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1 Introduction

Starting with the seminal work of Black and Scholes (1973) and Merton (1974), a large lit-

erature has focused on the relative pricing of debt and equity.1 With the advent of an active

market in credit index options, the focus has shifted to the pricing of higher order moments

in credit and equity markets. Two recent papers (Collin-Dufresne, Junge, and Trolle (2024)

and Doshi, Ericsson, Fournier, and Seo (2024)) study the relative pricing of credit and equity

index options through the lens of structural credit risk models and reach different conclu-

sions on the degree to which higher order risks are priced consistently across both markets.

However, because both studies focus on a fairly narrow set of options (US investment-grade

index options) using somewhat different structural models and quite different calibration

strategies, it seems difficult to draw definitive conclusions from their studies.

Here, we seek to resolve the controversy. We considerably enlarge the option data set

to cover the entire universe of liquid credit index options in terms of ratings (investment-

grade, IG and high-yield, HY) and regions (US and Europe). Moreover, to circumvent

the joint-hypothesis problem of previous studies, we address the relative valuation of credit

and equity index options with a model-independent approach that relies on option trading

strategies that are robust and implementable in real time. Finally, we tie differences in the

relative valuation across markets to credit option order flow, in a manner that is consistent

with the predictions of a demand-based option pricing model.

Our results strongly suggest that credit and equity index options are not priced consis-

tently. Further, we find support for the hypothesis that the market structure and order-flow

characteristics of credit index options contribute to driving a wedge between the pricing of

these two classes of options.

First, we analyze portfolios of delta-hedged options sorted on moneyness (deep OTM

1See, for example, the large literature on the credit spread puzzle; see, e.g., Jones, Mason, and Rosenfeld
(1984), Huang and Huang (2012), Cremers, Driessen, and Maenhout (2008), Chen, Collin-Dufresne, and
Goldstein (2009), Culp, Nozawa, and Veronesi (2018), and Du, Elkamhi, and Ericsson (2019).
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puts, OTM puts, ATM puts, and OTM calls) and maturity (1, 2, and 3 months). Sharpe

ratios are much more negative for credit index options than equity index options (in the US,

for example, averaging the annualized Sharpe ratios across portfolios gives -1.85 and -2.23

for the IG and HY credit index options compared to -0.60 for the equity index options) with

the pricing differential being stable or even increasing over time. It follows that short-credit

vs. long-equity strategies in options are highly profitable, and we show that it would be

extremely unlikely to observe this degree of profitability in structural models where credit

and equity index options are priced in a consistent fashion.2

Second, motivated by a return decomposition within a general stochastic-volatility model

we identify four risk factors driving delta-hedged option returns, namely gamma (shocks

to realized index return volatility), vega (shocks to implied volatility), vanna (shocks to

downside risk), and volga (shocks to overall tail risk). We show how particular option

trading strategies can be used as factor mimicking portfolios and study their risk-return

characteristics across markets. Mean excess factor returns are uniformly negative, which

is consistent with these factors paying off in adverse states. More importantly, there are

significant differences in the pricing of the risk factors across markets with the gamma factor,

and to a lesser extent the vega and vanna factors, having significantly more negative Sharpe

ratios in credit than equity markets. This leads to short-credit vs. long-equity strategies in

these factors being highly profitable (in the US, for example, the annualized Sharpe ratio on

the credit vs. equity gamma factor is 1.19 and 1.51 for IG and HY, respectively).

Third, we construct a factor model from the equity-based risk factors. The model per-

forms very well in pricing the equity index options; however, across a range of specifications,

it does a poor job of pricing the credit index options explaining only about a quarter of the

time-series variation in realized returns and having significantly negative alphas. Perform-

2We follow standard practice and compute option returns using mid-quotes. In the internet Appendix we
show that, although transaction costs are higher for credit index options, significant differences in Sharpe
ratios remain after taking transaction costs into account. We also note that our results are not affected by
the look-ahead biases discussed in Duarte, Jones, Khorram, Mo, and Wang (2023).
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ing a principal component analysis (PCA) on the unexplained credit option returns reveals

large common variation, with the dominant factor explaining more than two-thirds of the

variation across options and acting as a “level” factor that impacts all returns with the same

sign. Adding this credit option residual factor to the model significantly reduces the alphas

on credit index options.

Fourth, we investigate one important potential driver of this credit-specific factor: In-

dustry professionals note that there exists a structural demand for credit index options for

hedging purposes. Moreover, trades are typically very large and take place in a dealer-

intermediated, over-the-counter environment—in contrast to exchange-traded equity index

options. Consequently, we hypothesize that the credit option residual factor is linked to

variation in option order flow; that is, demand-shocks that are difficult to hedge by the

intermediaries.

We propose a simple demand-based option pricing model, where we characterize option

prices—set by risk-averse dealers with limited risk-bearing capacity and facing stochastic

option demand—as a solution to a system of coupled Black-Scholes type partial differential

equations. The solution shows that, when markets are incomplete, order-flow risk is priced

in equilibrium.

The model is consistent with the large negative Sharpe ratios on the credit index op-

tions and the credit option residual factor. In addition, we consider three testable model

predictions regarding the relation between the credit option residual factor and option order

flow: 1) a positive contemporaneous relation between the factor and order flow; 2) that the

relation is stronger when dealers are more risk averse; and 3) that the expected excess return

on the factor is more negative following high order flow.

To test these predictions, we first compute measures of daily order flow in credit index

options using transaction data from swap data repositories. On average, trading volume

is high, but is made up of relatively few, very large trades. Also, the order flow is highly
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volatile. Next, we run regressions involving the credit option residual factor and order flow.

We find a significant positive relation between the factor and contemporaneous order flow

consistent with 1). This relation is stronger when the capital ratio of intermediaries is low

(proxying for higher dealer risk aversion in the model) consistent with 2). Finally, there is a

negative relation between the factor and lagged order flow consistent with 3).

The paper is related to several strands of literature. A large literature has analyzed

returns on equity index options; see, e.g. Coval and Shumway (2001), Bakshi and Kapadia

(2003), Broadie, Chernov, and Johannes (2009), Santa-Clara and Saretto (2009), and Con-

stantinides, Jackwerth, and Savov (2013). For credit index options, Collin-Dufresne et al.

(2024) and Doshi et al. (2024) report some results on option returns. In this paper, we pro-

vide a much more comprehensive analysis of their risk and return characteristics, investigate

the relative pricing of option risk factors across credit and equity markets, and explore the

impact of option order flow.3

Several papers have proposed factor models for option returns; see, e.g., Jones (2006),

Buchner and Kelly (2022), Horenstein, Vasquez, and Xiao (2023), and Fournier, Jacobs, and

Orlowski (2024). Here, we consider a model based on tradable factors that are economically-

motivated and easily implementable.

