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Abstract

How do long-term relationships between banks and firms shape loan pricing and

capital allocation? Using administrative data from Mexico’s credit registry, I provide

stark evidence for an insurance view of relationship lending. When firms repeatedly

borrow from the same bank, the pass-through of changes in their default risk to loan

rates is nearly zero, and past risk assessments persistently influence credit terms. In

contrast, switching to a new bank results in full risk pass-through, consistent with com-

petitive market predictions. I rationalize this evidence in a structural model where banks

compete for borrowers by offering optimal long-term contracts. Switching costs sus-

tain commitment to banking relationships, enabling insurance. The estimated model

replicates the observed pricing patterns and generates new predictions, which I validate

in the data, regarding when firms receive cheap funding and when they are tempted to

switch. At the macro level, switching costs enhance capital allocation by strengthen-

ing relationships, recovering over 10 percent of welfare losses from financial frictions.

However, when embedded in a New Keynesian framework, relationships dampen mon-

etary and fiscal policy pass-through, as banks optimally absorb part of these policy

shocks.
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de México, New York Fed, St. Louis Fed, and the Carey Finance Conference. I benefited from significant
insights from Cedomir Malgieri, and from Alessandro Lavia, Chenping Yang, and Alvaro Cox. For their help
in accessing the data, I am indebted to Santiago Bazdresch and the Econlab team: Claudia Velázquez Villegas,
David Lara, Victor Morales, and Osvaldo Veloz.
The data request for the project is sponsored by Santiago Bazdresch at Banco de México’s Research Direc-
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1 Introduction

Long-term relationships between banks and firms are a pervasive feature of credit markets,
and the finance literature has long recognized their importance for screening, monitoring,
and generally improving credit access for firms (Stiglitz and Weiss (1981), Diamond (1984),
Petersen and Rajan (1995)). Despite this, the standard framework for assessing loan pricing
is that of competitive credit markets, where relationships play no role due to perfect mobility
of firms across lenders (Cooley and Quadrini (2001), Ottonello and Winberry (2020)). The
competitive framework provides tight predictions for lending rates, which should move one-
for-one with both the firm’s default risk and the risk-free rate. In the presence of mobility
frictions, these predictions may not hold, and we still know relatively little about how banks
actually incorporate firm default risk into loan rates, primarily because such risk is typically
not measured. This raises the following crucial questions: How do banking relationships
shape loan pricing? And how do they ultimately affect the allocation of capital and the
transmission of macroeconomic policy?

In this paper, I answer these questions using rich administrative data from Mexico’s credit
registry, which includes bank assessments of firm default risk. I combine empirical evidence
and a structural model with optimal contracts to support an insurance view of relationships.
Firms frequently take out new loans from the same bank over time. I argue that these loans
are all priced jointly as part of long-term insurance agreements between banks and firms.
Therefore, lending rates on individual loans systematically deviate from the competitive
pricing rule, as banks charge higher rates when firms perform well, in exchange for not rais-
ing rates during adverse shocks. Additionally, observably similar firms may face different
borrowing conditions depending on their relationship history.

Empirically, I find that within bank-firm relationships, the pass-through of changes in firm
default risk—as assessed by the bank—to loan rates is nearly zero. In contrast, it is much
larger and close to one when firms switch banks. Loan pricing also exhibits strong history-
dependence, a typical feature of long-term insurance arrangements: default risk at the onset
of a relationship has a large influence on loan pricing even conditional on the current risk
profile. My model formalizes relationships as optimal long-term contracts, through which
banks provide insurance to firms. Firms value this insurance because bankruptcy costs make
them behave as if they were risk-averse. The model rationalizes both limited pass-through
and history-dependence. It also generates new predictions, supported by the data, about
when firms receive cheap loans and when they are tempted to switch to a new bank. In
the model, switching costs enable partial commitment to relationships, making risk-sharing
possible. As a result, they improve allocation and welfare in equilibrium, recovering over
10 percent of the welfare costs caused by financial frictions. However, they also weaken
monetary policy pass-through and dampen the transmission of fiscal policy by nearly 20
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percent relative to competitive lending markets.
Empirics. I begin by documenting novel empirical facts from the credit registry data.

The data cover the near universe of corporate loans originated in Mexico since 2004 and
provide detailed information on loan terms, along with self-reported data on sales and em-
ployment, which I complement with Orbis data. The typical firm is small and interacts with
one or a few banks over their observed lifespan, in sharp contrast with the syndicated loan
data often used in banking research.1 A unique feature of the credit registry data is that it
contains an assessment of the default probability for each firm, provided by its lender un-
der strict guidelines from the regulator. I validate these assessments by showing that they
strongly predict subsequently realized loan losses. Combining such default risk with Mex-
ico’s interbank rate, I construct the loan rate implied by the competitive pricing rule for each
firm. This enables me to test the predictions of competitive pricing, and study the empirical
behavior of the loan pricing wedge—how actual loan rates differ from the competitive rule.

I obtain three main results supporting an insurance view of relationship lending. First
and foremost, when a firm stays with the same bank, the pass-through from changes in de-
fault risk to the lending rates they get charged on new loans is close to zero: firms whose
credit quality deteriorates do not experience substantial increases in their borrowing rate
while improving firms do not enjoy rate reductions. Instead, when a firm switches to a
new bank, this pass-through is close to one, as predicted by competitive pricing. This is
a striking result that, as I will discuss below, is consistent with the insurance view of the
relationship. An immediate concern with this result is whether this difference is driven by
the relationship, as I argue, or by a selection of those firms that switch banks when taking
new loans. I address this concern using two identification approaches, both of which con-
firm a sharp difference between stayers and switchers. One approach relies on a subset of
firms that borrow from a new bank while simultaneously taking out a loan from their old
bank, effectively circumventing the selection problem. These firms show the same differen-
tial pass-through across the two loans that I document for the broader population of firms.
The other is an instrumental variable approach. I use two instruments for separation—the
decision to switch banks—based on identifying shocks to the old bank that are plausibly
unrelated to the firm yet induce the firm to switch, thus producing plausibly exogenous
variation in whether a firm switches banks. For the first instrument, I collect data on bank
branches at the municipality-level, and compute the change in the branch market share of
a firm’s lender in their municipality, with the intuition that firms are more likely to switch
when their bank is closing branches, or if new banks are entering. For the second instru-
ment, I estimate bank idiosyncratic credit supply shocks, using the methodology developed

1The median firm in my sample has 5 employees and over 60 percent of firms borrow only from one bank
over their observed lifespan. In contrast, LPC DealScan, SNC, and Compustat GMI, major syndicated loan
data sources, primarily cover large-scale financing extended to sizable, often publicly listed firms, with each
loan typically backed by a consortium of multiple lenders.
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in Amiti and Weinstein (2018).
Second, I document strong history-dependence in credit conditions: firm default risk

at the onset of a relationship strongly predicts its borrowing rate several years later, even
when controlling for the contemporaneous default risk. This result is crucial to distinguish
among theories that could generate limited pass-through. Indeed, history-dependence is a
typical feature of long-term implicit insurance contracts:2 two identical firms may be paying
a different loan spread due to differences in their initial conditions, which in turn influence
the entire path of the relationship through long-term contracting. Instead, the relevance
of past conditions is inconsistent not only with competitive pricing, but also with a large
class of models where banks exert market power statically or with loan evergreening to
zombie firms. Moreover, I find that the level of competition among banks is important for
these results. When firms have limited outside banking options, as measured by the branch
market share of their bank in the municipality where they are headquartered, then the pass-
through of default risk is weaker and there is stronger history-dependence. This evidence is
consistent with the mechanism in my model whereby larger switching costs, here captured
by the scarcity of alternative banks in the municipality, enable relational pricing.

Third, I find strong evidence of pricing reconnect upon switching: the gap between
loan spreads and the probability of default—which I refer to as the pricing wedge—largely
closes upon switching. For instance, firms with a positive pricing wedge, meaning they pay
higher rates than their fundamentals would suggest, tend to receive large rate reductions af-
ter switching. This pattern ties back to the insurance mechanism, as switchers tend to be
firms whose default risk has improved since the start of their prior banking relationship, and
thus find themselves disadvantaged by staying in their current match. Indeed, when a firm’s
default risk decreases, the insurance arrangement can leave them overcharged compared to
their improved risk profile, thus making them more likely to benefit from discounts if they
switch to a new lender.

Theory. To rationalize these empirical loan pricing patterns and to study their aggre-
gate implications, I build a general equilibrium model with optimal contracts between banks
and firms. On the real side, the model has standard firm dynamics à la Hopenhayn and a
representative household. On the financial side, it features long-term contracts and can ac-
count for deviations from competitive pricing by combining two elements. First, one-period
debt is enforceable, meaning it must be repaid even if a firm switches to a new bank. This
assumption departs from the literature on long-term contracts (Albuquerque and Hopenhayn
(2004), Cooley, Marimon, and Quadrini (2004)), shifting the focus of limited commitment.
Rather than centering on the repayment decision, as in these models, limited commitment
here pertains to the choice between adhering to the agreed-upon credit policy—including
the lending rate—or switching to a new lending partner. This formulation is crucial as it

2See Beaudry and DiNardo (1991) for the case of labor markets.
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allows the model to have well-defined notions of lending rate, default, and debt as a non-
contingent instrument, typically absent in contracting models, making it possible to connect
the theory to my empirical findings. Second, banks and firms face costs when switching to a
new relationship. When switching costs go to zero, the model reverts to a competitive credit
market, with shocks fully passed through to the lending rate. This special case is akin to the
frameworks with one-period debt and endogenous default in Cooley and Quadrini (2001),
Khan, Senga, and Thomas (2014), and Ottonello and Winberry (2020). Conversely, positive
switching costs create a commitment to the relationship, enabling risk-sharing: firms pay
higher rates in good times, in exchange for cheap credit in bad times, when they are more
constrained.

The demand for insurance arises from financial frictions, in the form of a bankruptcy
cost, which make firms act as if they were risk-averse.3 Due to these frictions, firms may be
constrained and operate below their optimal size—as in the misallocation literature (Moll
(2014), Khan, Senga, and Thomas (2014)). This makes the value of an extra dollar within
the firm greater than that of a dollar worth of consumption. More importantly, the value
of a dollar is not constant within each firm. It is higher in some states and times than in
others, responding to productivity shocks and the firm’s ability to adjust its stock of debt
and capital, and these fluctuations are what makes insurance valuable. Banks provide such
insurance through long-term contracts by offering more favorable financing conditions to
firms when they are more constrained, in return for higher rates in states when the firm is
close to its optimal size. This allows firms to free up resources to invest and hire workers
when the marginal value of doing so is highest. Effectively, deviations from competitive
loan pricing arise to cross-subsidize across firms, channeling resources to more constrained
firms. I analytically characterize the pass-through of default risk and show that limited pass-
through for stayers emerges as a result of banks subsidizing firms when their default risk
increases.

Quantification. I estimate the model to match some key moments of the equilibrium
firm distribution and, crucially, to replicate the observed pass-through of default risk to loan
rates within relationships, which disciplines the magnitude of the switching costs. The esti-
mated model delivers the targeted limited pass-through within relationships while matching
the large untargeted pass-through for bank switchers. Furthermore, it matches the other two
documented facts, which are untargeted. As in the data, it exhibits pricing reconnect upon
switching and a substantial degree of history-dependence, one of the quintessential features
of long-term insurance contracts, with past default risk almost as important for loan pricing

3In the model, both banks and firms are owned by the representative household. In the steady-state, this im-
plies both agents are effectively risk-neutral, except for financial frictions. When studying aggregate shocks,
instead, this implies that firms and banks cash-flows are both priced according to the same stochastic dis-
count factor, and insurance against aggregate shocks is only valuable if such shock tighten firms’ financial
constraints.
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as the contemporaneous one.
The model also generates new predictions regarding when firms receive cheap credit and

when they are tempted to switch to a new bank, for which I find strong empirical support.
Firms receive cheap loans, compared to their default risk, when they are not distributing
dividends and when their sales decline, which reflects the arrival of shocks that make them
more constrained. Also, banks deliver cheap loans early in their relationship with the firm,
and charge higher rates later, which is an expression of inter-temporal risk-sharing. This
arrangement is optimal because firms are typically less financially constrained as they age
and retain earnings. Just like in the data, firms are tempted to switch when their default
risk has declined since the onset of the bank-firm relationship, which makes them disad-
vantaged from the insurance arrangement and possibly ready to benefit from starting a new
relationship.4

Using the estimated model, I quantify the welfare gains from banking relationships. In
an economy with positive switching costs, the model recovers over 10 percent of the welfare
losses caused by financial frictions, compared to a world of perfect mobility. These switch-
ing costs enhance welfare by sustaining long-term commitments, enabling banks to channel
resources to the most constrained firms, thereby improving overall equilibrium allocation.
These arrangements recover only a portion of the welfare losses since the estimated model
is still characterized by limited commitment, as switching is costly but possible.

Finally, I cast the model in a New Keynesian setup to study the transmission of macroe-
conomic policy. Solving the response of the economy to an aggregate shock in a framework
with heterogeneous agents and state-contingent contracts is challenging. Existing methods5

mostly study the perfect foresight transition path in economies with incomplete markets
(”MIT shocks”). I show that a simple and computationally tractable extension to the se-
quence space method, as implemented in Boppart, Krusell, and Mitman (2018), can accom-
modate state-contingent contracts. The method leverages the insight that aggregate shocks
that occur with infinitesimal probability do not affect the steady state, but can still be con-
tracted upon, meaning that we can solve exactly for the optimal contract, including lending
rates and credit quantity, contingent on the realization of aggregate shocks. I use this solu-
tion method to study the impulse response to monetary policy—an innovation to the Taylor
rule—and fiscal policy—a lump sum transfer to firms akin to the large corporate subsidy
schemes implemented during Covid. I find that relationships dampen the transmission of
both monetary and fiscal policy, as banks optimally absorb a portion of these shocks as
part of the risk-sharing agreement. Quantitatively, the effect of relationships for monetary
policy transmission is large for financial variables, more than halving the fraction of firms

4Notice that in the model these firms are tempted to switch, meaning they are indifferent to staying or
switching, but never actually prefer to switch, as the optimal contract is designed to prevent inefficient separa-
tions. Therefore, all switching in equilibrium occurs due to exogenous separation shocks.

5Such as Boppart, Krusell, and Mitman (2018) and Auclert, Bardóczy, Rognlie, and Straub (2021).
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forced to raise costly equity after the shock, but smaller for real variables, with only a mod-
erate dampening in the transmission of monetary policy to firm investment. Relationships
strongly dampen the effects of fiscal policy, reducing its transmission to investment by nearly
20 percent.

Related Literature. My paper contributes to several strands of the literature. First,
it extends the work documenting the consequences of bank-firm relationships, both at the
individual firm level and in aggregate. Specifically, empirical studies have shown that firms
with close relationships, typically measured using the frequency of past interactions, tend
to receive more credit or better terms during recessionary periods (Bolton, Freixas, Gamba-
corta, and Mistrulli (2016), Beck, Degryse, De Haas, and Van Horen (2018), Karolyi (2018),
Banerjee, Gambacorta, and Sette (2021)) or during episodes of firm distress (Giometti,
2022). Additionally, Dougal, Engelberg, Parsons, and Van Wesep (2015) and Demiroglu,
James, and Velioglu (2022) find evidence of path dependence in loan spreads, highlighting
the relevance of past spreads on current loan pricing. My primary empirical contribution
to this literature is to directly measure the pass-through of default risk to loan rates lever-
aging the risk assessments provided by banks, revealing a striking difference between bank
stayers and switchers. This approach has two advantages. First, it allows to address the
endogeneity of relationships more directly using instruments for separation. Second, it en-
ables a more transparent mapping from the data to a model of loan pricing, thus delivering
a range of additional testable predictions and providing a basis for distinguishing among
possible mechanisms. In the data, I also document a strong history dependence in credit
conditions—the relevance of past default risk for pricing, which goes over and beyond that
of past spreads. This finding is closely related to the path dependence documented in the lit-
erature, but is typically considered more direct evidence of long-term contracts (Beaudry and
DiNardo, 1991). In Section 6.5, I leverage my empirical and quantitative results to assess
in more detail the insurance mechanism against alternative explanations, such as behavioral
anchoring and information frictions.

My empirical results also relate to a literature that has documented an imperfect pass-
through of monetary policy to corporate loan rates (Berger and Udell (1992), Cao, Dubuis,
and Liaudinskas (2023)), as well as mortgages (Scharfstein and Sunderam, 2016) and de-
posits (Drechsler, Savov, and Schnabl, 2017), typically attributed to bank market power. I
complement this literature by focusing on the pass-through of default risk, and by providing
new evidence consistent with an insurance mechanism, most notably, the stark difference
between stayers and switchers, and the strong history-dependence. On the theory side, a
small literature studies monetary policy with banking relationships. Hachem (2011), Ro-
cheteau, Wright, and Zhang (2018), and Wang, Whited, Wu, and Xiao (2022) focus on
bank market power, arising from information asymmetries, and their effect in dampening
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monetary policy pass-through, while Bethune, Rocheteau, Wong, and Zhang (2022) studies
an environment with money where banking relationships reduce the need for precautionary
cash holdings by firms. I contribute to this literature by bringing banking relationships to a
standard New Keynesian setup and by highlighting the importance of the insurance mech-
anism for the transmission of monetary and fiscal policy. My quantitative approach to the
banking market is shared with Corbae and D’Erasmo (2021), Bianchi and Bigio (2022), and
Dempsey and Faria-e Castro (2024), who focus on bank market power and the transmission
of credit supply shocks. Distinctively, I focus on the long-term nature of relationships and
their effects on loan pricing.

The risk-sharing mechanism in my model is related to an older strand of the banking
literature, surveyed by Cetorelli et al. (2001) and Elyasiani and Goldberg (2004), which
used informal discussions or stylized one-period models to explore how banks can provide
financial flexibility to firms (Fried and Howitt (1980), Berger and Udell (1992), Berlin and
Mester (1999), Dinç (2000)). I contribute to this literature by incorporating the insurance
insight into a model with long-term relationships, firm dynamics, and default, making it pos-
sible to derive testable predictions for loan pricing throughout relationships and in response
to shocks, and with general equilibrium, enabling the quantification of the allocation and
welfare consequences of relational pricing.

My results on intertemporal risk-sharing, whereby banks deliver cheap loans early in the
relationship and higher rates later, resonate with the hold-up mechanism in Petersen and
Rajan (1995), which can be beneficial by expanding the set of firms banks are willing to
lend to, and for which Schäfer (2019) has recently provided empirical support. Similarly,
Ioannidou and Ongena (2010) document that firms receive loan rate discounts at the onset of
a relationship and high rates later, which contrasts with the opposite result found in Berger
and Udell (1995). I contribute to this literature in two ways. First, empirically, I find that
loan rates increase along the tenure profile both unconditionally and conditionally on the
firm’s risk assessment, attenuating possible selection concerns in previous studies. Second,
theoretically, I show that the pattern of increasing rates is also consistent with an optimal
risk-sharing contract, as opposed to the hold-up mechanism emphasized in these papers.
Such hold-up mechanism in isolation, however, is inconsistent with the observation that
firms with identical risk get charged differential rates depending on their relationship history,
as most models where banks exploit their market power statically.

A small but growing literature studies credit lines as a form of liquidity insurance, as in
Nikolov, Schmid, and Steri (2019) and Santos and Viswanathan (2020). My model shares
the notion that firms have a demand for insurance, but highlights the role of relationships and
implicit contracting as a device to deliver insurance. Empirically, the limited pass-through
result extend to credit lines, suggesting possible synergies between credit lines and relational
pricing. Indeed, credit lines are typically issued under limited commitment, in the sense that
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banks can usually recall them—over 90 percent of the times in my data—and renegotiate
the lending rate frequently—typically within 3 months—, which makes these instruments
more similar to standard term loans and possibly also subject to the implicit promises that
my model describes.

This paper is also related to the literature on evergreening and zombie lending that
emerged from the seminal work of Hoshi (2006) and Caballero, Hoshi, and Kashyap (2008)
in the Japanese setting, showing that banks often extend loans to insolvent firms at subsi-
dized rates to prevent their bankruptcy (Artavanis, Lee, Panageas, and Tsoutsoura (2022),
Acharya, Crosignani, Eisert, and Steffen (2022), Hamano, Schnattinger, Shintani, Uesugi,
and Zanetti (2024)). I contribute to the empirical strand of this literature by document-
ing a widespread limited pass-through of firm default risk to lending rates within relation-
ships, which is not confined to nearly-defaulted firms, and by uncovering strong evidence
of history-dependence, consistent with an insurance view of relationships but not with loan
evergreening. My model is related to Faria-e Castro, Paul, and Sánchez (2024), which devel-
ops a setup with bank lending and evergreening with heterogeneous firms à la Hopenhayn,
and Martin, Mayordomo, and Vanasco (2023), which studies the interaction of evergreen-
ing and macroeconomic policy. These papers highlight a notion of evergreening as implicit
restructuring, which I relate to in an extension of my model. I thus provide the first joint
formalization of evergreening and insurance, contributing to recent efforts to clarify the def-
inition of zombie lending in Álvarez, Garcı́a-Posada, and Mayordomo (2023). Leveraging
on this extension, I confirm that an evergreening mechanism delivers limited pass-through
from default risk, but little history-dependence, suggesting it is insufficient to fully explain
the data.

My model lies at the intersection of two literature strands studying firm dynamics, fi-
nancial constraints, and their macroeconomic implications. I provide a schematic overview
of these two strands, and the novelties of my model, in Appendix B.6, summarized in Ta-
ble 37. The first strand encompasses a growing class of heterogeneous firm models with
endogenous default, as in Cooley and Quadrini (2001), Khan, Senga, and Thomas (2014),
Gomes, Jermann, and Schmid (2016), Arellano, Bai, and Kehoe (2019), Ottonello and Win-
berry (2020), and Guntin (2023). In this literature, markets are incomplete: firms can only
borrow through non-contingent debt, typically with one-period maturity, and financial fric-
tions arise due to various forms of bankruptcy costs. Debt is priced by competitive lenders
offering zero-profit schedules, following a framework originally developed in the sovereign
debt literature by Eaton and Gersovitz (1981). Perfect competition and firm mobility imply
that lending rates move one-for-one with firm default risk and the risk-free rate. I nest this
class of models as a special case when switching costs approach zero and extend them by
studying the role of long-term relationships in alleviating financial frictions and determining
loan pricing.
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The second strand of literature on firm financing studies optimal lending contracts un-
der limited commitment, as in Cooley, Marimon, and Quadrini (2004), Albuquerque and
Hopenhayn (2004), Rampini and Viswanathan (2010), Kovrijnykh (2013), and Ai, Bhan-
dari, Chen, and Ying (2019). Here, the contracting space is not exogenously restricted to
non-contingent debt, but financial frictions arise because no financial contracts are enforce-
able: the entrepreneur can renege on the outstanding debt, abscond with the cash flow or
the capital, and possibly borrow again from a new bank. I extend these models by introduc-
ing enforceable debt, meaning that firms have to repay even if they switch to a new bank.
This allows to have well-defined notions of lending rates and default, typically absent in
contracting models. The limited commitment in my model pertains not to the decision to
repay outstanding debt, but to the promises on future credit terms, which both banks and
firms can renege upon by starting a new relationship. Incorporating an enforceable asset in
state-contingent contracts with limited commitment has some parallels with recent work in
Souchier (2024), which studies household savings and firm-worker contracts.

