJ = (T − 1)
∑T−1

s=1 Zs. Finally, let ⊗, vec(·) and �

denote the Kronecker product, the vec operator, and the Hadamard product, respectively, and let

→p,→d denote convergence in probability and distribution, respectively.

Theorem 1 (Large-N consistency and asymptotic normality of the time varying bias-adjusted

CSR OLS estimator). As N →∞, under Assumptions 1–7 (listed in the Appendix A.1), then

(i)

Γ̂∗f,t−1 − Γf,t−1 = Op

(
1√
N

)
and γ̂∗z,t−1 − γz,t−1 = Op

(
1√
N

)
, (34)

(ii)

√
N

[
Γ̂∗f,t−1 − Γf,t−1

γ̂∗z,t−1 − γz,t−1

]
→d N

(
0K+1,L

−1
t−1Ot−1L

−1′
t−1
)
, (35)

for some Lt−1 > 0 and Ot−1 defined in (OA.35).18

Proof. See Appendix OA.4.

To conduct statistical inference, we need a consistent estimator of the asymptotic covariance

matrix in (35), which we present in the next theorem.

Theorem 2 (Standard errors of the time varying bias-adjusted CSR OLS estimator). As N →∞,

under Assumptions 1–7, and the identification condition κ4 = 0,

L̂−1t−1 Ôt−1 L̂−1
′

t−1 →p L−1t−1 Ot−1 L−1
′

t−1 (36)

where

L̂t−1 ≡
1

N

[
X̂′X̂−NΛ̂1 X̂′Zt−1

Z′t−1X̂ Z′t−1Zt−1

]
, and Ôt−1 ≡

[
Ût−1 σ̂2Ĝt−1Ĥ

′
t−1

σ̂2Ĥt−1Ĝ
′
t−1 Ĥt−1Σ̂UĤ′t−1,

]
(37)

with Ût−1 ≡ σ̂2Q̂′t−1Q̂t−1

(
Σ̂X − Λ̂1

)
+

[
0 0′Kf

0Kf
V̂′t−1ÛεV̂t−1

]
, setting MD̃ ≡ N−1

∑N
i=1MD̃i

,

18To ease the exposition, the definition of Lt−10 and Ot−1 has been relegated to the proof of the theorem (see
(OA.35)).
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Σ̂X ≡ N−1X̂′X̂, Σ̂ZB ≡ N−1Z′B̂, µ̂z,T−1 ≡ N−1Z′1N , and Σ̂U ≡ (σ̂2IT−1 ⊗Z′Z/N), with Λ̂1 and

σ̂2 defined in (30) and (31), respectively, and we define the following matrices

Q̂t−1 ≡ ıt−1,T−1 −Pδ̂∗f,t−1, Ĥt−1 ≡ Q̂′t−1 ⊗ J′t−1,

Ĝt−1 ≡
[
Q̂t−1 ⊗ µ̂z,T−1, Q̂t−1 ⊗ Σ̂ZB

]′
, and

V̂t−1 ≡ (Q̂t−1 ⊗P)−

(
vec(MD̃)

(T −K − 2)

)
Q̂′t−1P,

where Ûε is obtained plugging κ4 = 0 and σ̂4 = N−1
∑N

i=1

∑T−1
t=1 ε̂

4
it/3 tr

(
M

(2)

D̃

)
, with M

(2)

D̃
≡

1
N

∑N
i=1

(
MD̃i

�MD̃i

)
, into Uε = Uε(κ4, σ

4) (see Remark 1 to Assumption 6).

Proof. See Appendix OA.4.

The square root of the diagonal elements of L̂−1t−1Ôt−1L̂
−1
t−1 in (37), divided by

√
N , represent

the standard errors of the premia estimators Γ̂∗f,t−1 and γ̂∗z,t−1, which can be used to construct

asymptotically valid confidence intervals.

Theorems 1 and 2 show that our time-varying estimators Γ̂∗f,t−1 and γ̂∗z,t−1 accurately capture

the true premia Γf,t−1 and γz,t−1 at any given point in time. However, when premia’s time-variation

is sufficiently smooth and not too abrupt, one could benefit from the time-series dimension of the

panel and obtain more precise estimates of the (locally-averaged) premia parameters by means of

rolling-windows average estimates.19 In fact, smoothness of premia parameters (over a period of

length T ) can be reasonably assumed in our setting, as T can be chosen to be arbitrarily small,

with the only requirement being that T > (Kf + 2).

Specifically, let Γ̄f =
(
γ̄0, δ̄

′
f

)′ ≡ (T − 1)−1
∑T

t=2 Γf,t−1 be the (Kf + 1)-vector of locally-averaged

risk premia and recalling γ̄z = 1
T−1

∑T
t=2 γz,t−1. Let Z̄ = 1

(T−1)
∑T−1

t=1 Zt be the N ×Kz matrix of

anomalies’ time-series averages. Then, by averaging the second-pass relationship in (27) across time,

and noticing that (T − 1)−1
∑T−1

t=1 Zt−1γz,t−1 = Z̄γ̄z + Ĉov(Zt−1,γz,t−1), with Ĉov(Zt−1,γz,t−1) ≡

(T − 1)−1
∑T−1

t=1 (Zt−1 − Z̄)(γz,t−1 − γ̄z), one obtains:

R̄ = X̂Γ̄f + Z̄γ̄z + η̄∗,

19Rolling-window estimators can always be formally interpreted as non-parametric estimators (with a rectangular
kernel) of the conditional (hence, time-varying) moments, providing an underpinning for their widespread popularity
in empirical asset pricing, originated in Fama and MacBeth (1973).
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where R̄ ≡ (T − 1)−1
∑T

t=2 Rt, and η̄∗ ≡ η̄ + Ĉov(Zt−1,γz,t−1), with η̄ ≡ (T − 1)−1
∑T

t=1 ηt.

Therefore, following the same steps adopted for the time-varying estimator in (29), we can derive

the OLS bias-adjusted estimator of the locally-averaged premia parameters as:[
Γ̂∗f

γ̂∗z

]
≡

[
X̂′X̂−NΛ̂1 X̂′Z̄

Z̄′X̂ Z̄′Z̄

]−1 [
X̂′R̄

Z̄′R̄

]
, (38)

where Λ̂1 is defined in (30), and where Γ̂∗f ≡
(
γ̂∗0 , δ̂

∗′
f

)′
. Notice that now, compared with the

time-varying estimator in (29), the estimator in (38) is immune of the bias term related to Λ2.

The reason is that this bias vanishes when one constructs the locally-averaged estimators (38),

because (T − 1)−1
∑T

t=2 Pıt−1,T−1 = P′1T−1 = 0Kf
by construction (see Theorem OA.1 in the

Online Appendix OA.5.2).

Under our assumptions, we can show that the estimator in (38) is
√
N -consistent and asymp-

totically normally distributed, following similar results to the ones established in Theorems 1 and

2.20 This allows us to consistently estimate and make inference on the average premia Γ̄f and γ̄z,

with the further advantage of increasing the precision of the estimator by an order O
(

1/
√
T
)

com-

pared to the time-varying estimator in (29). Such precision gain can be substantial even when T

is relatively small. Therefore, if one is willing to assume a sufficiently smooth time-variation of the

true premia parameters over a short time period of length T , then our locally-averaged estimator

becomes very attractive, as it can provide a very accurate measure of the average premia over that

short time window.

As a final remark, it is worth noticing that our average premia estimator remains still very useful

even when T is large, because it generalizes the conventional two-pass estimator in (11), without

requiring any stringent orthogonality assumption. In this case, however, (Γ̂∗
′

f , γ̂
∗′
z )′ will accurately

estimate the long-run average of the time-varying premia, which clearly would not unveil any

variation over time in the premia coefficients.21

These results motivate our large-N–fixed-T approach even further, making our estimators very

appealing to deal with a setting where premia are genuinely varying over time.

20See Theorems OA.1 and OA.2 in the Online Appendix OA.5.2.
21For example, following Ang and Kristensen (2012), one could assume that

(
Γ′f,t, γ

′
z,t

)′
= (Γ′f(t/T ), γ′z(t/T ))

′
,

for some smooth functions Γf(·) and γz(·). Then, as T goes to infinity, (Γ̂∗
′

f , γ̂
∗′
z )′ accurately estimate the long-run

premia

∫
1

0

[
Γf(s)
γz(s)

]
ds, which, although of interest (and assuming that such quantity exists finite), would completely

mask any form of time-variation in the premia parameters.

27



6 Anomalies with Time-Varying Premia: WLS-Based Estimation

Fama and French (2008) and Hou, Chen, and Zhang (2020), among others, recognize that most of

the empirical results on asset pricing anomalies can be seriously affected by the presence of micro-

cap stocks. Small-cap equities typically show higher returns than large-cap stocks, but they also

tend to have the largest cross-sectional dispersions both in terms of returns and anomaly variables.

To mitigate this effect, Hou, Chen, and Zhang (2020) consider a Weighted Least Square (WLS)

estimator of the premia parameters, with the weights being proportional to the corresponding

stock’s market capitalization.