Starting with Bollen and Whaley (2004) and Gârleanu, Pedersen, and Poteshman (2009),

a number of papers have explained the historically large negative Sharpe ratios on equity

index options with a structural demand from end-users. The more recent reduction in the

magnitude of Sharpe ratios has been attributed to a more balanced demand by end-users

(Chen, Joslin, and Ni (2019)) and lower hedging costs for liquidity providers (Dew-Becker

and Giglio (2023)). We show that demand pressure effects continue to be important for

credit index options that trade in a dealer-driven, over-the-counter market (a very different

3Two recent papers construct synthetic credit variance swaps from credit index options, see Ammann and
Moerke (2023) and Chen, Doshi, and Seo (2023). S&P Global recently launched official credit VIX indexes
underscoring the high liquidity of credit index options, see Masabathula and Godec (2023).
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market structure than for listed equity options), which explains part of the relative valuation

of credit and equity index options.4

Our theoretical model linking option prices to order flow is related to the models in Gâr-

leanu et al. (2009) and Chen et al. (2019). Our contribution is to provide a simple analytical

framework using continuous-time trading, regime-switching order-flow and volatility risk,

and a specific dealer utility-function, for which we obtain an explicit characterization of the

equilibrium option price and many of its properties.

2 Credit indexes and options

2.1 Credit indexes

Credit indexes provide the basis for trading credit risk through index CDSs and options.

We focus on the four most popular credit indexes, namely those for investment-grade and

high-yield companies domiciled in North America (CDX.IG and CDX.HY) and Europe

(iTraxx.main and iTraxx.Crossover).5 The four indexes comprise 125, 100, 125, and 75

companies, respectively.

The index compositions are “refreshed” every six months in March and September, and

each refreshed index is identified by its series number.6 The most recent series is referred

to as on-the-run. When an index member of a series defaults, a new version of the series

without the defaulted name is launched. A credit derivative is always written on a particular

index series, and for valuation purposes we need to keep track of the defaults that happen

4More generally, a number of papers have attributed valuation differences across credit and equity markets
to intermediary frictions; see, e.g., Kapadia and Pu (2012), Friewald and Nagler (2019)), and He, Khorrami,
and Song (2022).

5In addition to requirements on rating and geographical location, index constituents are also selected based
on business sector and liquidity. Because the vast majority of firms in CDX.IG and CDX.HY are US firms,
we refer to these as US indexes.

6For CDX.IG, iTraxx.main and iTraxx.Crossover, the refreshment takes place on March 20 and September
20. For CDX.HY, it takes place one week later on March 27 and September 27. In September 2014, there
was a delay in the launch of the new series.
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within that series. Assume that a series is launched at time 0 with N constituents. The

number of constituents that remains at time t is

Nt =

N∑

i=1

1{τi≥t},

where τi is the default time of firm i.7 The version number at time t is then N −Nt + 1.

2.2 Credit index returns

The most common credit derivatives are index CDSs. These are highly standardized con-

tracts that allow for efficient trading of the credit risk in an index. At initiation, index

CDSs typically have a maturity of five years and reference the current version of the on-

the-run index series. These swaps are very liquid and have very low transaction costs, see

Collin-Dufresne, Junge, and Trolle (2020b).

In an index CDS, the swap notional is divided evenly across the index constituents. We

always assume an initial notional of one so that for a swap contract initiated at time t, each

index constituent is associated with a notional of 1
Nt
. When entering the swap contract,

the buyer of protection agrees to pay a fixed running coupon, cpn, of either 100 bps for

IG indexes or 500 bps for HY indexes as well as an upfront amount U per unit of notional

that varies with the market’s perceived credit-risk of the underlying index constituents.8 In

return, whenever an index constituent defaults, the protection buyer receives the loss given

default as in a single-name CDS with a notional of 1
Nt
. After that, the swap lives on with a

reduced notional, referencing the series’ new version.

The value of an index CDS is typically represented in terms of either spread or price. In

7Note that in case of a default, the new version of a series is not launched until the day after the settlement
auction for the defaulted name in which the loss-given-default is determined. Therefore, strictly speaking,
τi refers to the date of the settlement auction and not the actual default time.

8Note that the upfront amount will be negative if the risk-neutral expected loss rate of the underlying basket
is less than the running coupon.
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this paper, we work in price terms because it eases comparisons between credit and equity

indexes. The time-t price of an index CDS is

St = 1− Ut.

This can be interpreted as the price of a corporate bond index constructed by buying a

risk-free floating-rate note with face value of one (and market value that constantly resets to

one) and selling credit protection on an index CDS with notional value of one (and market

value Ut).

When we colloquially refer to the return on a credit index, we are referring to the return

on an index CDS characterized by index series and version as well as swap maturity. We

always consider five-year swaps and that the index CDS references the current version of

whichever series is on-the-run at the beginning of the holding period. Assuming that the

coupon is paid continuously, the return over a short holding period of ∆ is

R =
St+∆ + (rt + cpn)∆

St

− 1,

where r is the risk-free rate. If there is a default among the index constituents during the

holding period, the series’ original version is no longer quoted at the end of the holding

period. Instead, its price can be computed as

St+∆ =
Nt − 1

Nt

S̃t+∆ +
1

Nt

(1− ℓ),

where 1 − ℓ is the recovery rate of the defaulted name and S̃t+∆ is the price of the series’

new version.9

9For the daily holding periods that we consider in this paper, there are never more than one default.
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2.3 Credit index option returns

There is an active market for options on five-year on-the-run index CDSs.10 Contractually,

the options are settled in upfront terms and reference the version of the series that prevailed

when the option was issued. For instance, the payoff of a call option bought at time t with

unit notional is (

NT

Nt

ŨT +
1

Nt

Nt−NT∑

i=1

ℓi −KU

)+

,

where T is option expiration and KU is the strike in upfront terms.11 If exercising, the holder

of the option will enter as a credit protection buyer in an index CDS with notional NT

Nt
on

the series’ current version trading with an upfront of ŨT . In addition, the option holder will

receive credit protection payments on the Nt −NT defaults that happen in the index series

over the life of the option—a feature known as front end protection.

The above payoff can be re-expressed in price terms; indeed, it is equivalent to the put

option payoff
(
KS − ST

)+
,

where KS = 1−KU is the strike in price terms and

ST =
NT

Nt

S̃T +
1

Nt

Nt−NT∑

i=1

(1− ℓi).

is the time-T price of the series’ original version (the one that prevailed at time t).12

Let Pt(T,K
S) denote the time-t price of a put options with expiration T and strike KS.

The return over a holding period of ∆ is trivially R = Pt+∆(T,KS)
Pt(T,KS)

− 1. However, in case

10Options are European style and expire on the third Wednesday of each month.
11Call options on the upfront are known as payer swaptions, while put options on the upfront are known as
receiver swaptions.