Layout. The paper starts by describing the credit registry data in Section 2. Section 3
presents the main empirical findings. Section 4 outlines the model. Section 5 analytically
characterizes the optimal contract. Section 6 outlines the calibration strategy and validates
the model predictions for loan pricing. Finally, Section 7 presents the macroeconomic im-
plications of relationship lending.

2 Data and Institutional Background

To study the loan pricing decisions of lenders and their connection to firm fundamentals,
I use administrative data from Mexico’s credit registry, which covers the near universe of
corporate loans originated by Mexican banks.

The registry was established in the credit reporting market reform of 1995 (Gil Hubert,
2004), and fully implemented in the early 2000s under the regulation of Banco de México
and Comisión Nacional Bancaria y de Valores (CNBV), the Mexican bank supervisory au-
thority. The data are reported at the monthly frequency, from December 2003 to December
2022, and are organized at the loan level. Each loan is linked to one firm and one bank.6

In my sample, I include loans to non-financial corporations, including personal loans to
entrepreneurs, and exclude those to public entities and financial firms. I also exclude loans
to firms headquartered outside Mexico and those denominated in foreign currencies. These
restrictions retain the majority of loans from the original data, resulting in a final sample of
over 10 million loans by 145 lenders to 1.1 million firms.

6A small fraction of loans, around 0.1% of the sample, are syndicated, with each loan linked to a single
firm but multiple banks. I exclude these loans from my analysis.
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The data contain rich information on each loan, such as loan rates, principal amount,
collateral, maturity, and loan type (term loans or credit lines). Loans are observed both at
origination and during subsequent periods, allowing for an evaluation of firm repayment
performance. On the firm side, the credit registry contains information on firm sales and on
the number of employees, self-reported by firms in the credit registry. I complement this data
using Orbis Mexico, which provides a rich array of balance sheet data for a sample of large
Mexican firms. Starting in 2016, banks must report to the regulator the default probability
of each borrower, expressed in percentage points. These assessments, which I observe in
the credit registry, are critical for my empirical analysis. In Section 2.2, I describe them in
greater detail and validate their ability to predict subsequent loan losses. Before doing so, I
provide the key summary statistics of borrowers and loans in my sample.

2.1 Summary Statistics

There is no single way to approach the data, instead, we can organize it in four different
ways: at the bank-level, at the firm-level, at the loan-level, and finally at the bank-firm
relationship level. I will now illustrate these approaches one by one.

Overview of banks. There are 145 lenders in the sample. The banking sector in Mex-
ico is concentrated, with a few large banks dominating the market. Over 80 percent of
banking assets are concentrated in the top seven banks, five of which are Mexican sub-
sidiaries of American or European banks. The 145 lenders are divided into three groups:
Banco Multiple, privately-owned commercial banks that originate almost 90 percent of the
loans in my sample; Sociedad Financiera, non-bank lenders typically specialized in niche
lending areas, accounting for about 10 percent of the loan originations, and Banco de Desar-

rollo, government-owned banks that originate less than 1 percent of the loans in my sample.
Following standard practice in the banking literature, if two banks merge, I assign them a
unique identifier for the entire sample. Furthermore, I assign a unique identifier to all entities
in the same banking group (there are several instances of Sociedades Financieras that are
subsidiaries of Banco Multiple), which is useful in order to avoid misclassifying switching
across lenders within the same group as starting a new relationship.

Overview of firms. There are 1.1 million firms that borrow at least once over the 2003-
2022 period. In table 1, I show the descriptives of these firms, based on the last time they
took out a new loan. The typical firm in the sample is small, with only 5 employees, but
there is a large cross-sectional dispersion, with very large firms represented as well. The
average default risk assessed by banks, a variable I describe in detail in the next Section, is
8 percent, with a fat right tail. Borrowing rates are high, reflective of both a high risk-free
rate (the interbank rate averaged at over 6 percent during the 2004-2022 period), and the
compensation for risk.
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Variable Mean p10 p50 p90

Employees 23.88 1 5 30
Sales ($’000) 6,356.55 5.77 73.81 2,642.01
Firm Age (Years) 18.19 2 17 35
Default Probability (%) 8.89 0.68 2.16 16.40
Borrowing Rate (%) 17.46 10.18 15.13 26.50
Spread (%) 10.56 4.28 9.99 17.72

Table 1: Summary statistics of firm real variables in the credit registry. Statistics are computed at the firm-level
with each firm considered at the time it last borrowed. p10, p50 and p90 are the percentiles of the distribution
of each variable.

Overview of loans. The typical loan size is small, with a median value of 10 thousand
dollars and an average of 100 thousand dollars. The typical loan maturity is two years, and
almost two-thirds of loans have no collateral. Slightly over half of the loans are term loans,
and the rest are credit lines. Interestingly, most loans are classified as revocable, meaning
that the bank can call back the loan at will—a fact that underscores the relational nature of
credit in this environment.

Variable Mean p10 p50 p90

Loan size ($’000) 94.94 0.00 8.70 74.85
Loan Maturity (Years) 2.57 0.08 2.83 4.92
Collateral (%) 38.74 0 0 100

Term Loan Revocable Fixed Rate
Fraction of Loans 0.48 0.91 0.37

Table 2: Summary statistics of loan characteristics. Statistics are computed at the firm-level with each firm
considered at the time of its last borrowing. p10, p50 and p90 are the percentiles of the distribution of each
variable.

Overview of bank-firm relationships. Long-term bank-firm relationships are pervasive.
Each month, over 80 percent of firms borrow from a single bank, and throughout the entire
observed period from 2003 to 2024, over 60 percent of firms borrow exclusively from one
bank. When we exclude firms that have just entered the credit market, the average length
of a banking relationship is 4.5 years, a value which is likely underestimated since we only
observe relationships starting in 2003 and ending in 2022. For context, this value almost
twice the average loan maturity. The switching rate is around 10 percent. More specifically,
when a firm borrows at time t, and it borrows again at time t > τ , 10 percent of the time this
loan is originated by a bank with which the firm had no pre-existing relationship, 73 percent
of the time by the same bank as the previous loan, and 17 percent of the time by a different
bank from which it had borrowed in the past.

12



2.2 Risk Assessments

One of the unique advantages of data from the credit registry is that I observe the risk
assessment that banks are required to report for each loan. I will refer to this variable inter-
changeably as risk assessments or probability of default (PD), but this measure is technically
broad in scope and should be viewed as the probability that the loan becomes delinquent and
is not repaid according to the initial terms, a scenario that is not necessarily associated with
the legal bankruptcy and exit of the firm.

Banks calculate risk assessments based on a combination of hard (quantitative) and soft
(qualitative) information, under strict regulatory guidelines. The hard information compo-
nent combines balance-sheet data with past repayment history. The soft information com-
ponent includes assessments of the quality of the firm’s management and organizational
structure, industry prospects, and the diversification of suppliers and customers. The head-
line risk assessment is then computed by combining the two components, with a weight on
the soft information component which increases with firm size. For small firms, banks are
instructed to only use hard information to perform the assessments. Instead, for medium
and large firms the weight of soft information increases to 25 and 35 percent respectively.
Interestingly, I can observe the soft and hard information assessments separately, making it
possible to obtain some results separately for the two measures.

Because I will rely heavily on these risk assessments for my results, in Appendix A.1 I
provide evidence that these assessments are predictive of subsequent loan losses. I measure
loan losses for each loan as the fraction of the principal that is written-off or forgiven,7

and I show that a percentage point increase in the probability of default assessment leads
to approximately a 0.4 percent increase in expected loan losses. Theoretically, we would
expect this value to approach unity if all the outstanding principal was lost in the event of
default, while a value below one is consistent with partial recovery.

3 Empirics

I test the key prediction of competitive loan pricing, which posits that loan spreads should
move one-for-one with firm default risk. I then explore how banking relationships shape this
sensitivity. To measure default risk, I rely on the bank-reported risk assessments detailed in
Section 2.2.

7Both charge-offs and forgiven loans represent a balance sheet loss for the bank, with the difference that
with a charge-off the bank does not give up its right to collect the proceeds of the loan if the firm returns to
solvency in the future. For the denominator, I use the maximum outstanding principal over the course of the
loan.
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3.1 Relationships Determine Pass-Through

I show that whether a firm stays within a bank-firm relationship is a crucial determinant of
the pass-through of default risk to lending rates. To establish this fact, I use pairs of con-
secutive loans obtained by the same firm in different months. I restrict my sample to uncol-
lateralized loans, which represent over two thirds of the loans, and are a natural benchmark
for my analysis, because a low pass-through is expected when a loan has good collateral, as
banks have limited losses in case of default. Suppose that a firm f borrows at time τ and
then again at time t > τ . I denote the change in the loan spread between loans at time τ and
t as ∆Spread f t , and the change in the risk assessment as ∆PD f t . I then distinguish between
firms that keep borrowing from the same bank, and firms that switch to a new lender with
which they have no pre-existing relationship. I study the default pass-through as follows:

∆Spread f t = α +β∆PD f t + ε f t (1)

Figure 1 shows that the pass-through β dramatically depends on lending relationships.
When a firm keeps borrowing from the same bank, its borrowing rate is almost entirely dis-
connected from changes in its default risk. Instead, when a firm switches to a new bank, the
response of spreads to firm risk is much larger and quantitatively close to one, as predicted
by models of competitive loan pricing.
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Figure 1: Scatterplot of changes in loan spread (y-axis) and changes in default probability (x-axis).
Loan spread is the difference between loan rate and Mexico interbank rate TIIE 28. The default
probability is the assessment provided by the lender. Changes are computed between two consecutive
loans to the same firm originated either by the same bank (left plot) or by two different banks (right
plot).

Notice that all loans in Figure 1 are newly originated, so there is no explicit commitment
preventing the bank from adjusting rates to reflect the new information incorporated in the
risk assessments.

To formally test the difference in pass-through between stayers and switchers, I regress
changes in loan spreads on changes in default risk, and interact these with a dummy variable
indicating whether firms stay with the same bank:

∆Spread f t = α +β1∆PD f t +β2∆PD f t ×1
SameBank
f t +β31

SameBank
f t + ε f t (2)

The coefficient β1 captures the pass-through for firms that switch to a new bank, while
β2 captures the dampening associated with staying with the same bank. The pass-through
for stayers is thus β1 +β2. Results are shown in Table 3.

The main identification concern challenging these results is that switching to a new bank
is not a random event. That is, firms are not randomly assigned to the left or the right side
of Figure 1, and the dummy 1

SameBank
f t may be related to unobserved drivers of ∆Spread f t

not captured by ∆PD f t . I will discuss and address these identification concerns in the next
subsection. But first, I outline a large battery of robustness tests which demonstrate how the
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(1) (2) (3)
∆Spread ∆Spread ∆Spread

∆PD 0.848∗∗∗ 0.609∗∗∗ 0.389∗∗∗

(0.025) (0.026) (0.041)

1SameBank × ∆PD −0.787∗∗∗ −0.560∗∗∗ −0.359∗∗∗

(0.027) (0.027) (0.043)
Bank x Time FE ✓ ✓
Firm FE ✓
R2 0.0259 0.143 0.374
N 192,496 192,128 125,391

Table 3: This Table reports the OLS estimates of Equation (2). Pass-through of default risk assessments
to loan spreads for switchers (top row) and dampening for stayers (bottom row). Robust standard errors in
parenthesis.

limited pass-through and the stark role of relationships is broad-based across types of loans
and firms, and not specific to a subset of the data.

Robustness tests. As documented in Section 2.1, loans are heterogeneous in their type,
maturity and collateral. For my baseline results, I consider all loans, with the only exception
of collateralized loans, which are excluded from the sample. In Appendix A.2, I show that,
while the magnitudes change slightly across specifications, the dampening result holds when
including collateralized loans or excluding credit lines, or considering only loans with short
or long maturity. The result is also robust to excluding pairs of loans that have exactly the
same loan spread or lending rate in both loans, which limits concerns related to renegotiation
frictions, or to keeping only pairs of loans that are at least 12 months apart. Furthermore,
it holds even when focusing exclusively on the component of risk assessments arising from
hard or soft information.

3.2 Endogenous Switching

The results in the previous section uncover a stark role for relationships in determining
default risk pass-through, but also raise questions about the role played by the switching
decision. In this section, I first outline the key summary statistics for stayers and switchers,
which shed light on the drivers of the switching decision and on its interaction with the
insurance mechanism. Then, I show that the key role of relationships in determining default
pass-through is robust to three approaches to deal with endogenous selection.

3.2.1 Who are the switchers?

To better understand the extent of selection into switching, I compare the key summary
statistics for firms that stay with the same bank and those that switch, effectively those
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appearing on the left and the right panels of Figure 1.
Table 4 displays the key summary statistics for these firms. It shows that stayers and

switchers are comparable, which alleviates concerns that we may be confronting two differ-
ent type of firms. While there are some differences driven by the very right tail, the center of
the distribution (median) is almost identical among the two groups for all variables. Notice
that the summary statistics differ from those reported in Table 1 since here they are com-
puted at the firm-month level rather than at the firm-level, as switching is not a permanent
characteristic of a firm, and this overweights firms that borrow more often, which tend to be
larger and safer.

Variable Group Mean p10 p50 p90

Employees Stayers 93.62 1 5 69
Switchers 41.33 1 5 50

Sales ($’000) Stayers 32,143.38 8.28 268.37 10,195.01
Switchers 10,822.02 5.59 274.69 4,731.45

Firm Age Stayers 21.37 6 21 36
Switchers 19.47 4 19 35

Spread Stayers 9.84 3.35 9.00 18.71
Switchers 9.01 4.01 8.56 15.00

PD Stayers 6.53 1.07 2.09 8.15
Switchers 3.97 0.53 2.35 4.45

Table 4: Summary statistics of firm characteristics. Statistics are computed at the firm-month level, with each
firm considered in all months they borrow. Stayers are firms that borrow from the same bank of their previous
loan. Switchers are firms that borrow from a new bank with which they have no preexisting relationship,
excluding first-time borrowers. p10, p50 and p90 are the percentiles of the distribution of each variable.

Table 5 displays additional moments that are more informative about the source of the
switching decision. First, in the top two rows, we notice that firms tend to receive a large
rate reduction on average when they switch, which suggests that they are searching for better
deals. Second, the bottom two rows highlight that switchers are firms that should indeed on
paper benefit more from switching, as they tend to be charged high rates compared to their
fundamental—a positive pricing wedge—in their prior relationship. This also ties back to
the insurance mechanism, as switchers tend to be firms that have experienced a decline
in their probability of default since the onset of their prior relationship (PDt−1 < P0), and
thus are likely to be disadvantaged by the insurance mechanism, which may leave them
overcharged compared to their improved risk profile.
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Variable Group Mean p10 p50 p90

∆Spread Stayers 0.03 -2.03 0 2.01
Switchers -0.90 -7.59 -0.67 5.33

∆LoanRate Stayers 0.17 -2.21 0 2.75
Switchers -0.78 -8.86 -0.55 6.67

Pricing wedge8: Stayers 0.19 -5.10 -0.78 8.09
Rwedge

f t = (Spreadt−1 −PDt−1) Switchers 0.48 -4.51 -0.25 7.48

Cum. ∆PD over relationship Stayers -0.25 -1.78 -0.44 1.66
(PDt−1 −P0) Switchers -0.42 -1.91 -0.58 1.32

Table 5: Summary statistics of loan characteristics. Statistics are computed at the firm-month level, with each
firm considered in all months they borrow. Stayers are firms that borrow from the same bank of their previous
loan. Switchers are firms that borrow from a new bank with which they have no preexisting relationship,
excluding first-time borrowers. p10, p50 and p90 are the percentiles of the distribution of each variable.

3.2.2 Identification

In this section, I first clarify the nature of the identification challenge arising from endoge-
nous switching for correctly estimating the pass-through of default risk, and then I propose
three approaches to address it.

Threats to Identification. The identification concern is that relationships may be
irrelevant, but firms whose spread is more sensitive to risk assessments—perhaps due to the
assessments being more informative—self-select as switchers. I interpret the exercise in
Equation (2) first and foremost as a test of the theoretical prediction that ∆Spread = ∆PD.
If this prediction held exactly in the data, and our measure of default risk was accurate,
then we would always obtain β1 = 1 and β2 = 0, even if 1SameBank is correlated with ∆PD or
other unobservables—for instance if firms are more likely to switch when their probability of
default is declining. If all banks priced loans competitively, the relationship ∆Spread =∆PD

would still hold for all firms, and we would still estimate β1 = 1 and β2 = 0 regardless of
selection issues.

The true identification concern, instead, emerges if endogenous switching is correlated
with inaccuracies in risk assessments, which could arise because assessments are more infor-
mative for certain firms, for certain loan types or for certain periods, leading to a true com-
petitive pricing pass-through that differs from one. In the following paragraphs, I present
three approaches to address this form of endogeneity.

Pass-through before and after the switch. If relationships were irrelevant, and
switchers were simply high pass-through firms, then we would expect a high pass-through
also before and after the switch. Instead, Table 6 shows that high pass-through only occur
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when a firm is separating from its bank. Immediately before and after the separation, when
the firm remains with the same bank, the pass-through is low.9 Thus, we can rule out that
switchers are inherently higher pass-through firms.

(1) (2) (3) (4)
∆Spread ∆Spread ∆Spread ∆Spread

stayers before switch at switch after switch

∆PD 0.001 -0.148 0.672∗∗∗ 0.091
(0.008) (0.102) (0.057) (0.051)

R2 0.000124 0.00165 0.0267 0.000629
N 149,839 1,297 5,864 4,661

Table 6: Pass-through from changes in default risk to changes in loan spread. First column: all pairs of
consecutive loans from the same bank. Second column: firms that are observed at least two periods before
switching to a new bank. Third column: firms that switch to a new bank. Fourth column: firms that are
observed at least two periods after switching to a new bank. Robust standard errors in parenthesis.

Pass-through for multi-bank firms. The exercise above shows that switchers are not
firms with a permanently higher pass-through, but one might still worry that firms may self-
select into switching during periods when their pass-through would have been high even
within a relationship. The core issue, common to all selection problems, is that we only
observe the outcome either when a firm switches banks or when it does not. For a subset
of firms, however, we have the unique opportunity to observe outcomes in both cases, since
some firms start borrowing from a new bank, but simultaneously take out a new loan from
their old bank. Specifically, I restrict the sample to firms that initially borrow from only one
bank (A), and then, in a subsequent month, from both their old bank (A) and a new bank
(B). Table 7 reports the results, showing that yet again there is a low pass-through for the
new loan obtained from the same bank, but a high pass-through for the one obtained from a
different bank.

9The fact that the pass-through is low even for the first period immediately following separation is related
to the finding in Appendix A.9 that being in a relationship is much more important in determining the pass-
through than the length of the relationship itself.

19



(1) (2)
∆Spread ∆Spread

∆PD 0.926∗∗∗ 0.970∗∗∗

(0.043) (0.056)

∆PD×1SameBank −0.903∗∗∗ −1.103∗∗∗

(0.113) (0.144)

Bank x Time FE ✓

R2 0.0455 0.221
N 11,502 11,221

Table 7: Pass-through of default risk to loan spreads. The sample is restricted to firms that within the same
month borrow from a new bank and take out a loan from the same bank of their last loan prior to the month.
The dummy variable identifies the loan taken from the same bank. Robust standard errors in parenthesis.

In Appendix, I show that the results in Table 7 are robust when using changes in default
risk driven only by the hard information component, and excluding the soft one, which make
assessments identical across banks.

Instrumenting for separation. I propose two instruments providing exogenous vari-
ation in the decision to switch banks. These are based on the insight that shocks to the old
bank which are plausibly orthogonal to firm fundamentals may induce firms to switch. The
first instrument uses variation in the availability of bank branches in the municipality where
the firm is located. The second leverages bank credit-supply shocks estimated using the
methodology in Amiti and Weinstein (2018). Note that in equation (2) the possibly endoge-
nous variable 1SameBank

f t appears twice: once by itself and once interacted with the change
in firm risk. Following Wooldridge (2010),10 I instrument the interaction term using the
product of the instrument and the change in firm risk, (Z ×∆PD).

To construct the first instrument, I use branch-level data at the municipality level de-
scribed in Appendix A.11, which I obtained from the Inclusión Financiera reports of CNBV,
the banking supervisor. For each firm, I construct the change in the fraction of bank branches
in its municipality which are operated by their old bank. Formally, for a firm f headquar-
tered in municipality m, borrowing at time τ from bank b, and then borrowing again from
any bank at time t > τ , the instrument is defined as: Zbranch

f t = (MSbmt −MSbmτ), where
MSbmt = Nbmt/∑b′ Nb′mt , with N denoting the number of active branches. This instrument
captures changes in the old bank’s market share in the municipality, which reflects both the
old bank’s expansion or contraction and the entry or exit of other banks.

The second instrument is based on bank credit supply shocks, constructed using the
methodology from Amiti and Weinstein (2018), which I summarize in Appendix A.12, and

10Chapter 6.2.1.
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relies entirely on credit registry data. These shocks are identified by leveraging the presence
of firms that borrow from multiple banks, along with firm and bank fixed effects, which
make it possible to isolate variation in credit supply that is specific to each bank and orthog-
onal to firm demand. I estimate these credit supply shocks for each bank-month, denoted
as β̃bt . Then, I construct the firm-specific switching instrument as the cumulative sum of
shocks to the old bank (bank b) over the period between the firm’s previous loan at time τ

and its subsequent borrowing at time t: ZAW
f t = ∑

t
j=τ+1 β̃b j.

The results from the two instrumental regressions, alongside the OLS estimates, are re-
ported in Table 8. Once again, we observe a large pass-through for switchers and a signif-
icant dampening for stayers, suggesting that, if anything, the OLS may understate the true
effect of relationships.

OLS Branch IV AW IV
∆Spread ∆Spread ∆Spread

∆PD 0.848∗∗∗ 2.651∗∗∗ 3.133∗∗∗

(0.025) (0.937) (1.055)

∆PD×1SameBank −0.787∗∗∗ −3.145∗∗∗ −3.820∗∗∗

(0.027) (1.214) (1.257)

First stage F-stat 152.8 74.11

Table 8: Pass-through of default risk to loan spreads. First column: OLS. In the last two columns, the dummy
for stayers is instrumented. The instrument is the branch IV in the second column and the credit supply shocks
of Amiti and Weinstein (2018) in the third column. Robust standard errors in parenthesis.