Formally, let
(
Γ̂
(w)′

f,t−1, γ̂
(w)′

z,t−1

)′
denote the WLS estimator of the (K + 1)-vector of premia co-

efficients, where Γ̂
(w)
f,t−1 ≡

(
γ̂
(w)′

0,t−1, δ̂
(w)′

f,t−1

)′
denotes the premia estimator of the zero-beta rate

and the Kf risk factors, while γ̂
(w)
z,t−1 refers to the premia of the Kz anomaly variables. Let

Wt−1 be an N × N diagonal matrix containing the asset-specific weights at time t − 1, i.e.

Wt−1 ≡ diag (w1,t−1, ...,wN,t−1), where we assume wi,t > 0 for every asset i and period t without

great loss of generality. Then, following Hou, Chen, and Zhang (2020), we have:

Γ̂
(w)
f,t−1

γ̂
(w)
z,t−1

 ≡ [ X̂′Wt−1X̂ X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

]−1  X̂′Wt−1Rt

Z′t−1Wt−1Rt

 (39)

where, for each stock i, the weight wi,t−1 in Wt−1 is given by the corresponding stock market

capitalization at time t− 1.

Similarly to the conventional time-varying OLS estimator defined in (28), we can show that

analogous conclusions apply to the WLS estimator in (39). Indeed, whenever one wants to estimate

time-varying premia under the traditional large-T–fixed-N setting, we show that the estimator in

(39) would be invalid, because it is affected by a random (hence, unpredictable) bias.22 In the

large-N–fixed-T set-up, instead, the WLS estimator in (39) is still contaminated by several sources

of bias which, however, can be consistently estimated, yielding our novel bias-adjusted CSR WLS

estimator:23

22We show this result in the Online Appendix OA.5.1 - see Remark OA.19.
23See the Online Appendix OA.5.1 - Proposition OA.2.
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Γ̂
∗(w)
f,t−1

γ̂
∗(w)
z,t−1

 ≡
X̂′Wt−1X̂−NΛ̂

(w)
1,t−1 X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

−1 X̂′Wt−1Rt −NΛ̂
(w)
2,t−1

Z′t−1Wt−1Rt

 , (40)

where Γ̂
∗(w)
t−1 ≡

(
γ̂
∗(w)
0,t−1, δ̂

∗(w)′

f,t−1

)′
, and where we set

Λ̂
(w)
1,t−1 ≡

 0 0′Kf

0Kf
σ̂
2(w)
t−1 P′P

 , Λ̂
(w)
2,t−1 ≡ σ̂

2(w)
t−1

[
0

P′ıt−1,T−1

]
(41)

with

σ̂
2(w)
t−1 ≡

tr(ε̂Wt−1ε̂
′)

N(T −K − 2)
(42)

Before establishing the asymptotic properties of the WLS estimator in (40), it is important

to highlight some necessary remarks. The choice of using stock’s market capitalization in the

Wt−1 matrix makes the weighting scheme parameter-free. On one hand, this simplifies the WLS

analysis, where the weights are instead typically defined as functions of unknown parameters (to be

estimated) or set to be inversely proportional to the regression-error variance. On the other hand,

however, market capitalization could be very likely correlated - both cross-sectionally and over time

- with returns and other anomalies, making the asymptotic analysis of the estimator non-trivial.

For this reason, we need to impose some conditions on the sample moments of anomalies, weights

and asset-specific errors. Specifically, we assume that each asset-specific error is uncorrelated with

past values of both anomaly variables and weights, but could be potentially correlated with their

contemporary and future values (see Assumption 11 in Appendix A.1.1).

Moreover, the behavior of the weights plays a crucial role in determining the statistical properties

of the WLS estimator, especially when N →∞. In particular, a condition that the weights should

satisfy is the so-called granuarity assumption, which guarantees that the weights dissipate to zero

sufficiently fast for every asset, as N →∞. When the granularity assumption fails, then the WLS

estimator exhibits a random limit, making both estimation and inference invalid.Therefore, in the

following theorems, we establish the limiting properties of the WLS estimator in (40) under the

assumption that granularity holds (see Assumption 8 in Appendix A.1.1).

Theorem 3. As N →∞, and under Assumptions 1–11,
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(i)

Γ̂
∗(w)
f,t−1 − Γf,t−1 = Op

(
1√
N

)
, γ̂

∗(w)
z,t−1 − γz,t−1 = Op

(
1√
N

)
. (43)

(ii)

√
N

Γ̂
∗(w)
f,t−1 − Γf,t−1

γ̂
∗(w)
z,t−1 − γz,t−1

→d N
(
0K+1,L

−1
t−1O

(w)
t−1L

−1
t−1

)
, (44)

where Lt−1 is the same as in Theorem 1, and for for some O
(w)
t−1 defined in (OA.45).24

Proof. See Appendix OA.4.

The next theorem shows how to construct asymptotically-valid standard errors for the WLS esti-

mator.25

Theorem 4. As N →∞, under Assumptions 1–11, and the identification condition κ4 = 0,

L̂
(w)−1
t−1 Ô

(w)
t−1 L̂

(w)−1′
t−1 →p L−1t−1 O

(w)
t−1 L−1′t−1 (45)

where

L̂
(w)
t−1 ≡

1

N

X̂′X̂−NΛ̂
(w)
1,t−1 X̂′Wt−1Zt−1

Z′t−1Wt−1X̂ Z′t−1Wt−1Zt−1

 , and Ô
(w)
t−1 ≡ λ̂t−1

[
µ̂xµ̂

′
x µ̂xµ̂

′
z

µ̂zµ̂
′
x µ̂zµ̂

′
z

]
+ M̂

(w)
t−1 (46)

with

M̂
(w)
t−1 ≡


0 0′Kf

0′Kz

0Kf
µ̂2w,t−1 V̂

(w)′

t−1 ÛεV̂
(w)
t−1 0Kf×Kz

0Kz 0Kz×Kf
Ĥ

(w)
t−1Σ̂

(w)
U Ĥ

(w)′

t−1 + Ŝ
(w)
t−1 + Ŝ

(w)
t−1

 (47)

setting µ̂x ≡ (1, µ̂′β)′, µ̂β ≡ N−1B̂1N , µ̂z ≡ N−1J′Z′1N , µ̂2w,t−1 ≡ N−11′NW2
t−11N , Σ̂

(w)
U ≡

(σ̂
2(w)
t−1 IT−1 ⊗N−1Z′Z), Σ̂ZW ≡ N−1Z′W, and Σ̂V ≡

(
σ̂
2(w)
t−1 IT−1 ⊗N−1

∑N
i=1 wiw

′
i

)
, where wi ≡

(wi,1, ...,wi,T−1)
′, with Λ̂

(w)
1,t−1 and σ̂

2(w)
t−1 defined in (41) and (42), respectively, and we define the

24To ease the exposition, the precise definition of O
(w)
t−1 has been relegated to the proof of the theorem (see (OA.45)).

25We report the results without the proof, as if follows closely the proof of Theorem 2.
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following matrices

Q̂
(w)
t−1 ≡ ıt−1,T−1 −Pδ̂

∗(w)
f,t−1, Ĥ

(w)
t−1 ≡ Q̂

(w)′

t−1 ⊗ J
′
t−1,

Ŷt−1 ≡ Q̂
(w)
t−1 ⊗ ıt−1,T−1, λ̂t−1 ≡ Ŷ′t−1Σ̂VŶt−1,

Ŝt−1 ≡ µ̂zŶ
′
t−1(σ̂

2(w)
t−1 IT−1 ⊗ Σ̂′ZW)Ĥ

(w)′

t−1 ,

V̂
(w)
t−1 ≡ (Q̂

(w)
t−1 ⊗P)−

(
vec(MD̃)

T −K − 2

)
Q̂

(w)′

t−1 P,

where Ûε is defined in Theorem 2.

7 Anomalies with Time-Varying Premia: Global Misspecification

All the results so far established assume that the asset pricing model (7) is correctly specified,

meaning that the true model does not omit any relevant variable (either a risk factor or an anomaly

variable) or, alternatively, it does not include any irrelevant one.26 When this assumption is

violated - a very likely scenario - then the issue of global misspecification arises which, if ignored,

could seriously compromise our inferential results.27 Indeed, misspecification affects the standard

errors obtained in the previous sections, with the risk of making an anomaly appear significant

when instead its premium is null or, alternatively, making it statistically irrelevant when instead

its effect is non-zero. Therefore, the objective of this section is to extend our methodology and

robustify our inferential results to the case of a generic deviation from exact pricing of unknown

form, i.e., global misspecification.

Consider the asset pricing restriction in (6) and assume now that, beyond the presence of

26A different form of misspecification, not explored in this paper, occurs when one (or more) vector of betas is a
linear combination of the other ones, implying that X is not full-column rank. This happens, for example, when one
or more of the candidate risk factors has zero (or almost zero) betas, a situation which is often referred to as the
issue of spurious or useless factors. See, e.g., Jagannathan and Wang (1998), Kan and Zhang (1999b,a), Kleibergen
(2009), Gospodinov, Kan, and Robotti (2014), Bryzgalova (2014), Burnside (2016), Ahn, Horenstein, and Wang
(2018), Kleibergen and Zhan (2014, 2020), and Anatolyev and Mikusheva (2020), among others. The less restrictive
cases of semi-strong, when B′B/N = o(1) (see Connor and Korajczyk (2022)), and weak factors, when B′B = O(1)
(see Lettau and Pelger (2020) and Giglio, Xiu, and Zhang (2021)), are also ruled out by our assumptions. Kim,
Raponi, and Zaffaroni (2020) develop an inferential procedure to test for spurious and weak factors, valid when N is
large and T is fixed.