12This is an approximation because in the underlying index CDS, defaults are settled as they occur, while in
the option, defaults are settled at maturity. However, because option maturities are short and interest rates
are low during most of the sample period, we can disregard this issue.
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of a default during the holding period, options on the series’ original version are no longer

quoted at the end of the holding period. Instead, as we show in Section IA.1 in the Internet

Appendix, Pt+∆(T,K
S) can be computed as

Pt+∆(T,K
S) =

Nt − 1

Nt

× P̃t+∆(T, K̃
S),

where P̃t+∆ is the price of an option on the series’ new version with an adjusted strike of

K̃S = Nt

Nt−1

(

KS − 1
Nt
(1− ℓ)

)

.

3 Option returns in a structural model

In this paper, we compare average returns on credit and equity index options. Before turning

to the empirical analysis, this section assesses whether, and under what conditions, such a

comparison is informative.

The central issue is as follows: Suppose that credit and equity index options are priced off

of the same asset value process in a structural credit-equity framework, and consider a pair

of options—one credit, one equity—with similar contract characteristics (type, maturity, and

moneyness). To the extent that their exposures to the fundamental asset risk factors differ

and risk premia vary across factors, the options will carry different risk premia. Therefore,

observed differences in average option returns need not reflect mispricing, but may instead

arise from differences in factor exposures.

We conduct a simulation exercise to investigate this issue. The true data-generating

process is assumed to be the model proposed in Collin-Dufresne et al. (2024), with parameter

estimates taken from Doshi et al. (2024).13 The model features three priced sources of

systematic asset risk: diffusive risk, jump risk, and variance risk (the model is reviewed in

13The two models have the same underlying asset dynamics; only the debt structure of the representative firm
and the conditions triggering default differ somewhat. We base the simulation on the Collin-Dufresne et al.
(2024) model because it features analytical option prices.
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Section IA.5 of the Internet Appendix). We simulate excess returns for both equity and

investment-grade credit index options, assuming a daily holding period as we do throughout

the paper. We focus on one-month, at-the-money options, but results are robust to variations

in maturity and moneyness. Returns are calculated for both outright options and delta-

hedged options, where the delta is with respect to the underlying index (not the asset value,

which is unobservable in reality) and computed using the Black-Scholes model as in our

empirical analysis. Results are presented separately for equity and credit options, as well as

for a long-equity/short-credit options strategy.

Panel A in Table 1 reports the factor exposures, defined as the regression coefficients

obtained by regressing option excess returns on asset excess returns, returns squared and

changes in the asset variance state variable. These are empirical measures of delta (directional

asset exposure), gamma (exposure to realized asset variance), and vega (exposure to expected

future asset variance).14 For outright options, the most important observations are that

i) credit options have strikingly different vegas for calls and puts, with calls having negative

vega and puts having very large positive vega;15 ii) for a given option type, credit and equity

options have very different vegas; and iii) for the most part, delta dominates gamma and

vega. Because the variance exposures are very different and, in any case, are dominated

by the directional exposure, a comparison of credit and equity option returns is ill-suited

towards studying the consistent pricing of volatility risk.

For the delta-hedged options, the situation is very different in that i) the risk exposures are

the same across puts and calls (follows from put-call parity); ii) the risk exposures are similar

for credit and equity options; and iii) the asset deltas are close to zero so that delta-neutrality

14The factor exposures are normalized to reflect a one standard derivation change in each of the risk factors.
Note also that in our main analysis we also consider so-called vanna and volga risk, but these are not separate
risk factors in the model.

15This has been noted in both Collin-Dufresne et al. (2024) and Doshi et al. (2024). The reason is that the
underlying index itself incorporates options on firms’ asset values (equity is long calls, while credit is short
puts). This is especially important for the credit index where an increase in asset volatility both decreases
the index level and increases index volatility, with the net effect being negative for the credit index call
option and strongly positive for the credit index put options.
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wrt. the underlying index also largely achieves delta-neutrality wrt. the fundamental asset

value. Together, this means that comparing delta-hedged credit and equity option returns

is indeed meaningful for detecting differential pricing of volatility risk.16

Panel B in Table 1 presents the finite-sample distribution of annualized mean excess

returns, based on 1,000 simulations of 10 years of daily returns, which is the sample size

in the paper. For outright options, the 95% confidence intervals are very wide—more than

500% for puts, a bit less for calls—which implies low statistical power to reject the model

(i.e., the null of no mispricing) based on average option returns. This is largely due to their

large directional exposures, and is consistent with Broadie et al. (2009) in the case of SPX

options. Doshi et al. (2024) acknowledge the issue, but nevertheless focus on average outright

option returns.

For the delta-hedged options, the 95% confidence intervals are much more narrow—about

a third as wide as for outright options—making these positions much better at detecting

mispricing of volatility risk in finite samples. The long-short strategy, in particular, has a

narrow confidence interval; we compare with the sample mean of this strategy in Section 6.1.

4 Option risk factors and factor-mimicking portfolios

Based on the previous section, our focus is on delta-hedged option returns. These returns

are analyzed through an intuitive factor model. In Section 4.1 we identify four relevant risk

factors; next, in Sections 4.2 and 4.3 we show how particular option trading strategies can

be used as factor-mimicking portfolios.

16As explained in Section 4.2, gamma and vega exposures can be separated by studying portfolios of options
with different maturities.
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4.1 Option risk factors

To motivate the factor model, assume that the price St of the underlying index follows a

general stochastic-volatility process, with σt denoting the instantaneous return volatility (St

can refer to either a credit or equity index). While σt is unobservable, it is well-known that

the ATM Black-Scholes implied volatility converges to σt as option maturity goes to zero

(e.g. Ledoit and Santa-Clara (1998), Durrleman (2010)). Therefore, we use a short-term

ATM Black-Scholes implied volatility, denoted It, as an observable state variable in lieu of

σt.
17

Let P i
t denote the price of option i on the index and consider a holding period of ∆t

(typically daily). The change in the option price is approximately

∆P i ≈ ∂P i

∂t
∆t+ P i

S∆S + P i
I∆I +

1

2
P i
SS(∆S)2 +

1

2
P i
II(∆I)2 + P i

IS∆S∆I,

where P i
S, P

i
I , P

i
SS, P

i
II and P i

IS denote partial derivatives. The change in the value of the

delta-hedged option, assuming that the index position is financed at the risk-free rate, is

∆V i = ∆P i − P i
S(∆S − (r − q)S∆t), where q is the payout rate of the index. Also, it

is convenient to express the profit-loss in terms of the index return scaled by I, denoted

RS = 1
I
∆S
S
, and the relative change in I, denoted RI = ∆I

I
. This is because these quantities

are much more uniform across indexes, as well as in the time series, giving better statistical

properties to the various long-short portfolios that we will consider below. Then, we have

