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Abstract: Secured lenders have recently demanded a new condition in distressed debt re-

structurings: competing secured lenders must lose priority. We model the implications of this

“creditor-on-creditor violence” trend. In our dynamic model, secured lenders enjoy higher

priority in default. However, secured lenders take value-destroying actions to boost their own

recovery: they sell assets inefficiently early. We show that this creates an ex-ante tradeoff

between secured and unsecured debt that matches recent empirical evidence. Introducing

the recent creditor-conflict trend in this model endogenously increases secured credit spreads.

Importantly, it also increases ex-ante total surplus: restructurings endogenously introduce

efficient state-contingent debt reduction.
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1 Introduction

Serta Simmons, a leading mattress producer, was struggling financially in 2020. Serta had

substantial debt from a leveraged buyout. Its sales were falling due to the pandemic and the

growth of online retail. In June 2020, Serta’s problems led to a creative debt restructuring.

A majority coalition of Serta’s secured lenders consented to amend their credit agreement.

The amendment allowed Serta to issue new secured debt with a super-priority lien on Serta’s

assets. The majority coalition exchanged each dollar of their existing secured debt for 74

cents of new “super” secured debt. Crucially, existing secured lenders outside the coalition

were not given the exchange opportunity. These excluded lenders, who previously held

30% ($600 million) of the highest priority first-lien secured debt, suddenly had their debt

subordinated to more than $1 billion in new debt.1 This restructuring eliminated $400

million in debt for Serta through the exchange rate paid by coalition lenders.

Practitioners have divided views on these transactions, which have become increasingly

common in the last decade (Buccola and Nini, 2022). Firms like Serta euphemistically call

these restructurings “liability-management transactions.” They argue these restructurings

are a beneficial way to lower debt, increase liquidity, and prevent bankruptcies. Lenders and

other practitioners call this “creditor-on-creditor violence.” They point out that many of

these barely legal transactions are quickly followed by bankruptcies. These critics believe this

trend is harmful, eroding trust in the corporate borrowing system. To resolve the conflicting

views, we build the first theory of how these transactions impact both ex-post and ex-ante

firm behavior. We show that both critics and proponents of creditor-on-creditor violence

1See https://casetext.com/case/n-star-debt-holdings-lp-v-serta-simmons-bedding-llc and
https://www.penews.com/articles/apollo-sues-serta-simmons-and-owner-advent-over-debt-

dispute-20200612 and https://bedtimesmagazine.com/2020/06/news-release-serta-simmons-

bedding-enters-into-agreement-with-majority-of-lenders-on-deleveraging-and-liquidity-

enhancing-transaction/ for details.
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are partially right. The trend increases the cost of secured debt due to the anticipation of

future lender mistreatment. However, we also vindicate the proponents: surprisingly, the

possibility of a Serta-style restructuring increases total surplus when firms borrow ex ante.

Intuitively, firms would like to issue a debt security that: (i) offers tax shields in ex-post

good states of the world; and (ii) disappears in ex-post bad states to avoid default costs.

Such a security does not exist. However, we show that restructuring-exposed secured debt

achieves the same goal. Secured lenders have the highest priority, so they only lose money

in a default in very bad states of the world. Accordingly, secured lenders are only willing

to exchange face-value haircuts for super seniority in bad states. Because this new type of

restructuring only impacts secured lenders, it introduces the state-contingent debt reduction

that firms desire ex ante. Thus, the possibility of a Serta-style restructuring actually benefits

firms when they issue debt. This novel theoretical result from our model provides a positive

explanation for an otherwise puzzling fact: firms continue to use debt contracts that are

susceptible to “creditor-on-creditor violence” (Buccola and Nini, 2022).

Our main contribution is a theoretical formalization of this intuition. We model a firm

that issues risky debt, experiences a shock, and then decides whether to default. We then

study how the possibility of an aggressive restructuring changes firm behavior. Since this

new legal innovation only impacts secured debt, it changes ex-ante incentives to issue secured

debt. To capture this, we model the firm’s choice of secured versus unsecured debt. Our

second contribution is a new tractable approach to modeling this secured-debt choice based

on a realistic tradeoff. We embed these model ingredients (secured debt and aggressive

restructurings) in three existing capital-structure models. Across all three models, we confirm

the above intuition: the possibility of an aggressive restructuring increases ex-ante firm

value. This is surprising because conventional wisdom holds that harming creditors ex post
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destroys value ex ante through reduced debt capacity. We find the opposite in our novel

setting because creditors are only harmed in bad states of the world.

To streamline the exposition, we focus on one baseline model that is realistic and quanti-

tatively matches empirical facts about secured-debt usage. Our baseline model extends the

continuous-time capital-structure model of Bolton, Wang, and Yang (2024). A financially

constrained firm, facing costly external equity financing, chooses its investment, equity is-

suance, dividend policy, leverage ratio, secured-debt ratio, and default timing. The firm’s

capital, a state variable, evolves stochastically according to a jump-diffusion process. The

firm adjusts its outstanding short-term debt, the other state variable, to trade off the bene-

fits of debt, e.g., tax shields, with the expected deadweight losses caused by default. As the

firm rolls over its debt, it decides what fraction of its new debt to issue as secured debt.

After the arrival of a downward jump shock, equity holders can choose to default. Equity

holders default when the cost of the equity injection necessary to repay debt exceeds the

continuation value of their future cash flows. In default, secured lenders have first priority

on the recovery value of the firm. Crucially, unsecured lenders only get paid after both

secured lenders and priority unsecured claims, such as employees’ unpaid wage claims and

unpaid taxes. This creates an incentive for the firm to issue secured debt. The choice of

secured debt does not simply reallocate a pie of fixed size between secured and unsecured

lenders. Instead, secured debt allows the firm to increase the overall value available to

financial lenders in default. Issuing secured debt essentially transfers value from existing

priority claim holders, such as employees, to lenders. Departing from Modigliani and Miller

(1958), we assume that priority claim holders like employees are too unsophisticated to

reprice their claims in response to this transfer. Secured debt thus lowers the firm’s total

cost of credit: secured-debt usage allows financial lenders as a whole to recover more in
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default without fairly compensating priority claim holders (employees) ex ante.

While secured debt lowers the firm’s cost of credit, it also has a cost: secured lenders

have an incentive to push for premature asset sales, even if doing so lowers the firm value,

because it ensures they receive full recovery. Without an early sale, it is possible that a severe

downward jump shock could leave secured lenders impaired. To capture this incentive, in

our model, secured lenders sometimes force an early asset sale. This assumption captures

the ability of secured lenders to use covenants or foreclosure threats to manipulate debtors,

as we describe in Subsection 2.1. Importantly, these early asset sales destroy value for other

claim holders. The firm thus trades off the possibility of an inefficient forced asset sale with

the lower cost of credit when deciding how much secured debt to issue ex ante. This tradeoff

between secured and unsecured debt is a key contribution of our model.

We introduce creditor-on-creditor violence into this realistic model of corporate policies.

We assume that after a negative jump shock, with some exogenous probability, the firm has

an opportunity for an aggressive restructuring. If the restructuring offer is accepted by a

coalition of lenders, these lenders will then exchange their secured debt for super-secured

debt with a lower face value, leaving excluded lenders with a subordinated claim. We thus

capture the key features of transactions like Serta’s deal. We show that as the probability

of an aggressive restructuring opportunity increases, the endogenous cost of secured debt

rises. However, the state-contingent nature of these restructurings nonetheless creates value.

Specifically, because of equity-issuance costs, the firm’s leverage can drift far above target

leverage before the firm finds it optimal to reduce leverage with a costly equity issuance. We

show that secured lenders optimally accept restructuring offers if and only if leverage has

drifted sufficiently far above the target—secured lenders only accept a haircut if the expected

default costs, and thus the benefits of super-secured debt, are sufficiently high. This implies
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that restructurings provide an opportunity to reduce leverage precisely in states of the world

where leverage is inefficiently high. Equity holders’ moral hazard is limited by the fact that

secured lenders will not accept an offer in low-leverage states, where the tax shields are

valuable. As a result, ex-ante firm value increases with the ex-post restructuring probability.

We also show that the increase in firm value endogenously boosts firm investment.

We validate the central prediction of our model by showing our other model predictions

about leverage and secured debt are realistic. The debt policies in our model match the

following empirical facts: (i) firms choose a market leverage ratio of 32.8% and a secured-debt

ratio of 33.1% in our model, which precisely match the sample averages in Morellec, Nikolov,

and Schürhoff (2012) and Benmelech, Kumar, and Rajan (2024); (ii) the difference in credit

spreads between a firm’s simultaneously issued secured and unsecured debt is 273 basis

points, close to the estimate of 222 basis points from Benmelech, Kumar, and Rajan (2022);

(iii) “distressed” firms with higher-than-target leverage use more secured debt, consistent

with Benmelech, Kumar, and Rajan (2024). Since the choice of secured debt in our model

matches this empirical evidence, it is reasonable to think our model accurately captures the

effect of the rise in creditor-on-creditor violence, which is difficult to identify empirically.

Our model also implies that the ability to issue secured debt can be quite valuable—with

our chosen parameters, the legal enforcement of secured-lender rights improves ex-ante firm

value by 1.3%. Of course, it is likely that our parameterization only captures particular

types of firms.

While our baseline model has many assumptions, our main result is general. We embed

aggressive restructurings and a secured-debt choice in two other canonical capital-structure

models: the Leland (1994) model and the Modigliani-Miller’s static tradeoff model. We show

in both settings that aggressive secured-debt restructurings increase firm value ex ante. We
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likewise show that our results are robust to changing the model to include: (i) long-term debt,

(ii) a different restructuring bargaining game, (iii) endogenous restructuring-offer terms, (iv)

endogenous secured-lender forced sales, or (v) different subordination assumptions.

Related literature: We make two contributions to the literature. First, we build the

first theory of creditor-on-creditor violence. Our main finding, that this novel trend increases

ex-ante firm value and investment through state-contingent debt reduction, is thus new to the

literature. We build on a long theory literature modeling distressed restructurings, including

Gertner and Scharfstein (1991); Bolton and Scharfstein (1996); Fan and Sundaresan (2000);

Lambrecht (2001); François and Morellec (2004); Sundaresan and Wang (2007); Brunner-

meier and Oehmke (2013); Bolton and Oehmke (2015); Donaldson, Morrison, Piacentino,

and Yu (2020); Zhong (2021); Glode and Opp (2023). These models generate many im-

portant insights about distressed debt restructurings. Our model differs from these earlier

papers by including (i) an ex-ante choice of investment and secured versus unsecured debt;

(ii) the tendency for secured lenders to push for asset sales; and (iii) an ex-post restructuring

in which only a subset of the most secured lenders exchange their claims, while junior claims

are unaffected. As we show, the interactions between these model features are critical for

understanding the ex-ante implications of these recent aggressive creditor tactics.

Our second contribution is to show that a novel tradeoff between secured and unsecured

debt can produce realistic secured debt choices. Specifically, our model is the first to include

a tradeoff in which secured debt can extract value from priority unsecured claims but also

leads to premature asset sales. By studying the implications of this novel tradeoff, our

model complements the existing theory literature in which different tradeoffs drive the choice

between secured and unsecured debt (Bolton and Scharfstein, 1996; Morellec, 2001; Bris

and Welch, 2005; Hackbarth, Hennessy, and Leland, 2007; Hackbarth and Mauer, 2012;
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Rampini and Viswanathan, 2013; Morellec, Valta, and Zhdanov, 2015; Donaldson, Gromb,

and Piacentino, Forthcoming, 2020; Rampini and Viswanathan, 2020; Hu, Varas, and Ying,

2021; Hartman-Glaser, Mayer, and Milbradt, 2023).

Methodologically, we build on earlier continuous-time models of short-term debt such

as Bolton, Chen, and Wang (2011); Abel (2018); Geelen (2019); Della Seta, Morellec, and

Zucchi (2020); Bolton, Wang, and Yang (2024). We also build on the literature modeling

how institutional features of the treatment of debt in default influence ex-ante firm decisions

(François and Morellec, 2004; Broadie, Chernov, and Sundaresan, 2007; Antill and Grenadier,

2019). None of these papers study the recent trend of creditor-on-creditor violence.

Finally, we contribute to the recent empirical literature studying creditor-on-creditor

violence, including Ivashina and Vallee (2020); Buccola and Nini (2022); Huang, Lewellen,

and Wang (2024), by providing the first theory of how this practice impacts firms ex ante.

2 Institutional details

2.1 Secured debt and secured lender control

Unlike unsecured debt, secured debt is explicitly backed by collateral—a specific asset or

all of a firm’s assets. Outside of bankruptcy, secured lenders have the right to take their

collateral if the borrower defaults (e.g., a foreclosure). In contrast, an unsecured lender must

first file and win a lawsuit before taking assets from a defaulting borrower.

In bankruptcy, the automatic stay prevents secured lenders from seizing assets. However,

secured lenders enjoy the highest priority. A bankruptcy plan can only be confirmed if

secured lenders receive full recovery or secured lenders receive the value of their collateral.2

2Secured debt differs from senior unsecured debt. If a firm has two unsecured lenders, the two debt
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We provide further institutional details about secured debt in Internet Appendix I.F.

The high priority of secured lenders incentivizes them to push for a fast sale of their

collateral, even if the firm’s going concern value is higher than the collateral sale proceeds.

This incentive arises when the sale value of a secured lender’s collateral is high enough to

give the secured lender full recovery, but an uncertain continuation could lead to a future

default with lower recovery. Ayotte and Morrison (2009) and Antill (2022) show empirical

evidence of inefficient liquidations that benefit secured lenders.

In practice, secured lenders have some ability to push for an asset sale outside of default.

For example, secured lenders can use a technical covenant violation to force the appointment

of a new sympathetic manager, then promise the manager generous compensation in return

for a fast asset sale. Using a discontinuity design to identify the causal effect of a covenant

violation, Nini, Smith, and Sufi (2012) show that “the marginal likelihood of observing a

forced CEO turnover is 60% higher during the quarter of a covenant violation.” Becher, Grif-

fin, and Nini (2022) show that creditors control acquisition activity prior to defaults. Gilson

and Vetsuypens (1994) show that “creditors are able to influence corporate policies by...

replacing senior management, and influencing the terms of senior executives’ compensation”

prior to default.

2.2 Priority unsecured claims

As part of its operations, a firm always owes money to employees. This includes, for example,

wages or contributions to employee retirement plans that have not yet been paid. Likewise,

firms always owe some taxes to the government that have not yet been paid. If a firm files for

contracts can specify that one “senior” lender gets paid before the other “junior” lender in default. Other
than this contractual agreement between the two lenders, senior unsecured debt receives no special treatment.
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bankruptcy, these wage and tax obligations are priority unsecured claims.3 These priority

unsecured claims must be paid before unsecured lenders. Formally, 11 U.S.C. §507 specifies

a certain amount of employee wages, employee benefit contributions, and tax claims that

receive priority over general unsecured claims. If unsecured lenders are paid before these

priority unsecured claims receive full recovery, the bankruptcy plan cannot be confirmed.4

Priority unsecured claims can be substantial. For example, in the 2023 bankruptcy of Semrad

Law, 38% of the overall liabilities were priority unsecured claims.5

While priority unsecured claims must be paid before unsecured claims, secured claims

enjoy the highest priority. In our model, this creates a motive to issue secured debt; the firm

can obtain cheaper credit by issuing secured debt because secured creditors are paid before

the priority unsecured claims that result from the firm’s operations. Importantly, we assume

that unsophisticated employees do not reprice their wage claims as firms issue secured debt.

2.3 Liability management and creditor-on-creditor violence

When large firms issue secured debt, they typically have a credit agreement that specifies

both the terms of the debt and the circumstances under which the terms can be amended. In

a recent trend, lenders have begun exploiting loopholes in these credit agreements to protect

themselves when firms become distressed. Transactions like the one used by Serta’s lenders

are called “uptier transactions.” In these instances, a coalition of secured lenders and the

borrower collude to exploit the amendment terms in a credit agreement. Specifically, credit

agreements typically include negative covenants preventing lenders from issuing new liens

on assets that would “prime” the existing first liens of secured creditors. However, these

3See https://www.law.cornell.edu/uscode/text/11/507.
4See https://www.law.cornell.edu/uscode/text/11/1129.
5See https://www.inforuptcy.com/browse-filings/delaware-bankruptcy-court/1:23-bk-10512/

bankruptcy-case-the-semrad-law-firm-llc.
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documents typically allow for a change of these pledges, or a release of liens entirely, if a

majority of lenders agree to amend the terms. In uptier transactions, a majority coalition of

secured lenders agree to such an amendment in exchange for the ability to receive the new

secured debt with the highest priming lien. The excluded lenders are stuck with essentially

a second-priority lien on the assets.