27Global misspecification has been studied widely in the large-T sampling scheme; see Jagannathan and Wang
(1998), Shanken and Zhou (2007), Hou and Kimmel (2006), and Kan, Robotti, and Shanken (2013), among others.
Gagliardini, Ossola, and Scaillet (2016) and Raponi, Robotti, and Zaffaroni (2020) show how to robustify their risk
premia estimator to global misspecification in the large-N–large-T and in the large-N–fixed-T settings, respectively.
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anomalies, there is a further deviation from exact pricing, due to potential global misspecification.

That is, assume that:

E[Ri,t|It−1,Π] = γ̃0,t−1 + δ̃′f,t−1βi + γ̃ ′z,t−1zi,t−1 + mi,t−1, (48)

where mi,t−1 represents an additional pricing error, accounting for the fact the postulated model

could potentially specify the wrong set of variables. In other words, one could think that the overall

deviation from exact pricing in (3) has now a semiparametric structure, with the parametric part

being linear in the zi,t−1, and a non-parametric component coming from the misspecification error

mi,t−1, which is completely unspecified. Our objective is to test for the statistical relevance of the

anomalies zi,t−1, regardless of whether they represent or not the full set of variables describing the

true asset pricing model, that is regardless of whether mi,t−1 is zero or not.

Although we do not impose any parameterization on mi,t−1, simple considerations suggest that

mi,t−1 might be cross-sectionally correlated with εi,s, for every s ≤ t. As an illustrative example,

consider the case where one omits some relevant risk factors and anomaly variables from the true

model (7), and no other sources of misspecification are present. In this circumstance, the asset-

pricing model can be written as

Rt = Zt−1γ̃z,t−1 + XΓ̃t−1 + εt, with

εt = ε̆t + Z̆t−1γ̆z,t−1 + B̆δ̆f,t−1, (49)

where Γ̃f,t−1 = (γ̃0,t−1, δ̃
′
f,t−1)

′, Z̆t−1 represents the N × K̆z set of omitted anomalies with corre-

sponding premia γ̆z,t−1, and where B̆ is the N×K̆f matrix of loadings associated with the K̆f omitted

risk factors f̆t, having ex-post risk premia δ̆f,t−1.
28 Finally, ε̆t represents the genuine asset-specific

component of asset returns, coinciding with εt in the case of correct model specification. Then,

combining (48) with (49), we get

mt−1 = (m1,t−1, · · · ,mN,t−1)
′ = Z̆t−1γ̆z,t−1 + B̆δ̆f,t−1,

implying that mt and εs are cross-sectionally correlated, through either Z̆t or B̆, whenever s ≤ t,

unless ’of course the premia γ̆z,t−1 and δ̆f,t−1 are null, that is when model (7) is correctly specified.

28For convenience, assume that (D,Zi)
′(F̆, Z̆i) = 0K+1×K̆ , with K̆ = K̆f + K̆z and that (X,Zt−1)′(B̆, Z̆t−1) =

0K+1×K̆ . This is with only a small loss of generality because, as discussed above, the estimated time-series regression

of Rt on ft and Zt−1 can be always re-arranged so that (D,Zi) and (F̆, Z̆i) are made orthogonal to each other for
every i. The same applies for the estimated cross-sectional regression of Ri on βi and Zi, leading to orthogonality
between X,Zt−1 and B̆, Z̆t−1.
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The relationship in (48) implies that the parameters Γ̃f,t−1, and γ̃z,t−1, represent the so-called

pseudo-true values of the premia coefficients. Formally, let cz and cf denote two arbitrary vectors

of dimension Kz and Kf + 1, respectively. Then, by generalizing Shanken and Zhou (2007) and

Raponi, Robotti, and Zaffaroni (2020), we define the pseudo-true premia parameters

(Γ̃′f,t−1, γ̃
′
z,t−1)

′ = argmin
cz,cf

1

N

(
E[Rt|It−1,Π]−Zt−1cz−Xcf

)′(
E[Rt|It−1,Π]−Zt−1cz + Xcf

)
, (50)

When the model is correctly specified, then Γ̃f,t−1 = Γf,t−1 and γ̃z,t−1 = γt−1,z, that is we recover

the vector of risk and anomalies’ premia of Section 5.

The cross-sectional correlation between mt and εs, arising as a result of global misspecification,

induces further biases to the CSR OLS estimator, which nevertheless can be consistently estimated,

leading to our novel misspecification-robust premia estimators Γ̂
∗(m)
f,t−1 ≡ (γ̂

∗(m)
0,t−1, δ̂

∗(m)′
f,t−1 )′ and γ̂

∗(m)
z,t−1,

defined as follows.29

Γ̂
∗(m)
f,t−1

γ̂
∗(m)
z,t−1

 ≡
X̂′X̂−N(Λ̂1 + Λ̂

(m)
1,t−1) X̂′Zt−1 −NΛ̂

(m)
3,t−1

Z′t−1X̂ Z′t−1Zt−1

−1 X̂′Rt −N(Λ̂2,t−1 + Λ̂
(m)
2,t−1)

Z′t−1Rt

 ,
(51)

setting Λ̂1 and Λ̂2,t−1 are defined in (30), and where we define the additional bias-correction terms

Λ̂
(m)
1,t−1 ≡

1

N

[
0′Kf+1

P′Ψ̂DX̂

]
, Λ̂

(m)
2,t−1 ≡

1

N

[
0

P′Ψ̂DR − σ̂2P′Ψ̂DD̃

]
, and Λ̂

(m)
3,t−1 ≡

1

N

[
0′Kz

P′Ψ̂DZ

]
,

(52)

with Ψ̂DX̂ ≡

[
M

(−1)
D,t−1ε̂X̂

0(T−t+1)×(Kf+1)

]
, Ψ̂DZ ≡

[
M

(−1)
D,t−1ε̂Zt−1

0(T−t+1)×Kz

]
, Ψ̂DR ≡

[
M

(−1)
D,t−1ε̂Rt

0T−t+1

]
, and

Ψ̂DD̃ ≡

[
M

(−1)
D,t−1MDıt−1,T−1

0T−t+1

]
, setting the (t−2)×(T−1) matrix M

(−1)
D,t−1 ≡M

−1
11 [It−2,0(t−2)×(T−t+1)],

where M11 denotes the (t− 2)× (t− 2) top-left block of MD = IT−1 −D(D′D)−1D′.30

The following theorem derives the asymptotic properties of our robust estimator, extending the

results of Theorem 1.

29See Section OA.5.3 for details of the derivation of (51).

30We use the partitionMD =

[
M11 M12

M21 M22

]
.
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Theorem 5. As N →∞, under Assumptions 1–7 and 12

(i)

Γ̂
∗(m)
f,t−1 − Γ̃f,t−1 = Op

(
1√
N

)
, γ̂

∗(m)
z,t−1 − γ̃z,t−1 = Op

(
1√
N

)
. (53)

(ii)

√
N

Γ̂
∗(m)
f,t−1 − Γ̃f,t−1

γ̂
∗(m)
z,t−1 − γ̃z,t−1

→d N
(
0K+1,L

−1
t−1 O

(m)
t−1 Lt−1

)
(54)

for some Ω
(m)
t−1 defined in (OA.47), and O

(m)
t−1 ≡ Ot−1 + Ω

(m)
t−1 with Lt−1 > 0 and Ot−1 being

the same as in Theorem 1.31

Proof. See Appendix OA.4.

In Theorem OA.3 of the Online Appendix we establish L̂
(m)
t−1 →p Lt−1 and Ω̂

(m)
t−1 →p Ω

(m)
t−1, as

N →∞, under the same assumptions of Theorem 5 and κ4 = 0, for estimators L̂
(m)
t−1 and Ω̂

(m)
t−1.

8 Measuring Anomalies’ Contribution: Cross-Sectional R2 Test

Despite the considerable literature on asset pricing anomalies, how much of the cross-sectional

variation in expected returns is accounted for by betas and how much by anomalies is still unclear

and it still represents a challenging question.