∆V i ≈
(∂P i

∂t
+P i

S(r−q)S
)
∆t+P i

IIR
I+

1

2
P i
SSS

2I2(RS)2+
1

2
P i
III

2(RI)2+P i
ISSI

2RSRI . (1)

Taking risk-neutral expectation of (1), imposing absence of arbitrage (Ē[∆V i] = rV i∆t,

17When applying the Black-Scholes model index options, the risk-neutral drift is not directly observable due
to the risk of defaults in case of credit indexes and the presence of a dividend yield in case of equity indexes.
We use a standard approach of inferring the risk-neutral drift from put-call parity using a cross-section of
options.
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where Ē[·] denotes conditional risk-neutral expectation), and subtracting the result from (1),

we get an expression for the dollar return in excess of the risk-free rate:

∆V i − rV i∆t ≈1

2
P i
SSS

2I2
︸ ︷︷ ︸

γi

(
(RS)2 − Ē[(RS)2]

)
+ P i

II
︸︷︷︸

νi

(
RI − Ē[RI ]

)

+ P i
ISSI

2

︸ ︷︷ ︸

ζi

(
RSRI − Ē[RSRI ]

)
+

1

2
P i
III

2

︸ ︷︷ ︸

ωi

(
(RI)2 − Ē[(RI)2]

)
. (2)

Equation (2) shows that there are four risk factors driving excess returns, namely shocks

to 1) realized index return volatility, 2) short-term ATM implied volatility, 3) covariance

between returns and implied volatility, and 4) realized volatility of implied volatility. The

corresponding factor exposures are measured by gamma (γ), vega (ν), vanna (ζ), and volga

(ω).

The first two factors, realized and implied volatility, are well-known. The third factor,

return-vol covariance, affects the asymmetry of the return distribution with higher covariance

increasing the right tail and decreasing the left tail. This benefits OTM calls and hurts OTM

puts making vanna positive for the former and negative for the latter. To ease interpretability,

we use minus the covariance as a factor, replacing the term ζ i
(
RSRI − Ē[RSRI ]

)
in (2) with

−ζ i
(
−RSRI − Ē[−RSRI ]

)
. With this change of sign, the factor captures downside risk.

The fourth factor, vol-of-vol, affects both tails of the return distribution symmetrically,

thus capturing overall tail risk. Higher vol-of-vol benefits all OTM options making volga

positive for those.

Note that investors generally regard states with high volatility, more downside risk, and

high overall tail risk as adverse. Therefore, we expect the associated factor risk premia to

be negative, which we will check in the empirical analysis.

In the next two sections we form factor-mimicking portfolios; i.e., option portfolios that

are highly correlated with each of the four factors. In doing so we need to compute the factor
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sensitivities of individual options. In order to obtain easily implementable option strategies

we approximate these factor sensitivities with those from the Black-Scholes model.18 The

alternative of using a specific stochastic-volatility model, in addition to being more complex,

would introduce model risk.

4.2 Gamma and vega factors

For the gamma and vega factors we use delta-hedged ATM options with different maturities.

These options have positive gamma and vega, but approximately zero vanna and volga; see

Section IA.2 in the Internet Appendix. Let P x
j , R

x
j , γ

x
j , ν

x
j , ζ

x
j , ω

x
j , x = {p, c} denote the

price, excess return and greeks of an ATM put or call option with maturity Tj.

Consider first a straddle consisting of an ATM put and call option with maturity Tj . It

has gamma γj = γc
j + γp

j , vega νj = νc
j + νp

j , price Pj = P c
j + P p

j and excess return

Rj = wRc
j + (1− w)Rp

j , w =
P c
j

Pj

.

Next, following Cremers, Halling, andWeinbaum (2015) we can construct factor-mimicking

portfolios that isolate gamma and vega risk using straddles with different maturities. The

reason is that gamma is decreasing in option maturity and vega is increasing in option ma-

turity. Consider two option maturities T1 and T2. The gamma factor (GMA) is constructed

by buying one T1-straddle and selling N = ν1
ν2

T2-straddles. This strategy is vega-neutral,

has large positive gamma exposure

γGMA = γ1 −Nγ2 > 0,

18This is an approximation for two reasons: First, the Black-Scholes model is not an internally consistent model
for computing vega, vanna, and volga exposures. Nevertheless, it is routinely used for this purpose due to
its robustness; see, e.g., Castagna and Mercurio (2007) and Carr and Wu (2020). Second, the Black-Scholes
model gives risk exposures with respect to the option’s own implied volatility, not the common I in (2).
However, in the construction of the factor mimicking portfolios we use relatively short-term options that are
not too far away from ATM, so all implied volatilities are highly correlated with I.
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and excess return

RGMA = R1 −
NP2

P1
R2.

Note that throughout we assume that the proceeds from selling options are kept in a margin

account and earn the risk-free rate.

The vega factor (VGA) is constructed by buying one T2-straddle and selling N = γ2
γ1

T1-straddles. This strategy is gamma-neutral, has large positive vega exposure

νV GA = ν2 −Nν1 > 0,

and excess return

RV GA = R2 −
NP1

P2
R1.

4.3 Vanna and volga factors

For the vanna and volga factors we use delta-hedged options with different moneyness but

same maturity. We define moneyness of an option as

m =
log
(

K
Ft,T

)

σATM
√
T − t

, (3)

where σATM is the (interpolated) ATM implied volatility with the same maturity, and Ft,T

is the forward index price.19 Gamma and vega are roughly symmetric in moneyness, volga

is also roughly symmetric (approximately zero around ATM and positive otherwise), while

vanna is asymmetric (approximately zero around ATM, negative for low-strike options, and

positive for high-strike options); again, see Section IA.2 in the Internet Appendix. Let P x
j ,

Rx
j , γ

x
j , ν

x
j , ζ

x
j , ω

x
j , x = {p, c}, j = {−, 0,+} denote the price, excess return and greeks of a

19Intuitively, m measures the number of standard deviations that an option is in or out of the money given
log-normally distributed prices.
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put or call option with moneyness m of −1, 0 (i.e. ATM), or +1.

The vanna factor (VNA) is a vega-neutral, risk-reversal strategy that buys one OTM put

with moneyness m = −1 and sells N =
ν
p
−

νc+
OTM calls with moneyness m = 1. Because of

the symmetry of gamma and volga, these exposures are small. However, because ζp− < 0 and

ζc+ > 0, the strategy has large negative vanna exposure

ζV NA = ζp− −Nζc+ < 0,

making it highly correlated with increases in downside risk. The excess return is

RV NA = Rp
− − NP c

+

P p
−

Rc
+.