The exclusion restriction assumes that changes in the instrument (market share or credit
supply shocks) are not correlated with unobserved factors affecting loan spreads beyond
what is predicted by risk assessments. I argue that it is plausible that these shocks are or-
thogonal to the firm. For example, the credit shocks are based on a structural decomposition
between demand and supply. A violation of this would require that shocks to the bank also
explain changes in firm risk beyond what is predicted by risk assessments. There is, how-
ever, a possibility that the instruments may violate the exclusion restriction if they change
the bank loan pricing policies conditional on firm risk, for instance if banks that experience
a contraction in branches or credit supply also raise their loan rate pass-through. To address
this, I show in Appendix A.4 that the dampening result is robust to using an Heckman-type
correction to account for selection into switching, which relies on the weaker assumption
that the instrument from the old bank (e.g. its credit supply shock) is unrelated to loan
pricing at other banks.

In the next sections, I present evidence of two additional pricing patterns that comple-
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ment the result on limited pass-through, and help differentiate between competing theories:
history-dependence and pricing reconnect upon switching.

3.3 History Dependence

If loans were priced competitively, only the contemporaneous risk—the future default risk
of the loan originated today—should determine the spread, and past information should be
irrelevant for loan pricing. Instead, I find that spreads charged by banks depend not only on
contemporaneous default risk, but also, and even more prominently, on the risk assessment
made at the onset of the bank-firm relationship.11

To formally test for history-dependence, I regress the spread charged by banks in a given
period, Spread f t , on both the contemporaneous default risk, PD f t , and the default risk at the
start of the bank-firm relationship, denoted PD f 0:

Spread f t = α +β1PD f t +β2PD f 0 + ε f t (3)

(1) (2) (3)
Spreadt Spreadt Spreadt

PDt 0.258∗∗∗ −0.001 0.004
(0.068) (0.002) (0.017)

PD0 0.750∗∗∗ 0.312∗∗∗ 0.208∗∗∗

(0.057) (0.046) (0.048)

Cons 5.591∗∗∗ 6.388∗∗∗ 6.636∗∗∗

Firm FE ✓
Bank x Time FE ✓ ✓
R2 0.0494 0.415 0.856
N 146,988 146,677 103,643

Table 9: Test for history-dependence. PDt is the contemporaneous default risk. PD0 is firm default risk at
onset of relationship between the firm and the bank originating the loan at time t. Robust standard errors in
parenthesis.

Table 9 shows that loan spreads depend on past information, which should be irrelevant
for pricing purposes in a competitive market. This past information is specifically the risk
assessment at the onset of a relationship PD0, even after controlling for the contemporane-
ous default risk PDt . This result is important because the presence of history-dependence

11This result echoes Dougal et al. (2015), who test for anchoring in credit spreads using syndicated loan
data, showing a role for past spreads in determining loan pricing, which is a form of path-dependence. Instead,
I test for history-dependence, the relevant of past fundamental conditions, which is a typical test for long-term
contracts (Beaudry and DiNardo (1991)). In Appendix A.5, I also show that past default risk is relevant for
loan pricing both conditionally and unconditionally on past loan spreads. Section 6.5 compares the insurance
mechanism with behavioral anchoring and other possible explanations.

22



is a typical test for implicit long-term contracts performed in labor economics (Beaudry
and DiNardo (1991)), as in an insurance arrangement banks and firms agree on the credit
conditions throughout the relationship at the onset of the match. Instead, the relevance of
past conditions is inconsistent not only with competitive pricing, but also with a large class
of models with static bank market power or with loan evergreening to zombie firms. One
possible concern with the interpretation of the history-dependence result as driven by rela-
tionship factors is that past assessments may still be an informative signal about firm risk.
With proper Bayesian updating, the most recent assessment should capture all relevant in-
formation, but it is an empirical question whether this happens in practice. In Appendix
A.1, I show that, after accounting for contemporaneous default risk, past assessments have
minimal predictive power for loan losses.

3.3.1 Competition

To further corroborate the role of limited mobility in affecting loan pricing, I study how
my results of limited pass-through and history-dependence depend on the ability of a firm
to switch bank. I measure this ability using branch data at the municipality-level: for each
firm, I construct the market share of branches of their bank in the municipaility where they
are headquartered. I find that when firms have limited outside banking options loan pricing
exhibits weaker pass-through and stronger history-dependence, consistent with the idea that
limits to firm mobility are crucial to explain loan pricing. Results from this exercise are
reported in Appendix A.3.

3.4 Switching and Pricing Reconnect

Due to limited pass-through and history-dependence, deviations of loan rates from their
competitive pricing benchmark, which I refer to as pricing wedge Rwedge

f t = Spread f t −PD f t ,
can accumulate over the course of a relationship. I now show that a substantial fraction of
such wedge is closed upon switching. For example, suppose that a firm is currently paying
a spread above its default risk, perhaps because it has become significantly safer since the
start of its relationship. Then, by switching to a new bank, such firm would benefit from a
substantial rate reduction.

To establish this fact, I regress changes in loan spreads against the magnitude of the
prior loan pricing wedge Rwedge

f τ
, where τ captures as usual the time at which the firm last

borrowed:

∆Spread f t = α +β1Rwedge
f τ

+ ε f t (4)
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Figure 2: Scatterplot of changes in loan spread (y-axis) and loan pricing wedge in the prior loan (x-axis). The
prior loan pricing wedge Rwedge

f τ
is the difference between the loan spread and the default risk in the previous

loan taken out by the firm.

Results in Figure 2 show that upon separation over 90 percent of the previous pricing
wedge is closed. Instead, when a firm borrows from the same bank, only about 10 to 20
percent of such wedge is corrected, which suggests that these wedges are persistent within
relationships, consistently with the strong history dependence documented in section 3.3. A
regression version of this result is available in Appendix A.8.

3.5 Taking Stock of the Empirical Results

The case study outlined in Table 10 provides an effective summary of the loan pricing pat-
terns documented in this section.

When the firm stays with the same bank, the pass-through from default risk to lending
rates is small, and firm risk at the onset of the relationship with its bank is important for loan
pricing also in subsequent loans. Instead, when it starts borrowing from a new bank, the new
loan rate is closer to the competitive benchmark. Therefore, changes in default risk upon
separation are fully passed-through and, on top of that, a large fraction of the pricing wedge
in the previous relationship is corrected. Indeed, upon switching, the loan spread drops by
2.5%, which reflects both the 1% drop in risk and the correction of the 1.5% pricing wedge
in t2.
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t0 t1 t2 t3 t4
Bank 1 Bank 1 Bank 1 Bank 2 Bank 2

PD 5% 4% 3% 2% 3%
Spread 5% 5% 4.5% 2% 2%

Pricing Wedge 0% 1% 1.5% 0% 1%
∆PD - -1% -1% -1% 1%

∆Spread - 0% -0.5% -2.5% 0%

Table 10: Case study of loan pricing. The top two rows show the probability of default assessed and the spread
charged by the bank in any given period. The vertical line indicates a separation between the firm and the old
bank.

4 Model

In this section, I develop a general equilibrium model in which firms establish long-term
relationships with banks. This is motivated by two objectives. First, to rationalize the
empirical pricing patterns documented in the previous section, and to obtain new testable
predictions consistent with the insurance mechanism. Second, to study and quantify the
aggregate implications of relationship lending.

I formalize relationships as optimal long-term contracts, allowing banks and firms to
negotiate future credit terms, potentially leading to deviations from the zero-profit pricing
rule. The model introduces two key innovations compared to the existing literature on op-
timal contracts: first, it assumes that one-period debt is enforceable; second, it incorporates
switching costs that firms face when starting new relationships.

Debt enforceability refers to the ability of a court to liquidate the firm if it fails to repay
the bank. This means the bank can always force the firm to repay, even when it switches to a
new bank, as long as the firm has sufficient financial capacity. This does not prevent default,
which occurs when a firm is unable to repay, as banks cannot seize personal household
assets. All other aspects of the contract, including promises on future credit terms, are
subject to limited commitment: both parties can renege and establish a new relationship.12

For instance, if a firm promises to pay a high lending rate when a particular state occurs, it
may still seek lower rates from other banks when that state materializes. However, it remains
obligated to extinguish its debt with the old bank.

The assumption of enforceable one-period debt is not only realistic in many settings, but
also crucial from a technical standpoint. In standard bank-firm contracting models,13 the
concepts of lending rates and default are not explicitly defined; rather, only a sequence of

12I view these promises as informal and not legally enforceable— for instance, because courts may be
unable to verify the state that materializes, or more simply because it is very costly to write legal contracts for
each contingency.

13For instance, Cooley, Marimon, and Quadrini (2004), Albuquerque and Hopenhayn (2004), and Kovri-
jnykh (2013).
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state-contingent transfers is determined.14 Incorporating enforceable debt provides a clear
rationale for setting debt within relationships: debt plays a direct role when the bank and
firm separate, both on-path and off-path. By providing an explicit role for debt, lending rates
and default, I can naturally map my framework to the data and study how lending rates are
determined within banking relationships.

Switching costs reflect frictions that limit mobility in credit markets, such as red tape,
the sunk screening costs sustained by the bank, or the cost of traveling to a more distant
bank branch. In the model, switching costs play a critical role in determining the structure
of financial markets. I will show that as switching costs approach zero, the model con-
verges into a competitive credit market, where shocks are fully passed through to loan rates.
Conversely, with positive switching costs, deviations from complete pass-through can be
sustained, which enables optimal risk-sharing between banks and firms.

In Appendix B.6, I provide a detailed examination of each assumption’s assumption role
and how different assumptions map into different models in the literature. This overview is
succinctly summarized in Table 37 of Appendix B.6.

In the following sections, I formally describe the model setup and characterize the opti-
mal contract.

4.1 Setup

The economy features a continuum of heterogeneous firms and identical banks. Time is
discrete. The production side of the economy is standard: firms produce using a neoclassical
production technology y(z,k, l) = zkα lν , where z is the firm’s idiosyncratic productivity,
which follows an AR(1) process. They start their life with zero capital and debt, but can
accumulate both over time. Capital depreciates at rate δ , and investment is subject to convex
capital adjustment costs.

The financial side of the economy is more involved. When a firm enters the economy,
banks compete to start a relationship with them by offering long-term contracts, denoted
C . These contracts specify not only the current period’s credit terms, but also informal
agreements on future liquidation and credit decisions. As discussed in the previous sec-
tion, the key novelty lies in the commitment structure: contracts C are subject to limited
commitment, as both parties can terminate their current relationship, but firms remain li-
able to repay their outstanding debt b. Contracts are complex objects, detailing the firm’s
credit and investment policies for every history realization: C = {Qt(ht),bt+1(ht),kt+1(ht),

14Optimal contracts typically pin down the sequence of state-contingent transfers T (ht) = b(ht) −
Q(ht)b′(ht). Infinitely many combinations of {Q(ht),b(ht)}t could theoretically achieve such transfers. One
approach, in the tradition of DeMarzo and Sannikov (2006), is to identify ex-post which securities can im-
plement these transfers. Alternatively, physical capital is sometimes used to represent debt, but this approach
is inherently limited to stylized environments where (i) capital is non-durable, meaning the firm begins each
period with no capital, and (ii) the firm cannot retain earnings, so it starts each period without savings.
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lt(ht),dt(ht),Exitt(ht)}ht ,t>t0 . Here, Q is the lending rate, b is the borrowed amount, k is
physical capital, l is labor, d represents dividends, and Exit indicates a recommendation to
liquidate the firm. Debt and capital have a (t +1) subscript because they are predetermined
upon meeting with the bank. Contracts are summarized by the promised value v to the firm.
New firms select the contract with the highest promised value from those offered by banks.

Incumbent firms are matched with a bank. At the beginning of each period, a firm’s state
is captured by (z,b,k,v), where z denotes productivity, b is debt, k is capital and v is the
promised value summarizing the contract C with the bank. For notational convenience, I
denote by s = (z,b,k) the triplet of productivity, debt and capital of the firm. This (s,v)

notation is useful because the firm’s outside option will solely depend on s, while v repre-
sents the implicit promises exchanged with the current bank, which become irrelevant in the
event of a separation. Each period, a fraction θ of randomly selected bank-firm matches is
terminated exogenously, leading the firm to search for a new lender in the banking market.
When separation occurs in state s, either endogenously or exogenously, the firm receives
value vm(s) while the bank obtains value bm(s). These values are endogenously determined
by the free-entry condition for new banks to start relationships, but for now it is easier to
consider them as given functions.

Switching decision. At the beginning of each period, when a match is not exogenously
terminated, both parties can decide to either honor their implicit agreement and continue the
relationship, or to form a new one. If a firm switches, it must repay its debt b to the old bank,
and simultaneously start a new relationship. Doing so, the firm obtains value vm(s) minus a
switching cost ψ f . Similarly, the bank can choose to renege on its past promises and enforce
repayment of debt b. Deviating banks incur a penalty ψb, which can be interpreted either
as a reputation cost, a sunk screening cost for starting a new relationship, or as the loss of
profits from cross-selling multiple products to the firm, such as deposits. I will later discuss
in greater detail the situation in which the firm is insolvent, meaning that it is unable to repay
b without the support of its current bank. Firms can also exit costlessly and obtain a value v,
in which case they are not liable for their legacy debt b. Setting v ≥ 0 ensures that the firm’s
equity stays non-negative. If neither party opts to deviate, they adhere to the terms of their
contract, which specifies a liquidation choice and credit policy in the event of continuation.

The timeline of the model within each period is summarized in Figure 3.
Recursive Formulation. I solve the problem using a recursive formulation, following

Spear and Srivastava (1987): solving for the optimal long-term contract can be reduced to
a sequence of static problems. Starting from state s = (z,b,k) and promised value v, the
bank chooses how to optimally deliver value v to the firm. I impose participation constraints
(PCs) when choosing tomorrow’s values v′(z′). Therefore, at this stage we can focus on
finding how the bank can best deliver value v to the firm, without worrying whether v is
incentive-compatible.
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Figure 3: Timeline of each period. A bank-firm match starts with state s = (z,b,k) and with a
promised value v, which summarizes the liquidation and credit policy today and in all future his-
tories. The bank can always end the relationship, but incurs a cost ψb. Separating firms can either
start a new relationship, incurring a cost ψ f , or exit costlessly.

Liquidation decision. The first decision of the period is whether to shut down the firm.
If the firm is liquidated, the bank recovers a fraction λ of its capital, and a cash transfer
is used to settle the remaining promised value (v − v), if positive. The bank’s value in
liquidation is thus: λk − (v − v). Alternatively, the bank can choose to continue to the
production phase and obtain a value WP(s,v), defined below. The beginning-of-period value
W (s,v) is thus defined as follows:

W (s,v) = max{WP(s,v),λk− (v− v)}

Production Phase. If a bank-firm match reaches the production phase with state s =
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(z,b,k) and promised value v, the bank faces the following problem:

WP(s,v)︸ ︷︷ ︸
Bank value

= max
Q,b′,k′,{v(z′)}

b−Qb′︸ ︷︷ ︸
Bank flow

+β (1−θ)Ez′|z[W (s,v′(z′))]+βθEz′|z[b
m(s′)]︸ ︷︷ ︸

Bank cont. value

Subject to:

d︸︷︷︸
Dividend

+β (1−θ)Ez′|z[v(z
′)]+βθEz′|z[v

m(s′)]︸ ︷︷ ︸
Firm cont. value

≥ v (µ: PK)

v(z′)︸︷︷︸
Promised value

≥ v︸︷︷︸
Exit value

(g(z′): PC-Exit Firm)

v′(z′)︸ ︷︷ ︸
Promised value

≥ vm(s′)︸ ︷︷ ︸
Firm outside value

− ψ
f︸︷︷︸

Switching cost

(η(z′): PC-Mkt Firm)

W (s′,v′)︸ ︷︷ ︸
Implied bank value

≥ bm(s′)︸ ︷︷ ︸
Firm outside value

− ψ
b︸︷︷︸

Switching cost

(q(z′): PC-Mkt Bank)

Where the budget,15 is:

py∗(z,k,w)− f︸ ︷︷ ︸
Out put

= (k′− (1−δ )k+Φ(k,k′))︸ ︷︷ ︸
Capex

+ (b−Qb′)︸ ︷︷ ︸
Net Repayment

+d(1+ τ1d<0)
−1︸ ︷︷ ︸

Dividends

(5)

The bank’s objective is to maximize the sum of its cash-flow today (b−Qb′) and its con-
tinuation value, which depends on the exogenous separation probability θ . This is achieved
by choosing the lending rate Q, the debt level b′, the installed capital k′, and future value
promises to the firm {v′(z′)}, contingent on each shock realization z′. Several constraints
define this problem. First, the promise-keeping constraint (PK): the bank must deliver the
promised value v to the firm, through either dividends d or future promised value. Addition-
ally, the participation constraint (PC) requires that all promises {v′(z′)} must be incentive-
compatible. The firm must prefer to comply with the contract rather than exit the market
or start a new relationship. The bank must prefer to comply rather than terminate the rela-
tionship and enforce the repayment of the debt. I next describe in greater detail the outside
options of banks and firms.

Outside Options and Firm Solvency. In equilibrium, vm(s) and bm(s) are determined
endogenously in the market for new relationships. At the beginning of this section, I briefly
discussed the case of an entrant firm, that by definition has zero legacy debt (b = 0) and no
old bank. This will no longer be the case when an incumbent firm enters the banking market,

15In Section 7.2 I will cast the model in a New Keynesian framework to study monetary and fiscal policy.
There, the price at which firms sell their output, p, will play a key role. For now, it suffices to know that it is a
constant equal to p = γnk−1

γnk
, where γnk is a markup term of the retailers that purchase the output of the firms.

For theoretical purposes, when studying the steady state we can simply consider γnk →∞, which implies p= 1,
and is equivalent to assuming that firms directly produce the final good. The markup γnk is the only element of
the New Keynesian block that is relevant for the steady state and the contracting problem.
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making the problem more complex. I now formally outline the functioning of the banking
market for a generic firm, which will nest the case of entrant firms with b = 0 as a special
case.

Ultimately, the solution for bm(s) will be straightforward. For a solvent firm, bm(s) = b,
as the bank recovers its outstanding loan. Instead, if the firm is insolvent, the bank cannot
recover the full amount, leading to bm(s) < b. I will now outline the contracting protocol
that results in this outcome.

If the bank and the firm separate, they face competitive banks offering contracts to attract
the firm. In standard models, contracts are typically summarized by a promised value (e.g.,
V ), but in the banking context of my model the situation is more complex because there
are three parties involved: the new bank which is posting the contract, the firm, and the
old bank. As a result, contracts posted by a new bank are summarized by a pair {B,V},
where B represents the monetary transfer to the old bank used to settle the legacy debt b,
and V denotes the promised value to the firm. Because of perfect competition to start new
relationships, the new bank must break even: its value from starting the new relationship
must equal the monetary transfer to the old bank, W (s,V )−B = 0. However, for each state
s many combinations of {B,V} may satisfy this zero-profit condition, and could thus be
offered by new lenders.

Which party, the firm or the old bank, chooses which contract to pick among those posted
by new banks? I make an assumption that is arguably quite natural and ensures that the
model converges into the competitive market case as switching costs approach zero. Specif-
ically, if there are contracts that offer B ≥ b, the firm is considered solvent and is free to
select the contract with the highest V among those that provide B ≥ b to the old bank. Con-
versely, if no contract offers B ≥ b, the firm is deemed insolvent and it is captive of the old
bank. In this case, the old bank chooses the contract with the highest B.

Let b(s) represent the maximum amount that new banks would be willing to pay the old
bank, by making the firm indifferent to exit or continue:

b(s) =W (s,v)

Solvent firms have b ≤ b(s), as the amount they can raise from a new bank is sufficient to
repay their legacy debt. The value these firms can achieve by starting a new relationship
solves:

W (s,v(s)) = b

Firms with b > b(s) are insolvent. In this case, the old bank can pick the contract with
the highest B, which equals b(s), and delivers value v to the firm. I make the additional
assumption that in the event of insolvency, the old bank only recovers a fraction γsep of this
amount, resulting in b

m
(s)= γsepb(s), with the remaining fraction representing a deadweight
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loss. This bankruptcy cost introduces an external finance premium and is a crucial financial
constraint that prevents firms from reaching the first-best level of capital.

Imposing γsep < 1 in models with debt is standard to prevent costless renegotiation.16 I
provide additional details on this assumption in Appendix B.6, and I formalize how to add
such bankruptcy costs also within a match in Appendix B.4, which is important for both
quantitative and theoretical reasons.17

The resulting equilibrium outside values are summarized as follows:

vm(s) =

 v(s) if b(s)≥ b

v if b(s)< b
(6)

bm(s) =

 b if b(s)≥ b

γsepb(s) if b(s)< b
(7)

where b(s) =W (s,v) and W (s,v(s)) = b.

4.2 Household and Equilibrium

The representative household owns all the firms and the banks in the economy through a
mutual fund. The household’s preferences over consumption and labor are described by the
following utility function:

U = ∑
t

β
tE
[C1−σ

t

1−σ
−ψLLt

]
(8)

The consumption-saving problem determines the stochastic discount factor Λt+1 = β
C−σ

t+1
C−σ

t
,

which in steady state simplifies to Λ = β .
Denoting as usual s = (z,b,k), an equilibrium consists of value functions W (s,v) and

WP(s,v); decision rules for capital k′(s,v), debt b′(s,v), dividends d(s,v), labor l(s,v), and
contractual promises contingent on the idiosyncratic state v′(s,v;z′); a measure of bank-firm
matches µ(s,v); and prices w, p, such that (i) all contracts are written optimally, (ii) the
household optimizes, (iii) the steady state distribution is consistent with decision rules, and
(iv) the labor, asset and good markets clear.

For most of the paper, I will focus on the steady state of the economy described above.

16For instance, setting γsep = 1 would lead to the unrealistic scenario in which firms choose excessively
high debt levels b′, only to renegotiate them costlessly in most states, effectively making debt a contingent
instrument.

17For quantitative reasons, having bankruptcy costs only in the event of separation imply that such financial
friction only bites with probability θ , the exogenous separation rate. When θ is small, the model converges
into the first best case. From a theoretical viewpoint, the proof the model converges into a competitive market
as switching costs approach zero only holds if either γsep = 1 or γsep = γcont , as both conditions ensure that
there is no intrinsic difference between the old and the new bank.
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Then, in Section 7.2, I will define the equilibrium with aggregate shocks and nominal rigidi-
ties to study how relationships affect the economy’s response to monetary and fiscal policy.
The steady state equilibrium is the special case of this more general economy when there
are no aggregate shocks.

5 Equilibrium Characterization

In this section, I outline the key analytical results characterizing loan pricing within rela-
tionships.