Offering a simple criterion that can answer this question and allow to conduct formal inference

on (joint) anomalies’ contribution is the objective of this section. Following Chordia, Goyal, and

Shanken (2015), one could consider the ratios of the (cross-sectional) variance of the beta component

and of the characteristics component, with respect to the overall (cross-sectional) variance of average

returns, to measure their relative contribution. Specifically, suppose one has estimated the model

(27) using our bias-adjusted CSR OLS estimator, hence obtaining:

Rt = X̂Γ̂∗f,t−1 + Zt−1γ̂
∗
z,t−1 + η̂t, (55)

31To ease the exposition, the definition of Ω
(m)
t−1 has been relegated to the proof of the theorem (see (OA.47)).
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where η̂t indicates the N×1 vector of residuals. Then, the fraction of the overall variance explained

by the anomaly variables Zt−1 (at any point in time) would simply be

R̂
2(bench)
z,t−1 ≡

γ̂∗′z,t−1Z
′
t−1M1N Zt−1γ̂

∗
z,t−1

R′tM1N Rt
. (56)

However, despite being a very simple and intuitive measure, the R-squared in (56) could lead to

several problems. First, since beta and anomaly components are not necessarily orthogonal cross-

sectionally, this can lead to a fraction of the cross-sectional variance explained by the betas and by

the anomaly variables - expressed by the sum of the corresponding R2 - that is jointly greater than

100%. In addition, while orthogonality between CSR residuals and the regressors (both X̂ and

Zt−1) is, by construction, warranted by the conventional CSR OLS estimator in (28), this does not

hold when considering our bias-adjusted estimator
(
Γ̂∗
′

f,t−1, γ̂
∗′
z,t−1

)′
of (29), implying that R̂

2(bench)
t−1

is even wrongly centred.32

To overcome such (lack of) orthogonality issues, let us rearrange the estimated asset pricing

model (55) as follows:

Rt = X̂Γ̂∗f,t−1 + Zt−1γ̂
∗
z,t−1 +P[X̂,Zt−1]

η̂t +M[X̂,Zt−1]
η̂t

= PX̂

(
X̂Γ̂∗f,t−1 + Zt−1γ̂

∗
z,t−1 +P[X̂,Zt−1]

η̂t

)
+MX̂

(
Zt−1γ̂

∗
z,t−1 +P[X̂,Zt−1]

η̂t

)
+M[X̂,Zt−1]

η̂t.

(57)

where we use the notation MA ≡ Ia −A(A′A)−1A′ ≡ Ia −PA, with PA ≡ A(A′A)−1A′, for a

generic matrix A of dimension a× b and rank b < a. Notice that, by construction, the three terms

on the right-hand side of (57) are now mutually orthogonal, the second term reflecting the joint

contribution of Zt−1. This yields our proposed R-squared test statistic:

R̂2
z,t−1 ≡

(
γ̂∗′z,t−1Z

′
t−1 + η̂′tP[X̂,Zt−1]

)
MX̂

(
Zt−1γ̂

∗
z,t−1 +P[X̂,Zt−1]

η̂t

)
R′tM1N Rt

, (58)

which satisfies 0 ≤ R̂2
z,t−1 ≤ 1. Notice that (58) represents a meaningful quantity, which allows us

to disentangle the contribution of that portion of anomalies that is unexplained by - i.e., orthogonal

to - the loadings (through the term MX̂Zt−1), as well as the contribution that might arise from

the term P[X̂,Zt−1]
η̂t, which is now not guaranteed to be null in general.

32Finally, notice that when the (true) anomalies’ premia γz,t−1 are zero, then R̂
2(bench)
z,t−1 will converge to zero in

probability. This implies that we face a boundary problem - as necessarily R̂
2(bench)
t−1 ≥ 0 - which could lead to a

non-standard limiting distribution of the test statistic, under the null hypothesis of zero anomalies’ premia.
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Armed with R̂2
z,t−1, one could test for the null hypothesis of zero anomalies’ contribution and,

in case of rejection, construct an asymptotically valid confidence interval for it. This would require

establishing the limiting statistical properties of R̂2
z,t−1, in particular its non-standard limiting

distribution, occurring when γz,t−1 = 0Kz . Therefore, in the following, we derive the asymptotic

distribution of R̂2
z,t−1 distinguishing between the two complementary cases of zero and non-zero

anomalies’ premia.

Theorem 6 (R2 test of anomalies’ contribution). Set the R2 test statistic equal to

T 2
z,t−1 ≡ N

(
R̂2

z,t−1 −
η̂′tP[X̂,Zt−1]

MX̂P[X̂,Zt−1]
η̂t + 2 η̂′tP[X̂,Zt−1]

MX̂Zt−1γ̂
∗
z,t−1

R′tM1N Rt

)
. (59)

Under Assumptions 1–7, as N →∞, then:

(i) When γz,t−1 = 0Kz,

Tz,t−1 →d

Kz∑
j=1

dj,t−1χ
2
1,j ,

where (χ2
1,1, · · · , χ2

1,Kz
) are i.i.d χ2

1-distributed random variables , and (d1,t−1, · · · , dKz,t−1)

are the Kz eigenvalues of the matrix

(
L−1z,t−1Ot−1L

−1′
z,t−1

) 1
2

ΣZX̂Z,t−1
σR̃,t

(
L−1z,t−1Ot−1L

−1′
z,t−1

) 1
2
,

where Lz,t−1 ≡
[
0Kz×(Kf+1), IKz

]
Lt−1, with Lt−1 and Ot−1 defined in (OA.35), and where

N−1R′tM1N Rt →p σR̃,t > 0, while N−1Z′t−1MX̂Zt−1 →p ΣZX̂Z,t−1.

(ii) When γt−1,z 6= 0Kz ,

Tz,t−1 →p ∞.

Moreover, under the additional Assumption 13, together with κ4 = 0, for any 0 < α < 1,

Pr

(
R̂2

z,t−1 − zα/2
(
ω̂z,t−1
N

) 1
2

≤ R2
z,t−1 ≤ R̂2

z,t−1 + zα/2

(
ω̂z,t−1
N

) 1
2

)
→ (1− α).

where ω̂z,t−1 is defined in (OA.53) and represents a consistent estimator of the asymptotic

covariance matrix of R̂2
z,t−1, zα/2 denotes the α/2-th quantile of the standard normal distri-

bution, and R2
t−1,z denotes the limit (in probability) of R̂2

t−1,z.
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Proof. See Appendix OA.4.

The result of Theorem 6 resembles the limiting behavior of the Hansen and Jagannathan (2007)

(HJ) distance, which is typically used to test the null hypothesis of a correctly specified stochastic

discount factor (SDF), against the alternative of misspecified models. Indeed, under the null

hypotheses of correct model specification and no anomalies, respectively, both the HJ and the

R̂2
z,t−1 statistics show a non-standard limiting distribution, consisting of a linear combination of

i.i.d chi-squares, each of them having one degree of freedom. In contrast, the conventional Normal

distribution is restored for both test statistics when considering their alternative hypotheses of either

model misspecification (for the HJ statistic) or priced anomalies (in the case of R̂2
z,t−1 statistics).

Practically, Theorem 6 suggests the following empirical testing procedure to assess and quantify

the effect of anomalies. At first, one would test whether the contribution of the considered anomaly

variables is null or not, using the limiting results of part (i), and eliminate such variables from the

asset pricing model whenever they would not provide any statistically significant contribution to

the cross-section of expected returns. Alternatively, if the test results to be statically significant -

that is the candidate anomalies play a significant role in explaining the cross-section of expected

returns - then one could construct a valid confidence interval for R̂2
z,t−1 using the results of part

(ii).

Finally, we can show that analogous properties hold in the case of a cross-sectional R-squared

test that uses the local average premia estimator (38), the WLS estimator in (40) and the misspecification-

robust estimator defined in (51).33

9 Empirical Application

9.1 Data

For our empirical exercise, we use data provided by Chen and Zimmermann (2019)34, which con-

tains 202 predictive firm-level characteristics at the monthly frequency. The reference period is

January 1986 - December 2020. For the anomalies which are not available for the entire time pe-

riod, we consider the last available month. Since our theory is derived for large N, in our analysis

33Details are available upon request.
34https://www.openassetpricing.com/data/. Details on the construction of return predictors can be found in their

Online Appendix https://drive.google.com/file/d/1vXRzjxYucXZV-tgLxM26fvRZ5zKvlBXH/view

37



we consider only predictors for which we have enough test assets (i.e. at least 20 observations) in

any given time interval. This leaves us with 170 variables, which we group following the ex ante

categorization of Hou et al. (2020) in six economic categories, namely Momentum (15 variables),

Value versus Growth (29 variables), Investment (30 variables), Profitability (20 variables), Intan-

gibles (49 variables), and Trading Frictions (27 variables). A detailed list of the variables is shown

in Table A.1. Following Hou et al. (2020), when performing monthly cross-sectional regressions,

we winsorize the regressors at the 1% - 99% levels each month to mitigate the impact of outliers.

We then standardize each regressor by subtracting its cross-sectional mean and dividing by its

cross-sectional standard deviation. Monthly returns are from the Center for Research in Security

Prices (CRSP), while the monthly Fama-French factors are downloaded from the Kenneth French

website.

9.2 Local-Average Premia Estimator Case

We begin our empirical analysis by applying our large-N methodology under the assumptions of

constant premia and correct model specification. For this analysis, we use balanced panels over

fixed-time windows of three years (i.e., T = 36). Specifically, at each point in time, we run univariate

regressions over the consider time window of three years, by regressing assets returns on the market

factor and each of the 170 anomalies (averaged over the specified time interval). We then shift the

time window month by month over the 1986-2020 period, and obtain the rolling time series of the

t-statistics associated with the anomalies’ premia and R2 of each model.