The volga factor (VLG) is a vega-neutral, butterfly strategy that buys one OTM put

with moneyness m = −1 and one OTM call with moneyness m = 1 (i.e., buys a strangle),

and sells N =
ν
p
−+νc+
ν
p
0+νc0

ATM straddles.20 The gamma exposure is small. Further, because

the straddle has approximately zero vanna and the OTM put and call have vanna of similar

magnitudes but opposite sign, the strategy’s vanna exposure is also small. However, because

ωp
−, ω

c
+ > 0 while ωp

0, ω
c
0 ≈ 0, the strategy has large positive volga exposure

ωV LG = ωp
− + ωc

+ −N(ωp
0 + ωc

0) ≈ ωp
− + ωc

+ > 0,

making it highly correlated with increases in overall tail risk. The excess return is

RV LG =
1

P V LG

(
P p
−R

p
− + P c

+R
c
+ −N (P p

0R
p
0 − P c

0R
c
0)
)
,

where P V LG = P p
− + P c

+ is the cost of the strategy.

20In some markets, such as FX, risk-reversals and butterflys are routinely quoted directly (Carr and Wu (2007))
and used for pricing exotic derivatives via the so-called vanna-volga method (Castagna and Mercurio (2007)).
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5 Data

Data on credit indexes, credit index options, defaults, and recovery rates is from Markit. For

the equity index options we use SPX options in the US market and Eurostoxx 50 options

in the European market. These are the benchmark equity index options in their respective

markets, and data is from CBOE and OptionMetrics, respectively. In all cases, we use end-

of-day quotes. We focus on mid quotes except in Section IA.4 in the Internet Appendix,

where we use bid and offer quotes to analyze the impact of transaction costs. We apply a

number of filters to the options data to ensure that we focus on the most liquid quotes, see

Section IA.3 in the Internet Appendix.

For credit index options, Collin-Dufresne et al. (2024) show that most trading is in 1, 2,

and 3-month options, and trading is skewed towards low strikes in terms of price (i.e., high

strikes in terms of upfront/spread). Therefore, on each observation date we select the first

three monthly expirations among the options that have more than two weeks to expiration.

These options are denoted M1, M2, and M3. For each maturity, we consider four levels of

moneyness, m = −2,−1, 0, 1, with m defined in (3). We only use actual quoted strikes, so

for each target level of moneyness, we search for the strike that comes closest to the target

with the constraint that the deviation from target cannot be greater than 0.5.

For the equity index options, on each observation date we search for the three option

maturities that are closest to the three credit index option maturities.21 For each maturity,

we consider the same four levels of moneyness as the credit index options.

In the last part of the paper we use transaction data in credit index options. This data

is provided by Clarus FT which sources it from swap data repositories.

Our sample period is determined by the intersection of the price and transaction data.

It starts on January 1, 2013 (when transaction data becomes available) and ends on April 3,

21In our final dataset, there is a close correspondence between the maturities of equity and credit index options,
with the equity index options expiring either two days after or five days before the corresponding credit index
options.
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2023 (when the Markit data ends). The frequency of the data is daily, and we always consider

returns with a daily holding period. We use a separate grid of trading days for the US and

European markets with the European trading days being the intersection of trading days in

London (which determines availability of derivatives data on European credit indexes) and

Eurex in Frankfurt (where Eurostoxx 50 options are traded), see Table IA.1 in the Internet

Appendix.

6 Results

6.1 Option returns

For context, we first discuss the returns of the underlying indexes (summary statistics are

given in Table IA.2 in the Internet Appendix). In our sample period there are no defaults

in the on-the-run IG credit indexes, 21 defaults in the on-the-run CDX.HY index, and 5

defaults in the on-the-run iTraxx.Crossover index, see Tables IA.3 and IA.4 in the Internet

Appendix. The Sharpe ratios are of similar magnitudes across credit and equity indexes. In

the US, annualized Sharpe ratios are 0.68, 0.62, and 0.76 for the IG and HY credit indexes

and the equity index, respectively. In Europe, the corresponding numbers are 0.78, 0.73, and

0.48.

Next, we turn to the risk-return tradeoff for index options. We consider portfolios of

delta-hedged OTM and ATM options (puts for m ≤ 0 and calls for m > 0). Specifically,

for each index, we construct 7 equally-weighted portfolios by sorting options on moneyness

(m = −2,−1, 0, 1) and maturity (1M, 2M, 3M). The annualized Sharpe ratios of the seven

option portfolios for each index are shown in Figure 1. In general, Sharpe ratios are much

more negative for credit index options than equity index options. Indeed, averaging the

Sharpe ratios across portfolios we get -1.85 and -2.23 for the IG and HY indexes in the US

compared to -0.60 for the equity index, while in Europe we get -1.81 and -1.88 for the IG and
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HY indexes compared to -0.10 for the equity index. For credit options, the most negative

Sharpe ratios are found for the portfolios of deep OTM put options (m = −2) and short-term

options (M1).

Table 2 (IA.5 in the Internet Appendix) provides more details on the performance of the

option portfolios sorted on moneyness (maturity). In particular, while mean excess returns

on credit option portfolios are highly statistically significant, this is only the case for two

equity option portfolios. Also, and not surprisingly, the return distributions are fat-tailed

and positively skewed.

Table 3 (IA.6 in the Internet Appendix) shows that for all moneyness (maturity) port-

folios and all indexes, a strategy that goes short credit index options and long equity index

options delivers highly statistically significant mean excess returns and high Sharpe ratios

(averaging the annualized Sharpe ratios across portfolios gives 0.83 and 1.12 for the IG and

HY indexes in the US and 1.38 and 1.47 in Europe), while preserving positively skewed

return distributions. For ATM options, these results largely mirror those in Collin-Dufresne

et al. (2024) for trading CDX.IG options against SPX options; here we show that they hold

true more generally across the option surface, across both IG and HY indexes, across regions,

and in a longer time series.

It is instructive to compare the mean return for the US ATM equity vs. IG strategy

in Table 3 with the finite-sample distribution for the same strategy reported in Table 1.

The annualized sample mean is 0.85, while the 95% confidence interval is from -0.30 to 0.22

under the null of consistent pricing in the structural model. One caveat is that the parameter

estimates underlying the small-sample distribution are for a sample period that only partly

overlaps with the sample period of this paper. Nevertheless, the sample mean is so far outside

of the 95% confidence interval that we interpret this as strong evidence against the null of

consistent pricing.22

22Alternatively, we can compare the Sharpe ratio. The annualized sample Sharpe ratio is 1.15, while the 95%
confidence interval is from -0.79 to 0.45 under the null (not reported in Table 1).
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Dew-Becker and Giglio (2023) argue that the profitability of selling equity index volatility

has decreased significantly in recent years. To see if this is also the case for credit index

volatility, Figure 2 shows, for each index and each full year in the sample, the mean annualized

Sharpe ratio across of the seven option portfolios. While there is a tendency for the Sharpe

ratio of equity index options to become less negative (and even occasionaly positive) over the

sample period, no such tendency is observed for the credit index options. Indeed, splitting

the sample period in two, the mean of the five yearly Sharpe ratios across the four credit

indexes is -2.38 in the first half of the sample and -2.46 in the second half. In contrast, across

the two equity indexes, the corresponding numbers are -1.21 and -0.09.