5.1 Optimality Conditions

To appreciate the optimality conditions, it is useful to recall the notion of the marginal
value of a dollar for the firm. This is also referred to as the shadow value of equity and
corresponds to Tobin’s marginal q when there are no adjustment costs of capital. Because
of financial frictions (equity injection costs and bankruptcy costs), firms may value one
additional dollar of funding differently: constrained firms value dollars more. The shadow
value of equity, denoted by ξ , ranges from 0 to the cost of equity injections, τ . When the
firm is unconstrained and distributes dividends, ξ = 0. If ξ > 0, the firm is constrained and
does not distribute dividends. The value of ξ is bound above by τ , since a larger value would
lead firms to immediately inject equity until sufficient funds are raised to restore ξ = τ . If
τ approaches infinity, raising equity becomes prohibitively costly, effectively imposing a
constraint d ≥ 0, with ξ acting as the Lagrange multiplier for this constraint.

The optimality condition for Q links the shadow value of equity ξ to another notion of
financial constraint: the Lagrange multiplier on the Promise-Keeping (PK) constraint µ .
These two are related as follows:

µ = 1−ξ (9)

The above equation, though tautological when understood, connects theories of firm dy-
namics with financial frictions—such as those of Khan, Senga, and Thomas (2014) and
Ottonello and Winberry (2020)—with bank-firm contracting models, as in Albuquerque and
Hopenhayn (2004) and Kovrijnykh (2013). The Lagrange multiplier µ on the promise-
keeping constraint is the slope of the Pareto frontier (µ = −∂W (s,v)

∂v ), and indicates the cost
for the bank of providing one additional dollar of value to the firm. Constrained firms with
ξ > 0 lie on the non-diagonal part of the Pareto frontier, meaning that it only takes µ < 1
dollars from the bank to generate one dollar of value for the firm.

Choice of state-contingent promises vvv′′′(((zzz′′′))). The choice of state-contingent promises
v′(z′) is central to the risk-sharing problem, as it summarizes the promises for future lending
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rates and credit quantities across all histories following the realization of state z′. How are
these choices optimally made within a relationship? The optimal contract aims to keep the
firm’s shadow value of equity constant across time and states. Formally, the choice for v′(z′)

solves:18

ξ
′(z′) = ξ − η(z′)︸ ︷︷ ︸

Firm-Mkt PC

+q(z′)(1−ξ
′(z′))︸ ︷︷ ︸

Bank PC

(10)

When neither Participation Constraint is binding, it is optimal to set v′(z′) such that ξ ′(z′) =

ξ . If ξ ′(z′) > ξ , then the bank could improve its profits by delivering more value to the
firm (e.g., through lower rates) in state z′ tomorrow, when the firm’s valuation of a dollar
is higher, in exchange for higher rates today. However, ξ ′(z′) > ξ could be optimal if the
bank’s PC binds in state z′, as the bank may be unable to credibly offer better terms in state
z′. Conversely, ξ ′(z′) < ξ is optimal only if the firm’s PC binds in state z′, meaning that
harsher conditions in that state would lead the firm to separate.

Figure 4 illustrates the choice of v′(z′). The left panel shows an S-shape typical of an
insurance setting: firms receive a high value v′(z′), compared to their outside option vm(s′),
when productivity z′ is low, and a low value when productivity is high. The magnitude of
such insurance is bound above by the bank’s PC, and below by the firm’s PC. In the left
panel, the upper PC is not flat because it is expressed in terms of bank value rather than
firm value, and the ”exchange rate” between bank and firm value units, µ , varies across
states—which is what makes insurance valuable in the first place.

On the right panel, the same policies are expressed in terms of bank value rather than
firm value, which causes the firm’s PC to appear curved.

Figure 4: Visualization of the policy function for state-contingent promises, expressed in terms of firm value
in the left panel and bank value in the right panel.

Choice of debt bbb′′′ and capital kkk′′′. Debt b′ is crucial, as it influences the outside options
vm(s) and bm(s). First, in the event of exogenous separation, b′ dictates how value is split

18Note that I am normalizing the true Lagrange multipliers to have cleaner optimality conditions. The
Lagrange multiplier on the Bank PC for state z′ is β (1−θ)τ(z′|z)q(z′). Similarly for g(z′) and ηsep(z′).
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between the old bank and the firm in the banking market. Second, by altering the outside
values, b′ affects the set of enforceable promises v′(z′). High debt b′ reduces vm(s), making
it easier to retain the firm even for low values of v′(z′). Conversely, it raises bm(s), which
might tempt the bank to terminate the relationship unless W (s,v′(z′)) is large enough. Thus,
the model uncovers a new role for bank debt as a retention device.

The choice of capital k′ integrates standard elements, the trade-off between investment
costs and increased production, with the retention role of debt described earlier, which
emerges because also capital affects the outside options. The optimality conditions for both
variables are reported in Appendix B.7.

5.2 Relationships and Loan Pricing Disconnect

I now outline the core results on loan pricing within relationships. Throughout this section,
I focus on the case of solvent firms,19 and defer the treatment of insolvent firms to Section
5.4.

To understand loan pricing, it is useful to first illustrate two benchmarks. The first,
Qzero,w, is the zero-profit rate that makes the bank break-even by engaging in the relationship
from the current period onward:

Qzero,w = β
Ez′|z[w′(z′)]

b′

where w′(z′) = W (s′,v′(z′)) for brevity. This rate fully accounts for default risk and
endogenous recovery rates, and also incorporates any profits or losses the bank expects to
make in subsequent interactions with the firm according to their contractual promises.

The second benchmark, Qzero,b, is the zero-profit rate that would make a bank break-even
by engaging in the relationship for the current period only, ignoring future interactions with
the firm:

Qzero,b = β
Ez′|z[bm(s′)]

b′

= β

[
(1−PD)+PD×Ez′|z[b

m(s′)/b′|De f ]
]

where PD = P(b(s′) < b′). If the endogenous recovery rate is always zero, then Qzero,b

simplifies to β (1−PD).
We can interpret Qzero,b as the lending rate acceptable to a secondary-market investor

purchasing a single loan from a bank (e.g. a CLO investor) who will not benefit from future
interactions with the firm.

19Firms with b ≤ b(s), and thus bm(s) = b.

34



The two benchmarks are inherently connected: in Appendix B.2, I show that Qzero,w

converges into Qzero,b as switching costs approach zero.
Next, I leverage these benchmarks to characterize loan pricing within a relationship. The

following propositions assume that the exogenous separation rate θ is zero. This assumption
is not essential, but simplifies the results. I provide the full expression for the general case
in Appendix.

Proposition 1. Consider a firm in state s = (z,b,k) that is solvent (b(s) ≥ b). The equilib-

rium loan rate is given by:

Q = β
Ez′|z[w′(z′)]

b′︸ ︷︷ ︸
Qzero,w

+
bm(s)−w

b′︸ ︷︷ ︸
χ: subsidy

(11)

where w′(z′) =W (s′,v′(z′)) and w =W (s,v) for brevity.

Proof: See Appendix B.1.

The pricing equation in Proposition 1 summarizes loan pricing within a relationship. The
rate Qzero,w would make the bank break-even, accounting for future interactions with the
firm. Deviations from this benchmark can occur due to past promises. For instance, if the
bank committed to favorable terms for the firm, accepting a value w lower than its outside
option bm(s),20 then we would obtain Q > Qzero,w.

Equation (11) offers a concise representation of the loan pricing disconnect. However,
when considering the intertemporal dimension of risk-sharing along the relationship tenure,
it is useful to further decompose Q into Qzero,b and Qzero,w, as shown in the following Corol-
lary.

Corollary 1: The equilibrium loan rate can also be expressed as:

Q = β
Ez′|z[bm(s′)]

b′︸ ︷︷ ︸
Qzero,b

+ β
Ez′|z[w′(z′)−bm(s′)]

b′︸ ︷︷ ︸
Qzero,w−Qzero,b: intertemporal subsidy

+
bm(s)−w

b′︸ ︷︷ ︸
χ: subsidy

(12)

The intertemporal subsidy in Equation (12) captures deviations from the zero-profit con-
dition on today’s loan, in either direction, that the bank expects to make up for in subsequent
interactions with the firm. For instance, in the quantitative results, I will show that banks
provide cheap loans early in the relationship, when the firm is more constrained, in ex-
change for higher rates later. When focusing on Equation (11) alone, we would miss this
result because the first loan in a relationship is always given at Q = Qzero,w, due to perfect

20Here, since we are focusing on solvent firms, we have bm(s) = b: the outside option for the bank is simply
to enforce the repayment of b.
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competition to start new relationships. However, when examining individual loans through
Equation (12), we can see that even in the first loan it is possible that Q ̸= Qzero,b, as the
bank has to break-even over the course of the relationship, not just on the first loan.

5.3 Competitive Lenders Limit

In this section, I analyze the model in the extreme case of zero switching cost (ψ f ,b → 0).
Proposition 2 shows that, in this scenario, the optimal contract converges into the simpler
case of competitive credit markets, and shocks are fully passed-through to loan rates. Intu-
itively, any promise on future credit conditions other than what would prevail in a competi-
tive market becomes unenforceable. The proof concept relies on showing that zero switch-
ing costs imply v(z′) = vm(s′). As a result, all the flexibility coming from state-contingent
promises summarized by v(z′) is lost, and the values in each state are determined directly
from the choice of the non-contingent debt b′, together with z′ and k′.

Proposition 2. Suppose that switching costs approach zero (ψ f ,b → 0). Consider a firm in

state s = (z,b,k) that is solvent (b(s)≥ b). Then, the optimal contract prescribes that loans

are priced competitively:

Q = β
Ez′|z[bm(s′)]

b′︸ ︷︷ ︸
Qzero,b

That is,

Q = β

[
(1−PD)+PD×Ez′|z[b(s

′)/b|De f ]
]

(13)

where PD = P(b(s′)< b′).

Furthermore, the allocations are identical to those in an economy where firms face lenders

offering competitive pricing schedules each period, solving the following problem:

VP(s) = max
b′,k′,d

d +βEz′|z[V (s′)]

Subject to:

Qb′ = βEz′|z[b
m(s′)] (µ−1: PK-Bank)

and the usual budget constraint.

Proof: See Appendix B.2.

Proposition 2 shows that as switching costs approach zero, the contracting framework
described in Section 4 becomes a redundant description of a spot-competitive credit market,
like the one in Cooley and Quadrini (2001). This convergence applies both to loan pricing
and equilibrium allocations. Furthermore, Proposition 2 highlights that the zero-profit loan
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schedule in that class of models can be viewed as the limiting case of a promise-keeping
constraint in a long-term contract with outside options.21

So far, I have focused on solvent firms. The results in Propositions 1 and 2 extend to
insolvent firms when insolvency is resolved through restructuring of the legacy debt. In the
next subsection, I will discuss an alternative hypothesis in which insolvency is resolved by
the bank through the issuance of a new subsidized loan. This will clarify the distinction
between insurance and evergreening.

5.4 Insolvent Firms and Evergreening

In this section, I examine the case of insolvent firms, where debt b is larger than repay-
ment capacity b(s). When a firm is insolvent, exit is not always optimal, as the lender may
prefer to keep the firm operational in expectation of future repayments. In such cases, we
must specify how insolvency is resolved. For my main quantitative results, I assume that
insolvency is addressed by reducing debt from b to b(s), as in Cooley and Quadrini (2001).
Under this assumption, the theoretical results from Sections 5.2 and 5.3 extend to insolvent
firms. Alternatively, the bank could demand the full repayment of b, but simultaneously
offer a new subsidized loan, thus engaging in evergreening. In my framework, the choice
between restructuring and evergreening is merely an accounting one, and does not affect
allocations.22 The notion of evergreening as implicit debt restructuring is recently explored
in Martin, Mayordomo, and Vanasco (2023) and Faria-e Castro, Paul, and Sánchez (2024).

If we assume that insolvency is resolved through loan evergreening, a disconnect from
competitive loan pricing can emerge even in the absence of switching costs, but it would be
confined to insolvent firms. This result is detailed in the next proposition.

Proposition 3. Suppose that switching costs are zero (ψ f ,b → 0). Consider a firm in state

s = (z,b,k) that is insolvent (b(s)< b). Then, under loan evergreening, the optimal contract

prescribes that the firm receives a subsidized loan:

Q = β
Ez′|z[bm(s′)]

b′︸ ︷︷ ︸
Qzero,b

+
b−bm(s)

b′︸ ︷︷ ︸
Evergreening

(14)

Furthermore, the loan subsidy equals the capital loss the bank would incur if selling the

21To see this more clearly, in Proposition 3 I have outlined the dual formulation of the problem, where the
firm maximizes its value subject to a Bank PK constraint, rather than the opposite.

22This is also the case in Martin, Mayordomo, and Vanasco (2023), as the firm’s size is fixed. Instead, in
Faria-e Castro, Paul, and Sánchez (2024), evergreening can cause distortions because the firm can borrow any
amount at the posted Q. This does not happen in my model, as I allow banks and firm to contract on both rates
and quantities.
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loan on the secondary market:

Qb′−βEz′|z[b
m(s′)]︸ ︷︷ ︸

Loan Subsidy

= (b−bm(s))︸ ︷︷ ︸
Capital Loss

(15)

Proof: See Appendix B.3.

Proposition 3 clarifies the conceptual difference between insurance and evergreening. In
Proposition 1, a disconnect from competitive pricing arises as an insurance mechanism when
w ̸= bm(s), where w =W (s,v) is the value the bank obtains by honoring past promises, and
bm(s) is its outside option. This difference benefits one party, either the bank or the firm, but
harms the other. Thus, it can only be sustained with positive switching costs, which enforce
the commitment to the original terms. In contrast, Proposition 3 shows that evergreening oc-
curs when b ̸= bm(s), and specifically when b > bm(s), indicating insolvency. Evergreening
does not require imperfect mobility, as providing a subsidized loan is in the bank’s interest
to avoid the firm’s exit.

In Appendix B.9, I show that when insolvencies are resolved through loan evergreening,
the model displays limited pass-through from default risk to loan rates but minimal history-
dependence, which contradicts empirical evidence. Positive switching costs, combined with
the insurance mechanism, are needed to deliver large history-dependence. I examine the
quantitative performance of the model in the next section.

6 Quantitative Results

In this section, I illustrate the model’s calibration and evaluate its ability to explain the
empirical loan pricing patterns documented in Section 3. I then derive and empirically
validate new predictions for loan pricing, about when firms should receive cheap loans and
when they should be tempted to switch to a new bank.

6.1 Calibration

I divide the parameters into two groups: fixed, which I either calibrate from the literature
(household parameters) or externally estimate using Mexican Orbis data (firm parameters),
and internally calibrated, which I estimate to match key moments from the data through the
lens of the model.
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6.1.1 Fixed Parameters

The fixed parameters are reported in Table 11. I calibrate the economy to the annual fre-
quency, aligning with the firm-level balance sheet from both Orbis and the credit registry.
This also approximates the average loan maturity in the data. I set the discount factor to
β = 0.96, corresponding to a real rate of 4 percent in the steady state.

For the firm-specific parameters, I set α = 0.25 and ν = 0.5, which yield a labor share of
two-thirds and total returns to scale of 0.75, consistent with Ottonello and Winberry (2020),
Jeenas (2018), and Cooper and Ejarque (2001). I set the depreciation rate to δ = 0.17,
matching the average investment rate of firms in Mexico, and the separation rate at θ = 0.1,
matching its empirical counterpart.23 I estimate the TFP process externally, using Orbis data
from Mexico, as detailed in Appendix B.10.2.

Parameter Description Value Target

Household
β Discount factor 0.96 Real rate 4%
σ EIS inverse 2 Macro literature
φL Labor Disutility 1.57 Employment rate 0.6

Firm
α Capital coefficient 0.25 Capital share one-third
ν Labor coefficient 0.5 Returns to scale 0.75
δ Depreciation 0.17 Orbis mean investment Rate
θ Exogenous separation 0.1 Separation rate in R04
TFP Process
ρz Persistence 0.881 Estimated in Orbis
σz Volatility 0.152 Estimated in Orbis

Table 11: Fixed and externally estimated parameters.

6.1.2 Internally Estimated Parameters

I estimate the remaining parameters to match several moments from Mexican micro-data,
which are reported in Table 12. The key moment is the pass-through of default risk to loan
rates within relationships. I choose to target a value of 0.35 for this pass-through, at the
conservative end of the estimates from Section 3. Before returning to the pass-through, I
briefly review the other targeted moments, which pertain the firm equilibrium distribution.

Targeted moments. Most of the moments I estimate using Mexican microdata are stan-
dard in the firm dynamics literature. One exception is the elasticity of default risk to sales.
This elasticity is crucial as it captures when firms are constrained: a positive value would

23Notice that, as shown in Appendix B.2, this parameter is irrelevant for loan pricing in the limit when
switching costs are zero. The key parameters affecting loan pricing are the switching costs ψ f ,b.
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suggest that firms are more constrained when their sales increase, as they need to borrow
to expand. Instead, the negative empirical estimate suggests they are more constrained as
sales decline, as their financial resources are depleted. Introducing capital adjustment costs
is pivotal to match this moment, as they make it costly for firms to downsize when their
sales decline—preventing them from deleveraging—and suboptimal to expand too quickly
as sales grow. Matching this moment is important for loan pricing in the model, because
firms that are more constrained tend to receive cheap loans from the bank.24

Average default risk is high in the data, and it is well known that AR(1) TFP shocks
alone often fail to match this moment. However, incorporating fixed operating costs and
capital adjustment costs significantly raises average default risk without the need to add new
shocks.25 The TFP disaster causing firm productivity to drop to zero permanently is akin to
an exogenous exit shock, but is represented more compactly as an endogenous choice.26 It
serves a dual role. First, it ensures the stationarity of the model. Second, it also increases
default risk, even though it does not always lead to default, as firms with little debt are able
to satisfy their creditor by liquidating capital.

Moment Description Data Model

Loan Pricing
PT (∆R,∆PD) Risk pass-through stayers 0.35 0.39

Firm Constraints
Ei[PD] Mean default probability 0.08 0.09
Ei[D/π] Mean payout ratio 0.26 0.37
Ei[b/k] Median leverage 0.48 0.31

Sales
ε(∆PD,gs) PD-sales elasticity -0.07 -0.06
Ei[v/(k−b)] Median market-to-book Ratio 1.51 2.31
Exit rate Firm exit rate 0.085 0.087

Investment
corr(I/K, I/K) Investment autocorrelation 0.11 0.17
Frac(I > 0) Fraction of positive investments 0.75 0.61

Table 12: Matched moments. The parameters in Table 13 are estimated to match the empirical moments in
the Data column. PT (∆R,∆PD) is the pass-through from default risk to loan spreads.

24Failing to match this moment would imply that firms are more constrained when their sales increase,
and thus banks would try to help these firms. It would also imply that banks would potentially raise the
pass-through of monetary policy shocks above one, since after a policy hike firms could simply downsize,
deleverage and become less constrained.

25For instance, Ottonello and Winberry (2020) add capital quality shocks. Adding new shocks is com-
putationally much more expensive than in typical heterogeneous firms models: since agents write contracts
contingent on the realization of each shock, new shocks raise the number of choice variables exponentially.
Therefore, generating default risk through other mechanisms is preferable.

26While exit in the model is always endogenous, all firms that receive the TFP disaster shock choose to exit
in my calibration.
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Switching costs and pass-through. The key parameters I aim to estimate are the switch-
ing costs, which I assume to be equal for banks and firms in my estimation (ψ f =ψb). These
are identified by the pass-through of default risk to loan rates. The identification strategy is
illustrated in Figure 5, which shows the pass-through of default risk for stayers and switch-
ers in the model. In the figure, I hold all parameters at their estimated values while varying
the switching costs ψ f ,b. On the left side of the plot, as switching costs approach zero, full
pass-through emerges and there is no difference between stayers and switchers, representing
a competitive spot market for loans. In this scenario, the pass-through is actually slightly
below 1, as it is proportional to β , which is 0.96 in my calibration.

Figure 5: This figure shows how switching costs affect the pass-through of default risk to loan spreads,
differentially for stayers and switchers. The pass-through is computed on simulated data as the regression
coefficient of ∆Spread f t = α +β∆PDw + ε f t , where default risk is defined as PDw = β −Qzero,w.

As switching costs increase, default risk pass-through declines sharply for firms that stay
with the same bank. To formalize the patterns in Figure 5, we can rearrange Equation (11)
as follows:

∆Spread = ∆PDw −∆χ (16)

where χ is the subsidy term defined in Proposition 1, and PDw = (β −Qzero,w) is the zero-
profit rate accounting for default risk. The limited pass-through can be understood as an
omitted variable problem: by regressing ∆Spread on ∆PDw, we are ignoring the subsidy
term χ , which might covary with the other terms in equilibrium.

In the next proposition, I leverage this insight to derive an analytical expression for the
pass-through.

Proposition 4: Suppose that β → 1. The pass-through of default risk to loan rates for
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stayers, obtained from regressing ∆Spread f t on ∆PDw
f t , is given by:

PT stayers = 1−
Cov(∆PDw

f t ,χ f t)

Var(∆χ f t)
+

Cov(∆PDw
f t ,χ f ,t−1)

Var(∆χ f t)
(17)

where χ = bm(s)−w
b′ is the subsidy defined in Proposition 1, PDw = (β −Qzero,w) is the zero-

profit loan spread accounting for default risk, and Spread = (β −Q) is the loan spread

actually charged by the bank.

The pass-through of default risk to loan rates for switchers is:

PT switchers = 1+
Cov(∆PDw

f t ,χ f ,t−1)

Var(χ f ,t−1)
(18)

Banks allocate subsidies to more constrained firms that have a high marginal valuation of
a dollar. Since firms with increased default risk are typically more constrained, the covari-
ance Cov(∆PDw

f t ,χ f t) in Equation (17) is positive, which reduces the pass-through of default
risk to loan spreads. When switching, new loan is priced competitively (Q = Qzero,w), but
the previous loan was not. Therefore, pass-through for switchers can differ from one if the
old subsidy term χ f ,t−1 covaries with ∆PDw

f t . Quantitatively, this term tends to be small and
positive, pushing the pass-through for switchers above one.

Parameter Description Value

Switching Costs
ψ f ,b Switching Costs 0.034
Production
hc Convex Adjustment Cost 0.85
f Fixed Production Cost 0.037
π0 TFP disaster 0.08

Financial Frictions
τ Equity Injection Cost 0.5
1− γ Bankruptcy Cost 0.125

Table 13: Estimated Firm parameters. The parameters in this Table are chosen to match the moments reported
in Table 12.

6.2 History-Dependence and Pricing Reconnect

I now evaluate the model’s performance in generating the two additional pricing patterns
documented in Section 3: history-dependence and the role of switching bank in closing the
prior loan pricing wedge.

History-Dependence. In the data, past risk assessments significantly predict loan pric-
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ing, even after accounting for current default risk. I replicate this analysis in the model by
regressing the spread charged by the bank on both the contemporaneous and the lagged de-
fault risk four periods in the past, matching the median relationship tenure. While the model
does not display as much history-dependence as observed in the data, it succeeds in gener-
ating a significant role for past risk. This success gets starker when comparing the model’s
performance with the case of perfect mobility,27 displayed in the last column of Table 14.