FIGURE 3 HERE

Figure 3 shows the heatmap of the t-statistics distribution obtained for each univariate model

(vertical axis) and for each time window (horizontal axis). Each cell in the map represents the degree

of statistical significance of the t-statistics with a different color, from gray (non-significant t-stat),

to yellow (significance at only 10% level), orange (significance at 5% level), and red (significance at

1% level). The figure clearly shows significant time variation in all the anomalies, as documented

by the change in colors in the t-stat of each anomaly over time. It is also possible to identify some

interesting pattern among the six categories. Particularly, Momentum seems to be the category with

the highest pricing ability (having 92% of the variables in the category with an average absolute

t-stat greater than 1.96), followed by Profitability (67%), Value versus Growth (64%), Trading
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Frictions (63%), Investment (45%) and Intangibles (42%). For these two last categories, we also

find an (overall) average |t|-stat below 1.96, suggesting a non significant overall contribution of the

two categories in explaining the cross-sectional variation of asset returns. These results aggregated

at the category level are also shown in Table II, where we also report the average value of γ∗z for

each category. Overall, if we calculate the average |t|-stat for each anomaly across time, we find

that only 57% of the anomalies are statistically significant at 5% level. This percentage reduces to

36.6% if we look at the median absolute t-value.

TABLE II HERE

Patterns across time are instead less evident in this case, even though Figure 3 identifies a slight

concentration of red points along the vertical axis in the periods of 1990-1991 and in those between

2003-2005 and 2008-2009.

FIGURE 4 HERE

To measure the influence of each anomaly on the cross-section of expected returns, in Figure 4 we

report the heatmap of the R2
z distribution across each univariate model (vertical axis) and for each

time window (horizontal axis). Specifically, for each model and for each time window, we calculate

R2
z using (58) and represent its magnitude using different colors, from gray (which denotes an R2

z

contribution less than 1%), up to dark blue (denoting a contribution greater than 20%). As it can

be easily seen from the figure, on average, most of the anomalies exhibit a very low R2
z. Particularly,

averaging the results over time, in more than 50% of the cases we find that the fraction of the total

cross-sectional variation in asset returns explained by each anomaly is below 1%. Only 4% of the

variables can instead explain more than 20% of the total asset variability, and almost all of these

predictors belong to the Momentum category. Investments is instead the category that shows the

smallest explanatory power, having 93% of the anomalies in this category with an (average) R2
z

below 1%.

TABLE III HERE

These results are shown in Table III, where we report the average R2
z for each category (first

column), together with the percentage of variables within each category having an R2
z below 1%

(second column) and greater than 20% (third column). It is also worth noticing that, in this case of

univariate regressions, our R-squared test coincides with the square of the t-test. Therefore, even
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though the economic contribution of each anomaly to the total cross-sectional variation of asset

returns is very small, it is often found to be statistically significant.

TABLE IV HERE

Given these results, one could reasonably ask whether this low explanatory power is due to the

presence of factor betas in the model, i.e., whether most of the total variability in the cross-section of

expected returns is captured by the market betas rather than anomalies. To answer to this question,

Figure 5 shows the total variance decomposition of each model as the sum of the contribution of

anomalies (red), betas (green) and residual (gray) components. First, we notice that the average

contribution of the market beta to the total model variability is quite constant across all categories,

ranging from 4.2% in the Value versus Growth category, to 4.8% in the Intangibles and Trading

Frictions groups. Other interesting summary statistics aggregated at the category level are also

shown in Table IV, where we report the average fraction of the total variability explained by both

anomalies and betas in each category (first column), together with its decomposition in the portion

coming from the anomalies (second column) and from betas (third column).

FIGURE 5 HERE

Comparing these last two columns of the table, we find that for almost all the categories the

contribution of anomalies seems to be smaller than the one provided by the betas. Only for

the Momentum category, anomalies can actually capture almost two third of the total variability

provided by betas and anomalies.

With the only exception of Momentum (in which anomalies and betas together explain 26.6% of

the total model variability), however, in almost all cases most of the cross-sectional variation in

asset returns seems to be explained by the residual component, suggesting that many univariate

models can actually exhibit a very low predictive power, despite the good statistical significance of

single anomalies.
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9.3 Time-Varying Premia Estimator Case

In this section we revisit the empirical analysis of the previous section by allowing both anomalies

and risk premia to vary at each point in time, using our theoretical results derived in Section 5.

In that section we show that, under our large-N theory, the (constant) bias-adjusted estimator

(Γ̂∗′, γ̂∗′z )′ will accurately capture the local average (across T periods) of Γt−1 and γt−1,z. However,

given the evidence of strong time variation in the premia estimates, it would be interesting to

investigate whether the results based on local averages are still confirmed when we analyze the

behavior of anomalies in a “pure” time varying setting. If this is the case, then one could justify

the use of average estimators in empirical applications, as they would provide a representative

picture of the effect of anomalies in explaining the cross-sectional variation of stock returns.

We first start the analysis by considering univariate regressions of asset returns on market beta

and one anomaly at the time (Section 9.3.1). We then consider the case of multivariare regressions

in Section 9.3.2, where we use more than one anomaly in each regression. In both cases, at each

month t, we use the market beta obtained by running a first-pass regression using a rolling window

on the past two years of data (i.e., T = 24).

9.3.1 Univariate Analysis

To make a direct comparison with the results obtained for the case of constant premia, in this

section we consider the same univariate regressions specified in the previous section, but estimated

under the assumption of time variation in both premia and anomalies.

FIGURE 6 HERE

The t-statistics associated with each anomaly premium at each month in the sample is reported

in the heatmap in Figure 6. Surprisingly, very different results emerge when compered with the

constant case (see Figure 3). While patterns across categories almost disappear, we now find a clear

structure in the distribution of the t-statistics across time. Indeed, most of the red points in the

figure are concentrated in certain intervals of time. Even more interestingly, these periods of high-

significance concentration seem to correspond to episodes of major financial crises (see, e.g., the

early 1990-91 recession, the dot-com bubble between 1999 and 2000, the financial crises 2007-2009,

and the recent stock market crash in early 2020 due to the outbreak of COVID-19 pandemic). This
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is also confirmed in Figure 7, where we plot the percentage of anomalies found to be significant at

5% (or lower) confidence level at each point in time. The light gray bands correspond to NBER

recession dates and to various economic and financial crises. As can be easily seen from the figure,

higher percentages of significant anomalies are very often found in correspondence with periods

of higher uncertainty in the markets, with peak of more than 70% of significant anomalies in the

2007-2009 financial crisis. To statistically reinforce this evidence, we also run an OLS regression,

where we regress the percentage of significant anomalies on a time dummy variable, equal to one

if the period t corresponds to a period of crisis and zero otherwise. What we find is a quite large

and positive slope coefficient (4.29) with a corresponding t-statistics of 2.75.

FIGURE 7 HERE

To summarize, this simple analysis provides evidence of a strong variability in the regression esti-

mates, not only among different categories of anomalies, but also across different points in time.

However, such time-varying signal would be lost if we focused only on average estimators, as we

did in the previous section or as it is typically done in the literature.

All the above results have been established using simple univariate regressions. However, since

univariate regressions are rarely used in empirical applications, in the next section we apply our

time-varying methodology using multiple regressions, by properly choosing a (dynamic) represen-

tative set of anomalies at each point in time.

9.3.2 Multivariate Analysis

In this section, we apply our time-varying methodology using multiple cross-sectional regressions.

To identify the “best” representative set of variables, at each point in time we select the six anoma-

lies (one for each category) which have provided the highest R2
z in the univariate regressions of the

previous section. We then use these resulting sets of variables (together with the market betas) to

perform multiple cross-sectional regressions at each month. The time-varying set of anomalies is

reported graphically in Figure 8, where each red point denotes the variable that has been picked in

each category (vertical axis) and for each month t (horizontal axis)35.

35In some cases, when extracting the balanced panel of asset returns together with the selected six anomalies,
only very few observations could remain available for the analysis. To avoid this issue, in these cases we consider
alternative combinations of regressors for which we have a sufficiently large number of observations (N > 100), and
select the combination that gives us the highest (in sample) R2

z.

42



FIGURE 8 HERE

To measure the predicting ability of the selected models, in Figure 9 we plot the time series of the

R2
z statistics (Figure 9a), together with the total variance decomposition (Figure 9b) obtained in

each multivariate regression. As it can be seen from Figure 9a, the portion of total cross-sectional

variation of asset returns jointly explained by the anomalies clearly varies over time, ranging from

a minimum of 0.7% up to 46%. Moreover, higher R2
z are almost always associated with periods

of economic or financial crises (represented by the gray bands in the figure), confirming again the

idea that anomalies matter especially in periods of highest uncertainty. The same conclusion can

be also confirmed statistically. Indeed, by applying an OLS regression of the R2
z time series on a

time dummy (equal to one when the period t coincides with a period of crisis and zero otherwise),

we find again a positive slope coefficient of 1.74 with a t-stat of 2.09.

FIGURE 9 HERE

The market beta seems meaningful as well (see the green bars in Figure 9b), with an average

contribution to the total variance of almost 8% and with peaks sometimes reaching 40%. Unlike

anomalies, however, highest contribution of the market beta does not seem to be related to period

of crises. On average, we find that anomalies and betas together can explain more than 20% of the

total cross-sectional variation of asset returns. Of this (average) 20%, 60% comes from anomalies,

while betas count for the remaining 40%.