Another type of liability-management transaction is called the “dropdown.” This was

made famous by J. Crew in 2016. In a dropdown, secured lenders have a first lien on a

company’s assets. The firm exploits loopholes in the credit agreement to transfer these

assets to an “unrestricted subsidiary” such that the secured lenders’ liens no longer apply.

The firm then issues new secured debt backed by the now unencumbered collateral, often

to existing lenders. In many instances, prior secured lenders challenge the legality of these

transactions, so firms like J. Crew offer a consolation payment to a majority coalition of

prior lenders to settle disputes. In this sense, the end outcome of a dropdown is similar to

that of an uptier: the firm issues new secured debt that is senior to previously secured debt

and only a fraction of prior secured lenders benefit.

Buccola and Nini (2022) provide a detailed description of how these liability-management

transactions work. Buccola (2023) includes a list of the many liability-management transac-

tions that have occurred since 2015.

3 Model

We model the partial-equilibrium optimization of a firm in continuous time. A firm chooses

its debt level ex ante, then makes decisions ex post to maximize equity value. This section

presents our model assumptions, which extend the setup of Bolton, Wang, and Yang (2024)
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to include the secured debt and aggressive restructurings that are central to our results. In

Internet Appendices I.A and I.B, we show that our main results are robust to alternative

assumptions.

3.1 Capital and investment

Let Kt denote the firm’s capital at time t. Let It denote the firm’s endogenous investment

at t. Capital evolves according to the following stochastic differential equation (SDE):

dKt = Kt−

(
ψ
( It−
Kt−

)
− δ

)
dt+ σKt−dBt − (1− Z)Kt−dJt, (1)

where the parameter δ ≥ 0 captures capital depreciation and σ > 0 is the diffusion volatility

parameter. We use Kt− = lims↑tKs to denote left limits. The process Bt is a standard

Brownian motion.

We assume that jump shocks arrive with an exogenous constant rate λ and the Poisson

process Jt counts these shocks. At each shock, a fraction 1 − Z of the firm’s capital is

destroyed, where Z ∈ [0, 1] is an independently and identically distributed (i.i.d) random

variable, drawn from the following cumulative distribution function (CDF):

F (Z) = Zβ. (2)

The parameter β > 0 determines the distribution of jump shocks. The smaller the level

of β the more fat-tailed the distribution of 1/Z. Jumps play a crucial role in our analysis.

Finally, the function ψ( · ) captures the efficacy of investment and is given by:

ψ(i) ≡ i− ξ

2
i2, (3)

where the parameter ξ captures capital adjustment costs.
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3.2 Priority claims and free cash flows

As motivated in Subsection 2.2, we assume in each instant the firm owes ρKt in priority

unsecured claims (e.g., wages) where ρ is an exogenous parameter. This is a simplifying

assumption to capture the creation of new claims as the firm pays out previously unpaid

wages and taxes. Intuitively, these claims (e.g., wages) increase with firm sizeKt. We assume

these claims scale with Kt to preserve homogeneity for tractability.

We use the “AK-technology” specification for firm production, which is frequently used

in the macroeconomics and corporate finance literatures (e.g., Hayashi, 1982). Under this

assumption, the firm’s unlevered free cash flow Yt is given by the following equation:

Yt = θKt − It, (4)

where the parameter θ captures the firm’s productivity, adjusted for tax payments.6

3.3 Financing

At time zero, the firm issues X0 in debt. The firm can costlessly issue new debt at any

time before default. It can also pay a cost to issue equity, which allows the firm to reduce

its outstanding debt. For tractability, we assume that all debt is short-term and matures

immediately.7 The firm’s debt level Xt thus evolves stochastically over time as it (i) issues

new short-term debt to cover maturing debt, or pay dividends, or fund investments, and (ii)

pays down debt using its free cash flow or equity-issuance proceeds.

In each instant t, out of the total debt Xt issued, a fraction st ∈ [0, 1] is secured and the

6Let A > 0 denote the firm’s capital productivity and τ ∈ (0, 1) denote the tax rate on corporate profits.
Then, the firm’s after-tax free cash flow is given by Yt = AKt − τ(AKt − δKt) − It = θKt − It, where
θ ≡ A(1− τ) + τδ.

7In Internet Appendix I.B, we show that our main results hold in a model with long-term debt.
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remaining fraction 1− st is unsecured so that the outstanding secured debt balance is stXt

and unsecured debt balance is (1− st)Xt.

3.3.1 Credit spreads

The firm’s cost of credit depends endogenously on its policies. Let ηSt denote the endogenous

credit spread of secured debt and let ηUt denote the endogenous credit spread of unsecured

debt. Let Deft,t+dt denote the firm’s default policy (an indicator function) that equals one

if it defaults over the interval of time [t, t + dt] for some small dt > 0, and zero otherwise.

Let RSec
t+dt denote the total recovery value received by secured-debt holders in the event of

default at time t + dt. We describe this recovery in detail in Subsection 3.5. Then the

secured credit spread ηSt is determined by the condition that secured lenders must receive

an expected return equal to the exogenous risk-free rate r:

lim
dt→0

stXt(1 + rdt) = lim
dt→0

Et
[
stXt

(
1 + (r + ηSt )dt

)
(1−Deft,t+dt) +RSec

t+dtDeft,t+dt

]
. (5)

Secured lenders could invest the total secured debt stXt at the exogenous risk-free rate r

and receive stXt(1 + rdt) at time t+ dt. We assume that lenders demand a credit spread ηSt

such that they receive the same expected return on the firm’s secured debt. This expected

return is given by the right side of equation (5). If the firm does not default over the interval

[t, t+ dt], then lenders get a return equal to sum of the risk-free rate r and the credit spread

ηSt . If the firm defaults over the interval [t + dt], then secured lenders receive the recovery

value described in Subsection 3.5. See Appendix A for details.

Unsecured credit spreads are defined by an analogous break-even condition, where the
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analogous unsecured recovery value RUnsec
t+dt is defined in Subsection 3.5:

lim
dt→0

(1− st)Xt(1 + rdt)

= lim
dt→0

Et
[
(1− st)Xt

(
1 + (r + ηUt )dt

)
(1−Deft,t+dt) +RUnsec

t+dt Deft,t+dt

]
. (6)

3.3.2 Debt coupon payments and the interest tax shields

The firm’s debt coupon payment is Ctdt over [t, t+ dt] where:

Ct ≡
(
r + ηSt st + ηUt (1− st)

)
Xt. (7)

We assume that the firm receives an interest tax shield τCtdt over the interval [t, t + dt],

where τ is the firm’s tax rate. This creates an incentive to issue debt. As we discuss in

Subsection 3.5, deadweight losses in default create an incentive to avoid excessive debt.

3.3.3 Payouts, equity issuance, and debt dynamics

At any time, equity holders can issue debt and pay themselves the proceeds. That is, equity

holders can pay out ∆U to themselves by increasing the debt level from Xt to Xt+∆U . Let

Ut denote the cumulative (undiscounted) amount paid out to equity holders by time t.

Likewise, equity holders can raise Mt by issuing external equity at any time to reduce

the debt level from Xt to Xt −Mt, and incur a total equity issuance cost of h0Kt + h1Mt.

Let Nt denote the cumulative (undiscounted) amount of equity issuance by time t. Let Ht

denote the corresponding (undiscounted) cumulative external equity financing costs by time

t.

Given our assumptions, in the absence of debt restructurings, the firm’s debt balance Xt
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evolves according to the following SDE:

dXt =
[

(1− τ)Ct︸ ︷︷ ︸
Coupon and tax shield

− Yt︸︷︷︸
Free cash flow

]
dt+ dUt︸︷︷︸

Payouts

− dNt︸︷︷︸
Equity Injections

. (8)

We explain how potential debt restructurings change leverage dynamics in Subsection 3.4.8

3.4 Secured lender incentives

Our modeling of secured debt is a key contribution. We include key realistic features of se-

cured debt in our model. The treatment of secured debt in default influences secured lenders’

incentives, which in turn impacts default timing and secured lender recovery. Because of this

strategic interdependence and equilibrium debt pricing, we build up our characterization of

secured lender recovery in steps.

3.4.1 Firm value in default

We assume that firm value in default is πKt, where π > 0 is an exogenous parameter. This

can be thought of as the recovery value from selling the firm in a liquidation or going-concern

sale.9 The value πKt is split by all of the firm’s claimholders.

3.4.2 Secured debt limit

We assume that secured debt must be fully collateralized. Specifically, the value of a firm’s

secured debt issued at time t must be less than the total value claimholders would receive if

8Purely for technical reasons, we assume equity holders must keep leverage below an exogenous limit via
a debt covenant to rule out Ponzi schemes in which the firm constantly issues debt under the self-fulfilling
prophecy that it will issue more debt to repay old debt (Auclert and Rognlie, 2016). In our calibration, we
set this exogenous debt limit such that equity holders endogenously default before reaching the exogenous
leverage limit. This ensures the exogenous limit does not drive our results.

9Deadweight losses arise in default regardless of whether the default is resolved through liquidation (Antill,
Forthcoming), reorganization (Antill and Hunter, 2023), or going-concern sale (Antill, 2022).
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the firm were to default at time t:

st−Xt− ≤ πKt−. (9)

This innocuous constraint, which does not bind in our calibration, simply imposes that there

is no partially collateralized debt. See Internet Appendix I.F for details on secured debt.

Importantly, equation (9) does not imply that secured debt is risk-free. If a jump shock

occurs at time t, then πKt = ZπKt− can be insufficient to cover the secured debt st−Xt−.

3.4.3 Secured versus unsecured conflict

We assume that secured lenders enjoy the highest priority in default. Combined with equa-

tion (9), this gives secured lenders an incentive to force an early default. If secured lenders

can force a default before a capital (jump) shock arrives, they have first priority on the firm

value πKt. By equation (9), this implies full recovery for secured debt. However, if a jump

shock arrives causing the firm to default before secured creditors force a default, there is a

chance that secured lenders will be impaired.

To capture this mechanism, we assume that secured lenders will sometimes push to sell

the firm before equity holders would optimally choose to default. That is, over a time

increment [t, t+ dt], secured lenders take over the firm and sell it with probability

ϕ
(st−Xt−

Kt−

)ν
dt, (10)

where ϕ, ν > 0 are exogenous parameters. If this takeover occurs, the firm shuts down.

Secured lenders receive full recovery; the other claimholders split the remaining value (see

Subsection 3.5). In Internet Appendix I.A, we show that our results are robust in richer

settings where secured lenders endogenously choose whether to force a sale.
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3.4.4 Liability management or creditor-on-creditor violence

To our knowledge, our dynamic capital structure model is the first to capture the recent

trend of “liability management,” also called “creditor-on-creditor violence.” We model this as

follows. Whenever a jump shock occurs, before lenders learn the corresponding realized value

of Z, with probability α ∈ [0, 1] there is the potential for a liability-management transaction.

In this transaction, the firm offers a coalition of secured lenders, owning fraction ζ ∈ [1/2, 1]

of secured claims, the opportunity to exchange their secured claims worth ζst−Xt− for new

super secured claims worth (1 − ε)ζst−Xt−. The haircut rate ε ∈ [0, 1], which for now we

assume is exogenous for tractability, allows the firm to lower its debt slightly. The coalition

accepts if its expected payoff is higher with the exchange than without the exchange. In

Internet Appendices I.A and I.B, we show that our results are robust in richer settings

where equity holders optimally choose a haircut rate ε.10 In Internet Appendix I.C, we show

that our results also hold in a model extension in which equity holders endogenously choose

ζ.

We now provide intuition for how secured lenders decide whether to accept a restructuring

offer. Suppose that Xt− is very high and a jump shock occurs at t. Because Xt− is high,

the shock could plausibly lead to a default in which secured lenders are impaired (πZKt− <

st−Xt−). In this scenario, the secured-lender coalition might prefer to exchange their debt

ζst−Xt− for (1− ε)ζst−Xt− in super senior debt. The motive for doing this is that the new

debt will be less likely to be impaired in a default, leading to a higher expected recovery:

Et−
[
min{πZKt− , (1− ε)ζst−Xt−} | Jump

]
> ζEt−

[
min{πZKt− , st−Xt−} | Jump

]
. (11)

Note that the expectations on both sides of (11) are conditional on the arrival of a jump

10Likewise, we show that our results continue to hold if a secured lender’s outside option, relative to
participating in a coalition, is to be excluded and subordinated in a nonetheless successful restructuring.
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shock at t but the realized value of Z is unknown. That is, the expectations in (11) are taken

with respect to Z.

Now, suppose that Xt− is low. Then it is very unlikely that a jump arrival will lead to

a default, let alone one in which secured lenders are impaired. In this case, secured lenders

will not accept the offer. They are unwilling to give up a fraction ε of their debt to buy

insurance for the unlikely event of impaired recovery. This intuition matches our result: we

show that secured lenders optimally accept a restructuring offer if and only if book leverage

Xt−/Kt− exceeds an endogenous threshold. We characterize this threshold in Appendix A.

Importantly, it is possible that secured lenders agree to a restructuring but then later

learn that the jump shock is mild enough to avoid a default. When this scenario happens, the

firm simply reduces its outstanding debt. This is the equity holders’ motive for these ex-post

restructurings in practice. We will show that this ex-post restructuring possibility creates

value ex ante by effectively expanding the contract space to allow for a state-contingent

reduction in debt ex post precisely when expected default deadweight losses are large. Math-

ematically, we can write the debt dynamics with potential restructurings as:

dXt =
[

(1− τ)Ct︸ ︷︷ ︸
Coupon and tax shield

− Yt︸︷︷︸
Free cash flow

]
dt+ dUt︸︷︷︸

Payout

− dNt︸︷︷︸
Equity Issue

− 1Rt ζεst−Xt−dJt︸ ︷︷ ︸
Liability management

, (12)

where 1Rt is the firm’s optimal restructuring policy (an indicator function) that equals one

if a restructuring is offered and accepted after the jump shock arrives at time t.

3.5 Recovery by absolute priority rule in default

We can now formalize the treatment of claims in default. Recall that the total firm value

in default is πKt. We further assume that all claimholders split this value according to the

absolute priority rule (APR): each claim must receive full recovery before any junior claim
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receives any recovery. However, the amount of secured claims depends on whether liability

management has occurred as we just discussed above.

3.5.1 Recovery with no liability management

If there is no liability-management transaction, then the firm defaults with secured claims

worth up to st−Xt− and unsecured claims worth up to (1− st−)Xt− subject to APR. Let T∗

denote the time of default. Then, secured claims receive first priority on the firm’s recovery

value so that the recovery value for secured creditors is given by

RSec
T∗ ≡ min

{
sT∗XT∗ , πKT∗

}
. (13)

After secured lenders are fully repaid, priority unsecured claimants, e.g., employees, re-

ceive second priority. These claims have face value ρKT∗ regardless of whether liability

management occurs (Subsection 3.2). If there is enough value left over, then unsecured

lenders have third priority given by

RUnsec
T∗ ≡ min

{
(1− sT∗)XT∗ ,

(
πKT∗ − sT∗XT∗ − ρKT∗

)+ }
, (14)

where x+ ≡ max{0, x}.

3.5.2 Recovery with liability management

If a liability-management transaction occurs, then the firm has secured claims worth up

to (1 − εζ)sT∗XT∗ and unsecured claims worth up to (1 − sT∗)XT∗ . The total recovery for

pre-default secured lenders is then:

RSec
T∗ ≡ min

{
(1− εζ)sT∗XT∗ , πKT∗

}
, (15)
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where the participating secured lender coalition is fully repaid before the nonparticipating

secured lenders receive anything.

Unsecured lenders have the same seniority position in the capital structure as in the

no-liability-management case, but they benefit from the reduced amount of secured debt:

RUnsec
T∗ ≡ min

{
(1− sT∗)XT∗ ,

(
πKT∗ − (1− εζ)sT∗XT∗ − ρKT∗

)+ }
. (16)

Note that the second term in (16) accounts for equity holders’ reduced payment (1−εζ)sT∗XT∗

to secured lenders.

3.6 Default timing

Default can occur either because it is forced by secured creditors or chosen by equity holders.