A natural question is how transaction costs affect the profitability of selling volatility

through index options. We analyze this issue in Section IA.4 of the Internet Appendix.

Based on indicative bid-ask spreads, we find that transaction costs for credit index options are

about four to five times larger than those for equity index options, on average. Nevertheless,

even taking these higher transaction costs into account, selling credit index volatility remains

significantly more profitable than selling equity index volatility.23

6.2 Factor returns

To understand the differential pricing of credit and equity index options, we next look at

the performance of the factor-mimicking portfolios within each index. The vega and gamma

factors are constructed from straddles with two different maturities. For each of these two

greeks, we first construct three individual factors using the maturity pairs 1M vs. 2M, 1M

vs. 3M, and 2M vs. 3M, and then form an equally-weighted portfolio of the three individual

factors. The vanna, and volga factors are constructed from options with different strikes but

the same maturity. For each of these two greeks, we first construct three individual factors

23We show this in a setting where options are sold at bid prices and delta-hedged until expiration. Such a
strategy is closer to how volatility is traded in practice, and implies that transaction costs are only incurred
once per option.
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using either 1M, 2M, or 3M maturities, and then form an equally-weighted portfolio of the

three individual factors.24

Table 4 shows the performance of the resulting factor-mimicking portfolios.25 Mean

excess factor returns are consistently negative. As explained in Section 4.1, this is in line

with expectations because the factors are constructed so that they pay off in (i.e., provide

insurance against) what are arguably adverse states of the world, namely higher realized

volatility (GMA), higher implied volatility (VGA), more downside risk (VNA), and higher

overall tail risk (VLG).

For the credit options, the Sharpe ratios are most negative for GMA and VNA followed

by VGA and then VLG, with the mean excess return being statistically significant for the

GMA, VGA, and VNA factors. Because short-term options have high GMA exposures and

OTM puts have higher VNA exposures, this is consistent with the Sharpe ratio pattern in

Figure 1 for the credit option portfolios. In contrast, for the equity options, the Sharpe ratios

are most negative for VNA followed by VGA and VLG and then GMA, with virtually none

of the mean excess returns being statistically significant. Averaging across all credit (equity)

indexes, the annualized Sharpe ratios for the GMA, VGA, VNA, and VLG factors are -1.68

(-0.23), -0.89 (-0.40), -1.72 (-0.89), and -0.13 (-0.48), respectively.26 As such, it appears that

the differential pricing of index options across credit and equity is mostly due to the pricing

of the GMA factor and to a lesser extent the VGA and VNA factors.

To investigate this further, we consider long-short strategies where we trade equity vs.

24For each of the greeks, the individual factors are very highly correlated. Forming equally-weighted portfo-
lios removes the arbitrariness of the choice of maturity, reduces noise, and reduces the number of missing
observations.

25The performance of the individual factor-mimicking portfolios are displayed in the Internet Appendix, Ta-
bles IA.7 to IA.10.

26In the case of the S&P 500, Cremers et al. (2015) and Dew-Becker, Giglio, and Kelly (2021) report Sharpe
ratios on factor mimicking portfolios that are conceptually similar to the GMA and VNA factors (although
Cremers et al. (2015) interpret them as mimicking “jump” and “volatility” risk and Dew-Becker et al. (2021)
interpret them as mimicking “realized volatility” and “uncertainty” risk). In earlier sample periods, Cremers
et al. (2015)) report annualized Sharpe ratios of -0.93 and -0.55, and Dew-Becker et al. (2021) report Sharpe
ratios of -1.2 and -0.2. In contrast, Table 4 shows Sharpe ratios of -0.19 and -0.11. Therefore, it seems that
it is primarily the pricing of the GMA factor that has changed over time.
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credit factor-mimicking portfolios. These are constructed as follows: For each greek, we first

construct long-short positions using the individual factor-mimicking portfolios; for instance,

shorting the 1M-2M credit GMA portfolio and going long the 1M-2M equity GMA portfolio.

The long and short legs are risk-weighted, so in the case of GMA, they are weighted by their

gammas. Next, we form an equally-weighted portfolio of the three individual long-short

positions. Table 5 shows the performance of the resulting long-short portfolios.27 For all the

indexes, the GMA factor has the highest annualized Sharpe ratios (ranging from 1.19 to 1.79

and averaging 1.47) with the mean excess returns always being highly statistically significant.

The Sharpe ratios are somewhat lower for the VGA (ranging from 0.35 to 0.84 and averaging

0.52) and VNA (ranging from 0.22 to 1.03 and also averaging 0.52) factors for which only

the HY indexes have (some) mean excess returns that are statistically significant. These

long-short strategies display mostly small and positive skewness, but fairly large kurtosis.

6.3 Performance of equity-based factor model

We now turn to the question of how well an equity-based factor model performs in pricing

the credit index options. This speaks to how well the markets for equity and credit index

options are integrated, a subject of debate between Collin-Dufresne et al. (2024) and Doshi

et al. (2024). The set of pricing factors always consists of the four option factors and the

index return.

To put the results in perspective, we start with an in-sample analysis of how well index-

specific factor models perform in pricing the associated index options. For each index, Table 6

reports the maximum Sharpe ratio constructed from the set of option portfolios, the factors,

and the options and factors jointly—all of which are higher for credit than equity indexes in

line with Sections 6.1 and 6.2.

27The performance of the individual long-short portfolios are displayed in the Internet Appendix, Tables IA.11
to IA.14.
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For each index, the latter two Sharpe ratios are relatively close, which is indicative of

good in-sample pricing performance. More formally, the table reports the p-value of the

Gibbons, Ross, and Shanken (1989) test of equivalence between the squared Sharpe ratios

(i.e., of the alphas from the factor model being jointly zero), which for half the indexes

cannot be rejected at the one percent level. However, the GRS test relies on very restrictive

assumptions, and it is standard practice to evaluate models based on statistics such as the

cross-sectional average of the absolute alphas (very small relative to the mean excess returns

reported in Section 6.1), absolute robust t-statistics (mostly below one), and R2s (always

very high).28 Based on these statistics, the in-sample performances of the factor models are

very good.

Next, we evaluate the performance of the equity-based factor model for pricing the credit

index options. To align credit and equity option returns in terms of trading hours and non-

trading days, we consider the US and European markets separately. Also, we always include

both contemporaneous factors and factors lagged one day to control for any remaining non-

synchronicity across returns.