Finally, for each model, we want to assess whether the joint contribution of anomalies to the overall

R-squared of the model is statistically null or not. That is, our null hypothesis is H0 : γz = 0Kz ,

against the alternative that at least one anomaly is different from zero, i.e., H1 : γz 6= 0Kz , with

Kz = 6. For this test, we use our limiting results derived in Theorem 6, part (i), where we tabulate

the asymptotic distribution of the statistics Tz under H0 using 10,000 random draws from six i.i.d.

χ2
1, weighted with the estimated values (ĉ1, ..., ĉ6) obtained in each model. The time series of the p-

values associated with the Tz statistics for each model at a given point in time is reported in Figure

10. The yellow bands in the figure represent the p-values of all the periods in which we cannot

find evidence to reject the null hypothesis (p > 0.05). In blue, instead, we denote the p-values

≤ 0.05, i.e. all the periods in which we can reject (at 5% confidence level) the null hypothesis of

a zero anomalies’ contribution. Our results suggest that the (joint) contribution of the anomalies

to the total R-squared of the model is statistically different from zero only in the 38% of the cases.
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Even though this percentage might seem quite low, it is worth noting that, in the 71% of cases, a

significant anomalies’ contribution coincide again with periods of financial downturns.

10 Conclusion

We extend the two-pass methodology for estimating and testing the effect of anomalies in asset

pricing models with time-varying premia. Our methodology is designed for when large cross-sections

of N assets are available but the number of time-series observations T is fixed and possibly very

small, but applies also when N and T are both very large. We develop the method for ordinary

and weighted least-squares estimation, and consider both cases of correct specification and global

misspecification of the candidate asset pricing model. Inference relies on asymptotically valid

standard errors for the premia estimators, derived in closed-form. A cross-sectional R-squared test

to dissect anomalies is proposed, establishing its limiting properties under the null hypothesis of no

effect of anomalies and its alternative. Using a dataset of 20, 000 individual US stock returns, we find

that although anomalies are statistically significant in about half the cases (out of 170 anomalies),

they explain a small fraction (less than 10%) of the cross-sectional variation of expected returns.

Anomalies tend to be more important during economic and financial crises.
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Appendix

A.1 Assumptions

In this section, we present the main assumptions required for the validity of our large-N asymptotic

theory, without further comments (see Section OA.2 for detailed comments). All the moments below

are assumed to hold conditionally on the factors F, even if not written explicitly, and all the limits

below hold as N →∞.

It is useful to recall the N ×Kz(T − 1) matrix of anomalies Z ≡ (z1, ..., zN )′, where zi defines

the Kz(T − 1) × 1 vector zi ≡
(
z
(1)
i,1 , · · · , z

(1)
i,T−1, · · · , z

(Kz)
i,1 , · · · , z(Kz)

i,T−1

)′
. The N × Kz matrix of

anomalies at time t− 1 is defined as Zt−1 = (z1,t−1, · · · , zN,t−1)′, while the (T − 1)×Kz matrix of

anomalies specific for the i-th asset is Zi = (zi,1, · · · , zi,T−1)′, setting zi,t−1 =
(
z
(1)
i,t−1, · · · , z

(Kz)
i,t−1

)′
.

Assumption 2 (risk factors and anomalies). Set Z̃i ≡M1T−1Zi, and D ≡ (1T−1,F). Then, for

every T , the (T − 1)× (K + 1) matrix D̃i = (D, Z̃i) satisfies

D̃′iD̃i > 0 for every i = 1, ..., N.

Assumption 3 (loadings).

1

N

N∑
i=1

βi → µβ and
1

N

N∑
i=1

βiβ
′
i → Σβ,

such that the matrix

ΣX ≡
[

1 µ′β
µβ Σβ

]
> 0.

Assumption 4 (asset-specific components). The N × 1 vector of error terms εt is independently

and identically distributed (i.i.d.) over time with

E[εt] = 0N (A.1)

and with the N ×N variance-covariance matrix satisfying

Var [εt] =


σ21 σ12 · · · σ1N
σ21 σ22 · · · σ2N

...
... · · ·

...
σN1 σN2 · · · σ2N

 ≡ Σ > 0, (A.2)

where σij denotes the (i, j)-th element of Σ, for every i, j = 1, . . . , N , and with σ2i ≡ σii.
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Assumption 5 (cross-sectional moments of asset-specific components). (i)

1

N

N∑
i=1

(
σ2i − σ2

)
= o

(
1√
N

)
, (A.3)

for some 0 < σ2 <∞.

(ii)
N∑

i,j=1

| σij | 1{i 6=j} = o (N) . (A.4)

(iii)

1

N

N∑
i=1

µ4i → µ4, (A.5)

for some 0 < µ4 <∞, where µ4i ≡ E[ε4i,t].

(iv)

1

N

N∑
i=1

σ4i → σ4, (A.6)

for some 0 < σ4 <∞.

(v)

sup
i
µ4i ≤ C <∞, (A.7)

for a generic constant C.

(vi)

E[ε3i,t] = 0. (A.8)

(vii)

1

N

N∑
i=1

κ4,iiii → κ4, (A.9)

for some 0 ≤ |κ4| <∞, where κ4,iiii ≡ κ4[εit, εit, εit, εit] denotes the fourth-order cumulant of

the asset-specific component {εi,t, εi,t, εi,t, εi,t}.

(viii) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,i1i2...ih | = o (N) , (A.10)

for at least one ij (2 ≤ j ≤ h) different from i1, where κh,i1,i2...ih is the mixed cumulant in

the {εi1,s, εi2,s, · · · , εih,s} of order h.
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Assumption 6 (CLT of asset-specific component). (i)

1√
N

N∑
i=1

εi→d N
(
0T−1, σ

2IT−1
)
. (A.11)

(ii)

1√
N

N∑
i=1

vec
(
εiε
′
i − σ2i IT−1

)
→d N

(
0(T−1)2 ,Uε

)
, (A.12)

where Uε ≡ lim 1
N

∑N
i,j=1E

[
vec(εiε

′
i − σ2i IT−1)vec(εjε

′
j − σ2j IT−1)′

]
.

(iii) For any T × 1 vector c,

1√
N

N∑
i=1

(
c′ ⊗

(
1
βi

))
εi→d N

(
0Kf+1, (c

′c)σ2ΣX

)
. (A.13)

Remark 1. The expression for Uε in (A.12) can be derived in closed form. In particular, Raponi,

Robotti, and Zaffaroni (2020) established that the T 2 × T 2 matrix Uε has the following form

Uε =



U11 · · · U1t · · · U1T

...
. . .

...
...

...

Ut1 · · · Utt · · · UtT

...
...

...
. . .

...

UT1 · · · UTt · · · UTT


.

Each block of Uε is a T × T matrix. The blocks along the main diagonal, denoted by Utt, t =

1, 2, . . . , T , are themselves diagonal matrixes with (κ4 + 2σ4) in the (t, t)-th position and σ4 in

the (s, s) position for every s 6= t. The blocks outside the main diagonal, denoted by Uts, s, t =

1, 2, . . . , T with s 6= t, are all made of zeros except for the (s, t)-th position that contains σ4; that

is,

↓
t-th column

↓
t-th column

Utt =→
t-th
row



σ4 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · σ4 0 · · · · · · 0
0 · · · 0 (κ4 + 2σ4) 0 · · · 0
0 · · · · · · 0 σ4 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 σ4


, Uts = →

s-th
row



0 · · · 0 · · · · · · · · · 0
...

. . .
...

...
...

...
...

0 · · · 0 0 · · · · · · 0
0 · · · 0 σ4 0 · · · 0
0 · · · · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 0


.
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Assumption 7 (moments and CLT of anomalies). Define the Kz(T − 1)2 × 1 vector ui ≡ εi ⊗ zi.

(i)

Z′1N
N
→p (µz ⊗ 1T−1) ≡ µz,T−1

for a finite Kz×1 vector µz =
(
µ
(1)
z , . . . , µ

(Kz)
z

)′
≡ limN→∞

1
N

∑N
i=1µzi , setting µzi ≡ E[zi,s].

(ii)

Z′Z

N
→p ΣZ,

for a finite Kz(T−1)×Kz(T−1) matrix ΣZ, such that J′ΣZJ > 0 and J′t−1ΣZJt−1 > 0,

for every 2 ≤ t ≤ T .

(iii)

Z′B

N
→p ΣZB,

for a finite Kz(T − 1)×Kf matrix ΣZB.

(iv) Setting µui ≡ E[ui],

1

N

N∑
i=1

µui = o

(
1√
N

)
.

(v) Setting Σu,ij ≡ Cov[ui,uj ], for i, j = 1, ..., N ,

1

N

N∑
i=1

Σu,ii → ΣU ≡ (σ2IT−1 ⊗ΣZ) and
N∑

i,j=1

Σu,ij1i 6=j = o(N).

(vi) For any i, j = 1, ..., N ,

Cov
[
zi,t, ε

′
j ⊗ ε′j

]
= 0Kz×(T−1)2 , Cov

[
εi, ε

′
j ⊗ (uj − E[uj ])

′ ] = 0T−1×Kz(T−1)3 .

(vii)

1√
N

N∑
i=1

(ui − µui)→d N
(
0Kz(T−1)2 ,ΣU

)
.
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(viii) Setting Σuε,ij ≡ Cov
[
εi ⊗ εi,u′j

]
,

1

N

N∑
i=1

Σuε,ii → Σuε = 0(T−1)2×Kz(T−1)2 and
1

N

N∑
i,j=1

Σuε,ij → 0(T−1)2×Kz(T−1)2 .