Data Model Model
ψ f ,b 0.034 0.00

Spread f t Spread f t Spread f t

PD f t 0.258∗∗∗ 0.571∗∗∗ 0.883∗∗∗

(0.068) (0.009) (0.001)

PD f 0 0.750∗∗∗ 0.327∗∗∗ 0.000
(0.057) (0.008) (0.000)

Table 14: History-dependence in the data (first column) and in the model (last two columns). The second
column contains the results from the model with positive switching costs, as estimated in Section 6.1.2. The
last column presents results for the model calibration with zero switching costs. Robust standard errors in
parenthesis.

Correcting Past Mispricings. In the data, switching to a new bank is associated with a
significant reversal of the prior pricing wedge, defined as Rwedge

f t = Spread f t −PD f t . Table
15 shows that the model successfully replicates this pattern, along with a more muted cor-
rection within relationships. Similar to the history-dependence results, the model falls short
of capturing as much persistence as in the data within relationships, but it does explain a
substantial portion.

Data Model
Spread f t Spread f t

Rwedge
f ,t−1 −0.936∗∗∗ −1.039∗∗∗

(0.009) (0.006)

Rwedge
f ,t−1 ×1SameBank 0.766∗∗∗ 0.252∗∗∗

(0.010) (0.006)

Table 15: The pricing wedge is defined as Rwedge
f t = Spread f t −PD f t , which captures the difference between

the actual loan rate and the one implied by competitive pricing.

In the next two sections, I leverage the model to obtain new predictions for loan pricing
27The coefficient on PD f t in the model with zero switching costs is slightly below one, reflecting the level

of β < 1 and possible numerical imprecisions that would bias the estimate downward.
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about when firms receive cheap loans and when they are tempted to switch to a new bank,
which I validate in the data.

6.3 Who Receives Cheap Loans?

In the model, banks offer cheap loans to firms when their marginal value of a dollar is high,
aiming to reduce inefficient fluctuations in the value of funding. Since the marginal value of
a dollar is not directly observable, testing the model’s mechanism is challenging. However,
we can assess whether the model captures the covariance between loan subsidies and other
observable firm characteristics.

Cheap loans and firm shocks. Dividend distributions are the most direct empirical
proxy for the marginal value of a dollar, since in the model constrained firms with ξ >

0 do not distribute dividends, which is consistent with evidence in Kaplan and Zingales
(1997). Additionally, I analyze how loan subsidies relate to sales growth and investment
rates. To this end, I compute the pricing residual as ∆Rwedge

f t = ∆Spreadit −∆PD f t , which
corresponds to the term −∆χ f t in Equation (16), and evaluate how this term covaries with
firm observables.

Data Model

Payout ratio 2.844∗∗ 1.317∗∗∗

(0.345) (0.017)

Sales growth 3.993∗∗∗ 1.694∗∗∗

(0.330) (0.009)

Table 16: Comovement of the residual pricing term Rwedge
f t with some key firm observables. The dividend

payout ratio is the ratio of dividends to earnings, sales growth is the log growth in sales compared to the
previous year.

As predicted by the model, firms that distribute dividends face higher lending rates, as
they are unconstrained, making it optimal to charge them more. Similarly, positive sales
shocks are associated with tougher conditions. Matching the negative elasticity of default
risk to sales, as documented in Section 6.1.2, is crucial for the success of the model to
capture this pattern: firms with declining sales become more risky and constrained, which
makes them more likely to receive loan subsidies.

Cheap loans by match tenure. I now turn to the model predictions for loan pricing
along the tenure profile. Figure 6 shows that in the model banks deliver cheap loans early
on in their relationship with the firm, anticipating the ability to charge higher markups later.
This form of intertemporal subsidy is optimal because firms are typically more constrained
when they are young, while financial frictions lessen as firms accumulate retained earnings.
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Data
Model

Figure 6: Pricing wedge Rwedge
f t = (Spread f t −PD f t) by match tenure (years since the beginning of the bank-

ing relationship).

The model is consistent with the frontloading of cheap funding observed in the data, as
shown in Figure 6. This partly contrasts with the literature on optimal contracts, which
typically emphasises backloading: payments to the firm are deferred, while payments to
the bank are frontloaded. In my model, there are two notions of backloading. The first,
common in the literature, pertains to cash flows. In this sense, the model aligns with the
literature, as dividends are backloaded and cash flows initially accrue to the bank. The
second notion, unique to my model, emerges from comparing loan rates to break-even rates,
as in Figure 6. According to this notion, loan rates are frontloaded: the firm benefits early
in the relationship, while high loan rate payments to the bank are deferred.

6.4 When Are Firms Tempted to Switch?

I now study when firms are tempted to switch to a new bank in the model. Notice that the
optimal contract is designed to prevent switching,28 but studying when firms are tempted to
switch—that is, when the firm participation constraint is binding—is still informative about
the motives for switching.

Figure 7 shows that in the model firms are tempted to switch when their default risk has
declined since the onset of their banking relationship. Intuitively, the insurance mechanism
is penalizing these firms, which may find it desirable to switch and see their improved risk
profile better reflected in their borrowing conditions. The data confirm this model prediction,
as firms with an improving risk profile switch more often.

28One possibility to achieve endogenous separation on-path would be to introduce some trembling, which
would require the firm switching cost ψ f to be both random and privately observed, which makes it non-
contractible, an approach used in Hopenhayn and Werning (2008) and Müller, Storesletten, and Zilibotti (2019)
to obtain default on-path.
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Data Model

Figure 7: Left plot: empirical switching rate by cumulative default probability change since onset of the
relationship (PDt−1 −PD0). The switching rate is residualized against firm-level characteristics (outstanding
credit, firm age). Right plot: fraction of firms tempted to switch (binding firm PC) by cumulative default
probability change since onset of the relationship.

6.5 Discussion of Alternative Theories

The model, which formalizes relationships as optimal long-term contracts with risk-sharing,
is consistent with all empirical results documented in Section 3: limited pass-through for
stayers and large pass-through for switchers, history-dependence, and pricing reconnect
upon switching switching. It also correctly predicts when firms should receive cheap loans
and when they are tempted to switch.

I now present and assess potential alternative explanations for the empirical findings.
While I do not aim to dismiss the existence of other mechanisms, I highlight that a risk-
sharing explanation is more likely to fully account for the empirical pricing patterns I have
documented.

Evergreening. A prominent theory which has received increasing attention after the
financial crisis is that banks may evergreen loans, providing cheap credit to ”zombie firms”
(Caballero, Hoshi, and Kashyap (2008)). My model provides, to my knowledge, the first
conceptual distinction of insurance and evergreening, which is formalized in Section 5.4.
Insurance emerges within relationships because banks provide cheap credit to constrained
firms to improve allocative efficiency, while evergreening arises when firms are insolvent
and banks continue lending at subsidized rates to prevent firms’ bankruptcy.

Leveraging this formalization of insurance and evergreening, I can assess their relative
performance in explaining the data. In the model, evergreening delivers limited pass-through
but shows minimal history-dependence, which contradicts the data. Indeed, papers that have
studied evergreening have looked at loan pricing in the cross-section (Artavanis et al. (2022),
Faria-e Castro, Paul, and Sánchez (2024)), documenting that firms with low profits or high
risk often obtain cheap credit. Instead, I look at loan pricing over time for the same firm
within relationships, and find evidence not only of limited pass-through, but also of strong
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history dependence. Furthermore, in the data, I find a muted pass-through of default risk
even when firms do not have loans maturing with their bank in the current or the three
subsequent months, which are cases in which evergreening concerns would be milder.

Market Power is often associated with limited pass-through from costs to prices.29 The
role of bank market power has been studied in the context of monetary policy transmis-
sion empirically (Berger and Udell (1992), Cao, Dubuis, and Liaudinskas (2023)) and the-
oretically (Hachem (2011), Rocheteau, Wright, and Zhang (2018), Drechsler, Savov, and
Schnabl (2017)). However, traditional market power frameworks do not deliver history-
dependence: banks set rates each period to extract as high rents as possible from their
borrowers. Implicit long-term contracts, on the other hand, are a specific way to model
imperfect competition, common in the labor literature, which can deliver both limited pass-
through and history-dependence. Two firms that may appear identical can still get different
borrowing rates from their bank depending on past promises and past conditions, so that the
bank is effectively leaving some money on the table when setting rates for one of the two
firms, which would never occur in static market power setups.

Information asymmetries are potentially important in banking. Because banks them-
selves report the risk assessments, clearly they are aware of the change in firm risk, so bank
ignorance cannot explain limited pass-through. However, the concern could be that limited
pass-through emerges because the assessment is noisy and banks rely on superior soft in-
formation, resonating with the arguments in Demiroglu, James, and Velioglu (2022). In my
data, I highlight five empirical observations which are at odds with the ability of this mech-
anism to explain my empirical results. First, under this theory, we would expect spreads to
have a superior explanatory power in predicting loan losses. Instead, in Appendix A.1, I
show that risk assessments seem to be more important for forecasting defaults. Second, an
information-based explanation would be incompatible with history-dependence, unless past
assessments have predictive power for defaults beyond current assessments, which I rule out
in Appendix A.1. Third, in Appendix A.2.2, I show that lending rates are also unresponsive
to changes in risk assessments due exclusively to the bank’s soft information, as reported
in the credit registry. This is direct evidence against the idea that banks respond to private
information more, although we cannot exclude that they respond to soft information which
is not incorporated into the assessments. Fourth, full pass-through emerges only as firms
are switching, and immediately after the new bank starts pricing with relational patterns.
This could only be compatible with information asymmetries if the new bank learns about
the firm very quickly. Fifth and finally, when firms switch to a new bank, a large fraction
of the previous pricing wedge is closed, as shown in Section 3.4. If the loan spread by the

29Loan market institutions, however, are very different from canonical monopolistic competition frame-
works, for instance because quantities and prices are typically contracted together, and because the source of
the shock is specific to the firm, not to the bank.
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bank was more reflective of its fundamentals than their risk assessments, then we would
not expect new lenders to bridge the gap between spreads and prior assessments. Indeed,
new banks can observe firms’ borrowing history through the credit registry, including their
borrowing rates, and could use this information for their loan pricing.

Anchoring. Finally, an alternative theory is that banks may simply stick to previous loan
terms to avoid renegotiating. This notion of anchoring has been proposed in Dougal et al.
(2015), and is compelling because it is the only alternative explanation compatible with
both limited pass-through and history dependence. Some behavioral anchoring is probably
present in the data, since around four percent of consecutive loans pairs have exactly the
same spread and almost twenty percent have the same loan rate. However, loan spreads are
ultimately far from anchored in my data, as the volatility of loan spreads is almost twice that
of default risk: they are simply disconnected from firm risk. This is compatible with my firm
dynamics setup, where insurance does not necessarily require flat lending rates, but rather
allocating markups optimally across states, in a way which can be empirically validated.
This ensures firms receive discounts from their bank when the value of having additional
dollars to invest in the firm is highest, which does not necessarily translates into perfectly
anchored loan rates.

7 Macroeconomic Implications

In this section, I study the aggregate implications of relationship lending. The model pro-
vides a clear framework for addressing this issue, since changing a single parameter—the
switching cost—shifts the economy from a competitive to a relational equilibrium.

In Section 7.1, I quantify the steady state welfare gains from relationship lending. Next,
in Section 7.2, I cast the model in a New Keynesian framework to study how relationships
affect the transmission of monetary and fiscal policy.

7.1 Steady state

To evaluate the role of banking relationships, I solve for the steady state under three cali-
brations, as shown in Table 17. I fix all parameters—except the switching costs—at their
calibrated values from Section 6, varying only the switching costs. First, I consider an
economy with competitive spot credit markets (ψ f ,b = 0). Second, the calibrated model
with relationship lending and positive switching costs (ψ f ,b = 0.034). Finally, a model with
perfectly complete capital markets, which serves as a benchmark to quantify the potential
gains from removing financial frictions. Perfect capital markets can be achieved by either
setting switching costs to infinity—which is equivalent to imposing full commitment on the
set of Arrow-Debreu securities—or by eliminating one of the two financial frictions (τ = 0
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to allow firms to raise equity, or γ = 1 to eliminate bankruptcy costs in debt markets).
I find that relationships reduce misallocation in the steady state relative to competitive

markets. To see this, consider the shadow value of equity ξ , which measures the marginal
value of one dollar invested in a firm. As the economy transitions to a relational equilibrium,
the average firm becomes less constrained. Furthermore, the dispersion across firms in the
value of a dollar declines sharply. The variance of ξ captures the potential gains in allocation
that a planner could achieve by redistributing resources across firms. Banks in the model
actively engage in this redistribution, realizing part of the potential allocative gains available
in competitive markets.

This improvement in allocation leads to increased consumption, capital, and output. In
the relational market, hours worked rise, whereas in the complete market economy they
fall sharply due to higher equilibrium wages. These results are summarized by comparing
the welfare of the representative household in equilibrium. In the economy with complete
markets, consumption-equivalent welfare is 2.51% higher than in the spot market economy,
which quantifies the welfare losses due to financial frictions. The calibrated model with
relationships accounts for over 10 percent of these gains, as welfare increases by 0.29%
compared to the model with spot markets. Therefore, higher switching costs raise equilib-
rium welfare in my economy.

Competitive Relationships Complete Markets
Commitment No Partial Full
ψ f ,b 0.0 0.034 ∞

Allocation
ξ 0.088 0.079 0.0

(-0.9 ppt)
Var(ξ ) 0.026 0.025 0.0

(-4.0%)
Aggregates
Capital 0.461 0.469 0.472

(+1.78%) (+2.40%)
Consumption 0.570 0.578 0.583

(+1.40%) (+2.28%)
Labor 0.589 0.600 0.584

(+1.86%) (-0.85%)
Welfare (CE) 0.00 +0.29% +2.51%

Table 17: This table shows how key macroeconomic aggregates respond to changes in the structure of financial
markets. ξ is the shadow value of equity. Var(ξ ) is the cross-sectional dispersion in the shadow value of equity.
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7.2 Macroeconomic Policy

In this section, I embed the model in a New Keynesian framework to study how banking
relationships affect the economy’s response to monetary and fiscal policy. This requires
some extensions to the setup described in Section 4, which I outline below.

7.2.1 Model extension with aggregate shocks

The extension of the optimal contract problem with aggregate shocks and inflation is de-
scribed in Appendix B.5. The main difference lies in the fact that contracts must now con-
dition also on aggregate shocks.30

New Keynesian Block. The New Keynesian block of the economy is standard and de-
signed following Ottonello and Winberry (2020) to interfere minimally with the rest of the
economy in steady state.

The heterogeneous firms outlined in Section 4 combine labor and the final good to pro-
duce an intermediate good, which they sell competitively at price pt to a fringe of mo-
nopolistically competitive producers. These transform the intermediate good with a lin-
ear production technology ỹ jt = y jt and sell their output to a final good producer, which

uses the production function Yt =
(∫

ỹ1−γ

jt

) 1
1−γ . The monopolistically competitive produc-

ers set prices for their output p̃ jt , but incur quadratic adjustment costs when changing prices:
φNK

2

(
p̃ jt

p̃ j,t−1
−1

)2
.

The advantage of this formulation is that it does not directly interferes with the already
complex heterogeneous firm block, but it generates a New-Keynesian Phillips curve:

logΠt =
γ −1
φNK

log
pt

p∗
+βEt logΠt+1 (19)

where p∗ = γ−1
γ

is the steady state level of pt , the price of the intermediate input produced
by the heterogeneous firms.

The central bank sets nominal interest rates according to the following Taylor rule: logRnom
t =

log( 1
β
)+φπ logΠt + εm

t , where εm
t ∼ N(0,σ2

m) is the monetary policy shock.
Equilibrium with aggregate shocks. An equilibrium consists of a set of value func-

tions Wt(s,v) and W P
t (s,v); decision rules for capital k′t(s,v), debt b′t(s,v), dividends dt(s,v),

labor lt(s,v), and contractual promises contingent on the idiosyncratic and aggregate state
v′t(s,v;z′,ε ′)); a measure of bank-firm matches µt(s,v); and prices wt , pt , Πt , Λt+1 such
that (i) all contracts are written optimally, (ii) the household optimizes, (iii) the evolution of

30Notice that aggregate shocks change outside options, but idiosyncratic shocks do as well since firms bring
their productivity to a new bank when they switch. This is different from recent models of relationships in
the labor market (Souchier (2022)), where only aggregate shocks, and not firm shocks, affect workers outside
options. This would be the case in my setting if there was a bank-specific shock.
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the distribution is consistent with decision rules, and (iv) the labor, asset, and good markets
clear.

In the absence of aggregate shocks, the problem reduces to the steady state defined in
Section 4.2, and the price sequence simplifies to pt =

γ−1
γ

, Πt = 1, Λt+1 = β . Consequently,
the New-Keynesian structure becomes irrelevant, and the time dependence in all value and
policy functions can be dropped.

Solution method. I solve the problem assuming that aggregate shocks occur with a near-
zero probability, which allows agents to write contracts contingent on the shock’s arrival, but
preserves computational tractability. I study the transition of the economy back to steady
state after receiving an aggregate shock. The solution method, which I describe in detail
in Appendix B.7.3, extends the sequence space approach in Boppart, Krusell, and Mitman
(2018), and in Auclert et al. (2021), to incorporate state-contingent contracts.

Calibration of the New Keynesian Block. I calibrate the New Keynesian parameters
using standard values from Kaplan, Moll, and Violante (2018) and Ottonello and Winberry
(2020). I set γ = 10, corresponding to an 11 percent markup in the steady state, the price
rigidity parameter to ψ = 100, implying a slope of the Phillips Curve of 0.1, and the Taylor
rule coefficient to φπ = 1.25.

7.2.2 Response to a monetary policy shock

I study the response to a 25 basis points monetary policy hike. Because long-term contracts
are contingent on the monetary policy shock, banks and firms negotiate credit conditions
following the rate hike in advance, potentially insulating firms from the shock. As for the
steady-state, I present the results for three economies: the competitive spot market with zero
switching costs, the relational economy with estimated switching costs, and the economy
with complete markets.

Figure 8 shows the response of two key financial variables: equity injections and the
fraction of firms in default. In the case of complete markets, both remain at zero. In the other
two economies, they differ sharply. As the rate hike makes firms more constrained, in the
competitive economy they rush to raise costly equity; in contrast, relationship banks provide
cheap funding after the shock, reducing the need for costly equity injections and limiting
the surge in defaults. Notably, the model exhibits a hump-shaped response of defaults. This
indicates that rate hikes, rather than immediately pushing firms into default, increase their
exposure to subsequent idiosyncratic shocks.
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Figure 8: Impulse Response of Equity Injections (left panel) and fraction of firms in default (right panel)
to a 25 basis point interest rate hike in three benchmark economies: complete markets (blue), relationships
(orange), and competitive market (green). Values are expressed as percentage deviations from steady state.

Figure 9 shows that relationships also dampen the transmission of monetary policy to
macro aggregates, with the relational market response lying between those of the competi-
tive and complete markets. Even in the complete markets economy there is a large response
to monetary policy, because firms respond to changes in the discount rate also when they are
unconstrained.

Figure 9: Impulse response of aggregate investment to a 25 basis points interest rate hike with a
persistence of 0.6 in three benchmark economies: complete markets (full commitment), relationships
(partial commitment), and competitive spot markets (lack of commitment).

7.2.3 Response to a fiscal policy shock

I now examine the case of fiscal policy, designed as a lump sum cash transfer from the
representative household to the corporate sector. The transfer, totaling 10 percent of steady-
state output, is distributed uniformly across firms. After the transfer, firms become less
constrained as their net worth increases. In a relational market, banks optimally charge
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high spreads after the shock. Therefore, a fraction of the transfer effectively ends up as
bank profits. In the aggregate, the insurance mechanism leads to a dampening in the peak
response fiscal policy of almost 20 percent.

Compared to the case of monetary policy, the role of relationships is starker for fiscal
policy. Fiscal transfers make firms less constrained without affecting their investment op-
portunities, and are thus a natural candidate for the insurance mechanism. Instead, the case
of monetary policy is more ambiguous. Higher rates deplete firms net worth, which makes
them more constrained, but also lower their investment demand, which makes them less con-
strained. Indeed, the response to monetary policy in the cases of competitive spot market
and complete markets is quantitatively similar.

Figure 10: Impulse response of aggregate investment to corporate fiscal transfer policy uniformly
distributing 10 percent of output to firms. Three benchmark economies are displayed: complete
markets (full commitment), relationships (partial commitment), and competitive spot markets (lack
of commitment).

8 Conclusion

Using administrative data from Mexico’s credit registry, I document new loan pricing pat-
terns that support an insurance view of banking relationships. When a firm borrows again
from the same bank, the pass-through from changes in its default risk to its borrowing rate
is close to zero, and lending rates exhibit strong history-dependence: past default risk is
more important than contemporaneous risk for loan pricing. Instead, when a firm switches
to a new bank, such pass-though is close to one, as predicted by competitive pricing. Fur-
thermore, a large fraction of the prior wedge with competitive pricing is eliminated upon
switching.
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I rationalize these findings through a new model in which firms establish long-term rela-
tionships with banks. Relationships act as an implicit contract over future credit conditions.
Starting a new relationship is always possible but it is costly. These switching costs create
commitment to the relationship, enabling risk-sharing: firms pay higher rates in good times,
in exchange for cheap credit in bad times, when they are more constrained. As switching
costs approach zero, the model converges into a competitive credit market, with shocks fully
passed through to the lending rate.

The estimated model matches the empirical patterns of limited pass-through and history
dependence. It also generates new predictions on when firms receive cheap loans and when
instead they are tempted to switch to a new bank, for which I find strong empirical sup-
port. Firms receive cheap credit, compared to their default risk, when their sales decline
are when they are not distributing dividends, which is associated with tighter financial con-
straints. Throughout a relationship, firms receive low rates early and pay high rates later
in the tenure, as they become less constrained by accumulating earnings. Furthermore, in
both the data and the model, firms are tempted to switch to a new bank when their default
risk has declined throughout the relationship and thus find themselves disadvantaged by the
insurance agreement.

Switching costs, by enabling risk-sharing, improve the allocation of capital in the econ-
omy: relationships restore over 10 percent of welfare losses due to financial frictions. Fi-
nally, relationships dampen the pass-through of monetary and fiscal policy, since a portion
of these policy shocks is absorbed by banks as part of the optimal risk-sharing agreements
with firms, weakening their transmission to investment.
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A Empirics

A.1 Risk Assessments validation

In Table 18, I validate the risk assessments by assessing their ability to predict future loan
losses. Each additional percentage probability of default is associated with approximately
0.4 percent loan losses, defined as the sum of forgiven loan and write-offs. Loan spread does
not seem to be more weakly associated to loan losses.

Stayers Switchers Stayers Switchers

Loan Losses Loan Losses Loan Losses Loan Losses

Default Risk 0.364∗∗∗ 0.386∗∗∗ 0.323∗∗∗ 0.366∗∗∗

(0.010) (0.025) (0.010) (0.029)

Spread 0.074∗∗∗ 0.012∗∗∗

(0.003) (0.006)

Cons −0.002∗∗∗ −0.001∗∗∗ −0.006∗∗∗ −0.002∗∗∗

R2 0.000395 0.00670 0.000541 0.00749
N 259,130 26,432 249,151 24,077

Table 18: Loan Losses are the sum of charge-offs and forgived loans. Default Risk is the assessment by
lenders in R04.