Recall that secured creditors can force a default at a rate of ϕ
(
stXt/Kt

)ν
(Subsection 3.4).

In this case, default is captured by the first jump time of a jump process Jsect with intensity

ϕ
(
stXt/Kt

)ν
, defined as TS ≡ inf{t ≥ 0 : Jsect ̸= Jsec0 }. Alternatively, a default can also

occur when equity holders choose to stop paying their debt due to their limited liability

protection. We let TD denote the endogenous time at which equity holders choose to stop

paying debt.

In sum, taking both default possibilities into account, we can express the firm’s default

via an endogenously determined indicator function as follows:

Deft,t+dt ≡ 1

(
t ≤ T∗ ≤ t+ dt

)
, (17)

where T∗ is the default time given by the minimum of the two default scenarios: T∗ ≡ TD∧TS.
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3.7 Firm objective

After issuing debtX0 at time zero, equity holders choose a payout process Ut, issuance process

Nt, investment process It, secured debt process st, and default time TD to maximize expected

equity payouts. We assume that equity holders have a discount rate γ that is potentially

higher than the risk-free rate r. This assumption captures equity holder impatience. Equity

holders thus solve the following stochastic optimization problem:

P (Kt, Xt) ≡ sup
U,N,I,s,TD

Et
[ ∫ TD∧TS

t

e−γ(u−t)
(
dUu − dNu − dHu

)
+ e−γ(TD∧TS−t)

(
(π − ρ)KTD∧TS −XTD∧TS

)+]
. (18)

The first term is an integral that describes the net equity payouts prior to default. The

second term corresponds to the possibility that equity holders earn positive recovery in

default.11 Equity holders maximize this objective subject to: the capital stock evolution (1);

the credit spreads implied by (5) and (6), given the firm’s strategy; debt dynamics (12); and

the exogenous limit (9). Note that equity holders account for the impact of their choices

on credit spreads and the default likelihood as they are both determined in equilibrium

based on the choices of equity holders as described in the previous sections. In effect, equity

holders and creditors play a dynamic game and the solution concept that we use here is

Markov subgame perfect equilibrium. (Recall that the likelihood that secured creditors

force a default depends on the firm’s secured-leverage ratio: stXt/Kt).

Finally, we note that equity value maximization at t = 0 implies that the firm chooses

X0 and the debt composition structure s0 ∈ [0, 1] to maximize firm value, the sum of equity

11In our baseline parameterization, this final term is always zero: equity holders recover nothing in default.
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value and debt proceeds at t = 0:

sup
X0,s0

P (K0, X0) +X0 (19)

subject to s0X0 ≤ πK0 and P (K0, X0) > 0 due to equity holders’ limited liability.

4 Model solution

In this section, we present the model solution. Given our functional form assumptions, our

model has a homogeneity property. We show that the solution can be restated in terms of

a single state variable, xt ≡ Xt/Kt, without loss of generality. Using xt, which represents

book leverage, greatly simplifies analysis. Equity holders’ value is P (Kt, Xt) = p(xt)Kt for a

function p(xt), and firm value is P (Kt, Xt)+Xt = v(xt)Kt for v(xt) = p(xt)+xt. The equity

holders’ optimal policy at each t is determined by the value of xt and three endogenous

cutoffs: (i) a payout boundary x, such that the firm issues debt to pay a dividend when

xt < x; (ii) an equity-issuance boundary x̂, such that the firm issues equity to reduce

leverage when xt > x̂; and (iii) a default boundary x, such that the firm defaults the first

time when xt ≥ x. Whenever xt ∈ [x, x̂], the firm relies on debt financing together with

retained earnings. It issues (pays down) debt when the after-tax free cash flow is less than

(greater than) interest expenses. The firm optimizes its equity value by choosing its secured-

debt policy st = s(xt) and investment It = i(xt)Kt as certain functions of the state variable

xt. Finally, the endogenous credit spreads η
S
t and ηUt are functions of xt, taking into account

the firm’s optimal policies. Lenders optimally accept liability-management offers when xt

exceeds an endogenous cutoff, which we denote by xR.

Readers less interested in the technical details may skip to Section 5, which uses this

characterization of the optimal firm strategy to present the main results of the paper.
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4.1 Payout region

The endogenous boundaries, x, x̂, and x partition the set of all admissible values for xt into

four regions. We now characterize each region, starting with the payout region: xt < x.

When xt is below the endogenous payout boundary x, the firm makes a lump-sum pay-

ment (x− xt)Kt to shareholders. The lump-sum payment is financed with debt, bringing xt

to x. The equity value function p must then satisfy the following value-continuity condition:

p(x) = p(x) + x− x , for x < x . (20)

Since (20) holds for x close to x, we obtain the following smooth-pasting condition for x:

p′(x) = −1 , (21)

by taking the limit x → x. At x = x, equity holders are indifferent between reducing debt

by one dollar and distributing this dollar to shareholders. Since the payout boundary x is an

optimal choice, we also have the following super-contact condition (see, e.g., Dumas (1991)):

p′′(x) = 0 . (22)

4.2 Equity-issuance region

We next characterize the endogenous equity-issuance region: x̂ ≤ x ≤ x. If leverage xt

is in this region, then the firm issues equity by choosing the net issuance proceeds Mt.

Define mt ≡ Mt/Kt. As equity value is continuous before and after issuance, the following

value-matching condition holds for xt ∈ [x̂, x]:

p(xt) = max
m>0

[
p(xt −m)− [h0 + (1 + h1)m]

]
. (23)
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This condition implies that the sum of the equity-issuance costs h0 + h1mt and the dollars

injectedmt must equal the value of the equity that old shareholders receive: p(xt−mt)−p(xt).

We define x̃ ≡ xt −m and use it to rewrite (23) as:

max
x̃

p(x̃)− [h0 + (1 + h1)(xt − x̃)] . (24)

Conditional on issuing equity so that m > 0, the optimizer for (24) is independent of the

value of xt. Note that for any xt in the equity-issuance region [x̂, x], the firm chooses the

same post-issuance target leverage x̃. This equity-issuance target leverage is characterized

by the argmax of (24) over the region x̃ ∈ [x, x̂], since the post-issuance leverage will be

below the issuance boundary x̂. Note that the equity-issuance target leverage x̃ is higher

than the payout boundary x when each dollar of equity issued has a marginal cost h1 > 0.

Finally, we determine the firm’s optimal equity-issuance boundary x̂. Since the target x̃

does not depend on x, (23) implies that p(x) = p(x̃)− [h0+(1+h1)(x− x̃)] for any x ∈ [x̂, x].

This holds at the boundary x̂, so p(x̂) = p(x̃)− [h0 + (1 + h1)(x̂− x̃)]. Then,

p(x) = p(x̂)− (1 + h1)(x− x̂), [x̂, x]. (25)

Since p(x) is continuously differentiable at the endogenous equity-issuance boundary x̂, we

can find the equity-issuance boundary x̂ by imposing the following smoothing-pasting con-

dition:

lim
x↑x̂

p′(x) = −(1 + h1). (26)

4.3 Default region

Next, we characterize the default region x > x. Equity holders will not voluntarily default

whenever p(x) is strictly positive. Due to equity holders’ limited liability, there exists an
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endogenous threshold x above which equity value is zero:

p(x) = 0 , when x ≥ x. (27)

Substituting p(x) = 0 into the equity-valuation equation (25), we obtain x−x̂ = p(x̂)/(1+h1).

Note that since x > x̂, a voluntary default cannot occur unless a capital jump shock

arrives: a Brownian shock would push the firm into the equity-issuance region before reaching

the default region and the firm would issue equity to lower leverage. In the absence of a

restructuring, the firm thus defaults if and only if a jump shock arrives with a low Z:

xt = xt−/Z > x. Rearranging this inequality, we can define a default threshold for the

realized jump recovery Z: Z∗(x) ≡ x/x. Absent restructuring, the firm defaults if and

only if Z < Z∗(x). Finally, if a restructuring is accepted, the debt level falls from Xt

to Xt(1 − stζε). This argument implies that the firm then defaults if and only if Z <

Z∗(x(1− sζε)) ≡ Zres
∗ (x, s).

4.4 Earnings retention and debt-financing region

When x < xt < x̂, equity holders do not want to pay out cash (xt > x) or issue equity

(xt < x̂). Intuitively, in this region, leverage is too high to justify issuing a debt-financed

dividend. However, the costs of leverage deviating from the target level x are too small

in this region to justify the equity-issuance costs needed to readjust to target leverage. In

this region, the firm’s leverage thus evolves stochastically. The firm pays down or grows its

debt outstanding depending on whether its free cash flow is higher or lower than its interest

expense.

Combining equations (1) and (12) and noting there are no payouts and no equity issuance
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in this region, we can apply Ito’s lemma12 to derive the evolution of xt = Xt/Kt:

dxt =

(
−θ + i(xt) + (1− τ)ct + xt

[
− ψ(i(xt)) + δ + σ2

] )
dt− σxtdBt

+
(xt−(1− 1Rt ζεst−)

Z
− xt−

)
dJt, (28)

where ct ≡ Ct/Kt = xt[r + stη
S
t + (1− st)η

U
t ].

In Appendix A.3, we show that the Hamilton-Jacobi-Bellman (HJB) equation for equity

value P (Kt, Xt) implies the following HJB for p(xt) in the region where x ∈ (x, x̂):

(γ + λ)p(x) = max
i,s

(
− θ + i+ (1− τ)c(x, s)

)
p′(x) +

1

2
σ2x2p′′(x)

+
(
ψ(i)− δ

)(
p(x)− xp′(x)

)
+ ϕ
(
sx
)ν [

(π − ρ− x)+ − p(x)
]

(29)

+ λ

[
(1− α1R(x))

∫ 1

Z∗(x)

Zp
( x
Z

)
dF (Z) + α1R(x)

∫ 1

Zres
∗ (x,s)

Zp
(
x
1− sζε

Z

)
dF (Z)

]
subject to 0 ≤ s ≤ min{1, π

x
}.

We now explain this equation. Recall that Zres(x, s), Z∗(x) are the necessary shock sizes to

induce a default with or without a restructuring, respectively. In Appendix A, we derive

the equilibrium (scaled) coupon payment function c(x, s) that lenders charge to break even.

This incorporates the role of secured debt in determining the credit spread. The first three

terms of (29) capture the sensitivity of equity value to continuous stochastic fluctuations in

leverage, given the endogenous secured-debt ratio, investment spending, and credit spreads.

The fourth term captures the impact of a secured-lender takeover.

The final line of (29) captures the impact of jump shocks. We derive a cutoff xR and

a function 1R(x) = 1(x > xR) such that secured lenders optimally accept a restructuring

offer if and only if xt > xR (i.e., 1R(xt) = 1). The probability of a restructuring after a

jump shock arrival is thus α1R(x). The first term on this line captures the scenario where a

12See, for example, Lemma 3 of Appendix H of Duffie (2010).
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jump shock while lowering Kt does not trigger restructuring. The second term on this line

describes the effect of a restructuring triggered by a jump shock arrival.

In this debt-financing region, equity holders choose investment spending i = i(xt) and

secured debt fraction st = s(xt) to maximize the right side of (29). Taking a derivative with

respect to i, we can show analytically that the optimal investment level is:

i∗(x) =
1

ξ

(
1− p′(x)

xp′(x)− p(x)

)
. (30)

This condition equates the marginal cost and the marginal benefit of investing for a financially

constrained firm facing costly external equity financing.

4.5 Numerical solution

The solution method for our jump-diffusion model is different from pure-diffusion models,

which only require local information around x. Moreover, the interdependence between cred-

itor choices (credit spreads and restructuring acceptance) and equity holder choices requires

an equilibrium analysis. Our numerical algorithm accounts for this with an iterative ap-

proach. We guess a function pk(x) with associated boundaries x, x̂, and x and then calculate

credit spreads and creditors’ restructuring acceptance decisions. We then use the HJB equa-

tion (29) and other conditions described above to update to a new candidate value function

pk+1(x), given equity holders’ strategies, creditor behavior and post-jump-shock values de-

rived from pk(x). We repeat this process until it converges. We provide details in Internet

Appendix I.E.
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5 Results

This section presents our main results. In Subsection 5.1, we provide intuition for how the

firm optimizes the path of its leverage xt. In Subsection 5.2, we characterize the optimal

secured-debt ratio s∗(xt). In Subsection 5.3, we conduct comparative statics with respect

to the parameter α to show our main result: more frequent liability management leads to

higher secured credit spreads and lower secured-debt use, but also increases both investment

and ex-ante firm value. Finally, Subsection 5.4 shows that our model matches empirical

evidence.

5.1 The optimal leverage ratio

First, we develop intuition for our model by studying leverage dynamics implied by our

model solution. We solve our model using the parameter values given in Table 1. Recall

that whenever xt < x, the firm immediately issues debt and pays a dividend to bring leverage

up to the optimal leverage target x. Likewise, whenever xt > x̂, the firm immediately issues

equity to bring leverage down to the recapitalization target x̃. The firm’s leverage thus

remains in the range of [x, x̂], almost surely, prior to default (which occurs if a jump shock

brings x from [x, x̂] to a value above x).

[Insert Table 1 here]

Figure 1 displays the model solution in the range of xt ∈ [x, x]. As expected, panel A

shows that the ex-post firm value declines in x in this range. By definition, x is the point at

which equity holders are indifferent between keeping leverage fixed or issuing another dollar

of debt to pay a dividend. For x > x, it follows that p′(x) < −1 and thus the ex-post firm

value v(x) = p(x)+x declines in x. In this sense, the firm’s leverage is typically higher than
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its payout boundary x. Once leverage rises to x̂, the firm incurs the equity-issuance cost to

issue equity and lower leverage. As equity issuance has a marginal cost h1 > 0 per dollar

of equity issued, the firm’s equity-financed target leverage x̃ is higher than its debt-financed

target x. For x > x̂, the declining firm value simply reflects the higher equity-issuance costs

needed to bring down leverage.

[Insert Figure 1 here]

Interestingly, panel B shows that firm value is concave in x for low xt and convex in x for

high values of xt. Because of this, panel D shows that investment first falls as leverage rises

(debt overhang) for low leverage levels, then increases with leverage (risk-shifting). Panel C

shows the obvious result that market leverage x/v(x) increases as book leverage x rises.

5.2 The optimal secured ratio

Next, we illustrate the choice of secured debt in our model. The benefit of secured debt

is that it allows firms to lower their cost of credit. This lower cost of credit arises because

secured lenders are senior to existing priority unsecured claims, e.g., wages. Issuing secured

debt essentially allows the firm to transfer value from priority claim holders, e.g., workers,

to secured claim holders. The downside of secured debt is that secured creditors push for

early default to ensure full recovery (Subsection 3.4.3). This can lead to an early default

that lowers firm value.

We provide intuition for this tradeoff driving the secured-debt choice using comparative

statics. In Figure 2, we vary the parameter ρ that captures priority unsecured claims. Panel

B shows that as ρ increases, the firm optimally chooses a higher secured-debt ratio: the

average secured-debt ratio rises. This is explained by the same intuition described above.

As ρ increases, the recovery value available to unsecured creditors declines. Secured debt
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then becomes more valuable because it lowers the cost of credit by skipping ahead of priority

claims. Next, we vary the probability of a forced default: ϕ. As ϕ increases, secured lenders

are more likely to push for an early default. While default imposes a deadweight loss, secured

lenders do not care about this loss since they still receive full recovery in a forced default.

However, equity holders internalize this deadweight loss because it increases the cost of

unsecured credit and lowers the expected value of future dividends. This explains why panel

A of Figure 2 shows that the average secured-debt ratio falls as ϕ increases.

[Insert Figure 2 here]

Figure 1 provides additional insights on secured-debt use. Panel F confirms that un-

secured credit spreads are higher than secured credit spreads. Moreover, the gap between

secured and unsecured spreads rises with book leverage x as unsecured debt becomes in-

creasingly more risky than secured debt as x increases. This motivates the firm to use more

secured debt as xt rises (panel E).

Finally, to show how the firm’s overall financial strategy changes with secured-debt use,

we impose an exogenous upper limit s on secured debt. We solve our model with an additional

st ≤ s constraint. In panel A of Figure 3, we show that ex-ante firm value v(0) increases as

the firm is able to use more secured debt (by increasing s). The firm stops benefiting once

s rises above the optimal secured-debt ratio, as this constraint no longer binds. Panel B of

Figure 3 shows that the increased use of secured debt leads to a higher probability of default

due to forced takeovers by secured lenders. Panel F of Figure 3 shows that the firm uses

more leverage as its ability to use secured debt rises. As a result of higher leverage, both

secured and unsecured credit spreads rise (panels C and D). However, panel E of Figure 3

shows that at a certain point the weighted credit spread η nonetheless falls as s rises. This is

the benefit of secured debt — it allows the firm to extract value from other priority claimants
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(e.g., workers) to lower the cost of credit for a given level of leverage.