(ix)

1

N2

N∑
i,j=1

Cov
[
ui ⊗ ui,u′j ⊗ u′j

]
→ 0K2

z (T−1)4×K2
z (T−1)4 .

(x) Let PZ̃i
= Z̃i(Z̃

′
iZ̃i)

−1Z̃′i, with its generic (t, s) element denoted by pi,ts, for t, s = 1, ..., T −1,

where Z̃i =M1T−1Zi. Then, for every 1 ≤ t+ 1, s+ 1, va, ua ≤ (T − 1), with a = 1, ..., 4, the

following hold:

(x.1)
1

N

N∑
i=1

PZ̃i
→p PZ̃ , for a finite matrix PZ̃ ,

(x.2)
1

N

N∑
i=1

(PZ̃i
�PZ̃i

)→p P
(2)

Z̃
, for a finite matrix P

(2)

Z̃
,

(x.3)
1

N

N∑
i=1

PZ̃i
(εiε

′
i − σ2i IT−1) = PZ̃

1

N

N∑
i=1

(εiε
′
i − σ2i IT−1) + op

(
1√
N

)
,

(x.4)
1

N2

N∑
i,j=1

κ4

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

pj,s−1va ,

4∏
a=1

εi,ua+1,

4∏
a=1

εj,va+1

]
= o(1),

(x.5)
1

N2

N∑
i,j=1

κ3

[
4∏

a=1

pi,t−1ua ,
4∏

a=1

pj,s−1va ,
4∏

a=1

εi,ua+1

]
= o(1),

(x.6)
1

N2

N∑
i,j=1

κ3

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

εi,ua+1,

4∏
a=1

εj,va+1

]
= o(1),

(x.7)
1

N2

N∑
i,j=1

Cov

[
4∏

a=1

pi,t−1ua ,
4∏

a=1

εj,va+1

]
= o(1),

(x.8)
1

N2

N∑
i,j=1

Cov [pj,su1pi,tv1 , εi,t+1εj,s+1εiu1+1εjv1+1] = o(1),

(x.9)
1

N

N∑
i=1

Cov

[
4∏

a=1

pi,t−1ua ,

4∏
a=1

εi,va+1

]
= o(1).

where κ3[·, ·, ·] and κ4[·, ·, ·, ·] denote the mixed cumulants of order 3 and 4, respectively.
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(xi) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κph,i1i2...ih | = o (N) , (A.14)

for at least one ij (2 ≤ j ≤ h) different from i1, where κph,i1,i2...ih is the mixed cumulant in the

{pi1,t1−1u1 ,pi2,t−21u2 , · · · ,pih,th−1uh , } of order h, for every 2 ≤ t1, · · · , th, u1, · · · , uh ≤ T .

A.1.1 Additional assumptions required for the WLS estimation

In this Section, we introduce additional assumptions that are required for the validity of the WLS

estimation described in Section 6. Before stating the main assumptions, it is useful to introduce

some preliminary notation. In the following, we denote by wi. ≡ (wi,1, · · · ,wi,T−1)
′ the (T − 1)× 1

vector of weights specific for the i-th asset, and by w.t−1 ≡ (w1,t−1, · · · ,wN,t−1)
′ the N × 1 vector

of weights at time (t − 1), for every 2 ≤ t ≤ T , with the N × T matrix W = (w.1, · · · ,w.T−1) =

(w1., · · · ,w′N.).

Assumption 8. (CSR WLS weights)

(i)
1′NWt−11N

N
→p 1.

(ii) For any real number h > 1 then,

1′NWh
t−11N

N
→p µ

h
w,t−1

(iii)

1

N

N∑
i=1

wi.w
′
i. →p ΣW.

Assumption 9. (Weighted loadings) Let Wt−1 satisfy Assumption 8 and let the loadings βi be a

non-random sequence. As N →∞, then

1

N
B′Wt−11N →p µβ and

1

N
B′Wt−1B→p Σβ, (A.15)

such that

ΣX ≡

[
1 µ′β

µβ Σβ

]
> 0. (A.16)
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Assumption 10. (Weighted cross-sectional moments of returns’ innovations) As N →∞,

(i) Let 0 < σ2 <∞.Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1
(
σ2i − σ2

)
= op

(
1√
N

)
, (A.17)

(ii)
N∑

i,j=1

wi,t−1 | σij | 1{i 6=j} = op (N) . (A.18)

(iii) Let 0 < µ4 <∞, and let µ4i = E[ε4it]. Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1µ4i →p µ4, (A.19)

(iv) Let 0 < σ4 <∞. Then, for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1σ
4
i →p σ4, (A.20)

(v) Let κ3(a, b, c) denote the third-order cumulant of the random variables a, b, and c. Then,

κ3[εi,t, εj,s,wj,h] = 0, and κ3[εi,t, εj,s, zj,h] = 0Kz . (A.21)

(vi) Let κ4,iiii = κ4[εi,t, εi,t, εi,t, εi,t] denote the fourth-order cumulant of the asset-specific error

{εi,t, εi,t, εi,t, εi,t}. Then, for some 0 ≤ |κ4| <∞ and for every 2 ≤ t ≤ T :

1

N

N∑
i=1

wi,t−1κ4,iiii →p κ4. (A.22)

(vii) For every 3 ≤ h ≤ 8, all the following mixed cumulants of order h satisfy

sup
i1

N∑
i2,...,ih=1

|κh,wi1,t−1i2...ih | = o (N) , (A.23)

and

sup
i1

N∑
i2,...,ih=1

|κhwi1,t−1,zi2,r,i3...ih
| = o (N) , (A.24)

for at least one ij (2 ≤ j ≤ h) different from i1, where κh,wi1,t−1i2...ih is the mixed cumulant in

the {wi1,t−1, εi2,s, · · · , εih,s} of order h, and κh,wi1,t−1,zi2,r,i3...ih
is the mixed cumulant in the

{wi1,t−1, zi2,r, εi3,s, · · · , εih,s} of order h.
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Assumption 11. (Weighted moments and CLT of anomalies) We define the (T − 1)2 × 1 vector

vi ≡ (εi ⊗wi) and the corresponding N × (T − 1)2 matrix V ≡ (v1, · · · ,vN )′, such that E[vi] ≡

µvi <∞, and Σv,ij ≡ Cov [vi,vj ].

(i)

ε (Wt−1 − E[Wt−1]) ε
′

N
→p 0(T−1)×(T−1).

(ii)

Z′t−1Wt−11N

N
→p µz,t−1 and

Z′t−1Wt−1Zt−1

N
→p ΣZ,t−1.

(iii) Let ΣZW be a finite Kz(T − 1)× (T − 1) matrix. Then,

Z′W

N
→p ΣZW.

(iv)
1

N
(Zt−1 − E[Zt−1])

′ (Wt−1 − E[Wt−1]) ε
′ →p 0Kz×(T−1).

(v)

1

N
(Zt−1 − E[Zt−1])

′Wt−1ε
′ − 1

N
(Zt−1 − E[Zt−1])

′ ε′ = op

(
N−

1
2

)
.

(vi)

X′M1N V

N
= op

(
N−

1
2

)
, and

Z′M1N V

N
= op

(
N−

1
2

)
.

(vii)

1

N

N∑
i=1

Σv,ii → ΣV ≡ σ2IT−1 ⊗ΣW, and
N∑
i=1

Σv,ij1i 6=j = o(N)

(viii)

1√
N

N∑
i=1

(vi − µvi)→d N
(
0(T−1)2 ,ΣV

)
and

1

N

N∑
i=1

µvi = o
(
N−

1
2

)
.

(ix)

1√
N

N∑
i=1

(zi − µzi)→d N(0Kz(T−1),ΣZZ) and
1

N

N∑
i=1

(µzi − µz) = o(N−
1
2 ).
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A.1.2 Additional assumptions required for estimation under model misspecification

Assumption 12. (mixed-moments of pricing errors)

(i)
1

N
εmt−1 →p

[
θt−1,m
0T−t+1

]
,

with θt−1,m ≡ (θt−3,m, θt−4,m, . . . , θ0,m)′, defined as, for every 2 ≤ s, t ≤ T ,

1

N

N∑
i=1

εi,smi,t−1 →p θt−1−s,m, such that θu,m = 0 for u < 0.

(ii)
1

N
m′t−1mt−1 →p σt−1mm.

(iii)

1

N

N∑
i=1

PD̃i
εimi,t−1 →p 0T−1.

A.1.3 Additional assumptions required for the cross-sectional R-squared test

In this Section we introduce additional assumptions that are required to derive the R-squared test

described in Section 8.

Assumption 13. (i)

1

N

N∑
i=1

βi − µβ = o
(
N−

1
2

)
and

1

N

N∑
i=1

βiβ
′
i −Σβ = o

(
N−

1
2

)
.