In Table 19, I evaluate the role of past risk assessments in predicting loan losses. The
Table shows that loan losses are far more sensitive to contemporaneous default risk than to
the default risk assessed at the onset of a relationship. This reinforces the interpretation of
the result on history-dependence in Section 3 as being driven by relationship considerations,
as opposed to the effective relevance of past information.
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(1) (2)
Loan Losses Loan Losses

PDt 0.435∗∗∗ 0.419∗∗∗

(0.026) (0.028)

PD0 0.0542∗

(0.025)

Constant −0.000234 −0.00131

R2 0.00144 0.00147
N 187,400 187,400

Table 19: Test for the role of past information in predicting loan losses.Loan Losses are the sum of charge-offs
and forgived loans. Default Risk is the assessment by lenders in R04. Sample in the first column is restricted
to firms that have PD0.

A.2 Default Risk Pass-Through

A.2.1 Controls

In Table 20, I replicate the pass-through analysis controlling for loan- and firm- specific
characteristics. Since the regression specification is in changes, there is not an obvious
way to control for these characteristics. I follow Guiso, Pistaferri, and Schivardi (2005)
and residualize both spreads and default risk on the set of controls before running the pass-
through regressions.
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(1) (3)
∆Spread ∆Spread

1SameBank 1.407∗∗∗ 0.559∗∗∗

(0.042) (0.050)

∆PD 0.822∗∗∗ 0.492∗∗∗

(0.025) (0.034)

1SameBank × ∆PD −0.796∗∗∗ −0.380∗∗∗

(0.026) (0.034)

Constant −1.248∗∗∗ −0.344∗∗∗

(0.042) (0.050)

Controls No Yes

R2 0.0243 0.00572
N 233815 211493

Table 20: Pass-through of firm default risk to loan spread. In the second column, both spreads and default risk
are residualized against a set of controls, as in Guiso, Pistaferri, and Schivardi (2005). The controls include
maturity and loan type (credit line or term loan).

(1) (2) (3)
∆Spread ∆Spread ∆Spread

1SameBank 0.620∗∗∗ 0.774∗∗∗ 1.058∗∗∗

(0.0553) (0.0605) (0.1037)

∆PD 0.626∗∗∗ 0.576∗∗∗ 0.378∗∗∗

(0.0309) (0.0314) (0.0563)

1SameBank× ∆PD −0.736∗∗∗ −0.692∗∗∗ −0.493∗∗∗

(0.0318) (0.0326) (0.0584)

Constant −0.052 −0.121∗ −0.252∗

(0.0561) (0.0614) (0.1086)

Firm FE ✓

Bank x Time FE ✓ ✓

R2 0.0187 0.189 0.477
N 110211 109860 62277

Table 21: Pass-through of default risk to loan spreads, excluding credit lines.
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(1) (2) (3)
∆Spread ∆Spread ∆Spread

1SameBank 1.985∗∗∗ 0.999∗∗∗ 0.664∗∗∗

(0.0273) (0.0326) (0.0423)

∆PD 0.518∗∗∗ 0.242∗∗∗ 0.206∗∗∗

(0.0168) (0.0170) (0.0213)

1SameBank × ∆PD −0.459∗∗∗ −0.176∗∗∗ −0.140∗∗∗

(0.0176) (0.0179) (0.0228)

Constant −1.665∗∗∗ −0.826∗∗∗ −0.554∗∗∗

(0.0266) (0.0299) (0.0373)

R2 0.0263 0.145 0.348
N 476112 475779 350764

Table 22: Pass-through of default risk to loan spreads, including also collateralized loans.

A.2.2 Soft and hard assessments separately

In this section, I provide the pass-through and the pricing reconnect results distinguishing
between the headline risk assessment (23), and keeping in isolation the hard and the soft
information components, respectively in Table 24 and 25.

I also report separately the results for bank stayers and switchers. This also allows to
examine the R2 of these regressions more closely. These are quite low when focusing on
bank stayers, consistent with the loan pricing disconnect narrative. Instead, they are much
higher for bank switchers. Specifically, the correction of the prior pricing wedge (Rwedge

t−1 )
alone accounts for more than a third of the change in lending rate upon switching. Together,
∆PD and Rwedge

t−1 account for over 40 percent of such variation.
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Stayers Switchers
(1) (2) (3) (4) (5) (6)

∆Spread ∆Spread ∆Spread ∆Spread ∆Spread ∆Spread

∆PD 0.026∗∗∗ 0.116∗∗∗ 0.822∗∗∗ 0.734∗∗∗

(0.0061) (0.0059) (0.0245) (0.0176)

Rwedge
t−1 0.166∗∗∗ 0.176∗∗∗ 0.879∗∗∗ 0.896∗∗∗

(0.0012) (0.0016) (0.0066) (0.0066)

Constant 0.159∗∗∗ 0.033∗∗∗ 0.196∗∗∗ −1.248∗∗∗ −0.662∗∗∗ −0.721∗∗∗

(0.0080) (0.0055) (0.0075) (0.0415) (0.0295) (0.0298)

R2 0.0000909 0.0582 0.0592 0.0352 0.368 0.404
N 202894 332880 192446 30921 30780 28751

Table 23: Pass-through of default risk and persistence of the pricing wedge Rwedge
t−1 (loan pricing reconnect).

The first three columns are bank stayers. The last three columns are bank switchers. This table uses the
headline risk assessments reported by banks, which combines hard and soft information.

Stayers Switchers
(1) (2) (3) (4) (5) (6)

∆Spread ∆Spread ∆Spread ∆Spread ∆Spread ∆Spread

∆PD 0.045∗∗∗ 0.109∗∗∗ 0.847∗∗∗ 0.802∗∗∗

(0.0070) (0.0067) (0.0284) (0.0204)

Rwedge
t−1 0.172∗∗∗ 0.183∗∗∗ 0.887∗∗∗ 0.899∗∗∗

(0.0012) (0.0017) (0.0066) (0.0069)

Constant 0.169∗∗∗ 1.434∗∗∗ 1.714∗∗∗ −1.351∗∗∗ 6.562∗∗∗ 6.556∗∗∗

(0.0085) (0.0105) (0.0159) (0.0437) (0.0624) (0.0660)

R2 0.000211 0.0608 0.0617 0.0308 0.375 0.407
N 194064 330862 183778 27987 30398 26093

Table 24: Pass-through of default risk and persistence of the pricing wedge Rwedge
t−1 (loan pricing reconnect).

The first three columns are bank stayers. The last three columns are bank switchers. This table uses the hard
information component of the risk assessments only.
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Stayers Switchers
(1) (2) (3) (4) (5) (6)

∆Spread ∆Spread ∆Spread ∆Spread ∆Spread ∆Spread

∆PD 0.015 0.105∗∗∗ −0.020 0.293∗∗

(0.0159) (0.0149) (0.1057) (0.1035)

Rwedge
t−1 0.115∗∗∗ 0.160∗∗∗ 0.432∗∗∗ 0.561∗∗∗

(0.0025) (0.0081) (0.0441) (0.0695)

Constant −0.023 0.201∗∗∗ 0.286∗∗∗ 0.252 1.675∗∗∗ 1.383∗∗∗

(0.0220) (0.0077) (0.0265) (0.2423) (0.1658) (0.2679)

R2 0.000208 0.0491 0.0871 0.000132 0.0880 0.191
N 4188 42170 4114 288 998 279

Table 25: Pass-through of default risk and persistence of the pricing wedge Rwedge
t−1 (loan pricing reconnect).

The first three columns are bank stayers. The last three columns are bank switchers. This table uses the soft
information component of the risk assessments only.

A.3 Competition at the Municipality-level

Does the loan pricing behavior of banks change depending on the availability of outside
options for the firm? In this section, I test this hypothesis using geographical variation in
the availability of outside banking options for firms. To do so, I use branch data at the
municipality level to measure the market share of each lender in each of Mexico’s 2500
municipalities. I then proceed to test whether the loan pricing disconnect documented in
previous sections is stronger when the bank has a large market share. I find that when a
bank has a large market share, it exhibits both lower pass-through and stronger history-
dependence, consistent with the idea that when firms have plenty of outside options, loan
pricing patterns are closer to that of a competitive market. Instead, when it is hard to a firm
to switch, the relational pricing patterns emerge more strongly.

I compute the market share of bank b in municipality m at time τ , the time of the previous
loan taken by the firm, as the share of the total branches in that municipality that belong to
that bank: MSbmτ = Nbmτ/∑b Nbmτ . Then, I restrict the sample to firms that remain with the
same bank, the stayers, and run the following regression:

∆Spread f t = α +β1∆PD f t +β2∆PD f t ×MSbmτ +β3MSbmτ + ε f t (20)

I find that β2 is negative and significant, suggesting that when a bank has a large market
share in a municipality, its pricing decisions are more disconnected from firm default risk.

Importantly, I also show that the lack of outside banking options plays a role in the
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history-dependence patterns. As discussed in more detail in Section 6.5, a simple market
power model could deliver limited pass-through which is stronger in geographies with less
competition, but would not be consistent with history dependence, nor with history depen-
dence being stronger when firms have worse outside options.

To test the role of competition in determining the extent of history-dependece docu-
mented in Section 3.3, I run the following regression:

Spread f t = α +β1PD f t +β2∆PD f 0 +β3∆PD f 0 ×MSbmτ +β4MSbmτ + ε f t (21)

First of all, I confirm the result of Section X that β2 is positive, suggesting that past infor-
mation matters for loan pricing even after controlling for the contemporaneous default risk.
More importantly, I find that β3 > 0, which implies that history-dependent pricing is more
pronounced when the bank has a large market share in the municipality.

(1) (2) (3)
∆Spread ∆Spread ∆Spread

∆PD 0.221∗∗∗ 0.147∗∗∗ 0.122∗∗∗

(0.015) (0.015) (0.021)

MSb,t−1 −1.393∗∗∗ −0.582∗∗ −1.351
(0.153) (0.185) (0.938)

∆PD×MSb,t−1 −1.187∗∗∗ −0.493∗∗∗ −0.709∗∗∗

(0.145) (0.141) (0.206)

Cons 0.252∗∗∗ 0.176∗∗∗ 0.278∗∗∗

(0.017) (0.019) (0.081)

Firm FE ✓

Bank x Time FE ✓ ✓

R2 0.00242 0.109 0.324
N 131,227 130,967 84,398

Table 26: Default risk pass-through by branch market share of the bank in the municipality where the firm is
headquartered, MSb,t−1. Robust standard errors in parentheses.
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(1) (2) (3)
Spreadt Spreadt Spreadt

PDt 0.203∗∗∗ 0.406∗∗∗ 0.0294
(0.018) (0.016) (0.015)

PD0 1.042∗∗∗ 0.637∗∗∗ −0.00488
(0.031) (0.028) (0.023)

PD0 × MSb,t−1 2.690∗∗∗ 0.104 0.615∗

(0.277) (0.235) (0.210)

Cons 5.044∗∗∗ 5.665∗∗∗ 7.169∗∗∗

(0.093) (0.088) (0.083)

Firm FE ✓

Bank x Time FE ✓ ✓

r2 0.0785 0.392 0.842
N 70,289 70,006 48,589

Table 27: History-dependence by branch market share of the bank in the municipality where the firm is
headquartered, MSb,t−1. Robust standard errors in parentheses.

A.4 Heckman Correction

In this section, I provide an alternative approach to use the two instruments for bank switch-
ing described in Section 3.2.2. There, I used such instruments as simple IVs. However,
when dealing with a selection problem, two approaches are possible: IV and selection mod-
els, such as the Heckman correction (Heckman, 1979).

In my setting, using IV is possible because I observe the outcome both if the firm is se-
lected into switching or not. The most natural applications of the selection corrections are
instead those cases where the outcome is observed only conditional on selection, such as
with labor income and selection into the workforce. Still, the Heckman correction has some
advantages even in my setup. Most notably, because the pass-through equations are esti-
mated separately for stayers and switchers, the exogeneity requirement applies one equation
at a time. This is helpful as a robustness against the possibility that the shocks to the old
bank which I use as an instrument may be related to the loan pricing policy of that bank.

As discussed in Heckman and Navarro-Lozano (2004) and in Heckman and Vytlacil
(2007), this procedure relies on much weaker identification requirements to identify slope
coefficients, rather than the intercept. Since I am interested in the pass-through, the coeffi-
cient on ∆PD, the slope coefficient is exactly the object of interest in my case. I present the
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results in Table 28. Again, while the magnitude change compared to the OLS and the IV, we
get the familiar result of low pass-through for stayers and high pass-through for switchers.

Branch IV AW IV
Stayers Switchers Stayers Switchers

∆Spread ∆Spread ∆Spread ∆Spread

Main Equation
∆PD 0.0517∗∗∗ 0.407∗∗∗ 0.0155∗ 0.404∗∗∗

(0.0086) (0.0350) (0.0078) (0.0302)

Constant 1.032∗∗∗ −14.83∗∗∗ 1.056∗∗∗ 19.24∗∗∗

(0.0451) (1.2775) (0.0441) (0.5344)

Selection Equation
Z 1.812∗∗∗ −0.814∗∗∗ 0.452∗∗∗ −0.250∗∗∗

(0.1597) (0.2103) (0.0161) (0.0191)

Constant 0.423∗∗∗ −1.645∗∗∗ 0.413∗∗∗ −1.627∗∗∗

(0.0031) (0.0038) (0.0028) (0.0035)

ρ −0.416∗∗∗ 0.861∗∗∗ −0.399∗∗∗ −1.285∗∗∗

(0.0223) (0.0757) (0.0227) (0.0298)

σ 1.358∗∗∗ 2.222∗∗∗ 1.322∗∗∗ 2.442∗∗∗

(0.0048) (0.0408) (0.0046) (0.0176)

Table 28: Pass-through of default risk to loan spreads. Heckman selection correction.

A.5 History-Dependence

Table 29 shows that loan spreads depend on both past risk assessments and past loan spreads.
Past loan spreads capture explain a large fraction of current loan spreads. Current and past
default risk are similarly important for loan pricing, both conditionally and unconditionally
on past spreads.

69



(1) (2)
Spreadt Spreadt

PDt 0.619∗∗∗ 0.129∗∗∗

(0.0133) (0.0080)

PDt−1 0.620∗∗∗ 0.092∗∗∗

(0.0109) (0.0062)

Spreadt−1 0.810∗∗∗

(0.0019)

Constant 6.090∗∗∗ 1.308∗∗∗

(0.0311) (0.0218)

R2 0.0455 0.644
N 210450 205963

Table 29: Dependence of loan spreads on past default risk and past loan spreads.

A.6 State-Dependence

In this section, I show an additional feature of the data: the pass-through of default risk to
lending rates depend on the state of the bank-firm relationship. The intuition is as follows.
When the pricing wedge Rwedge

f t = (Spread f t −PD f t) is negative (Rwedge
f t < 0), the bank is

already charging to the firm a rate which is lower than what is justified by its fundamental
default risk. Therefore, if the conditions of the firm deteriorate further (∆PD f t > 0), the
bank might be inclined to pass-through a large portion of this shock. Conversely, when the
pricing wedge is positive (Rwedge

f t > 0), the firm is already being charged a high rate, and
banks could thus more easily neglect an increase in firm risk. The opposite pattern would
occur when the firm improves (∆PD f t < 0). In this case, we expect the bank to lowers rates
and pass-through the shock more strongly when the firm is tempted to leave if the bank does
not improve their terms, that is, if Rwedge

f t > 0.
To assess such state-dependent pass-through, I first define a dummy 1

Load
f t capturing

whether a shock is loading in the same direction of the previous mispricing. Specifically, I
define:

1
Load
f t =

 0 if ∆PD f t ×Rwedge
f t > 0

1 if ∆PD f t ×Rwedge
f t < 0

(22)

Formally, the empirical question is whether the pass-through from ∆PD f t to ∆Spread f t

depends on the prior pricing wedge Rwedge
f t . To test this hypothesis, I run the following

regression:
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∆Spread f t = α +β1∆PD f t +β2∆PD f t ×1
Load
f t +β31

Load
f t + ε f t (23)

A positive sign for β2 suggests the presence of state-dependent pass-through in the expected
direction. When a shock loads in the same direction of a previous pricing wedge, which
would make the wedge larger if not passed-through, the pass-through is larger.

(1) (2) (3)
∆Spread ∆Spread ∆Spread

∆PD −0.349∗∗∗ −0.403∗∗∗ −0.576∗∗∗

(0.0109) (0.0116) (0.0198)

1
Load −0.319∗∗∗ −0.358∗∗∗ −0.430∗∗∗

(0.0199) (0.0204) (0.0305)

1
Load × ∆PD 0.961∗∗∗ 1.201∗∗∗ 1.653∗∗∗

(0.0178) (0.0201) (0.0401)

Constant 0.447∗∗∗ 0.473∗∗∗ 0.354∗∗∗

(0.0139) (0.0141) (0.0192)

R2 0.0286 0.158 0.376
N 144,029 143,665 91,500

Table 30: State-dependence in the default risk pass-through, depending on whether the shock worsen
or reduce the prior pricing wedge, which is captured by 1Load defined in Equation (22).

Notice that, because of the patterns highlighted in Section 3.4, simply using ∆Spread f t

may lead to mechanical results. Indeed, when Rwedge
f t < 0, the firm is borrowing at a sub-

sidized rate, and there is a tendency for its borrowing rate to increase in subsequent loans,
especially when it switches to a new bank. Therefore, we may for example erroneously
estimate a large pass-through in cases when ∆PD f t > 0 and Rwedge

f t < 0, simply because
∆Spread f t is positive and large to correct a past mispricing. To address such concern, I
estimate Equation (23) using on the left-hand side the residuals of Equation (4), which cap-
tures the surprise component in the change in spread, after controlling for past information
contained in the prior pricing wedge. Results are reported in Table 31.
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(1) (2) (3)
∆Spread ∆Spread ∆Spread

∆PD 0.106∗∗∗ −0.029∗∗ −0.338∗∗∗

(0.0103) (0.0108) (0.0178)

1
Load −0.171∗∗∗ −0.218∗∗∗ −0.359∗∗∗

(0.0191) (0.0191) (0.0276)

1
Load × ∆PD −0.007 0.446∗∗∗ 1.272∗∗∗

(0.0169) (0.0187) (0.0362)

Constant 0.305∗∗∗ 0.332∗∗∗ 0.103∗∗∗

(0.0133) (0.0132) (0.0174)

R2 0.00170 0.178 0.421
N 144,029 143,665 91,500

Table 31: State-dependence in the default risk pass-through, depending on whether the shock worsen
or reduce the prior pricing wedge, which is captured by 1Load defined in Equation (22).

A.7 Dynamic Pass-Through

How persistent are the pass-through over time? I have shown that changes in loan spreads
are not immediately passed-through to loan rates within a relationship, but does this pass-
through becomes larger overtime? To answer this question, I adapt the analysis in (2) but
rather than focusing on the contemporaneous pass-through, I measure the effects over the
subsequent five loans that a firm obtains. The notion of switching in this case is slightly
different. Before, I was focusing on pairs of consecutive loans. To study the pass-through
after s loans, I use the specification in Equation (24), thus regressing the cumulative spread
over the next h loans after time t on the change in probability of default that the firm ex-
perienced right before time t. I separate the sample in firms that stay with the same bank
throughout the s loans, and firms that switch to a new bank immediately at time t, and then
keep borrowing from that bank throughout the s loans.31 Results are reported in Figure 11.

∆Spread f ,t+h = α +β1∆PD f t + ε f t (24)

31For this exercise, I only keep firms that borrow from one bank at a time, and compute the average loan
rate whenever the firm has multiple loans in the same month.
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Figure 11: Computes the dynamic response of spreads to a change in firm default risk over the
subsequent five loans, separately for stayers and switchers.

A.8 Pricing Reconnect

Table 32 reports the regression results for Figure 2, displayed in Section 3.4. The results
show a stark loan pricing reconnect upon switching. The previous gap between how much
a firm gets charged and its default risk, Rwedge

f ,t−1 , dissipates upon switching.

(1) (2) (3)
∆Spread f t ∆Spread f t ∆Spread f t

Rwedge
f ,t−1 −0.936∗∗∗ −0.943∗∗∗ −1.279∗∗∗

(0.010) (0.009) (0.014)

Rwedge
f ,t−1 ×1SameBank 0.766∗∗∗ 0.613∗∗∗ 0.230∗∗∗

(0.010) (0.009) (0.014)

Firm FE ✓

Bank x Time FE ✓ ✓

R2 0.142 0.342 0.694
Obs 165,914 165,533 119,943

Table 32: Regression of changes in loan spreads on the previous loan pricing wedge Rwedge
f ,t−1 . The wedge is

measured as the difference between the loan spread and the assessed probability of default. Robust standard
errors in parenthesis.
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(1) (2) (3)
∆Spread ∆Spread ∆Spread

1SameBank 1.893∗∗∗ 1.014∗∗∗ 0.649∗∗∗

(0.0286) (0.0336) (0.0438)

∆PD 0.518∗∗∗ 0.242∗∗∗ 0.205∗∗∗

(0.0168) (0.0170) (0.0213)

1SameBank × ∆PD −0.425∗∗∗ −0.140∗∗∗ −0.119∗∗∗

(0.0187) (0.0191) (0.0250)

1LongTerm 0.153∗∗∗ −0.022∗∗∗ 0.079∗∗∗

(0.0136) (0.0150) (0.0340)

1LongTerm × ∆PD −0.064∗∗∗ −0.058∗∗∗ −0.030∗∗∗

(0.0108) (0.0108) (0.0156)

Constant −1.665∗∗∗ −0.830∗∗∗ −0.586∗∗∗

(0.0266) (0.0300) (0.0384)
Bank x Time FE ✓ ✓
Firm FE ✓
R2 0.0267 0.145 0.350
N 269,906 269,573 144,338

Table 33: Pass-through from changes in default risk to changes in loan spreads. 1SameBank is a dummy
capturing whether the firm is staying with the same bank or switching. 1LongTerm is a dummy capturing whether
the firm has stayed with its current bank for more than two years. Robust standard errors in parenthesis.

A.9 Duration of the relationship

In this section, I show that the extensive margin of relationships is far more important than
the intensive margin in determining risk pass-through. Specifically, I divide my sample not
only in stayers and switchers, as in Section 3, but I also subdivide stayers depending on the
length of their relationship with their bank. I define a dummy for long-term relationship,
1

LongTerm
f t , which is equal to zero if the length of the relationship is below 24 months (which

includes all the switchers), and one when the length is above 24 months.