[Insert Figure 3 here]

5.3 The rise of liability management

In our analysis thus far, we have assumed no liability-management transactions occur (α = 0

in Table 1). We now consider the impact of the recent trend toward more frequent liability-

management transactions. We set the parameter α to 0.8 and solve our model. Panel A of

Figure 4 shows that there exists a cutoff xR such that secured lenders optimally accept a

liability-management transaction if and only if x > xR. Panel B of Figure 4 shows that as

the haircut ε falls, secured lenders are more likely to accept an offer (xR falls).

[Insert Figure 4 here]

Next, we study what happens as liability-management transactions become more com-

mon. In panel B of Figure 5, we show that as restructurings become more common (as we

increase α), secured credit spreads increase. Secured lenders anticipate having to either get

subordinated or pay a haircut in a future restructuring. As a result, panel C of Figure 5

shows that secured-debt use falls as α rises.

[Insert Figure 5 here]

Surprisingly, Figure 5 shows that ex-ante firm value nonetheless increases as α increases

(panel A). The intuition is the following. In a restructuring, value is transferred from secured

lenders to equity holders. Secured lenders ex-ante price this risk by charging a higher spread.

This is the standard pricing mechanism. However, there is also a benefit from a liability-

management transaction. This is because lowering debt in bad states of the world (e.g., high

leverage states) mitigates debt overhang and thus increases firm value ex ante.

In sum, while lenders charge more ex ante, the ex-post flexibility offered by a potential
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restructuring nonetheless creates value ex ante. This is why ex-ante value increases as

liability-management transactions become more common.

Finally, we consider the effect of changing ζ, the fraction of secured lenders that partic-

ipate in a coalition. Increasing this ζ parameter has two effects. First, increasing ζ lowers

the benefit that secured lenders receive from participating in a restructuring. As ζ increases,

secured lenders participating in a restructuring must share their super-senior recovery with

a larger pool of coalition members, increasing the likelihood that the super-senior class will

be impaired. For a given ε, secured lenders participating in a coalition thus want ζ to be

low. Because of this, panel B of Figure 6 shows that secured lenders are less likely to accept

a restructuring offer as ζ increases: the leverage threshold xR for acceptance rises as ζ rises.

Second, increasing ζ increases the amount of debt forgiveness in a successful restructuring.

Conditional on secured lenders accepting a restructuring offer, equity holders want ζ to be

as high as possible to maximize the state-contingent debt reduction.

[Insert Figure 6 here]

Because of these two conflicting effects, an increase in ζ can cause an increase or a

decrease in ex-ante value. Figure 6 shows this. As we increase ζ, we first find that ex-ante

firm value increases. This improvement arises because of the positive effect described above

(more ex-post debt forgiveness and efficiency gain conditional on a restructuring). However,

past a certain level, increasing ζ leads to a reduction in ex-ante firm value. This decline is

due to the negative effect of increasing ζ (a lower probability of secured lenders accepting

debt restructurings). This suggests that equity holders will want to write debt contracts that

allow for amendments with a specific majority (e.g., two-thirds of lenders must approve an

amendment). We explore the implications of allowing for an endogenous ζ choice in Internet

Appendix I.C.
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5.4 Matching empirical evidence

Finally, we show that our model produces realistic firm debt policies. This serves as a

validation of the model’s prediction regarding the trend toward creditor-on-creditor violence.

Table 2 shows that the model-implied average market leverage (x/v) is 32.8%. The

model-implied average secured-debt share is 33.1%. Empirical studies have calculated an

average market leverage among Compustat firms equal to 32.5% (e.g., Table 2 of Morellec,

Nikolov, and Schürhoff (2012)). Prior studies have also calculated an average secured-debt

share equal to 33% (e.g., Table 2 of Benmelech, Kumar, and Rajan (2024)). In this sense,

our model perfectly replicates observed market leverage and secured-debt use.

[Insert Table 2 here]

Benmelech, Kumar, and Rajan (2022) compare credit spreads on secured and unsecured

debt issued by the same firm at the same time. They show that the senior secured credit

spread is 222 basis points lower than the junior unsecured credit spread (Table 2 column 4).

Our Table 2 replicates the same exercise in our model, showing that secured credit spreads

are 273 basis points lower than unsecured credit spreads.

Finally, Benmelech, Kumar, and Rajan (2024) show that firms issue more secured debt

in crises and when they are in distress. Panel E of Figure 1 shows that firms in our model

use more secured debt as negative shocks drive their leverage above their targets. In this

sense, our model replicates this fact.
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6 Robustness and discussions

6.1 Robustness

Our model includes many assumptions. However, the intuition behind our main result is

quite general. When firms issue debt, they trade off the benefits of debt with the expected

deadweight losses in default. Ex post, firms would like to have more debt in good states

and less debt in bad states. Serta-style transactions help firms achieve this goal. Equity

holders can coerce secured lenders into forgiving debt in exchange for super priority in bad

states of the world, reducing expected deadweight losses. However, secured lenders do not

agree to these restructurings in good states because of their high priority. Thus, Serta-

style restructurings only erase debt in bad states of the world ex post, creating value ex

ante. Because this intuition is general, our results are robust to many different modeling

assumptions.

Long-term debt: In Internet Appendix I.B, we introduce secured debt and Serta-style

restructurings into the standard Leland (1994) model. Our main result continues to hold.

This shows that our main result is robust to a setting with long-term debt.

Endogenous restructuring offers (ε, ζ): In Internet Appendices I.A and I.B, we

consider models in which equity holders can choose the haircut ε in a restructuring offer.

In Internet Appendix I.C, we consider a model in which equity holders can also choose the

fraction ζ of secured lenders that participate in a restructuring. Our main result still holds.

Alternative restructuring bargaining protocols: In Internet Appendices I.A and

I.B, we consider different restructuring games. Specifically, in our baseline model, if secured

lenders reject a restructuring offer, there is no restructuring. In Internet Appendices I.A

and I.B, we assume that a continuum of secured lenders simultaneously decide whether they
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are willing to participate in a coalition. Since each lender is small, each individual lender

cannot block a restructuring. A secured lender thus risks being excluded and subordinated

in a restructuring if they decline to participate. In these extensions, secured lenders decide

whether to accept a restructuring under this less-appealing outside option. Our main result

continues to hold.

Endogenous secured-lender takeovers: In Internet Appendix I.A, we assume that

secured lenders can choose whether or not to force an early asset sale. This opportunity arises

with a fixed probability that depends on the amount of secured debt, similar to our baseline-

model assumption. However, when an opportunity arises, secured lenders may choose to

force a sale or not. We show that our main result continues to hold.

Subordination in restructurings: In Internet Appendix I.B, we assume that the ex-

cluded secured lender in a Serta-style restructuring is subordinated to an unsecured position,

rather than a second-lien position. Our main result continues to hold.

6.2 Discussions

6.2.1 Dilution and other motives for secured-debt issuance

In other models, firms issue secured debt to prevent dilution (Demarzo, 2019; Donaldson,

Gromb, and Piacentino, Forthcoming, 2020). To keep our model parsimonious, we abstract

from this motive for issuing secured debt. However, an informal argument suggests that

including dilution protection could strengthen our results. We already find that the ability

to issue secured debt can improve firm value by as much as 1.3% (Table 2). Including

dilution protection would likely make the benefit of secured debt even greater. This would

likely prompt firms to use more secured debt. Since the debt reduction in a restructuring is

proportional to the amount of secured debt outstanding, this would likely lead to an even
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greater positive impact from Serta-style restructurings.

6.2.2 Debtor-in-possession financing

The creditor-on-creditor violence that we model is similar in some ways to the use of

debtor-in-possession (DIP) financing in bankruptcy. Firms issue new secured DIP loans

in bankruptcy that are senior to existing secured debt. The key difference is that creditor-

on-creditor violence occurs before default. As a result, it has the potential to reduce debt

before deadweight losses are incurred. As Antill and Hunter (2023) show, deadweight losses

due to lost customers can occur the moment a firm’s bankruptcy filing becomes publicized.

A DIP loan can only be issued once a firm is in bankruptcy. As a result, DIP loans cannot

serve the same purpose of creating efficient debt reduction in states of the world in which

expected default deadweight losses are high.

6.2.3 Restructuring uncertainty

We assume that there is an exogenous probability α < 1 that a restructuring opportunity

arises. In principle, equity holders always have the ability to make a restructuring offer.

However, there is some uncertainty about whether the courts will view the restructuring as

legally consistent with the contracts. Moreover, equity holders cannot be sure that secured

lenders will be interested in forming a coalition. Our assumption that α < 1 is intended to

capture this uncertainty. Nonetheless, we show in Internet Appendix I.A that increasing α

all the way to 1 increases ex-ante firm value.
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6.2.4 Restructurings in good states of the world

There is a sense in which our result is not robust. If equity holders can force restructurings

in good states, where the benefits of debt (e.g., tax shield) are valuable, this will destroy

value ex ante. We formalize this in Internet Appendix I.D. This highlights the important

role of secured debt in our model. Secured lenders have the highest priority, so they are

only willing to accept a debt haircut in exchange for super seniority in very bad states of

the world. This is why restructurings create value ex ante.

7 Conclusion

We build a continuous-time capital structure model in which a financially constrained firm

facing costly external equity financing chooses its investment, leverage, secured-debt ratio,

payout policy, equity issuance, and default timing. We show that the secured-debt share

is chosen by a novel tradeoff between a lower cost of credit, due to the ability to extract

value from priority unsecured claims like wages, and a higher probability of default, due to

secured-lender incentives to push for early asset sales.

Within this model, we introduce a recent phenomenon: secured lenders have used legal

loopholes to extract value from other secured lenders when firms become distressed. We show

that this recent trend increases the cost of secured debt and endogenously lowers secured-

debt use. However, the liability-management transactions create value ex ante by allowing

the firm to introduce state-contingent debt reduction. This explains why firms continue to

use debt contracts that include these legal loopholes (Buccola and Nini, 2022).

Our model relies on many assumptions. In extensions, we show that our main result is

robust to various alternative assumptions. However, to keep the model parsimonious, certain
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key model objects like the quantity of priority unsecured wage claims are exogenous in all

of our extensions. While we conjecture that an ex-ante choice of employment and wages

would not change the model forces driving our main result, we leave it to future work to

explore how employment choices matter for debt restructurings. Likewise, future research

could explore the different roles of different types of priority claims (e.g., wages versus tax

claims).
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Table 1: Parameter values

This table shows our baseline parameter values. Whenever applicable, parameter values are annualized.

r Risk-free rate 0.05
γ Shareholder discount rate 0.1
σ Diffusion volatility 0.4
λ Arrival rate of cashflow jump shocks 1.5
β Cashflow-jump-shock severity 4.25
θ Profitability of capital 0.5
π Recovery value of capital in default 0.7
ρ Priority claims / capital 0.6
ν Convexity of secured default risk 4.8
ϕ Scale of secured default risk 0.7
ξ Cost of investment 1.1
δ Depreciation 0
τ Corporate tax rate 0.21
α Probability of liability management 0
ζ Size of secured coalition 0.6
ε Haircut rate in liability management 0.004
h0 Equity issue fixed cost 0.05
h1 Equity issue proportional cost 0.01
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Table 2: Simulated moments using model solution

This table displays key simulated moments using the solution of our baseline model, in which the firm

can choose any secured-debt share s ∈ [0, 1], and parameter values are given in Table 1. We simulate

100,000 paths for an optimizing firm with a time increment of 0.01 years. Each simulation starts at the

‘recapitalization target’ x0 = x̃ and stops either when (i) the firm is 100 years old or (ii) it defaults at T∗.

At each t, we calculate the firm’s (i) market leverage; (ii) secured-debt share; (iii) secured credit spread;

and (iv) unsecured credit spread. Then, we take the averages of these four objects across all t in all

simulated paths and report them in the first four rows, respectively. We also repeat this process for two

other cases: an exogenous secured debt limit of s = 1/2 and no secured debt issuance: s = 0, but for brevity

only report firm value for these two cases. Finally, the last row reports firm value with no debt financing at all.

Moment

Market leverage 0.328
Secured-debt share 0.331
Secured credit spread 0.0024
Unsecured credit spread 0.0297

Firm value for s = 1/2 1.706
Firm value for s = 0 1.684
Firm value with no debt at all 1.479
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Figure 1: Features of the model solution

This figure illustrates the model solution. We solve our model numerically using parameter values in Table

1, as described in the main text. In each panel of this figure, we plot how one model object varies with the

model state variable: book leverage x. The model objects are defined at the top of each panel. Panel F

plots the secured credit spread, the unsecured credit spread, and the weighted credit spread.
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Figure 2: Illustration of the model trade off driving secured debt use

This figure plots how the model-implied secured-debt share varies with the risk of secured lender takeover

ϕ and the quantity of priority claims ρ. We solve our model numerically using parameter values in Table 1,

as described in the main text. Using our model solution, we simulate 100,000 paths for an optimizing firm

with a time increment of 0.01 years. Each simulation starts at the ‘recapitalization target’ x0 = x̃ and stops

either when (i) the firm is 100 years old or (ii) it defaults at T∗. We calculate the model-implied expected

secured-debt share, by averaging across all instants in all simulated paths. We then repeat this process,

varying the parameter ϕ but holding all other parameters fixed. Finally, we repeat this same process varying

the parameter ρ but holding all other parameters fixed.
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Figure 3: The impact of limiting secured debt use

This figure plots how imposing a cap s on secured leverage impacts a firm. We assume the parameter values

listed in Table 1. We solve our model numerically, as described in the main text, except that we impose a

limit s on the secured-debt share. Using our model solution, we simulate 100,000 paths for an optimizing

firm with a time increment of 0.01 years. Each simulation starts at the ‘recapitalization target’ x0 = x̃ and

stops either when (i) the firm is 100 years old or (ii) it defaults at T∗. We calculate the model objects listed

below according to the model solution, averaging across all instants in all simulated paths (v(0) is calculated

without simulation). We then repeat this process, varying s but holding all other parameters fixed.
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Figure 4: Secured lenders’ optimal rule for accepting restructuring offers

This figure illustrates how secured lenders decide whether to accept restructuring offers. We solve our model

numerically using α = 0.8 (for all other parameter values, see Table 1.) We calculate xR, the threshold

above which secured lenders accept offers and below which they do not. Panel A plots α1R(x) as a function

of x, where 1R(x) equals one if and only if x > xR. Panel B shows how xR varies with ε.
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Figure 5: The impact of creditor-on-creditor violence

This figure plots how increasing α, the likelihood of a creditor-on-creditor-violence restructuring, impacts

firms. We assume the parameter values listed in Table 1. We solve our model numerically using parameter

values in Table 1, as described in the main text. Using our model solution, we simulate 100,000 paths for an

optimizing firm with a time increment of 0.01 years. Each simulation starts at the ‘recapitalization target’

x0 = x̃ and stops either when (i) the firm is 100 years old or (ii) it defaults at T∗. We calculate the model

objects listed below according to the model solution: (i) the firm value v(0), (ii) the secured credit spread

ηS , (iii) the secured-debt share s∗, (iv) the investment policy i∗. We calculate the model-implied expected

value of each object, by averaging across all instants in all simulated paths (the firm value v(0) is calculated

without simulation). We then repeat this process, varying α but holding all other parameters fixed.
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Figure 6: The role of the creditor coalition size

This figure plots how increasing ζ, the size of the creditor coalition in an aggressive restructuring, impacts

firms. We solve our model numerically using α = 0.8 (for all other parameter values, see Table 1.) Using

our model solution, we calculate firm value v(0) and xR, the threshold above which secured lenders accept

offers and below which they do not. Panel A plots how v(0) varies with ζ and Panel B shows how xR varies

with ζ.
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Appendix

A Mathematical details

In this appendix, we provide mathematical details. We first derive expressions for the se-

cured credit spread ηSt and the secured lenders’ restructuring-acceptance cutoff xR. We then

calculate the unsecured credit spread ηUt . Finally, we derive the HJB equation (29).