We consider three factor model specifications: An unconditional model (mdl1 ); a condi-

tional model (mdl2 ), where the factor loadings are linear functions of the option portfolio

greeks (all option portfolios are delta-neutral so there is no conditioning on delta); and a

further conditional model (mdl3 ), where the factor loadings in addition are linear functions

of the average implied volatility within each option portfolio, I it−1. We can write mdl3 as

Ri
t =αi +

(

β1,i + β̃1,iI it−1

)

IDXt +
(

β2,i + β̄2,iγi
t−1 + β̃2,iI it−1

)

GMAt +
(

β3,i + β̄3,iνi
t−1 + β̃3,iI it−1

)

V GAt

+
(

β4,i + β̄4,iζ it−1 + β̃4,iI it−1

)

V NAt +
(

β5,i + β̄5,iωi
t−1 + β̃5,iI it−1

)

V LGt + lags + ǫit,

where Ri
t denotes the excess return on the i’th option portfolio, mdl2 is a special case with

28See Fama and French (2015), Stambaugh and Yuan (2017), and Kozak, Nagel, and Santosh (2018) for recent
examples.
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β̃ = 0, and mdl1 is a further special case with β̄ = β̃ = 0.

For each credit index, Table 7 reports the cross-sectional average of the absolute alphas,

absolute robust t-statistics, and R2s.29 Regardless of specification, the model does a poor job

of pricing the credit options. In case of the unconditional model and taking the US IG index

as an example, the average |α| is 1.66 which is very high relative to both the average mean

excess return of -2.71 and the in-sample average |α| of 0.14 reported in Table 6. Moreover,

average |t| is high at 3.57 and average R2 is only 0.26. Adding conditioning variables leads to

only slightly lower average |α| (1.61 and 1.56) and slightly higher average R2 (0.27 and 0.28).

The same picture holds true for the US HY index and the European indexes. The upshot

is that the equity-based factor model captures only a small part of both the time-series

variation in realized returns and the cross-sectional variation in average returns.

6.4 Credit option residual factor

The poor performance of the equity-based factor model could be due to noisy credit index

option returns or credit-specific factors missing from the model. To distinguish between these

explanations, we apply a principal component analysis (PCA) to the residual excess returns

of the 14 credit option portfolios within each market. In doing so, we face the issue that even

though overall relatively few credit option returns are missing, because some of the missing

returns occur randomly, the proportion of the dates where at least one observation is missing

is non-negligible.30 This presents a problem for regular PCA; instead, we apply probabilistic

PCA (Tipping and Bishop (1999)), which is designed to handle missing observations.

The PCA reveals large common variation in the residuals. For example, for the uncon-

ditional model, the first PC (PC1) explains more than two-thirds of the variation across

29The regression coefficients in case of the unconditional model are given in the Internet Appendix, Ta-
bles IA.15-IA.16

30Across the two US credit indexes, 2.3% of the option portfolio returns are missing but 9.5% of the dates
have at least one observation missing. Across the European credit indexes, the corresponding numbers are
4.1% and 19.2%.
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residuals (70% in the US market and 75% in the European market). Figure 3 shows the

factor loadings for the unconditional model. All loadings have the same sign, which makes

PC1 a credit market factor that affects all credit index options in the same direction. The

loadings are highest for short-term options and OTM options, and the loading pattern is

similar across the IG and HY indexes. The second PC (PC2) explains a much lower fraction

of the residual variation (for the unconditional model, 15% in the US market and 13% in

the European market) and affects IG and HY portfolios with opposite sign (see Internet

Appendix Figure IA5 for the factor loadings), which largely makes it an HY vs. IG factor.

For each model specification, we then construct two residual factors as

F j
t =

14∑

i=1

(
αi + ǫit

)
λi,j, j = 1, 2,

where λi,j is the loading of portfolio i on PCj. That is, the residual factors are weighted

averages of the excess returns on the 14 credit option portfolios, orthogonalized with respect

to the equity factors. For the unconditional model, the annualized Sharpe ratios of the two

factors are -1.72 and 0.78 in the US market and -2.17 and 0.96 in the European market

(because alphas are negative for all credit option portfolios and generally more so for HY

than IG, the Sharpe ratio is negative for F 1
t , which is long all options, and positive for F 2

t ,

which is short HY options and long IG options).

Table 7 shows that adding F 1
t to the factor model significantly improves its performance

on credit index options, reducing the average |α| and |t| and raising the average R2. In case

of the unconditional model and taking the US IG index as an example, the average |α| is

reduced from 1.66 to 0.67 and the average R2 is increased from 0.26 to 0.73. The effect

is similar for the US HY index and the European indexes. Adding also F 2
t to the factor

model has a much smaller impact; therefore, in the remainder we will focus on F 1
t and its
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determinants. We will refer to F 1
t as the credit option residual factor.31

To illustrate the fit of the factor models, Figure 4 shows scatterplots of predicted mean ex-

cess returns on the credit option portfolios versus actual mean excess returns, where predicted

returns are obtained from the risk exposures in two models, mdl1 and mdl1+F 1
t . Clearly,

adding the credit option residual factor leads to a very large improvement in model fit.

7 Credit option returns and end-user demand

For equity index options, Bollen and Whaley (2004) and Gârleanu et al. (2009) find that a

structural demand from end-users contributes to options being expensive. More recent papers

find that the net demand by end-users has become more balanced (Chen et al. (2019)) and

that hedging costs for liquidity providers have decreased (Dew-Becker and Giglio (2023)),

which is consistent with the downward trend in the profitability of selling equity index options

documented in Dew-Becker and Giglio (2023) (and corroborated in Section 6.1).

In contrast, for credit index options, market participants note that there is a persistent

structural demand from end-users. This demand largely stems from banks who use credit

index options to hedge their credit valuation adjustment (CVA) exposures, which in turn

reduces their regulatory capital (Becker (2014) and Rega-Jones (2020)). Moreover, credit

index options trade in a purely institutional, dealer-intermediated, over-the-counter market

where each trade involves the transfer of a large amount of credit risk.32 Consequently, a

plausible conjecture is that the credit option residual factor is linked to order flow in these

options.

31Instead of performing PCA on IG and HY options jointly, one could do PCA on IG and HY options separately.
In this case, the annualized Sharpe ratio of the first residual factor is -1.26 for IG and -1.81 for HY in the
US (-1.91 and -2.23 in Europe) and the factors are highly correlated. In the interest of parsimony, we prefer
to work with the first joint residual factor.