∆Spread f t = α +β1∆PD f t +β2∆PD f t ×1
SameBank
f t +β31

SameBank
f t

+β4∆PD f t × 1
LongTerm
f t +β51

LongTerm
f t + ε f t (25)

Results shows that the results for stayers and switchers remain broadly unchanged. In-
stead, being in a long-term relationship has a quantitatively small effect on the pass-through,
and a sign which is the opposite of what one would expect: pass-through are slightly higher
for stayers in relationships with a long tenure than with stayers in a relationship with a short
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tenure.
On the other hand, firms that have been in a relationship for longer tend to obtain lower

rates on average, even though this pattern is entirely explained by firm fixed effects.

A.10 Aggregate Risk Pass-Through

Idiosyncratic Aggregate
∆Spread ∆Spread

1SameBank 1.407∗∗∗ 1.324∗∗∗

(0.042) (0.048)

∆PD 0.822∗∗∗

(0.025)

1SameBank ×∆PD −0.796∗∗∗

(0.026)

∆PD 1.877∗∗∗

(0.175)

1SameBank ×∆PD −1.053∗∗∗

(0.181)

Constant −1.248∗∗∗ −0.955∗∗∗

(0.042) (0.048)

R2 0.0243 0.0147
N 233,815 219,905

Table 34: Pass-through of idiosyncratic firm default risk PD (left column) and aggregate default risk
PD (right column). The aggregate default risk is computed as the average default risk across all firms,
excluding those in the top fifth percentile.

A.11 Branch Data

In this section, I describe Since the core of my empirical analysis is to study the pricing
patterns for firms that stay with the same bank (stayers) and contrast it with that of firms
that switch to a new bank (switchers), I collect bank branch data at the municipality level to
construct a separation instrument.

The data is available online, and provided by the Equipo de Inclusión Financiera at
CNBV, the banking supervisor. The data is provided subdivided by month, and I scrape
the whole data and merge together. Once the data is merged, the geographical dimension
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is organized using INEGI codes (postal codes), which divide Mexico into 32 states, 2,560
municipalities and approximately 250,000 localities. Municipalities are comparable in size
to US counties, while localities are approximately the size of a neighbourhood. Because the
R04 Credit Registry data reports the geography of firms at the municipality-level, I choose to
use this level of aggregation when studying bank branch data. This is the most natural choice
for two reasons. First, the vast majority of localities do not have bank branches. Second,
the municipality-level provides an ideal level of aggregation to study banking relationship,
while localities may be too fine to matter.

I observe branch data for 145 individual banks, or 107 banking groups once I apply the
filter described in Section 2. Therefore, in total, I observe branch data for 108 months
(January 2013 to December 2022), across 2,432 municipalities, and 107 banks, so that I
have a total of 3,957,118 bank-month-municipality observations. Only 1,005 municipalities
actually have had a bank branch at some point during the 2013 to 2022 period. The median
municipality had branches from 3 banks, and on average each municipality had 4.6 banks
with active branches. Firms in the Credit registry are domiciled across 1,900 municipalities.

A.12 Amiti and Weinstein (2018) credit shocks construction

In this section, I briefly illustrate the identification setup borrowed from Amiti and Weinstein
(2018) to estimate bank-specific credit supply shocks. For additional details, I defer to the
original paper.

The first step is to aggregate data at the bank-firm relationship level, rather than at the
loan-level. I compute L f bt as the total outstanding credit from bank b to firm f at month t,
which includes both current period originations and previous outstanding loans which has
not matured yet. Then, I compute D(L f bt/L f b,t−1) as the percentage growth in L f bt within
the relationship.

The class of models studied in Amiti and Weinstein (2018) can be summarized as follows:

D(L f bt/L f b,t−1) = α f t +βbt + ε f bt (26)

the credit growth within a relationship is the sum of a firm-specific demand component and
a bank-specific supply component. The approach in Amiti and Weinstein (2018) allows to
overcome two challenges with estimating Equation (26). The first is identification, which is
crucial for the application in this paper and I will cover in detail. The second is aggregation:
by using the correct regression weights and treatment the formation of new relationship
appropriately, bank shocks and firm shocks add up naturally to account exactly for aggregate
credit growth. This aspect is not particularly relevant for my application, and I defer its
treatment to the original paper.

Identification in Equation (26), which is estimated using a fixed-effect WLS regression,

76



is obtained from the presence of multi-bank firms. Intuitively, if a firm has an established
relationship with two banks, the relative credit growth in the two relationships will be infor-
mative of the credit supply at each bank. The authors also show that omitting the interaction
terms Z f bt on the right-side of Equation (26) is not problematic, as long as the bank and firm
shocks are interpreted as also encompassing a component of the interaction term.

The idiosyncratic component of the bank shock which I use to construct my instrument
for separation in Section 3.2, which is denoted as β̃bt in Amiti and Weinstein (2018), is
obtained by subtracting the median bank shock from the bank’s fixed effect estimate βbt .

A.13 First-Stage IV

Tables 35 and 36 report the first-stage of the IV reported in Section 3, respectively the branch
IV and the credit shock IV constructed as in Amiti and Weinstein (2018). Notice that,
following Wooldridge (2010), I instrument for all terms where the potentially endogenous
dummy 1SameBank enters: the dummy and its interaction with ∆PD. Columns 2 and 3 are
effectively the first-stages used in the regression. I also report the first-column to assess the
significance of the instrument in predicting the staying vs switching decision before adding
the other controls.

(1) (2) (3)
1SameBank 1SameBank 1SameBank ×∆PD

Zbranch 1.614∗∗∗ 0.645∗∗∗ 0.187
(0.0826) (0.0511) (0.130)

Zbranch ×∆PD 0.195∗∗ 2.670∗∗∗

(0.0633) (0.0995)

∆PD 0.00610∗∗∗ 0.760∗∗∗

(0.00066) (0.00104)

Constant 0.860∗∗∗ 0.911∗∗∗ −0.0101∗∗∗

(0.00049) (0.00049) (0.00134)

F 152.8 159.0 179,230.7
R2 0.00268 0.000472 0.759
Obs 170,610 336,901 170,610

Table 35: First-state of the branch market share IV.
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(1) (3) (2)
1SameBank 1SameBank 1SameBank ×∆PD

ZAW 0.0410∗∗∗ 0.0681∗∗∗ 0.166∗∗∗

(0.0048) (0.0049) (0.0080)

ZAW ×∆PD 0.0467∗∗∗ 0.0950∗∗∗

(0.0036) (0.0060)

∆PD −0.0189∗∗∗ 0.773∗∗∗

(0.0006) (0.0010)

Constant 0.883∗∗∗ 0.877∗∗∗ −0.0545∗∗∗

(0.0008) (0.0008) (0.0013)

F 74.11 353.2 195,579.6
R2 0.000443 0.00630 0.778
Obs 167,218 167,218 167,218

Table 36: First-state of the Amiti and Weinstein (2018) IV.

A.14 Banks Mergers and Exit activity

The credit registry reports 146 banks with different lenders keys. One approach could be
that of relying on the classification of the credit registry to isolate different banks. However,
two caveats apply. First, Mexico has experimented some episodes of mergers and acquisi-
tion among banks (e.g. Banco Serfin was acquired by Banco Santander in 2000, and the
two banks merged in 2004.). I obtained a list of bank mergers from Banco de Mexico. I
follow standard procedure in the literature and attribute a unique identifier to all the banks
that ended up forming the ultimate banking group. Second, some small lenders were rein-
corporated with a new name and new identifier (e.g. Agrofinanzas S.A. de C.V., a sociedad
Financiera de Objecto Multiplo, reincorporated as Bankool, an Instituciones de Banca Mul-
tiple). I impute the same new identifier to the old entity as well. Finally, several banking
groups are organized with a main bank (Banca Multiple) and some separate entities (So-
ciedades Financieras de Objecto Multiple). I attribute to all entities the identifiers of the
Banca Multiple. At the end of this operation, I am left with 107 entities.
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B Theory

B.1 Pricing Equation

Recall Proposition 1 from Section 5.3.
Proposition 1: Consider a firm in state s = (z,b,k) that is solvent (b(s) ≥ b). The

equilibrium loan rate is given by:

Q = β
Ez′|z[w′(z′)]

b′︸ ︷︷ ︸
Qzero,w

+
bm(s)−w

b′︸ ︷︷ ︸
χ: subsidy

where w′(z′) =W (s′,v′(z′)) and w =W (s,v) for brevity.

Proof:
The proof follows almost immediately from rearranging the value function of the bank.
For a firm that receives a loan, and thus reaches the production phase, W (s,v) = WP(s,v).
Therefore, the bank value reads:

W (s,v) = b−Qb′+β (1−θ)Ez′|z[W (s,v′(z′))]+βθEz′|z[b
m(s′)]

For solvent firms, b = bm(s). Therefore, we can rearrange that equation to read:

Qb′ =
(
bm(s)−W (s,v)

)
+β (1−θ)Ez′|z[W (s,v′(z′))]+βθEz′|z[b

m(s′)]

Now, denote w′(z′) =W (s′,v′(z′)) and w =W (s,v) for brevity.
We thus obtain:

Q =
bm(s)−w

b′
+β

(1−θ)Ez′|z[w′(z′)]+θEz′|z[bm(s′)]
b′

In the special case without exogenous separations (θ → 0) this yields:

Q = β
Ez′|z[w′(z′)]

b′︸ ︷︷ ︸
Qzero,w

+
bm(s)−w

b′︸ ︷︷ ︸
χ: subsidy

B.2 Competitive Lenders

Recall Proposition 2 from Section 5.3.
Proposition 2: Suppose that switching costs are zero (ψ f ,b → 0). Suppose that a firm

in state s = (z,b,k) is solvent, that is, b(s) ≥ b. Then, the optimal contract prescribes that
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loans are priced competitively:

Q = β
Ez′|z[bm(s′)]

b′︸ ︷︷ ︸
Qzero,b

That is,

Q = β

[
(1−PD)+PD×Ez′|z[b(s

′)/b|De f ]
]

(27)

where PD = P(b(s′)< b′).

Furthermore, the allocations are identical to the ones that would prevail in an economy

where firms face lenders that offer competitive pricing schedules in each period, and solve

the following problem:

VP(s) =max
b′,k′

D+βEz′|z[V (s′)]

Subject to:

Qb′ = βEz′|z[b
m(s′)] (µ−1: PK-Bank)

and the usual budget constraint.

Proof:
The proof is divided into two parts. In the first part, I show the loan pricing result and the
key auxiliary result that v′(z′) = vm(s′). In the second part—which is in turn divided into
three steps—I show how that at the limit we can rearrange the optimal contract problem
described in Section 4 to look like the firm problem in the literature of heterogeneous firms
with endogenous default.

Step 1: Show that QQQ === QQQzero,b === QQQzero,w. Consider a bank-firm match in state (s,v) that
has reached the production phase, and thus have W (s,v) =WP(s,v). Along the equilibrium
path, we can write W (s,v) as:

W (s,v) = b−Qb′+β (1−θ)Ez′|z[W (s′,v′(z′))]+βθEz′|z[b
m(s′)]

which we can then rearrange as:

Qb′ =
(

b−W (s,v)
)
+β (1−θ)Ez′|z[W (s′,v′(z′))]+βθEz′|z[b

m(s′)] (28)

To show that competitive pricing holds it is sufficient to show that, on-path, b =W (s,v)

and that W (s′,v′(z′)) = bm(s′). To do so, we first need to show that the promised values in
the relationship match the outside value for the firm: v(z′) = vm(s′).

One direction is trivial: v(s′)< vm(s′) would violate firm PC.
The other direction requires using the Bank PC. Suppose by contradiction that v(s′) >

vm(s′). By definition of vm(s′) and bm(s′), we obtain that W (s′,vm(s′)) = bm(s′) when γ = 1.
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In Appendix B.4, I show that this also holds when γ < 1 as long as the bankruptcy costs are
borne in continuation as well.

Then v(z′)> vm(s′) would imply: W (s′,v(z′))<W (s′,vm(s′)) = bm(s′), which implies a
violation of Bank PC.

This confirms our claim that v(z′) = vm(s′). That is, when switching costs go to zero, the
only free margins are effectively b′ and k′, while v′(z′) is instead uniquely pin down by those
two choices: the contracting set for v′(z′) becomes a singleton.

We can now use these results into Equation (28). Notice that on-path it must be that
v = vm(s), and therefore W (s,vm(s)) = bm(s). Furthermore, because we are focusing on
the case of solvent firms, we get that W (s,vm(s)) = bm(s) = b. I will discuss the case of
insolvent firms in Appendix B.3.

Therefore, Equation 28 becomes:

Qb′ = 0+β (1−θ)Ez′|z[b
m(s′)]+βθEz′|z[b

m(s′)]

= βEz′|z[b
m(s′)]

= Qzero,bb′

That is: Q = Qzero,b.
Finally, we showed that on-path we have that W (s′,vm(s)) = bm(s′), or in the compact

notation of Proposition 1, w′(z′) = bm(s′). Therefore, Ez′|z[bm(s′)] = Ez′|z[w′(z′)].
This concludes the proof that, when ψ f ,b → 0, we obtain Q = Qzero,b = Qzero,w.

B.2.1 Second half of the Proof: Competitive Market Formulation

In the previous subsection, we have shown that when switching costs go to zero, v′(z′) =

vm(s′), and loans are priced competitively.
We now show that in such limiting case, we can rewrite the optimal contract problem

as a sequence of short-term optimization problems with a competitive pricing rule, as it is
canonical in the literature of heterogenous firms with endogenous default risk (Cooley and
Quadrini (2001), Khan, Senga, and Thomas (2014), Ottonello and Winberry (2020)).

Step 2a: Impose vvv′′′(((zzz′′′))) === vvvmmm(((sss′′′))). By using the result that v′(z′) = vm(s′) and that
W (s′,vm(s′)) = bm(s′), we can drop the two market participation constraints. Because
vm(s′) ≥ v by definition, we can also drop the Exit-PC. We can also drop the distinction
in the continuation values depending on whether the separation shock hits or not, as the
terms multiplying θ and (1−θ) converge.

We can thus rewrite the problem in the production phase as:
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WP(s,v)︸ ︷︷ ︸
Bank value

= max
Q,b′,k′

b−Qb′︸ ︷︷ ︸
Bank flow

+βEz′|z[b
m(s′)]︸ ︷︷ ︸

Bank cont. value

Subject to:

d︸︷︷︸
Dividend

+βEz′|z[v
m(s′)]︸ ︷︷ ︸

Firm cont. value

≥ v (µ: PK)

Where the budget constraint is unchanged.
Step 2b: Consider the dual problem. Next, it is useful to consider the dual of the

problem above, in which the optimal contract is solved from the perspective of the firm.

VP(s,w)︸ ︷︷ ︸
Firm value

= max
Q,b′,k′

d︸︷︷︸
Dividend

+βEz′|z[v
m(s′)]︸ ︷︷ ︸

Firm cont. value

Subject to:

b−Qb′︸ ︷︷ ︸
Bank flow

+βEz′|z[b
m(s′)]︸ ︷︷ ︸

Bank cont. value

≥ w (µ−1: PK-Bank)

and where V (s,w) = max{VP(s,w),v+λk−w}.
Step 2c: Impose vvv === vvvmmm(((sss))). Finally, we can use the fact that, on path, v = vm(s) and

therefore WP(s,v) = bm(s). In the dual formulation, this implies w = bm(s). Furthermore,
because we are considering the case of solvent firms, we get w = bm(s) = b.

Therefore, on path, the problem of the firm will always be of this form:

VP(s)︸ ︷︷ ︸
Firm value

=max
b′,k′

d︸︷︷︸
Dividend

+βEz′|z[v
m(s′)]︸ ︷︷ ︸

Firm cont. value

Subject to:

Qb′ = βEz′|z[b
m(s′)]︸ ︷︷ ︸

Bank cont. value

(µ−1: PK-Bank)

where to improve the clarity of the result I also used the fact that, on path, the PK con-
straint always binds, and dropped the optimal choice of Q, which is implied by the zero-
profit loan pricing schedule in PK-Bank.

And where V (s) = max{VP(s),max{v+ λk− b,v}}, where the second maximum term
reflects the fact that when a firm exits it will use the proceeds from the capital sale to repay
the debt, but is not liable to repay more than that. This is implied by the Firm-Exit PC in the
main problem.

The formulation above is then virtually equivalent to the models in the endogenous de-
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fault literature cited above, where the firm chooses debt and capital only, with the objective
of maximizing its current dividend and future value, under the constraint that creditors will
offer credit conditions Q to break-even (Q is typically referred to as an endogenous pricing

schedule).

B.3 Insolvent Firms and Evergreening

Recall now Proposition 3 from Section 5.4:
Proposition 3: Suppose that switching costs are zero (ψ f ,b → 0). Consider a firm in

state s = (z,b,k) that is insolvent (b(s) < b). Then, under loan evergreening, the optimal

contract prescribes that the firm receives a subsidized loan:

Q = β
Ez′|z[bm(s′)]

b′︸ ︷︷ ︸
Qzero,b

+
b−bm(s)

b′︸ ︷︷ ︸
Evergreening

(29)

Furthermore, the loan subsidy equals the capital loss the bank would incur if selling the

loan on the secondary market:

Qb′−βEz′|z[b
m(s′)]︸ ︷︷ ︸

Loan Subsidy

= (b−bm(s))︸ ︷︷ ︸
Capital Loss

(30)

Proof:
This follow almost immediately from rearranging the dual Promise-Keeping constraint.
When a firm is insolvent (b > b(s)), then it must be that on-path w = b(s)< b. Reconsider
now the promise keeping constraint of the dual problem analyzed in the proof of Proposition
1:

b−Qb′+βEz′|z[b
m(s′)]≥ w

Since w = b(s), the b terms do not simplify in the promise-keeping constraint, and an Ever-
greening loan pricing schedule appears:

Qb′ = βEz′|z[b
m(s′)]+(b−b(s))

= βEz′|z[b
m(s′)]+(b−bm(s))

B.4 Bankruptcy costs within the relationship

In this section, I formalize a version of the model where bankruptcy costs occur not only
when a firm starts new relationships, but also when it continues borrowing from the same
bank, but is insolvent. I labeled as γsep the exogenous fraction of the value bm(s) which is
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actually recovered by the old bank when an insolvent firm separates. I will now label as
γcont the equivalent fraction in continuation.

As briefly discussed in Section 4, this extension is important both for quantitative and the-
oretical reasons. For quantitative reasons, having bankruptcy costs only in case of separation
implies that such financial friction only bites with probability θ , the exogenous separation
rate. When θ is small, the model converges to the first best case. From a theoretical view-
point, the proof that when switching costs go to zero the model converges to a competitive
market only holds if either γsep = 1 or γsep = γcont , as both conditions ensure that there is no
intrinsic difference between the old and the new bank, implying that W (s,vm(s)) = bm(s).

I include such bankruptcy costs by assuming that when a firm is insolvent (in the sense
that b> b(s)), then even if the match continues the bank has to endure restructuring/bankruptcy
costs proportional to the ones it would undergo if there was a separation. For generality, I
will allow the two costs to be different (γsep and γcont), but in practice I calibrate the two to
be equivalent, which is needed for my key convergence theorems.

Formally, I first define WP(s,v) exactly as in the main text in Section 4.
Then, I define

Wex.γ(s,v) = max{WP(s,v),λk− (v− v)}

this was called W (s,v) in the main text, and ”excl − γ” denotes the fact that this is the
value of the bank gross of the bankruptcy costs.

When a firm starts with a new bank, the new bank value function is Wex.γ , since the
bankruptcy costs are weighting on the old bank. Therefore, we can use Wex.γ to compute the
maximum amount that the firm can raise from a new bank b(s):

b(s) =Wex.γ(s,v)

Therefore we obtain, as before:

bm(s) =

 b if b(s)≥ b

γsepb(s) if b(s)< b
(31)

Notice that this means that the value of the bank in case of separation, when the firm is
insolvent, is:

bm(s) = γ
sepb(s) = γ

sepWex.γ(s,v) =Wex.γ(s,v)− (1− γ
sep)b(s)

Now, we assume that if the match is not separated, but b > b(s), then the bank must pay
a cost (1− γcont)b(s).

Therefore, the true value to the bank is:
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W (s,v) =

Wex.γ(s,v) if b(s)≥ b

Wex.γ(s,v)− (1− γcont)b(s) if b(s)< b
(32)

We can rationalize this as a penalty which is proportional to the market value of the
outstanding debt to the firm (z,b,k).

It is now obvious to see that if γcont = γsep, we obtain that W (s,vm(s)) = bm(s) also in
states in which the firm is insolvent, a fact that is used in the Proof of Proposition 2. When
the firm is solvent, this is true irrespectively of the choice of {γcont ,γsep}. When the firm in
insolvent, then we have

W (s,v) =Wex.γ(s,v)− (1− γ
cont)b(s)

and therefore, if v = vm(s) = v, we get:

W (s,v) =Wex.γ(s,v)− (1− γ
cont)b(s)

= b(s)− (1− γ
cont)b(s)

= γ
contb(s)

So that W (s,v) = bm(s) ⇐⇒ γcont = γsep.
Furthermore, we can now obtain more transparently the result that relationships are no

panacea for firm default. Indeed, if a firm is insolvent in state s, then it must be that on path

the bank gets no more than bm(s):

b > b(s) =⇒ W (s,v)≤ bm(s)

This follows because on path we have v ≥ v, and therefore W (s,v)≤W (s,v) = bm(s).
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B.5 Optimal Contract with Aggregate Shocks

When we introduce aggregate shocks, the following elements of the problem described in
Section 4 have to be changed. (i) The value functions W and WP are now dependent on time,
and so are the outside value functions bm and vm that they imply; (ii) all state-contingent
promises v′ have to be chosen not only for each realization of the idiosyncratic shock z′,
but also for each realization of the aggregate shock, here generically identified by ε ′, in
addition, there is now a PC for each combination of idiosyncratic and aggregate shock; (iii)
discount rates are no longer equal to β , but the stochastic discount factor Λt+1(ε

′) appears,
which depend on the realization of the aggregate shock; (iv) all values are defined in units of
current-period final consumption good, therefore an inflation term appears when evaluating
the legacy nominal debt b, which was chosen in real terms in the previous period; (v) also
the remaining prices pt and wt are no longer in steady-state.