A.1 Secured credit spread

First, using Ito’s lemma, we obtain the process for the (scaled) state variable xt = Xt/Kt

given in (28):

dxt =
Xt

Kt

(
dXt

Xt

− dKt

Kt

+
(dKt

Kt

)2 )
1dJt=0 +

(Xt

Kt

− Xt−

Kt−

)
dJt

= xt

(
−[θKt − It − (1− τ)Ct]dt

Xt

−
[(
ψ
( It−
Kt−

)
− δ
)
dt+ σdBt

]
+ σ2dt

)
1dJt=0

+

(
Xt−(1− 1Rt ζεst−)

Kt−Z
− Xt−

Kt−

)
dJt

=

(
−θ + i(xt) + (1− τ)ct + xt

[
− ψ(i(xt)) + δ + σ2

] )
dt− σxtdBt

+

(
xt−(1− 1Rt ζεst−)

Z
− xt−

)
dJt.

To derive an expression for the secured credit spread ηSt , we first characterize the potential

ways that the firm can default. There are three scenarios to consider, which we discuss below.

Recall that in our model, the choice of st is Markovian:

st = s∗(xt),

where the function s∗( · ) is to be determined.
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A.1.1 Scenario 1: forced default

If secured lenders force a default, they will be fully repaid under our assumption given in

(9). This scenario occurs with probability ϕ(st−xt−)
νdt.

A.1.2 Scenario 2: endogenous default, no restructuring

If a downward jump shock occurs and there is no restructuring, the firm defaults only if

Z < Z∗(xt−), where

Z∗(x) = max{Z ∈ [0, 1] : p(x/Z) = 0}. (A.1)

If the firm defaults, secured lenders recover Kt−min{st−xt− , Zπ}. This occurs with proba-

bility λ(1− α)F
(
Z∗(xt−)

)
dt. Next, we turn to the restructuring scenario.

A.1.3 Scenario 3: restructuring

We assume the following timing for a restructuring:

1. A capital jump shock occurs.

2. Before anyone sees how bad this shock is (Z), the firm offers an exogenous liability

management transaction. With probability α, the firm randomly selects a fraction

ζ ∈ [1/2, 1] of secured lenders and offers them a haircut rate ε.

3. These chosen lenders decide whether to accept the firm’s proposal or not.

3a. If accepted, the firm’s secured debt obligation is reduced by ζεst−Xt−. The value

of Z is observed by all parties and the firm decides whether to default.

3b. If not accepted, there is no restructuring and the firm is in scenario 2 described

above.

For the sub-scenario 3b, we simply refer to our analysis for scenario 2.

For the sub-scenario 3a, there are two possibilities. If Z > Z∗

(
xt−
[
1 − st−ζε

])
, the

firm does not default and secured lenders receive a total repayment of Kt−st−xt−(1− ζε) in

restructuring.13 This occurs with probability λα
[
1− F

(
Z∗

(
xt−
[
1− st−ζε

]))]
dt.

13This is also what lenders expect to receive in this scenario before learning whether they are in the
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If Z ≤ Z∗

(
xt−
[
1− st−ζε

])
, the firm defaults, a measure ζst−Xt− of secured lenders have

face value 1 − ε while a measure (1 − ζ)st−Xt− have face value 1. It follows that the total

recovery to secured lenders is

min
{
ZπKt−, st−Xt−(1− ζε)

}
. (A.2)

This occurs with probability λαF
(
Z∗
(
xt−
[
1− st−ζε

]) )
dt.

A.1.4 Combining default scenarios

We now calculate the secured credit spread by combining the default scenarios described

above. We drop this time subscript t− and conduct credit spread calculation with the

expectation that a jump may arrive at t.

Define

ZS(x, s) = min

{
Z∗(x),

sx

π

}
. (A.3)

If there is no restructuring, secured lenders receive full recovery if a jump with Z > ZS(x, s)

arrives. This is because either the firm doesn’t default (Z > Z∗(x)) or there is enough value

for full repayment as ZπK > sX even if it defaults.

Define

xres(x, s) = x(1− sζε), Zres
∗ (x, s) = Z∗(x

res
(
x, s)

)
(A.4)

and

ZV (x, s) = min

{
Zres

∗ (x, s),
sx(1− ζε)

π

}
. (A.5)

If there is a restructuring, the new face value of debt is xres(x, s)K and secured lenders

receive full recovery on their new face value sX(1 − ζε) when Z > ZV (x, s) by the same

logic as above. In the remainder of this subsection, to ease the notation, we will omit the

variables x, s, and simply use Z∗, Z
res
∗ , ZS and ZV .

Piecing together the above scenarios, the zero-profit condition for secured lenders, which

coalition. A continuum of lenders with measure st−Xt− each have face value 1. They know with probability
1 − ζ they will keep face value 1. With probability ζ they will receive face value 1 − ε. Conditional on no
default and restructuring, the expected face value is 1− ζε. Multiplying by the mass of the continuum gives
the total value above.
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requires that the risk-free return must equal the expected return, is:

sX(1 + rdt) = sX(1 + (r + ηS)dt)

(
1− [λ(1− α1R(x))F (Z∗) + λα1R(x)]dt

)
︸ ︷︷ ︸

Full recovery unless (shock+no restructure+default) or (shock+restructure)

+ λα1R(x)
[
1− F (Zres

∗ )
]
dt

[
sX(1 + (r + ηS)dt)(1− ζε)

]
︸ ︷︷ ︸

Full recovery net haircut if (shock+restructure+no default)

+ λα1R(x)dt

[(
F (Zres

∗ )− F (ZV )
)
(1− ζε)sX + πKF (ZV )E[Z|Z < ZV ]

]
︸ ︷︷ ︸

Default recovery if (shock+restructure+default)

+ λ(1− α1R(x))dt

[(
F (Z∗)− F (ZS)

)
sX + πKF (ZS)E[Z|Z < ZS]

]
︸ ︷︷ ︸

Default recovery if (shock + no restructure + default)

. (A.6)

Note that scenario 1 (forced default) does not appear in (A.6) because secured lenders

receive full recovery. Dividing by sXdt and letting dt approach zero, we obtain

ηS − [λ(1− α1R(x))F (Z∗) + λα1R(x)] + λα1R(x)
[
1− F (Zres

∗ )
]
(1− ζε)

+ λα1R(x)

[(
F (Zres

∗ )− F (ZV )
)
(1− ζε) +

π

sx
F (ZV )E[Z|Z < ZV ]

]
+ λ(1− α1R(x))

[(
F (Z∗)− F (ZS)

)
+

π

sx
F (ZS)E[Z|Z < ZS]

]
= 0. (A.7)

Equation (A.7) allows us to write ηS via the following functional form:

ηS = ηS(x, s) .

Using the assumption F (Z) = Zβ, which implies that E[Z] = b̂ ≡ β
β+1

and
∫ b
a
ZdF (Z) =
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β
β+1

(bβ+1 − aβ+1), we can simplify (A.7) and obtain:

ηS(x, s) =λ(1− α1R(x))

[
(ZS(x, s))β − πb̂

sx
(ZS(x, s))β+1

]
− λα1R(x)

[ (
1− (ZV (x, s))β

)
(1− ζε) +

πb̂

sx
(ZV (x, s))β+1 − 1

]
. (A.8)

A.1.5 Condition for secured lenders accepting a restructuring offer

Finally, we consider the condition for secured lenders to accept the transaction. Recall that

this is only relevant after a jump shock occurs. Conditional on the arrival of a jump shock,

if the coalition of secured lenders reject, their expected recovery per dollar of face value is

(1− F (ZS(x, s))) + F (ZS(x, s))
π

sx
E[Z|Z < ZS(x, s)]. (A.9)

The first term captures full recovery if secured lenders are unimpaired and the second term

captures fractional recovery when secured lenders are impaired.

If the coalition of secured lenders accept, the expected recovery per dollar of face value

is

(1− F (Zζ(x, s)))(1− ε) + F (Zζ(x, s))
π

sxζ
E[Z|Z < Zζ(x, s)] , (A.10)

where

Zζ(x, s) ≡ min
{
Zres

∗ (x, s) ,
sxζ(1− ε)

π

}
. (A.11)

If the new super secured debt is unimpaired, they receive 1− ε dollars per original dollar of

face value. This is captured by the first term in (A.10). The second term in (A.10) captures

the expected payment if the new super secured debt is impaired.

Taking the expected payments under both scenarios together, secured lenders accept a

restructuring offer at x if and only if

(1− (Zζ(x, s∗(x)))
β)(1− ε) + (Zζ(x, s∗(x)))

β+1 πb̂

s∗(x)xζ

>(1− (ZS(x, s∗(x)))
β) + (ZS(x, s∗(x)))

β+1 πb̂

s∗(x)x
. (A.12)

We use (A.12) to verify that (11) holds and we set 1R(x) to one if (A.12) holds at x. We

55



define xR to equal the smallest x such that this holds.

A.2 Unsecured credit spread

We now derive an expression for the unsecured credit spread. To start, we consider the case

where no restructuring occurs. Let

ZU,l,N(x, s) = min

{
Z∗(x),

sx

π − ρ

}
. (A.13)

Then Z < ZU,l,N(xt−, st−) implies that the firm defaults and Z(π−ρ)Kt− < st−Xt− so there

is nothing left for unsecured creditors in default (assuming no restructuring). Let

ZU,h,N(x) = min

{
Z∗(x),

x

π − ρ

}
. (A.14)

Then Z < ZU,h,N(xt−) implies Z(π − ρ)Kt− < Xt− so unsecured debt is impaired, while

Z > ZU,h,N(xt−) implies unsecured debt is unimpaired. It is clear that ZU,h,N ≥ ZU,l,N .

Then, if there is no restructuring, unsecured recovery is 0 for Z < ZU,l,N(xt−, st−), it is

(π − ρ)ZKt− − st−Xt− for Z ∈ [ZU,l,N(xt−, st−), Z
U,h,N(xt−)], and it is (1 − st−)Xt− for

Z > ZU,h,N(xt−).

Next, suppose a restructuring occurs. The analysis is similar, but we must account for

the reduced amount of secured debt and a different default threshold:

ZU,l,V (x, s) = min

{
Zres

∗ (x, s),
(1− ζε)sx

π − ρ

}
. (A.15)

Equity holders default and unsecured lenders receive nothing when Z < ZU,l,V (xt−, st−). Let

ZU,h,V (x, s) = min

{
Zres

∗ (x, s),
x
[
(1− s) + (1− ζε)s

]
π − ρ

}
. (A.16)

Unsecured lenders receive full recovery if Z > ZU,h,V (xt−, st−) by the same logic described

above.
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In the following, to ease the notation, we let fsub = 1− ζε, similarly drop time subscripts

t− and use 1R, Z∗, Z
res
∗ , ZU,h,N , ZU,l,N , ZU,h,V and ZU,l,V . Then the breakeven condition for

unsecured debt is

(1− s)X(1 + rdt)

=(1− s)X(1 + (r + ηU)dt)

(
1−
[
λ

(
(1− α1R)F (Z∗) + α1RF (Zres

∗ )

)
+ϕ
(sX
K

)ν]
dt

)

+ϕ
(sX
K

)ν
dtmin

{
(1− s)X,

(
(π − ρ)K − sX

)+}
+λ(1− α1R)dt

((
F (Z∗)− F (ZU,h,N)

)
(1− s)X + E

[
((π − ρ)ZK − sX)1Z∈(ZU,l,N ,ZU,h,N )

])

+λα1Rdt

((
F (Zres

∗ )− F (ZU,h,V )
)
(1− s)X + E

[
((π − ρ)ZK − fsubsX)1Z∈(ZU,l,V ,ZU,h,V )

])
.

Dividing by (1− s)Xdt and letting dt approach zero, we obtain

ηU −
[
λ
(
(1− α1R)F (Z∗) + α1RF (Zres

∗ )
)
+ ϕ(sx)ν

]
+ ϕ(sx)ν min

{
1,

(π − ρ− sx)+

(1− s)x

}
+ λ(1− α1R)

(
F (Z∗)− F (ZU,h,N) + E

[
(π − ρ)Z − sx

(1− s)x
1Z∈(ZU,l,N ,ZU,h,N )

])

+ λα1R

(
F (Zres

∗ )− F (ZU,h,V ) + E
[
(π − ρ)Z − fsubsx

(1− s)x
1Z∈(ZU,l,V ,ZU,h,V )

])
= 0.

Rearranging this expression gives the following expression:

ηU = ηU(x, s),
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where ηU(·, ·) is defined as follows:

ηU(x, s) =ϕ(sx)ν − ϕ(sx)ν min

{
1,

(π − ρ− sx)+

(1− s)x

}
+ λ(1− α1R(x))(ZU,h,N(x))β + λα1R(x)(ZU,h,V (x, s))β

+ λα1R(x)
fsubs

(1− s)

[
(ZU,h,V (x, s))β − (ZU,l,V (x, s))β

]
− λα1R(x)

b̂(π − ρ)

(1− s)x

[
(ZU,h,V (x, s))β+1 − (ZU,l,V (x, s))β+1

]
+ λ(1− α1R(x))

(
s

1− s

[
(ZU,h,N(x))β − (ZU,l,N(x, s))β

])

− λ(1− α1R(x))
b̂(π − ρ)

(1− s)x

(
(ZU,h,N(x))β+1 − (ZU,l,N(x, s))β+1

)
. (A.17)

Let η(x, s) denote the weighted average credit spread for both secured and unsecured

debts: η(x, s) = sηS(x, s) + (1 − s)ηU(x, s). Then, the (scaled) interest payments for both

secured and unsecured debts are

c(x, s) ≡ x
(
r + η(x, s)

)
. (A.18)

A.3 HJB equation

Finally, we derive the HJB equation (29). Using (4) and (12), in the debt financing region,

we have

dXt =
(
− θKt + It + (1− τ)Ct

)
dt− 1Rt ζεst−Xt−dJt, (A.19)

where 1Rt equals one if a restructuring is offered and accepted after a jump arrives at time t

and zero otherwise. Here, the debt coupon payment is Ct = c(xt, st)Kt, where c(·, ·) is given
by (A.18).

Note that 1Rt = 1R(xt−) with probability α and is zero with probability 1−α, where 1R(x)
is 1 if the secured acceptance condition (A.12) is met and zero otherwise. Combining (1)

and (A.19), we can derive the following HJB equation for the equity value function P (K,X)
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in the interior region:

γP (K,X) = max
I,s

(
− θK + I + (1− τ)c

(X
K
, s
)
K

)
PX(K,X)

+K
(
ψ

(
I

K

)
−δ
)
PK(K,X) +

1

2
σ2K2PKK(K,X)

+λ

[
− P (K,X) + (1− α1R(X/K))

∫ 1

0

P (ZK,X)dF (Z)

+α1R(X/K)

∫ 1

0

P (ZK,X − sXζε)dF (Z)

]
+ϕ
(sX
K

)ν[
(πK − ρK −X)+ − P (K,X)

]
(A.20)

subject to 0 ≤ s ≤ min{1, π
x
}. Using x = X/K and p(x) = P (K,X)/K, we have PX(K,X) =

p′(x), PK(K,X) = p(x) − xp′(x), KPKK(K,X) = x2p′′(x). Substituting these expression

into (A.20) and using i = I/K, we derive the following HJB equation for p(x):14

(γ + λ)p(x) = max
i,s

(
− θ + i+ (1− τ)c(x, s)

)
p′(x) +

1

2
σ2x2p′′(x)

+
(
ψ(i)− δ

)(
p(x)− xp′(x)

)
+ ϕ
(
sx
)ν [

(π − ρ− x)+ − p(x)
]

(A.21)

+ λ

[
(1− α1R(x))

∫ 1

0

Zp
( x
Z

)
dF (Z) + α1R(x)

∫ 1

0

Zp
(
x
1− sζε

Z

)
dF (Z)

]

subject to 0 ≤ s ≤ min{1, π
x
}. Using (A.1) and (A.4), we have p(x/Z) = 0 for Z < Z∗(x)

and p(x(1− sζε)/Z) = 0 for Z < Zres
∗ (x, s). Substituting them into (A.21), we obtain (29).

14Note that P (ZK,X − sXζε)/(ZK) = p
(
(X/K)× (1− sζε)/Z

)
.
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Internet Appendices

I.A Static model with endogenous debt restructuring

This appendix shows that our results are robust to alternative assumptions. We present a

simplified version of our baseline model in a static framework. Because the framework is

static, we can tractably model: (i) an endogenous secured-lender choice to sell assets early

or not; (ii) an endogenous haircut ε chosen by equity holders when making an aggressive

restructuring offer; (iii) a coercive offer in which a secured lender’s alternative to participating

in a restructuring is being left out of the coalition that restructures their debt.