(ii)

1√
N

N∑
i=1

((zi ⊗ zi)− vec(ΣZ))→d N(0K2
z
,UZ), with

1

N

N∑
i=1

E [(zi ⊗ zi)− vec(ΣZ)] = o
(
N−

1
2

)
,

1

N

N∑
i=1

E [(zi ⊗ zi)− vec(ΣZ)] [(zi ⊗ zi)− vec(ΣZ)]′ → UZ,

N∑
i,j=1
i6=j

E [(zi ⊗ zi)− vec(ΣZ)] [(zj ⊗ zj)− vec(ΣZ)]′ = o(N), and
1

N

N∑
i,j=1

Cov
[
(zi ⊗ zi), z

′
j

]
→ Σz⊗z.
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(iii)
√
N

(
Z′1N
N
− µz,T−1

)
→d N

(
0Kz(T−1),ΣZ − µz,T−1µ

′
z,T−1

)
.

(iv)

1

N

N∑
i,j=1

Cov
(
(zi ⊗ zi), (ε

′
j ⊗ ε′j)

)
→ ΣZ⊗ε = 0((T−1)Kz)

2×(T−1)2 .

(v)

1

N

N∑
i,j=1

Cov
(
(zi ⊗ zi),u

′
j

)
→ ΣZU = 0((T−1)Kz)

2×(T−1)2Kz
.
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A.2 Empirics: Tables and Plots

Table II: Estimation results by categories - constant case. The table shows the average
estimate of γ∗z (first column) and the average |t|-statistic (second column) across each category,
together with the percentage of anomalies within each category found to be statistically significant
at 5% confidence level (third column). The results are obtained by performing univariate regressions
of asset returns on the market factor and each of the 170 anomalies, using the theoretical results
of Section OA.5.2. The results are then averaged across time and aggregated at the category level.
The analysis uses balanced panels over fixed-time windows of three years, with a reference period
ranging from January 1986 to December 2020.

Category Average γ∗z (median) Average |t|-stat (median) |t| > 1.96 (%)

Momentum 2.36 (1.95) 11.46 (11.69) 92%

Value versus Growth -0.22 (-0.08) 3.56 (2.84) 64%

Investment 0.14 (0.10) 1.29 (1.10) 45%

Profitability 0.11 (0.10) 2.18 (2.16) 67%

Intangibles 0.36 (0.043) 1.82 (1.58) 42%

Trading Frictions -0.14 (0.003) 2.24 (2.09) 63%
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Table III: Anomalies contribution by categories - constant case. The table shows the
average R2

z contribution of each category (first column), together with the percentage of anomalies
in each category having a contribution below 1% (second column) and greater that 20% (third
column). The results are obtained by performing univariate regressions of asset returns on the
market factor and each of the 170 anomalies, using the theoretical results of Section OA.5.2. In
each model, the R2

z statistics has been calculated using the quantity in (58). The results are then
averaged across time and aggregated at the category level. The analysis uses balanced panels over
fixed-time windows of three years, with a reference period ranging from January 1986 to December
2020.

Category Average R2
z (%) R2

z < 1% R2
z > 20%

Momentum 21.9 8% 33%

Value versus Growth 2.8 32% 0%

Investment 0.7 93% 0%

Profitability 1.2 61% 0%

Intangibles 3.5 61% 2%

Trading Frictions 1.6 31% 0%

Table IV: R-squared decomposition by categories - constant case. The table shows the
average fraction of the total model variability explained by both anomalies and market betas in
each category (first column), together with its decomposition in the (average) portion coming from
anomalies (second column) and from betas (third column). The results are obtained by performing
univariate regressions of asset returns on the market factor and each of the 170 anomalies, using the
theoretical results of Section OA.5.2 of constant premia. The results are then averaged across time
and aggregated at the category level. The analysis uses balanced panels over fixed-time windows
of three years, with a reference period ranging from January 1986 to December 2020.

% explained of which of which
Category betas + anomalies from anomalies from betas

Momentum 26.6 63.8% 36.2%

Value versus Growth 6.9 31.6% 68.4%

Investment 5.1 11.4% 88.6%

Profitability 5.8 18.4% 81.6%

Intangibles 8.3 20.1% 79.9%

Trading Frictions 6.4 23.1% 76.9%
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Figure 3: Heatmap of the t-statistics distribution - constant case. The figure shows the
heatmap of the t-statistics distribution obtained in each of the 170 univariate model (vertical
axis) and for each time window (horizontal axis), with T = 36 months. Each cell in the map
represents the degree of statistical significance of the t-statistics with a different color, from gray
(non-significant t-stat), to yellow (significance at only 10% level), orange (significance at 5% level),
and red (significance at 1% level). The results are obtained by performing univariate regressions of
asset returns on the market factor and each of the 170 anomalies, using the theoretical results of
Section OA.5.2. The analysis uses balanced panels over fixed-time windows of three years, with a
reference period ranging from January 1986 to December 2020.
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Figure 4: Heatmap of the R2
z distribution - constant case. The figure shows the heatmap of

the R2
z distribution obtained in each of the 170 univariate model (vertical axis) and for each time

window (horizontal axis), with T = 36 months. Each cell in the map represents the fraction of the
total cross-sectional variation in asset returns explained by each anomaly, using different colors,
from gray (R2 contribution less than 1%) up to dark blue (R2 contribution greater than 20%. The
results are obtained by performing univariate regressions of asset returns on the market factor and
each of the 170 anomalies, using the theoretical results of Section OA.5.2. In each model, the R2

z

statistics has been calculated using the quantity in (8). The analysis uses balanced panels over
fixed-time windows of three years, with a reference period ranging from January 1986 to December
2020.
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Figure 5: Total variance decomposition - constant case. The figure shows the total variance
decomposition of each model as the sum of the contribution of anomalies (red), betas (green) and
residual (gray) components. The results are obtained by performing univariate regressions of asset
returns on the market factor and each of the 170 anomalies, using the theoretical results of Section
OA.5.2. The analysis uses balanced panels over fixed-time windows of three years, with a reference
period ranging from January 1986 to December 2020.
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Figure 6: Heatmap of the t-statistics distribution - time varying case. The figure shows
the heatmap of the t-statistics distribution obtained in each of the 170 univariate model (vertical
axis) and for each month (horizontal axis). Each cell in the map represents the degree of statistical
significance of the t-statistics with a different color, from gray (non-significant t-stat), to yellow
(significance at only 10% level), orange (significance at 5% level), and red (significance at 1%
level). The results are obtained by performing univariate regressions of asset returns on the market
factor and each of the 170 anomalies, using the theoretical results of Section 5. of time-varying
premia and anomalies. The analysis uses balanced panels at each month, with a reference period
ranging from January 1986 to December 2020. At each month t, the market beta is obtained by
running a first-pass regression using a rolling window on the past two years of data (T = 24).
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Figure 7: Anomalies and financial crises - time varying case. The figure shows the percentage
of anomalies found to be significant at 5% (or lower) confidence level at each point in time. The
light gray bands correspond to NBER recession dates and to various economic and financial crises.
The results are obtained by performing univariate regressions of asset returns on the market factor
and each of the 170 anomalies, using the theoretical results of Section 5. of time-varying premia
and anomalies. The analysis uses balanced panels for each month, with a reference period ranging
from January 1986 to December 2020. At each month t, the market beta is obtained by running a
first-pass regression using a rolling window on the past two years of data (T = 24).
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Figure 8: “Best” representative sets of anomalies in multivariate regressions. The figure
shows the time-varying sets of anomalies that have been used to run multivariate regressions at
each month. Each red point denotes the anomaly that has been picked in each category (vertical
axis) and in each month (horizontal axis), using the empirical procedure described in Section 9.3.2.
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Figure 9: Anomalies’ contribution using time-varying multivariate regressions. The
figure shows the time series of the R2

z statistics (a), together with the total variance decomposition
(b) obtained in each multivariate regression. The results are obtained by performing multivariate
regressions of asset returns on the market factor and a set of six anomalies, selected using the
empirical procedure described in Section 9.3.2. The analysis is based on the theoretical results of
Sections 5 and 8 for time-varying premia and anomalies. The application uses balanced panels at
each month, with a reference period ranging from January 1986 to December 2020. At each month
t, the market beta is obtained by running a first-pass regression using a rolling window on the past
two years of data (T = 24).

(a) Time series of R2
z (b) Total variance decomposition
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Figure 10: Testing the joint contribution of anomalies: time series of p-values. The figure
shows the time series of p-values associated with the Tz statistics for each multivariate model at
each point in time. The null hypothesis is that H0 : γz = 0Kz , against the alternative that at
least one anomaly is different from zero, i.e., H1 : γz 6= 0Kz , with Kz = 6. The yellow bands
represent the p-values > 0.05 , for which we cannot find evidence to reject the null hypothesis.
The blue lines refer to the p-values ≤ 0.05, i.e. all the periods in which we can reject the null
hypothesis at the 5% confidence level. The analysis is based on the theoretical results of Theorem 6
(i), where the asymptotic distribution of the statistic Tz under H0 has been tabulated using 10,000
random draws from six i.i.d. χ2

1, weighted with the estimated values (ĉ1, ..., ĉ6) obtained in each
multivariate model. The results are obtained by performing multivariate regressions of asset returns
on the market factor and a set of six anomalies, selected using the empirical procedure described in
Section 9.3.2. The application uses balanced panels at each month, with a reference period ranging
from January 1986 to December 2020. At each month t, the market beta is obtained by running a
first-pass regression using a rolling window on the past two years of data (T = 24).
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