W t(s,v) = max{W t
P(s,v),λk− (v− v)}

Production Phase. If a bank-firm match reaches the production phase with state s =

(z,b,k) and promised value v, then the problem of the bank is the following:

W t
P(s,v)︸ ︷︷ ︸

Bank value

= max
Q,b′,k′,{v(z′,ε ′)}

1
Πt

b−Qb′︸ ︷︷ ︸
Bank flow

+(1−θ)Et [Λt+1(ε
′)W t+1

P (s,v′(z′,ε ′))]+θEt [Λt+1(ε
′)bm

t+1(s
′)]︸ ︷︷ ︸

Bank cont. value

Subject to:

d︸︷︷︸
Dividend

+(1−θ)Et [Λt+1(ε
′)v(z′,ε ′)]+θEz′|z[Λt+1(ε

′)vm
t+1(s

′)]︸ ︷︷ ︸
Firm cont. value

≥ v (µ: PK)

v(z′,ε ′)︸ ︷︷ ︸
Promised value

≥ v︸︷︷︸
Exit value

(g(z′,ε ′): PC-Exit Firm)

v′(z′,ε ′)︸ ︷︷ ︸
Promised value

≥ vm
t+1(s

′)︸ ︷︷ ︸
Firm outside value

− ψ
f︸︷︷︸

Switching cost

(η(z′,ε ′): PC-Mkt Firm)

W t+1(s′,v′(z′,ε ′))︸ ︷︷ ︸
Implied bank value

≥ bm
t+1(s

′)︸ ︷︷ ︸
Firm outside value

− ψ
b︸︷︷︸

Switching cost

(q(z′,ε ′): PC-Mkt Bank)

Where the budget is:

pty∗(z,k,wt)− f︸ ︷︷ ︸
Out put

= (k′− (1−δ )k+Φ(k,k′))︸ ︷︷ ︸
Capex

+(
1

Πt
b−Qb′)︸ ︷︷ ︸

Net Repayment

+d(1+ τ1d<0)
−1︸ ︷︷ ︸

Dividends

(33)
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B.6 Discussion of Model Ingredients

In this section, I lay out and discuss three key assumptions in the model, which clarifies
the role played by each of them. This exercise is also useful to illustrate how a different
combination of these three assumptions would map into different models in the literature.
This discussion is summarized in Table 37.

• Assumption 1: debt enforceability. Non-contingent debt b is enforceable in court, and
firms with sufficient financial capacity must repay it even they switch to a new bank.

• Assumption 2: bankruptcy costs. When a firm is insolvent, there is a deadweight loss
γsep.

• Assumption 3: switching costs. Contingent promises C = {Qt(ht),bt+1(ht),kt+1(ht),

lt(ht),dt(ht),Exitt(ht)}ht ,t>t0 are not enforceable in court, but starting a new relation-
ship entails switching costs ψ f ,b.

I will now discuss these assumptions one-by-one. On a high-level, the combination of
Assumption 1 and 2 (market incompleteness and costly bankruptcy), with zero switching
costs lead to a canonical firm dynamics model with competitive lenders offering zero-profit
loan pricing schedules in each period, as in Cooley and Quadrini (2001), Khan, Senga, and
Thomas (2014), Ottonello and Winberry (2020). Introducing assumption 3 generalizes these
models. When switching costs are zero, we retrive exactly the setup with firm dynamics
and competitive lenders. Instead, when switching costs are positive, lending relationships
emerge, meaning that long-term contracts can be sustained and used as a tool to alleviate
financial frictions and misallocation. In summary, this is not a model that aims to explain fi-
nancial frictions. On the contrary, it takes them as given in one of their most popular format,
and studies how agents can use the presence of another market imperfections, the switching
costs, to alleviate them.

Assumption 1. Without Assumption 1, the entrepreneur can always renege on the out-
standing debt and start a new relationship. In such a case, debt is not sustainable in equi-
librium, unless there is some cost in reneging (which we can think of as a bankruptcy
cost or as a switching cost, the interpretation I use in Table 37). Models such as Al-
buquerque and Hopenhayn (2004), Cooley, Marimon, and Quadrini (2004), Rampini and
Viswanathan (2010), Kovrijnykh (2013) assume that all debt contracts are not enforceable,
so entrepreneurs can always renege. A common assumption in this literature is that en-
trepreneurs can start a new relationship using a fraction of the capital they previously had,
a setup which leads to an endogenous collateral constraint.32 The focus of those papers is

32In some papers in this literature, switching is not an option. Leaving the relationship entails shutting down
the firm and consuming the stealed capital (Albuquerque and Hopenhayn (2004), Kovrijnykh (2013) ). In this
case, we could interpret the switching cost as the lost ability to operate the firm.
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to study how financial frictions can originate due to the limited commitment to repay of the
entrepreneur. Usually, in these models, there is no exogenous risk between the time in which
the capital is lent to the entrepreneur and the time in which the loan is supposed to be paid
back. It is the non-enforceability of debt which limits the borrowing capacity of the firm
and leads to misallocation in the economy. Therefore, in these models, default never occurs
on-path.

Assumption 2. Suppose instead that we make Assumption 1. The firm and the bank
can trade with a traditional non-contingent debt contract, and this contract is enforceable in
court.33 Because debt is non-contingent, if there is risk the firm will be unable to repay in
some states,34 and a critical choice has to be made regarding what happens in such states
of insolvency. The key intuition is that in the absence of any type of bankrupcy costs,
such insolvency is not problematic for the firm and the bank. On the contrary, the predicted
outcome of the model would be that the firm would promise to pay back a very large amount,
but ex-post it would almost always be insolvent, and debt is renegotiated to a lower amount.
In this way, non-contingent debt becomes a contingent instrument. Therefore, if dealing
with insolvency is costless, then the firm will never be constrained. Since at least Cooley and
Quadrini (2001), the literature has recognized that if instead being insolvent is costly 35 (for
example because of renegotiation or monitoring costs), then firms would avoid borrowing
extreme amounts, because when default probabilities increase lenders would charge very
high lending rates to compensate not only for the amount lost in renegotiation, but also for
the deadweight loss. Therefore, the prediction of models with such an insolvency cost is
that firms with limited internal funds will be financially constrained.

Assumption 3. Suppose we make assumptions 1 and 2, but we ignore switching costs.
Then, we retrive a model with firm dynamics and competitive lenders offering zero-profit
loan pricing schedules on a period-by-period basis. We can think of these models as the
limiting case of my model when ψ → 0. The literature using this type of setup does not
use the tools from dynamic contract theory. The reason is that the choice of future promises
becomes redundant when ψ = 0, because no promise other than the zero-profit loan pricing
schedule is sustainable, and so the optimal contract collapses to choosing in each period the

33Such enforceability, in practice, means that if the firm does not repay the debt, then the firm is shut down
and the lender can seize and sell the asset of the firm to recover the amount lent. This is the typical assumption
made in a larger firm dynamics literature, such as in Cooley and Quadrini (2001), Khan, Senga, and Thomas
(2014), Ottonello and Winberry (2020).

34This is obvious in a one-period setting: default occurs when output falls below debt. Instead, in recursive
settings, the firm can usually rollover debts, so that it can repay its legacy debt using not only its cash-on-hand
(output and possible proceeds from selling capital) but also through new borrowing. In this context, default
occurs when the firm is unable to raise sufficient funds from new lenders to repay the legacy debt.

35Khan, Senga, and Thomas (2014), Ottonello and Winberry (2020) assume that when the firm is insolvent,
it must exit the economy, a fraction of the capital is lost, and the lenders recover the remaining fraction. This
is an extreme type of insolvency cost. Instead, Cooley and Quadrini (2001) assumes that debt is renegotiated
and brought down to the highest possible amount that allows the firm to repay, but this procedure involves a
fixed cost for lenders.
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best point on the zero-profit loan pricing schedule. More formally, I show in Appendix B.2
that the combination of promise-keeping constraints and incentive-compatibility constraints
collapses to a zero-profit lending condition.

Assuming that ψ = 0 is probably a good benchmark for the bond market. However, the
majority of firms actually borrow from banks, with very sticky and long-term relationships.
Furthermore, zero-profit loan pricing implies that lending rates should respond one-for-one
to monetary policy rate and firm default risk, while empirical evidence shows that these
pass-through are limited within banking relationships, suggesting that some deviations from
the competitive lending benchmark are needed to understand these relationships.
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B.7 Solution Algorithm

I divide the discussion of the numerical solution into two parts. First, I outline the algorithm
I use to solve for the value and policy functions, given the steady-state prices. Second, I
outline the solution to the steady-state prices, which is relatively straightforward. Third,
I outline the algorithm to solve for the transition to an aggregate shock, which extends
the setup in Boppart, Krusell, and Mitman (2018) to an environment with state-contingent
contracts.

B.7.1 Value and Policy Functions

Before discussing the solution algorithm, it is useful to recall the optimality conditions of
the contract.

FOC-B:

θ

[ ∂Ez′|z[bm(s′)]
∂b′︸ ︷︷ ︸

Improves loan sale value

+ µEz′|z[
∂vm(s′)

∂b′
]︸ ︷︷ ︸

Worsens firm market cont. value

]

−(1−θ)
[

Ez′|z[η(z′)
∂vm(s′)

∂b′
]︸ ︷︷ ︸

Relax Firm PC

+Ez′|z[q(z
′)

∂bm(s′)
∂b

]︸ ︷︷ ︸
Tightens Bank PC

]
= 0 (34)

FOC-K:

β (1−θ)Ez′|z[
∂W (s′,v′(z′))

∂k′
]︸ ︷︷ ︸

Improves bank value tomorrow

+ βθ
∂Ez′|z[bm(s′)]

∂k′︸ ︷︷ ︸
Improves loan resale value

+ µβθEz′|z[
∂vm(s′)

∂k′
]︸ ︷︷ ︸

Improves Firm Market value tomorrow

= 1+Φk′(k,k′)︸ ︷︷ ︸
Effective cost of capital

+β (1−θ)
[

Ez′|z[η(z′)
∂vm(s′)

∂k′
]︸ ︷︷ ︸

Tighten Firm-Mkt PC

−Ez′|z[q(z
′)
(

∂W (s′,v′(z′))
∂k′

− ∂bm(s′)
∂k′

)
]︸ ︷︷ ︸

Relax bank PC

]
(35)

FOC- V

∂W (s′,v′(z̃))
∂v′(z′)︸ ︷︷ ︸

Bank value loss

+ µ︸︷︷︸
Firm value improvement

+ η(z′)︸ ︷︷ ︸
Relax Firm-Mkt PC

+ g(z′)︸︷︷︸
Relax Firm-Def PC

+q(z′)
∂W (s′,v′(z′))

∂v′(z′)︸ ︷︷ ︸
Tighten Bank PC

= 0

First of all, relabel ∂W (s′,v′(z̃))
∂v′(z′) =−µ ′(z′).
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The compact FOC-V is:

µ + η(z′)︸ ︷︷ ︸
Relax Firm-Mkt PC

+ g(z′)︸︷︷︸
Relax Firm-Def PC

= µ
′(z′)+ q(z′)µ ′(z′)︸ ︷︷ ︸

Tighten Bank PC

We have four cases.

1. All PC slack: µ ′(z′) = µ

2. PC Default Binding: µ ′(z′) = µ + g(z′) (we do not care about g in this case since it
does not affect any FOC).

3. Firm Market-PC binding: µ ′(z′) = µ +η(z′), we get an increase in µ .

4. Bank Market-PC binding: µ ′(z′) = 1
1+q(z′)µ , we get a decline in µ .

The high-level solution strategy is the following.

1. Step 1: Guess. Guess W (z,k,v). A good starting guess is: W f b(z,k)− v.

2. Step 2: Preliminaries. Find outside options vm(z,b,k) and bm(z,b,k), compute
derivatives wrt b, k and v of continuation values.

3. Step 3: Pre-backward step. For each µ ∈ (τ,1), solve for v′(z′) such that µ ′(z′)= µ .
Then, ∀b′,k′, impose PC and compute the v′(z′) that accounts for PC. Then, compute
µ ′ at such value, and find the Lagrange multiplier associated with (z′,b′,k′), using the
four cases described above.

4. Step 4: Core backward step. For each (z,µ)

(a) Solve for b′(k′,µ) using FOC-B

(b) Solve for k′ and v′:

i. First, solve for v′(z′,k′,µ) using the results from step 2, accounting for all
PC.

ii. Then, use b′(k′,µ) and v′(z′,k′,µ), and the Lagrange multipliers in FOC-K
to find the solution for k′(z,µ).

iii. Use PK to solve for v(z,k,µ)

iv. Now invert numerically v(z,k,µ) to obtain µ(z,k,v).

5. Step 5: Reorganize solution at production stage. At this point, for each (z,k,v) we
can:

• solve for µ and then solve for the policy functions b′(z,k,µ), k′(z,k,µ) and
v′(z,k,z′,µ)
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• Use the policy functions above to obtain WP(z,k,v)

6. Step 6: Liquidation choice. Find states in which liquidation is optimal, and obtain
W (z,k,v). Adjust µ to 1 in states where liquidation is optimal.

7. Step 7: Check convergence. Check if the new W (z,k,v) is close enough to the guess.
If not, update W (z,k,v) and start again from Step 2.

B.7.2 Steady-State

Once the algorithm outlined in the previous subsection is set up, solving for the steady-state
is straightforward. The only price we need to solve for is the wage wss that guarantees
equilibrium in the labor market:36 L D(w) = Ls.

Once we have found the wage that clears the labor market, we can solve the firms’ prob-
lems and find the ergodic firm distribution, which will deliver aggregate output and invest-
ment. From these, we can compute aggregate consumption, which is constant. That level of
consumption is then the equilibrium consumption rate when Q = β .

B.7.3 Aggregate Shock: Extension of Boppart, Krusell, and Mitman (2018)

Solving for the response to an aggregate shock, such as a monetary policy rate hike, in
an economy with heterogeneous agents is notoriously challenging, as the state-space is in-
finitely dimensional. The frontier methods rely on a sequence-space approach, such as in
Boppart, Krusell, and Mitman (2018) and, more recently, in Auclert et al. (2021). This relies
on studying the perfect foresight transition back to the steady-state of an economy that gets
hit by to a one-time unexpected aggregate shock (”MIT shock”).37

What makes my framework unique compared to the contexts where these methods have
been applied is that banks and firms write contracts that are state-contingent. This creates
the following tension. If the ex-ante probability of the arrival of the aggregate shock is posi-
tive, then the economy will not be in steady-state since it is continuously hit by shocks, and
we need to keep track of the infinitely-dimensional state of the economy (this could be done
with approximations, as in Krusell and Smith (1998)). Working with MIT shocks allows to

36In practice, as discussed in the calibration in Section 6.1.2, I follow Kaplan, Moll, and Violante (2018)
and Ottonello and Winberry (2020), and calibrate at each step of the estimation process ψL such that the
employment rate in steady-state is 60% (Ls = 0.6).

37In contemporaneous work, Auclert, Rognlie, Straub, and Tapák (2024) provide an extension of the SSJ
method to accomodate complete markets with respect to aggregate risk. In their approach, tractability is pre-
served leveraging the result that marginal utilities of all agents would move in proportion after an aggregate
shock. However, this approach goes all the way to assuming complete markets - or simple forms of incomplete
markets -, and cannot accomodate my environment where market incompleteness arises endogenously from
partecipation constraints. Relying on the framework in Boppart, Krusell, and Mitman (2018), while computa-
tionally less efficient than SSJ, guarantees the flexibility needed to accomodate state-contingent contracts with
limited commitment.
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compute exact responses and preserve tractability, but raises a conceptual issue in my con-
text: if the MIT shock is truly unexpected (ex-ante zero probability), do the agents actually
contract upon it? This aspect is related to the point risen in Mukoyama (2021) that ”MIT
shocks imply incomplete markets”. I provide a unifying solution to these two challenges by
assuming that aggregate shocks happen with a probability that tends to zero. This enables
to compute state-contingent contracts and preserve the tractability of MIT shocks.

First, because the probability is non-zero, the choices of contracts for that state are well-
defined. The promised value contingent on both idiosyncratic and aggregate shocks v′(z′,ε ′)

is solved following Equation (36), which is derived from the problem with aggregate shocks
described in Section B.5. The probability of the aggregate shock cancels out in this equation,
and therefore we can solve for v′(z′,ε ′) even if the probability of the aggregate shock tends
to zero.38

Second, tractability is preserved because when these shocks happen with a probability
that tends to zero, the economy will almost surely remain in steady-state and, more impor-
tantly, at such limit the value and policy functions in the steady state do not depend on the
transition that follows the arrival of an MIT shock (except for the state-contingent value
promises for the realization of the aggregate shock). It is straightforward to show that the
values and policies for d, b and k in the problem with aggregate shocks described in Section
B.5 converge to the steady-state problem when the aggregate shock arrives with probability
that tends to zero.

I now outline the steps in my algorithm. If needed, recall that the optimal contract prob-
lem is described in detail in Appendix B.5. All the steps of the algorithm are identical to the
shooting algorithm as in Boppart, Krusell, and Mitman (2018), except Step 3, which is new
and I will describe in greater detail.

We assume that the economy transitions back to steady-state in T periods.

1. Step 1: Guess. Guess sequence for consumption path {Ct}t∈{0,T}.

2. Step 2: Backward iteration. Solve backward for prices, and policy and value func-
tions starting at T −1.

3. NEW Step 3: State-contingent promises.

(a) solve for v′(z′,ε ′), the promised values conditional on the realization of the ag-
gregate shock ε ′, using (36). This has to be done for each state (s,v) and for each
realization of the idiosyncratic shock z′.

(b) solve for the distribution of firms (s,v) on impact .

38The probability of the aggregate shock could affect µ , the slope of W (s,v). At the limit when the aggregate
shock arrives with zero probability, we can solve for the steady-state µ separately since the value function
W (s,v) does not depend on the outcomes following the realization of a shock arriving with zero probability.
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• The distribution over s = (z,b,k) is at steady-state.

• The distribution over v is already out-of steady-state at time 0, and can be
solved for using the initial steady-state distribution over (s,v) in combina-
tion with the promised values found in Step 3 (a).

Remark: this steps requires knowing values functions and prices at t = 0, which are
solved for in Step 2, given the guess in Step 1.

4. Step 4: Solve forward. Solve forward for the aggregates by iterating the distribution
of firms, using the policies found in Step 2, and starting from the distribution found in
Step 3.

5. Step 5: Update guess. Restart from (1) using the new {Ct}t∈0,T as guess (or a
weighted average with the old guess).

When markets are incomplete with respect to the aggregate shock (e.g. only non-contingent
bonds are available), then the financial positions at t = 0 are known. For example, in Ot-
tonello and Winberry (2020), upon arrival of the shock the distribution of firms is still at
steady-state. But in a model with state-contingent contracts, part of the state is the promised
value v, which is state-contingent. If we do not properly account for contracting on aggre-
gate shocks, then it is unclear which value v should be used when such shock hits. One
alternative could be to use to set v′(s′,ε ′) = v′ss(z

′), that is to keep the promised values that
were promised for that idiosyncratic contingency but assuming that no aggregate shock had
hit. However, this would make little economic sense, and would break the result that at the
limit when ψ f ,b → 0 the response of my economy to the aggregate shock would be exactly
as the response of the competitive economy.

FOC for v’. The optimality condition that pins down v′(z′,ε ′) in Step 3 for the contin-
gency of the aggregate shock is:

µ + η(z′,ε ′)︸ ︷︷ ︸
Relax Firm-Mkt PC

+ g(z′,ε ′)︸ ︷︷ ︸
Relax Firm-Def PC

= µ
′(z′,ε ′)+q(z′,ε ′)µ ′(z′,ε ′)︸ ︷︷ ︸

Tighten Bank PC

(36)

where µ ′(z′,ε ′) = −∂W t=0(s′,v′(z′))
∂v′(z′) , with W t=0 being the value function right after the

arrival of the aggregate shock at t = 0, which has been computed in Step 1.
Equation (36) also gives an important economic insight into the nature of insurance

against aggregate shocks. Because both firms and banks are owned by the same represen-
tative household, the SDF cancels out. Intuitively, there cannot be gains transfering money
from the bank to the firm in a recession simply because the SDF is high, since also the
shareholders of the bank value dollars highly in that state. However, this insurance can be
valuable if financial frictions make firms particularly exposed to the aggregate shock, raising
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their shadow value of equity. Intuitively, if µ ′(z′,ε ′) < µ(z′) for most z′, this means firms
are more constrained when the aggregate shock hits, given the same idiosyncratic state.

B.8 Numerical Solution

To provide deeper insight into the functioning of the model, I display the solution for debt
and capital for a firm with a particular state (z,k), varying the level of µ (which is iso-
morphic to varying v). As µ approaches 1, the policy for capital approaches the first-best
solution (which abstracts from financing frictions), instead, low levels of µ correspond to
a high shadow value of equity and a substantial gap from the unconstrained solution. In
equilibrium, low levels of µ are also associated with higher debt b′.

Figure 12: Example of the policy functions for debt and capital depending on firm equity shadow
value µ .

B.9 Quantitative Results: insurance vs evergreening

To evaluate the quantitative performance of evergreening, I run my empirical specifications
on data simulated from a version of the model with zero switching costs, thus eliminating
the insurance mechanism, but where firm bankruptcy is resolved through loan evergreening,
as described in Section 5.4. The model with evergreening delivers pass-through roughly
consistent with the data, but performs very poorly in delivering history-dependence, as doc-
umented in Table 38.
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Data Model Model
Risk-Sharing Evergreening

Spreadt Spreadt Spreadt

PDt 0.258∗∗∗ 0.571∗∗∗ 0.209∗∗∗

(0.068) (0.009) (0.002)

PD0 0.750∗∗∗ 0.327∗∗∗ 0.047∗∗∗

(0.057) (0.008) (0.001)

Table 38: PD0 in the data is the probability of default at the onset of the relationship. Data are organized at
the firm-bank-month level. First column: data. Second column: estimated model with positive switching costs.
Third column: model with zero switching costs and with resolution of bankruptcy through loan evergreening.

B.10 Model Estimation

To estimate the model, I use data from both the Credit Registry and Orbis. The Credit
Registry has a much larger sample, covering the universe of corporate borrowers, and has
detailed information on lending conditions, firm default risk, and relationships with banks.
Therefore, I use this data to measure the moments on the financial side of the firm. On the
real side, the credit registry has only self-reported information on sales and employment.
Therefore, I use data from Orbis, which covers a smaller sample of 91,011 firm-year ob-
servations, but has accurate information for all the relevant variables on the real-side of the
firm: capital, sales, profits, employment and dividends.

B.10.1 Elasticity of Default Risk to Sales

To estimate the elasticity of firm default risk to sales, I first organize data at the firm-year
level. I compute the average probability of default of a firm assessed during the year by its
lenders. Then, I regress changes in default risk from the previous year against changes in
the. I obtain a negative elasticity detailed in Table 12. As discussed more thoroughly in
Section 6.1.2, this moment is informative on when firms are more constrained, and support
the presence of capital adjustment costs. Absent these costs, default risk tends to move
positively with sales, since increases in productivity lead to both higher sales and larger
investment demand, raising firm leverage and default risk.

B.10.2 TFP Process Estimation

To estimate the TFP process of firms, I rely on Orbis data. I measure TFP by combining data
on labor, capital and sales, using the production function of the model: y = zkα lν , implying
log(z) = log(y)−αlog(k)− ν log(l), using sales for y, fixed assets for k and number of
employees for l, and the calibrated values of α and ν .
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Then, I estimate the TFP process as follows:

log(z f t) = ρzlog(z f ,t−1)+ ε f t (37)

Equation (37) directly estimates the persistence of the TFP process ρz. To estimate its
volatility, σz, I compute the standard deviation of the residuals ε f t . When estimating (37),
I follow the standard practice of instrumenting log(z f ,t−1) using its lag, which corrects for
temporary shocks. Without this correction, we would estimate an even larger σz, and a
smaller ρz.
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