We show that our main result is robust to these alternative assumptions: we continue to

find that increasing the frequency α of aggressive restructurings leads to higher firm value

ex ante. Restructuring offers are always accepted: equity holders adjust the haircut ε to

make secured lenders indifferent between participating in a coalition or being left out of the

coalition. However, in bad states of the world (those with a high probability of a bad shock),

secured lenders are willing to accept a higher haircut. In this sense, even with endogenous

haircuts, these restructurings lead to state-contingent debt reduction, improving firm value

ex ante.

I.A.1 Model assumptions

There are three periods. In the first period, the firm issues debt to trade off tax benefits with

deadweight losses in default. It also chooses a secured-debt share, facing the same tradeoff

as in our baseline model. In the second period, the firm and its lenders learn whether the

probability of a bad shock is high or low. After this, one of three mutually exclusive events

occurs: (i) secured lenders have an opportunity to sell assets early, (ii) equity holders have an

opportunity to make an aggressive debt restructuring offer, (iii) neither opportunity arises.

Specifically, with an exogenous probability, secured lenders have an opportunity to sell assets.

Departing from our baseline model, we allow secured lenders to choose whether to do this

or not. With a distinct exogenous probability, equity holders have the chance to make an

aggressive restructuring offer. Departing from our baseline model, equity holders choose the

face-value haircut ε endogenously. Finally, in the third period, everyone learns whether the
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bad shock has realized. Equity holders decide whether to default and payoffs are realized.

I.A.1.1 Period one

In the first period, the firm chooses its debt face value X and the fraction s to issue as

secured debt. Let FS ≡ sX and FU ≡ (1 − s)X denote the face value of the secured and

unsecured debt, respectively.

The firm issues secured debt to a continuum of infinitesimal lenders of measure s. It

issues unsecured debt to a continuum of infinitesimal lenders of measure 1 − s. Finally, we

assume the firm has an exogenous quantity ρ of priority unsecured claims corresponding to

employee wage claims.

There is a competitive lending market. Lenders thus pay equity holders the expected

value of their future payoffs in exchange for the debt claims. We derive these expected

values below.

I.A.1.2 Period two

In the second period, the firm and its lenders observe the realization of a random variable

λ ∈ {λL, λH}. A high realization λH of λ corresponds to a high probability of a bad shock.

λ = λH is thus a bad state. Let pλ ≡ P(λ = λL).

With probability ϕF ν
S , secured lenders have the opportunity to force an asset sale. As

we will explain, this choice is endogenous in this model extension. Secured lenders force

an asset sale if and only if doing so maximizes their expected payoff. We assume that in a

forced asset sale, the firm value is an exogenous parameter πS. Because secured lenders have

the highest priority, they collectively recover min{FS, πS} in a forced asset sale. Priority

claim holders come second, recovering min{ρ, (πS − FS)
+}. Unsecured claims come third,

recovering min{FU , (πS − FS − ρ)+}. Equity holders come last, recovering (πS −X − ρ)+.

With probability α,15 equity holders have the opportunity to make a restructuring offer.

Equity holders endogenously choose a haircut ε. Each secured lender simultaneously decides

whether they are willing to accept the offer. The contract terms require a fraction ζ of

secured lenders to accept a restructuring, where ζ ∈ (0, 1) is exogenous.16 If a fraction less

15For our chosen parameters, α+ ϕF ν
S < 1 at the ex-ante optimal value of FS .

16In Internet Appendix I.C, we show that our results are robust to allowing for an endogenous choice of ζ.
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than ζ of the secured lenders are willing to accept, there is no restructuring. If a fraction

greater than or equal to ζ are willing to accept, equity holders randomly select a fraction ζ

of secured lenders to participate in the coalition. If the restructuring offer is accepted, the

coalition lenders continue to enjoy the highest priority on their new debt with total face value

ζ(1− ε)FS. The excluded lenders, with total face value (1− ζ)FS, have second priority. We

focus on an equilibrium in which all lenders (i) are indifferent between accepting or rejecting

the offer and (ii) the offer is accepted. Importantly, off the equilibrium path, if one of the

lenders rejects the offer, they are subordinated in the excluded group, since each lender is

infinitesimal and cannot impact the likelihood of a successful restructuring. We describe this

in greater detail below.

We assume that restructurings and asset sales are mutually exclusive. Thus, with prob-

ability 1− α− ϕF ν
S , there is no restructuring and no forced asset sale.

I.A.1.3 Period three

In period three, uncertainty is resolved. The probability of a bad shock is λ, where λ ∈
{λL, λH} is revealed in period two. The firm and its lenders learn in period three whether a

bad shock occurs.

Payoffs in the absence of a bad shock: With probability 1 − λ, there is no bad

shock. We assume parameters such that, in the absence of a bad shock, the firm does not

default. This is reasonable, since any other parameters would imply the firm defaults with

probability one. Formally, if there is no bad shock, there is no default, and the value of the

firm is ṼH ≡ 1+ τX̃. The parameter τ is a reduced-form way of capturing the tax benefits of

debt. We let X̃ = FU + F̃S denote the post-restructuring total value of debt, where F̃S = FS

if there is no restructuring and it equals FS(1−ζε) if there is a restructuring. Equity holders

repay X̃ to secured lenders and unsecured lenders, ρ to priority claim holders (employees),

and receive a payout of ṼH − (X̃ + ρ).

If there is a restructuring, the coalition lenders collectively recover FSζ(1 − ε) and the

excluded lenders recover FS(1− ζ). If there is no restructuring, secured lenders collectively

recover FS. Priority claim holders receive ρ. Unsecured lenders receive their full face value

FU .

Payoffs with a bad shock: With probability λ there is a bad shock. For simplicity, we

assume that the tax shield disappears if there is a bad shock. The value of the firm after a
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bad shock is Z ∼ Unif[0, 1]. After viewing Z, equity holders decide whether to default. Let

1R denote an indicator for a restructuring occurring in period two. If equity holders do not

default, they receive a payoff

Peq ≡ Z−
[
ρ+ FU + FS − 1RεζFS

]
. (IA.1)

If equity holders do not default, priority claim holders receive ρ, unsecured lenders receive

FU , and secured lenders collectively recover F̃S.

Equity holders default if their payoff Peq would be negative, consistent with limited

liability. In default, equity holders get nothing and the firm value drops from Z to πZ for a

parameter π < 1. This captures the deadweight losses of default.

In default, if there was no restructuring, secured lenders collectively recover min{FS, πZ}.
If there was a restructuring, participating secured lenders collectively recover min{ζ(1 −
ε)FS, πZ} while the excluded lenders collectively recover min{(1−ζ)FS , [πZ−ζ(1−ε)FS]+}.

In default, unsecured lenders recover min
{
FU , (πZ − ρ− FS + 1RζεFS)

+
}
.

I.A.2 Model solution

We solve the model backward. There are no period-three decisions, so we start by solving

for the optimal choices in period two.

I.A.2.1 Period two

In period two, everyone knows the realization of λ. Let 1D(ε,1R) denote an indicator for

(IA.1) being negative so that equity holders default. This indicator is a function of Z,

but we omit this dependence for notational convenience. Let 1D(0) ≡ 1D(0, 0) denote the

corresponding default indicator if there is no restructuring.

First, consider the collective period-two expected secured lender payoff if there is no

restructuring and no asset sale:

SecN(λ) ≡ (1− λ)FS + λE
[
(1− 1D(0))FS + 1D(0)min{πZ, FS}

]
. (IA.2)

Secured lenders endogenously use an asset-sale opportunity if and only if (IA.2) is less

than min{FS, πS}. Recall that if an asset-sale opportunity arises, there is no restructuring
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opportunity, so the secured lenders’ choice is simply to sell assets or continue to period three.

Let 1A(λ) equal one if this condition for an asset sale is satisfied at λ. This value 1A(λ) is

only relevant if an asset-sale opportunity arises.

Next, consider the restructuring choice. If a restructuring opportunity arises, there is no

asset-sale opportunity and equity holders choose a haircut ε. If the restructuring succeeds,

the collective payoff to excluded secured lenders is

SecOut(λ, ε) ≡ (1− λ)(1− ζ)FS

+ λE

[
(1− 1D(ε, 1))(1− ζ)FS + 1D(ε, 1)min

{
[πZ − ζ(1− ε)FS]

+, (1− ζ)FS

}]
. (IA.3)

A fraction 1−ζ of secured lenders are excluded, so a continuum of lenders of measure s(1−ζ)
are excluded. It follows that the payoff to each identical infinitesimal excluded lender is equal

to (IA.3) divided by s(1− ζ).

In a successful restructuring, the collective payoff to the participating coalition of secured

lenders is:17

SecIn(λ, ε) ≡ (1− λ)(1− ε)ζFS (IA.4)

+ λE
[
(1− 1D(ε, 1))(1− ε)ζFS + 1D(ε, 1)min{πZ, (1− ε)ζFS}

]
.

A fraction ζ of secured lenders participate in the coalition, so a continuum of measure sζ

receive the payoff (IA.4). Thus, each identical infinitesimal participating lender receives a

payoff equal to (IA.4) divided by sζ.

Putting this together, a restructuring succeeds in equilibrium if and only if

1

sζ
SecIn(λ, ε) ≥

1

s(1− ζ)
SecOut(λ, ε). (IA.5)

If this condition holds, there is an equilibrium in which each lender is willing to participate.

17Note that in our baseline model, the order of events is: (i) secured lenders learn a jump shock has
occurred; (ii) secured lenders decide whether to accept a restructuring offer; (iii) secured lenders learn the
size of the jump shock. Analogously, here the order of events is (i) secured lenders learn whether they are in
the bad state λ = λH ; (ii) secured lenders decide whether to accept a restructuring offer; (iii) secured lenders
learn whether there is a bad shock, which occurs with probability λ = λH in the bad state or probability
λ = λL in the good state.
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This is an equilibrium because there are no profitable deviations: (i) each lender is infinites-

imal, so rejecting the offer will not make a restructuring fail, and (ii) the payoff to rejecting

and getting subordinated (the right side of the above inequality) is less than the payoff from

accepting and potentially participating in the coalition (the left side of the above inequality).

Equity holders want as much debt reduction as possible, so they choose ε∗ that makes

secured lenders indifferent between accepting or rejecting:

1

sζ
SecIn(λ, ε∗) =

1

s(1− ζ)
SecOut(λ, ε∗). (IA.6)

Again, this entails a different outside option for secured lenders who reject an offer than

the corresponding option in our baseline model. In this extension, if a secured lender rejects

an offer, then they get subordinated in a successful restructuring.

In summary, if there is a restructuring opportunity, equity holders offer a haircut ε∗(λ)

that is endogenously determined by (IA.6). All secured lenders are willing to participate,

and a randomly selected fraction ζ of secured lenders get to participate in the coalition. If

there is an asset-sale opportunity, secured lenders sell if min{FS, πS} exceeds (IA.2).

I.A.2.2 Period one

In period one, equity holders choose X, s to maximize the sum of the present expected

value of future: (i) equity payoffs; (ii) secured lender payoffs; (iii) unsecured lender payoffs.

These expectations account for the subsequent period-two choices. This objective captures

a competitive lending market in which the debt proceeds from debt issuance are equal to the

expected future payoffs.

The present expected value of future equity is

∑
i=L,H

P(λ = λi)×
(
ϕF ν

S1A(λi)(πS −X − ρ)+

+ α

[
(1− λi)

(
ṼH(λi)− (F̃S(λi) + FU + ρ)

)
+ λiE

[(
Z − F̃S(λi)− FU − ρ

)+]]
(IA.7)

+ (1− α− ϕF ν
S1A(λi))

[
(1− λi)

(
VH − (FS + FU + ρ)

)
+ λiE

[(
Z − FS − FU − ρ

)+]] )
,

where VH = 1 + τX, F̃S(λi) ≡ FS(1− ζε∗(λi)) and ṼH(λi) ≡ 1 + τX(1− sζε∗(λi)).
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The present expected future value of total secured debt payoffs is:

∑
i=L,H

P(λ = λi)×
(
ϕF ν

S1A(λi)min{πS, FS}

+ α
[
SecOut(λi, ε∗(λi)) + SecIn(λi, ε∗(λi))

]
+
(
1− α− ϕF ν

S1A(λi)
)
SecN(λi)

)
. (IA.8)

Finally, the present expected value of unsecured debt is

∑
i=L,H

P(λ = λi)×

(
ϕF ν

S1A(λi)min{FU , (πS − FS − ρ)+}

+α

[
(1− λi)FU + λiE

[
(1− 1D(ε∗(λi), 1))FU + 1D(ε∗(λi), 1)min{FU , [πZ − F̃S(λi)− ρ]+}

]]
+(1− α− ϕF ν

S1A(λi))×[
(1− λi)FU + λiE

[
(1− 1D(0))FU + 1D(0)min{FU , (πZ − FS − ρ)+}

]])
, (IA.9)

where x+ ≡ max{0, x} for any x ∈ R.

I.A.3 Numerical solution

We search numerically over potential values of X, s. For each value, we calculate ε∗(λi) and

1A(λi). We then calculate and sum the period-one values of (i) equity in (IA.7); (ii) secured

debt in (IA.8); and (iii) unsecured debt in (IA.9). We repeat this process until we find values

of X, s that maximize this sum.

Our baseline parameter values are the following:
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Table IA.1: Parameter values

This table shows our parameter values for our static model extension. Whenever applicable, parameter

values are annualized.

pλ Probability of good state 0.5
λL Probability of bad shock in good state 0.2
λH Probability of bad shock in bad state 0.8
τ Reduced-form tax shield 0.03
π Value in default 0.8
πS Value in asset sale 0.57
α Probability of liability management 0
ϕ Scale of secured default risk 0.03
ν Convexity of secured default risk 1
ζ Fraction of secured lenders in a coalition 0.8
ρ Priority claims 0.02
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I.A.4 Numerical results

The following page shows that our main results continue to hold in this model. We find

that ex-ante firm value increases with α: ex-post restructurings create value ex ante. We

show that secured credit spreads also rise as α increases, consistent with our baseline model.18

Moreover, Figure IA.1 includes results from a parameterization in which α = 1. This demon-

strates that our results are not specific to our baseline assumption that α < 1.

We confirm that model tradeoffs play the same role in this extension that they do in our

baseline model. As taxes increase, the firm uses more debt. As firm value in default increases

(deadweight losses shrink), the firm uses more debt. As the probability of a potential asset

sale increases (ϕ rises), the firm uses less secured debt. As the amount of priority unsecured

claims rises, the firm uses more secured debt.

In summary, we show that our main results are robust. They hold in a model extension

with: (i) endogenous restructuring offers (endogenous ε); (ii) endogenous decisions by secured

lenders to sell assets early; and (iii) a distinct restructuring game in which a secured lender’s

outside option to participating in a coalition is being subordinated in a nonetheless successful

restructuring.

18We define secured credit spreads as the sum of −1 and the ratio of (i) the total face value FS of secured
debt to (ii) the present value of total secured lender payoffs, which is the expression in (IA.8). In other
words, if secured lenders expect to receive 80 cents of future payoffs and the face value of secured debt is
one dollar, equity holders issue at a 20% discount to face value and the credit spread is −1 + (1/.8) = 25%.

IA-9



Figure IA.1: Comparative statics in the static model extension

We assume the parameter values given in Table IA.1. We solve the model of Internet Appendix I.A and

calculate: (i) ex-ante firm value, (ii) the ex-ante secured credit spread based on the ratio of the secured-debt

face value to the proceeds from issuing secured debt, (iii) total debt, and (iv) the share of secured debt. We

then repeat this process, varying α but holding all other parameters fixed. We repeat this process varying

τ, π, ϕ, and ρ one at a time. This figure plots how model objects vary with parameters.
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Figure IA.1: Comparative statics in the static model extension, continued
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I.B Model extension with long-term debt

In this appendix, we show that our main result holds in the canonical framework of Leland

(1994). Importantly, this shows that our main result holds in a setting with long-term debt.

Moreover, we show that our main result holds in a setting in which (i) ε is an endogenous

choice of equity holders; and (ii) the outside option of a secured lender in a restructuring offer

is to be excluded and subordinated in a debt restructuring conducted by another coalition,

rather than for the restructuring to not occur. We show that ex-ante firm value and secured

credit spreads increase as α, the probability of a restructuring opportunity, increases.

I.B.1 Model assumptions

At time zero, the firm and its lenders play a debt issuance and restructuring game. After time

zero, time evolves continuously and equity holders decide when to default in a framework

closely resembling Leland (1994).

Time-zero game: We break time zero into four “stages.” In the first stage, the firm

chooses a coupon C and secured-debt share s and collects debt proceeds equal to the expected

present value of future lender cash flows. The debt is priced rationally. The firm’s initial

EBIT is ω0. Note that we use ωt to denote EBIT.

In the second stage, an instant after the first stage, the firm experiences a shock. With

probability pB, the firm learns it is in the “bad state.” In the bad state, there is a probability

pZ that the EBIT will subsequently decline from ω0 to ω0Z, where Z ∈ (0, 1) is an exogenous

constant. With probability 1 − pB, the firm is in the good state, where the initial EBIT is

ω0 with probability one.

In the third stage, there is a potential restructuring. We assume that restructurings

do not occur in the good state. In the bad state, with probability α, equity holders have

a restructuring opportunity. They choose an endogenous ε in a restructuring procedure

described below. Secured lenders decide endogenously whether to accept. This leads to a

potentially new coupon Ĉ and secured-debt share ŝ, as we describe below.

In the fourth stage, the firm learns whether the initial EBIT is ω0 or Zω0. In the good

state, it is ω0. In the bad state, it is ω0 with probability 1 − pZ and Zω0 with probability

pZ .

Ex-post equity holder problem: After these initial four stages, time evolves contin-
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uously. For simplicity, we assume that the firm’s investment policy is fixed exogenously and

the firm’s EBIT evolves as

dωt = µωtdt+ σωtdBt. (IB.1)

In this equation, σ is the volatility and Bt is a standard Brownian motion. The parameter

µ is the drift, which we assume is less than the risk-free rate r.

The firm pays a constant tax rate τ on its EBIT. We assume that the firm earns an

interest tax shield on its debt coupon payments. The cash flow to equity holders is thus

(1− τ)(ωt− Ĉ)dt per unit time. Recall that Ĉ, ŝ are the post-time-zero coupon and secured-

debt share, which may differ from C, s if a restructuring occurs at time zero.

We assume that secured lenders force a default with probability ϕ(ŝĈ)νdt per unit time.

Let TS denote the first jump time of a Poisson process with constant intensity ϕ(ŝĈ)ν , so

secured lenders take over at time TS.

In default, secured lenders have first priority on the firm value in default πωt, where π

is an exogenous parameter capturing firm value in default. After secured lenders, priority

claims worth ρ receive second priority and unsecured claims get third priority. For simplicity,

equity receives nothing in default.

Equity holders can also choose to endogenously default in any instant. Given these

assumptions, equity holders choose a default time TD to maximize the expected discounted

value of their future cash flows:

VE(ω; (Ĉ, ŝ)) = sup
TD

E

[∫ TD∧TS

0

e−rt(1− τ)(ωt − Ĉ)dt

]
. (IB.2)

Debt pricing: Debt is priced under rational expectations. After the time-zero game,

the value of secured debt is thus

VS(ω; (Ĉ, ŝ)) = E

[∫ TD∧TS

0

e−rtĈŝdt+ e−r(TD∧TS) min
{
πωTD∧TS ,

ŝĈ

r

}]
. (IB.3)

In words, secured lenders receive a fraction ŝ of the coupon Ĉ in each instant until default.

If a default occurs, secured lenders have first priority, receiving either their full face value,
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ŝĈ/r, or the full firm value πω. The value of unsecured debt is analogously

VU(ω; (Ĉ, ŝ)) = E

[∫ TD∧TS

0

e−rtĈ(1− ŝ)dt

+ e−r(TD∧TS) min
{(
πωTD∧TS − ŝĈ

r
− ρ
)+
,
(1− ŝ)Ĉ

r

}]
. (IB.4)

In words, unsecured lenders receive a fraction 1− ŝ of the coupon Ĉ in each instant until

default. If a default occurs, unsecured lenders have third priority after the secured face value

ŝĈ/r and priority claims ρ. They thus receive either their full face value, (1− ŝ)Ĉ/r, or the

residual firm value πω − ŝĈ/r − ρ.

Restructuring: We can now describe the time-zero restructuring game. Recall that if

the bad state is realized in the second stage, then there is a restructuring opportunity in

the third stage with probability α. We assume that equity holders choose an endogenous

haircut ε. Each secured lender simultaneously decides whether they will participate in the

restructuring if they are invited to join the coalition. The credit agreement requires a fraction

ζ of secured lenders to amend the credit agreement. If a fraction less than ζ of secured lenders

are willing to participate, there is no restructuring. If a fraction equal to or greater than ζ

are willing to participate, then equity holders randomly select a fraction ζ of secured lenders

from those willing to form the coalition that participates in the restructuring. The remaining

fraction 1− ζ of secured lenders are subordinated: a lender’s outside option to participating

might thus be getting subordinated in a restructuring. For tractability, we assume in this

extension that the excluded lenders’ claims are subordinated all the way to unsecured claims.

This makes the subsequent value function calculation far simpler. Formally, if a restructuring

offer is accepted, the total coupon falls from C to

Ĉ ≡ C
[
1− sζε

]
. (IB.5)

As a result, the total secured-debt share falls from s to

ŝ ≡ sζ(1− ε)

1− sζε
, (IB.6)

because the excluded fraction 1− ζ of secured lenders become unsecured.
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Restructuring payoffs: We assume there is originally a continuum of infinitesimal

secured lenders with measure s. In a successful restructuring, a measure ζs of this continuum

participates. Given the restructuring, the total coupon is Ĉ and a fraction ŝ of all debt is

secured. Thus, in the instant before the fourth stage, the total expected value of post-

restructuring secured debt is (1 − pZ)VS
(
ω; (Ĉ, ŝ)

)
+ pZVS

(
Zω; (Ĉ, ŝ)

)
, which takes into

account the potential for EBIT to fall from ω0 to Zω0 in the fourth stage. Given this is

the total value of secured debt and there is a measure ζs of identical participating coalition

lenders, the value of each infinitesimal coalition lender’s claim is:

1

ζs

[
(1− pZ)VS

(
ω; (Ĉ, ŝ)

)
+ pZVS

(
Zω; (Ĉ, ŝ)

)]
. (IB.7)

We conjecture an equilibrium in which a measure ζs of secured lenders participate in the

restructuring on the equilibrium path. In such an equilibrium, if a secured lender declines

the restructuring offer, they get subordinated: each lender is infinitesimal, so even if one

lender deviates from being willing to participate, the measure of participating lenders is

unchanged so the restructuring goes through. For tractability, we assume in this extension

that any subordinated lender becomes unsecured. We assume there is originally a continuum

of infinitesimal unsecured lenders of measure 1− s. The subordinated secured lenders have

measure s(1 − ζ), implying that the post-restructuring measure of unsecured debt is 1 −
s + s(1 − ζ) = 1 − sζ. As described above, the total expected value of post-restructuring

unsecured debt is (1− pZ)VU
(
ω; (Ĉ, ŝ)

)
+ pZVU

(
Zω; (Ĉ, ŝ)

)
. The value of each infinitesimal

non-coalition lender’s claim is thus:

1

1− sζ

[
(1− pZ)VU

(
ω; (Ĉ, ŝ)

)
+ pZVU

(
Zω; (Ĉ, ŝ)

)]
. (IB.8)

Restructuring equilibrium: Given these payoffs, an equilibrium with a successful

restructuring exists if (IB.7) is weakly greater than (IB.8). In that case, each individual

secured lender is willing to participate in a coalition: they receive (IB.7) if they are chosen

to participate in the coalition, and they are infinitesimal so if they reject the offer the

restructuring nonetheless passes and they get (IB.8).

Given these lender strategies, equity holders choose an offer ε∗ that makes secured lenders

indifferent between accepting and rejecting. Formally, we calculate ε∗ to equate (IB.7) and
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(IB.8) given the subsequent ex-post equity default timing and given the dependence of Ĉ, ŝ

on ε.

Moving backward in time, at time zero, equity holders maximize ex-ante firm value.

Define

V
(
ω; (Ĉ, ŝ)

)
≡ VE

(
ω; (Ĉ, ŝ)

)
+ VU

(
ω; (Ĉ, ŝ)

)
+ VS

(
ω; (Ĉ, ŝ)

)
. (IB.9)

Then equity holders choose s, C to maximize total firm value:

(1− pB)V
(
ω; (C, s)

)
+ pB(1− α)

[
pZV

(
Zω; (C, s)

)
+ (1− pZ)V

(
ω; (C, s)

)]
+ pBα

[
pZV

(
Zω; (Ĉ(ε∗), ŝ(ε∗))

)
+ (1− pZ)V

(
ω; (Ĉ(ε∗), ŝ(ε∗))

)]
. (IB.10)

I.B.2 Model solution

We solve the model backwards. The equity holder problem is standard (Leland, 1994) with

one small change. Due to the possibility of secured lenders forcing an asset sale, the effective

interest rate is

r̂ = r + ϕ(ŝĈ)ν , (IB.11)

which takes into account the exogenous chance of default. The equity holder value function

VE solves the following standard Hamilton-Jacobi Bellman (HJB) equation:

r̂VE(ω) = (ω − Ĉ)(1− τ) + V ′
E(ω)µω + V ′′

E (ω)
σ2ω2

2
. (IB.12)

Following standard arguments, the relevant general solution is

VE(ω) = A1ω
ψ + (1− τ)

[ ω

r̂ − µ
− Ĉ

r̂

]
, (IB.13)

where ψ is the negative root of

σ2

2
z(z − 1) + µz − r̂ = 0. (IB.14)

The function VE must be smooth, so value matching and smooth pasting at the default
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boundary ωD imply that

0 = VE(ωD) = A1ω
ψ
D + (1− τ)

[ ωD
r̂ − µ

− Ĉ

r̂

]
(IB.15)

0 = V ′
E(ωD) = ψA1ω

ψ−1
D + (1− τ)

1

r̂ − µ
. (IB.16)

Then we can solve

ωD = Ĉ
r̂ − µ

r̂

ψ

ψ − 1
, (IB.17)

A1 = ω−ψ
D (1− τ)

[Ĉ
r̂
− ωD
r̂ − µ

]
. (IB.18)

Next, we turn to secured debt. The HJB for secured lenders is

r̂VS(ω) = ŝĈ + V ′
S(ω)µω + V ′′

S (ω)
σ2ω2

2
+ ϕ(Ĉŝ)ν min

{
πω,

ŝĈ

r

}
.

The final term introduces some complications in the solution: if πωD < ŝĈ
r̂
, the general

solution features two regions: in one region, secured lenders anticipate full recovery in a

takeover, while in the other region they expect partial recovery in a takeover. Applying

value matching and smooth pasting across these regions delivers a closed-form solution.

Next, we turn to unsecured debt. The HJB for unsecured lenders is

r̂VU(ω) = (1− ŝ)Ĉ + V ′
U(ω)µω + V ′′

U (ω)
σ2ω2

2
+ ϕ(Ĉŝ)ν min

{(
πω − ŝĈ

r
− ρ
)+

,
(1− ŝ)Ĉ

r

}
.

Again, the final term introduces several regions, and we calculate the value function by

imposing value matching and smooth pasting across the regions.

Following these steps, for any Ĉ, ŝ, we can calculate VE(ω; (Ĉ, ŝ)), VS(ω; (Ĉ, ŝ)) and

VU(ω; (Ĉ, ŝ)). Going backward in time, for any C, s, we can calculate ε∗, Ĉ, ŝ by equating

(IB.7) and (IB.8). We move back to the first stage, searching numerically for C, s values

that maximize the firm value (IB.10).
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I.B.3 Model results

Following a common assumption (Leland, 1994), we assume that a fraction 1 − χ of firm

value is destroyed in default: we assume χ = 0.6. We assume the value in default is then the

perpetuity value of the remaining cashflows: π = (1− τ)(1−χ)/(r−µ) = 7.9. The following

table lists the rest of our parameter assumptions.

Table IB.1: Parameter values

This table shows our parameter values for our model extension based on Leland (1994). Whenever

applicable, parameter values are annualized.

µ Drift 0.01
r Risk-free rate 0.05
σ Volatility 0.45
τ Tax rate 0.21
π Value in default 7.9
ρ Priority claims 0.5
ϕ Scale of secured default risk 0.0001
ν Convexity of secured default risk 2
Z Value after shock in bad state 0.3
pB Probability of bad state 0.5
pZ Probability of shock in bad state 0.5
ζ Fraction of participating secured lenders 0.8
α Probability of a restructuring opportunity 0
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Solving the model with these parameters, we confirm the main results from our baseline

model: as we increase α, ex-ante firm value and secured credit spreads19 both increase.

Figure IB.1 shows the result.

Figure IB.1: Comparative statics in the model extension based on Leland (1994)

We assume the parameter values given in Table IB.1. We solve the model of Internet Appendix I.B and

calculate: (i) ex-ante firm value, and (ii) the ex-ante secured credit spread based on the ratio of the

secured-debt cash flows to the proceeds from issuing secured debt. We then repeat this process, varying α

but holding all other parameters fixed. This figure plots how model objects vary with α.

19As in Internet Appendix I.A, we define the secured credit spread as the sum of −r and the ratio of (i)
the flow payment Cs to secured lenders to (ii) the amount that secured lenders pay for the debt. Thus, if
a firm facing a risk-free rate of 5% issues secured debt with flow payment Cs = 0.25 and raises one dollar,
then the secured credit spread is −0.05 + (.25/1) = 20%.
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I.C Model extension with endogenous coalition size

In this appendix, we show that our results are robust to allowing for an endogenous choice

of ζ, the fraction of secured lenders that participate in a coalition in a restructuring. For

simplicity, we use the setup of Internet Appendix I.B. We make one change: in addition to

choosing the debt coupon C and secured-debt share s at time zero, equity holders choose

ζ as well. This choice occurs at the first “stage” of the time-zero game and equity holders

maximize the same objective: total firm value including debt-issuance proceeds. This choice

represents the choice of credit-agreement terms regarding the fraction of lenders required

to amend the agreement. Debt is priced rationally, taking into account how ζ impacts a

potential future restructuring.

In the third stage of the time-zero game, the restructuring game is the same as described

in Internet Appendix I.B. Equity holders endogenously choose a haircut ε. Secured lenders

simultaneously decide whether they are willing to accept the proposal. As in Internet Ap-

pendix I.B, we solve for the value ε∗ that supports an equilibrium in which (i) all secured

lenders are indifferent between accepting or rejecting (we equate (IB.7) and (IB.8)) and (ii)

all secured lenders accept in equilibrium, implying the restructuring succeeds. By making se-

cured lenders indifferent between accepting and rejecting, equity holders extract the highest

possible reduction in debt.

Other than allowing ζ to be an endogenous choice, we assume the same parameter values

described in Table IB.1. Figure IC.1 shows that our main result continues to hold. As we

increase α, the probability of a restructuring opportunity, the ex-ante firm value and secured

credit spread both increase.
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Figure IC.1: Comparative statics in the model extension with endogenous coalition size

We assume the parameter values given in Table IB.1, except that ζ is an endogenous time-zero choice.

We solve the model of Internet Appendix I.B, except that equity holders choose ζ in the first stage of the

time-zero game. We calculate: (i) ex-ante firm value, and (ii) the ex-ante secured credit spread based on

the ratio of the secured-debt cash flows to the proceeds from issuing secured debt. We then repeat this

process, varying α but holding all other parameters fixed. This figure plots how model objects vary with α.
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I.D Illustrative model

This section presents a simple model to illustrate the intuition behind our results. We show

how the potential for a liability-management transaction impacts a firm with one class of

debt. We then explain how this impact will depend on a firm’s use of secured debt, motivating

our main model.

The illustrative model has three dates t = 0, 1, 2. At t = 0, a firm chooses how much

debt to issue. At t = 1, the firm and its lender observe a signal about the future operations.

There is then the potential for a liability-management transaction like Serta’s transaction.

We refer to this as a restructuring. At t = 2, the firm and lender observe the firm’s value.

The firm defaults or pays back debt, giving any residual value to shareholders.

Specifically, at t = 0, the firm issues fairly priced debt. Both the firm and its lender are

risk neutral and have a discount rate of zero. The firm chooses the date-two repayment X

that it will owe to the lender at t = 2. At t = 0, the lender gives the firm the expected value

of the firm’s future repayment, which takes into account the possibility of a restructuring at

t = 1 or default at t = 2. In this sense, debt is issued at a competitively priced discount to

face value, determined by rational expectations. We provide details below.

At t = 1, there is the potential for a restructuring. We let 1R denote an indicator equal

to one if a restructuring offer is accepted. If the restructuring is accepted, a fraction ζ of

lenders exchange each dollar of their old debt for 1 − ε dollars of new senior debt, where

ζ ∈ [0.5, 1] and ε ∈ [0, 1] are exogenous parameters. In other words, if a restructuring is

accepted, the total debt owed at t = 2 is reduced from X to X
(
1− ζε

)
. We define

X̃ = X
(
1− 1Rζε

)
(ID.1)

as the debt owed at t = 2, taking into account the possibility of a restructuring at t = 1.

Additionally, at t = 1, the firm and lender learn whether the firm’s operations are healthy.

With probability 1−λ, the firm and the lender observe that the firm’s operations are healthy.

In this case, everyone knows the firm’s value is certain to equal 1 + τX̃. We normalize the

unlevered after-tax firm value to one for simplicity. The parameter τ > 0 captures the tax

benefits of debt per dollar of debt. This can be thought of as a reduced-form approach to

modeling both the tax rate and the coupon rate.

With probability λ, the firm experiences a negative shock. In this case, the tax shield is
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not realized. The firm value is Z ∼ Uniform(0, 1), where we assume the uniform distribution

for simplicity. Let 1Z denote an indicator for a negative shock at t = 1.

Finally, if the firm experiences a negative shock, it defaults if the firm value Z is less

than the debt owed X̃. In default, the firm is only worth πZ for an exogenous parameter

π < 1 that captures default costs.

Given this, the ex-ante firm value is

max
X

E
[ (

1− 1Z
)
(1 + τX̃) + 1ZZ

(
1− (1− π)1(Z < X̃)

)]
. (ID.2)

Because debt is fairly priced and equity holders receive the debt proceeds at issuance, equity

holders simply choose X at t = 0 to maximize (ID.2).

The following proposition characterizes the impact of restructurings on ex-ante firm value.

Proposition 1. Suppose that a restructuring occurs with probability α after a negative shock

(1Z = 1) and with probability zero for healthy firms (1Z = 0). Then ex-ante firm value

(ID.2) increases with the probability of restructuring α.

Proposition 2. Suppose that a restructuring occurs with probability zero after a negative

shock (1Z = 1) and with probability α for healthy firms (1Z = 0). Then ex-ante firm value

(ID.2) decreases with the probability of restructuring α.

Intuitively, equity holders would like to realize the tax benefits of debt without risking

the deadweight loss of default. Ideally, equity holders would issue a state-contingent debt

contract that is cancelled in bad states of the world before default. In practice, many frictions

make such a security infeasible (e.g., difficulty in verifying bad states, moral hazard, etc).

However, restructurings introduce state-contingent repayment. If restructurings occur in the

states where the tax-shield is valuable, this destroys value. If restructurings occur in states

where default is likely, they create value ex ante.

I.D.1 Secured and unsecured debt

The above results show that if restructurings are accepted in relatively good states of the

world, they will harm firms ex ante. If restructurings are only accepted in bad states of the

world, they will benefit firms ex ante.
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When deciding whether to accept a restructuring, lenders trade off a lower face value with

higher seniority. Higher seniority is particularly beneficial if seniority is lower to start with.

For this reason, a restructuring offer aimed at unsecured creditors is more likely to succeed

than a restructuring offer aimed at secured creditors. In other words, secured lenders are

likely to only accept when the firm is very likely to default (bad states), while unsecured

lenders are likely to accept when default is less likely (better states). Because of the legal

constraints discussed in the main text, this new form of liability-management transaction

targets secured lenders. We thus expect these transactions to only be accepted by secured

lenders in bad states of the world where default is close. Because of this, the above results

suggest restructurings will improve ex-ante firm value. In the main text, we show this in our

realistic dynamic model.

I.D.2 Proofs for illustrative model

Recall Proposition 1 states the following:

Proposition 1: Suppose that a restructuring occurs with probability α after a negative

shock (1Z = 1) and with probability zero for healthy firms (1Z = 0). Then ex-ante firm value

(ID.2) increases with the probability of restructuring α.

Proof: Under the stated assumption, for any fixed X, firm value is

(1− λ)(1 + τX) + λ(1− α)
(∫ 1

X

ZdZ +

∫ X

0

πZdZ
)
+ λα

(∫ 1

X̂

ZdZ +

∫ X̂

0

πZdZ
)
, (ID.3)

where X̂ ≡ X(1− ζε). Evaluating integrals in (ID.3), we obtain

(1− λ)(1 + τX) + λ(1− α)
(1−X2

2
+
πX2

2

)
+ λα

(1− X̂2

2
+
πX̂2

2

)
. (ID.4)

Rearranging,

(1− λ)(1 + τX) + λ
(1− (1− π)X2

2

)
+ λα(1− π)

(X2 − X̂2

2

)
. (ID.5)

The last term in (ID.5) is positive, so increasing α increases firm value for any chosen X,

so firm value increases with α.
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Recall Proposition 2 states the following:

Proposition 2: Suppose that a restructuring occurs with probability zero after a negative

shock (1Z = 1) and with probability α for healthy firms (1Z = 0). Then ex-ante firm value

(ID.2) decreases with the probability of restructuring α.

Proof: Under the stated assumption, for any fixed X, we can apply the same steps to

show that firm value is

(1− λ)(1 + τ(αX̂ + (1− α)X)) + λ
(∫ 1

X

ZdZ +

∫ X

0

πZdZ
)
, (ID.6)

where X̂ ≡ X(1− ζε). Rearranging (ID.6), we obtain

(1− λ)(1 + τX) + λ
(∫ 1

X

ZdZ +

∫ X

0

πZdZ
)
+ (1− λ)τα(X̂ −X). (ID.7)

The last term in (ID.7) is negative, so increasing α lowers firm value for any chosen X, so

firm value decreases with α.
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I.E Algorithm for numerical solution

This appendix describes the algorithm for the numerical solution in the baseline model.

First, it is helpful to define a few operators. For any guess of the equity value function p(x),

investment choice i, and secured-debt choice s, define:

Api,s(x) ≡1

2
σ2x2p′′(x) +

(
− θ + i+ (1− τ)c(x, s)− x

(
ψ(i)− δ

))
p′(x)

−
(
γ + λ+ δ − ψ(i)

)
p(x) + ϕ

(
sx
)ν [

(π − ρ− x)+ − p(x)
]
.

Define

Ap(x) ≡ max
i∈R,0≤s≤min{1,π

x
}
Ai,sp(x), (IE.1)

which corresponds to the optimal choice of i, s in the HJB equation (29). Finally, for any

guess of p(x), s(x) and 1R(x) (the secured-lender restructuring acceptance rule), define the

operator:

Bp(x) ≡ (1− α1R(x))

∫ 1

0

Zp
( x
Z

)
dF (Z) + α1R(x)

∫ 1

0

Zp
(
x
1− s(x)ζε

Z

)
dF (Z). (IE.2)

This operator corresponds to the impact of jump shocks in the HJB equation (29). Recall

that x̂ is the equity-issuance boundary and x is the boundary for issuing debt to pay a

dividend. Our model solution (20)-(29) implies that the equity value function p(x) should

satisfy the following variational inequality20:

max{Ap(x) + λBp(x), 1 + p′(x)} = 0, x ∈ (xmin, x̂) (IE.3)

with boundary conditions:

p′(xmin) = −1, p′(x̂) = −(1 + h1), (IE.4)

where xmin ∈ (0, x) is any sufficiently small number and the equity-issuance boundary x̂ is

20Note that Bp(x) = (1− α1R(x))
∫ 1

Z∗(x)
Zp
(

x
Z

)
dF (Z) + α1R(x)

∫ 1

Zres
∗ (x,s(x))

Zp
(
x 1−s(x)ζε

Z

)
dF (Z).
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determined by (23), which implies

Mp(x̂) = p(x̂).

Here, Mp(x) denotes the equity value after equity financing:

Mp(x) ≡ max
m>0

[
p(x−m)− h0 − (1 + h1)m

]
. (IE.5)

We numerically solve for a solution to this variational inequality by completing the fol-

lowing steps:

1. We fix a guess x̂ of the equity-issuance boundary. We fix an arbitrarily small positive

number xmin: we choose this number such that any firm will optimally set x > xmin.

We discretize the interval [xmin, x̂]. We use a uniform grid with N + 1 points: xn =

xmin + (n− 1)∆x, n = 1, 2, . . . , N + 1, where ∆x = x̂−xmin

N
.

2. We fix an initial guess of the lender acceptance rule {1R0 (xn)}n=1,2,...,N+1. We fix

an initial guess of the equity value function {p0(xn)}n=1,2,...,N+1, investment policy

{i0(xn)}n=1,2,...,N+1 and secured-debt policy {s0(xn)}n=1,2,...,N+1. Given these guesses,

we calculate {Z∗(xn), c(xn, s0(xn))}n=1,2,...,N+1 following the formulas derived in Ap-

pendix A.

3. We fix a penalty parameter Υ > 0. Given guesses

{1Rk (xn), pk(xn), sk(xn), ik(xn), Z∗(xn), c(xn, sk(xn))}n=1,2,...,N+1, we use the variational

inequality (IE.3) to update to a new guess {pk+1(xn)}n=1,2,...,N+1:

Aik(x),sk(x)pk+1(x) + λBpk(x) + Υ
(
1 + p′k+1(x)

)
11+p′k(x)≥0 = 0, (IE.6)

p′k+1(xmin) = −1, p′k+1(x̂) = −(1 + h1). (IE.7)

We evaluate the derivatives using an upwind finite-difference scheme. We define B by

inputting sk,1
R
k into (IE.2). In the region x ≥ x̂, we derive from (25) and (27) that

pk+1(x) = max{0, pk+1(x̂)− (1 + h1)(x− x̂)}, x ≥ x̂. (IE.8)
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Once we calculate the updated equity value function pk+1, we calculate updated policies

ik+1, sk+1 by solving the maximization (IE.1) with pk+1. Given {pk+1, ik+1, sk+1,1
R
k },

we calculate {Z∗(xn), c(xn, sk+1(xn))}n=1,2,...,N+1 following the formulas derived in Ap-

pendix A. Finally, given these other updated values, we calculate the updated secured-

lender acceptance rule {1Rk+1(xn)}n=1,2,...,N+1 to equal one when (A.12) is satisfied and

zero otherwise.

4. We repeat step 3, iteratively constructing a new guess k + 1 from each prior guess k,

until the equity value function converges: we repeat until ∥pk − pk+1∥ is sufficiently

small. Once this converges for some step k∗, this delivers the other model objects from

step 3: ik∗ , sk∗ ,1
R
k∗ , etc.

5. Given the equity value function {pk∗(xn)}n=1,2,...,N+1, we calculateMpk∗(x̂) by equation

(IE.5). If |Mpk∗(x̂)−pk∗(x̂)| is sufficiently small, (23) is satisfied and we are done. If it is

not small, we return to step 1 with a new guess for x̂ and repeat until |Mpk∗(x̂)−pk∗(x̂)|
is sufficiently small. Specifically, fixing a small step size δ̂, we update

x̂new = x̂− δ̂1
(
Mpk∗(x̂) > pk∗(x̂)

)
+δ̂1

(
Mpk∗(x̂) < pk∗(x̂)

)
. (IE.9)

Once we have finished these steps, we can use the equity value function p to define the

endogenous payout boundary:

x = inf{x ∈ [xmin, x̂] : p
′(x) < −1},

and the endogenous default boundary:

x := inf{x > 0 : p(x) = 0}.
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I.F Secured debt details

Unlike unsecured debt, secured debt is explicitly backed by collateral. Article 9 of the

Uniform Commercial Code (UCC) outlines the legal treatment of secured debts outside of

bankruptcy.21 A secured debt contract gives the lender a “security interest” in a specified

asset of the debtor, which is a voluntary lien on the asset. The lender registers this security

interest in a public database (“perfecting the security interest”) so that other potential

lenders are aware which of the debtor’s assets already have liens on them.22 Once registered,

the secured lender has the right to seize the specified collateral if the debtor defaults on

the loan. Unlike unsecured lenders, the secured lender can take collateral from a defaulting

debtor without asking for court permission as long as they do not “breach the peace” by doing

so.23 When physically seizing collateral is impractical, a foreclosure is a straightforward way

to transfer ownership of the asset to the secured lender. Importantly, these secured-lender

rights only apply if the assets are held by the borrowing company.

A given piece of collateral can have multiple liens on it. A lender can file a security

interest in a piece of collateral even after an existing lender has filed a security interest.

However, the second lender gets a “second lien” and only receives value in a foreclosure after

the first lien-holder is paid back in full.24

If a debtor files for bankruptcy, the automatic stay prevents secured lenders from seizing

collateral. In exchange, the bankruptcy code gives secured lenders special treatment. Es-

sentially, a bankruptcy plan can only be confirmed if secured lenders receive full recovery or

secured lenders receive the value of their collateral.25 Specifically, 11 U.S.C. §1129(a)8 re-

quires all classes of claims to approve a bankruptcy plan. If this condition is not met, a plan

can only be confirmed under the conditions of 11 U.S.C. §1129(b). Section 1129(b)2 requires

21See https://www.law.cornell.edu/ucc/9.
22See https://www.nolo.com/legal-encyclopedia/how-attach-perfect-security-interest-

under-the-ucc.html.
23See https://www.nolo.com/legal-encyclopedia/what-secured-debt.html.
24See https://www.forbes.com/advisor/business-loans/what-is-a-ucc-filing.
25If a creditor holds a secured claim with a face value that exceeds the value of the loan

collateral, the bankruptcy court gives the creditor a secured claim with a face value equal to
collateral value and an unsecured “deficiency” claim equal to the difference between the origi-
nal face value and the collateral value. See https://content.next.westlaw.com/practical-

law/document/I68760bc7169611e598db8b09b4f043e0/Deficiency-Claim?viewType=FullText&

transitionType=Default&contextData=(sc.Default)#:~:text=In%20bankruptcy%2C%20a%20general%

20unsecured,is%20not%20secured%20by%20collateral.
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that secured lenders (i) get to retain their liens on secured assets (or the sale proceeds from

selling those assets in bankruptcy) and (ii) receive deferred cash payments with a present

value equal to the claim or asset value.26 In other words, a firm cannot exit bankruptcy un-

less secured lenders exit bankruptcy in the same position that they entered the bankruptcy

(or better).

26See https://www.law.cornell.edu/uscode/text/11/1129.

IF-2

https://www.law.cornell.edu/uscode/text/11/1129

	Introduction
	Institutional details
	Secured debt and secured lender control
	Priority unsecured claims
	Liability management and creditor-on-creditor violence

	Model
	Capital and investment
	Priority claims and free cash flows
	Financing
	Credit spreads
	Debt coupon payments and the interest tax shields
	Payouts, equity issuance, and debt dynamics

	Secured lender incentives
	Firm value in default
	Secured debt limit
	Secured versus unsecured conflict
	Liability management or creditor-on-creditor violence

	Recovery by absolute priority rule in default
	Recovery with no liability management
	Recovery with liability management

	Default timing
	Firm objective

	Model solution
	Payout region
	Equity-issuance region
	Default region
	Earnings retention and debt-financing region
	Numerical solution

	Results
	The optimal leverage ratio
	The optimal secured ratio
	The rise of liability management
	Matching empirical evidence

	Robustness and discussions
	Robustness
	Discussions
	Dilution and other motives for secured-debt issuance
	Debtor-in-possession financing
	Restructuring uncertainty
	Restructurings in good states of the world


	Conclusion
	Mathematical details
	Secured credit spread
	Scenario 1: forced default
	Scenario 2: endogenous default, no restructuring
	Scenario 3: restructuring
	Combining default scenarios
	Condition for secured lenders accepting a restructuring offer
	Unsecured credit spread
	HJB equation
	Static model with endogenous debt restructuring
	Model assumptions
	Period one
	Period two
	Period three
	Model solution
	Period two
	Period one

	Numerical solution
	Numerical results
	Model extension with long-term debt
	Model assumptions
	Model solution
	Model results

	Model extension with endogenous coalition size

	Illustrative model
	Secured and unsecured debt
	Proofs for illustrative model

	Algorithm for numerical solution
	Secured debt details