32Unlike the underlying index CDSs, which are required to trade on so-called swap execution facilities (SEFs),
the credit index options trade almost exclusively on a bilateral basis and always via dealers. Indeed, in the
transaction data only about 2% of the option trades were executed on SEFs.
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7.1 Credit option order flow

We analyze transactions from swap data repositories. In total, during our sample period there

are 130,473 option transactions referencing the four credit indexes. The data comprises all

transactions involving at least one US-based counterpart; however, we lack transactions be-

tween non-US parties (presumably, this issue is more important for options referencing the

European indexes and, indeed, these options constitute only about one-third of the transac-

tion data).33 Also, the size of each trade (in terms of the notional value of the underlying

swap) is only reported up to a cap which most often is 100 million USD.34 Nevertheless, the

order flow that we can compute from the transaction data should be useful (if noisy) proxy

for the true order flow.

Table 8 reports summary statistics for the daily order flow measured in terms of the total

number of trades, number of capped trades, and reported trading volume in billions (USD in

US market and EUR in European market).35 We note three important characteristics about

the order flow:

• Low-frequent large trades. As already noted in Collin-Dufresne et al. (2024) for CDX.IG

options, credit index options trade much less frequently than equity index options,

but transactions are typically very large with the swap notional often exceeding the

reporting cap (especially for IG indexes). In our sample, the average daily number of

trades in CDX.IG (CDX.HY) is 18.7 (14.9) of which 39.0% (24.8%) are capped. Very

large trades with notionals in billions are not uncommon for CDX.IG, see below.

• Large volume. The average daily reported trading volume for CDX.IG (CDX.HY) is

1.55 (0.96) billion, but this is severely downward-biased because of the large number of

33In the transaction data, about 14% of the trades are listed as corrections to previous trades. In these cases,
the time stamp refers to the time that the corrected trade report is submitted to the SDR and not the time
of the original trade. Therefore, we discard these trades when computing daily order flow.

34The reporting cap varies with option characteristics, but the typical value is 100 million USD.
35Gârleanu et al. (2009) show how to aggregate demand across options with different moneyness and maturity.
This depends on the source of unhedgable risks and introduces a degree of model-dependency.
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capped trades. More recent data sheds light on the true size of the market. On October

7, 2024 the reporting caps were raised from 100 million to 400 million. We collect

transaction data from October 7, 2024 to June 13, 2025 and find an average daily

trading volume for CDX.IG (CDX.HY) of 6.86 (2.77) billion. Nevertheless, despite

the fourfold increase in reporting threshold, 50.7% (6.5%) of trades are capped. As

described in the Section IA.6 of the Internet Appendix, we can go one step further and

use specific data points in CFTC (2024) to infer a power-law for the hidden (capped)

part of the trade size distribution.36 The resulting trade-size distributions are given in

Figure 5. We estimate that 7.0% (2.8%) of CDX.IG trades have notional values above

1.2 (2.0) billion, and that the average daily trading volume for CDX.IG (CDX.HY) is

12.90 (3.50) billion.37

• Volatile flow. The daily order flow is highly volatile; some days see almost no trading

and other days see very high trading activity. In Table 8, the 95th percentiles of the

daily order flow measures are about three times the median values.

7.2 Option pricing with stochastic demand

7.2.1 Illustrative model

To illustrate the link between option returns and order flow, we develop a simple demand-

based option pricing model. The model builds on the standard ideas of Gârleanu et al.

(2009) (GPP) and others (e.g., Henderson and Hobson (2009), Hugonnier, Kramkov, and

Schachermayer (2005)) in that we assume that a representative dealer takes the price of the

underlying asset, St, and the risk-free rate, r, as given (i.e., set in a larger market) and instead

36Based on regulatory data from 2023, CFTC (2024) finds that CDX.IG option trades with notionals above
1.2 (2.0) billion account for 67% (75%) of the total traded notional in these options.

37By contrast, setting the reporting cap at 100 million, which is mostly the threshold on our main sample, we
get an average daily trading volume of only 2.23 (1.62) billion showing that the trading volumes in Table 8
are vastly underestimated.
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is the marginal trader for setting the price of a derivative so as to clear an exogenously given

demand by end-users.38 In contrast to GPP, we solve the model in continuous time and

obtain a solution for the demand-based option price in terms of a Black-Scholes type PDE

that is easily solved numerically.

We assume that St follows a stochastic-volatility process

dSt

St

= µdt+ σ(xt−)dZt

dxt =

x̄∑

i=1

1{x
t−

=i}
∑

j 6=i

(j − i)dNx,i,j(t),

where, for all i, j = 1, . . . , x̄, the Nx,i,j(t) are independent Poisson counting processes with

intensity λx,i,j.
39 We assume that the dealer trades both the underlying and a derivative

written on that underlying with payoff P (T, ST ) = Φ(ST ) at time T for some general function

Φ(·).40

Further, we assume an exogenous and stochastic (net) demand for the derivative by end-

users such that in order to clear markets, the dealer must hold θt units. Like volatility, the

dealer position also follows a continuous-time Markov chain:

θt = θ(yt)

dyt =

ȳ
∑

i=1

1{y
t−

=i}
∑

j 6=i

(j − i)dNy,i,j(t),

where, for all i, j = 1, . . . , ȳ, the Ny,i,j(t) are (conditionally) independent Poisson counting

38We do not model the trading motive of end-users, but we assume that they receive some hedging benefits
from options.

39For simplicity we assume that the asset does not pay dividends or coupons. Adding payouts is straightfor-
ward.

40For example for a put option Φ(S) = max[K − S, 0], for a portfolio of put and call options Φ(S) =
∑

i n
p
i max[Ki−S, 0]+

∑

j n
c
j max[S−Kj, 0]. More generally, we assume that Φ(·) is sufficiently well-behaved

for the system of PDEs in Proposition 1 below to have a solution.
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processes with intensity λy,i,j(xt).
41

Finally, we assume that the dealer maximizes the following objective function:42

max
nt,qt

E[

∫ T

0

dWt −
γ

2
(dWt)

2]

dWt = rWtdt+ nt−(dSt − rStdt) + qt−(dPt − rPtdt).

We define an equilibrium in the derivatives market as follows: Taking (r, St) as given,

the derivative price P (t, S, x, y) is set such that the optimal position of the dealer clears the

market; that is, such that q∗t = θt. The resulting price is given in the following proposition:

Proposition 1. In equilibrium, the demand-based derivative price P (t, S, x, y) solves a set of

coupled PDEs:

0 =
∂

∂t
P (t, S, x, y) + rS

∂

∂S
P (t, S, x, y) +

1

2
σ(x)2S2 ∂2

∂S2
P (t, S, x, y)− rP (t, S, x, y)

+
∑

i,j

1
{x=i}

λx,i,j∆x,i,jP (t, S, x, y)(1− γ θ(y)∆x,i,jP (t, S, x, y))

+
∑

i,j

1
{y=i}

λy,i,j(x)∆y,i,jP (t, S, x, y)(1− γ θ(y)∆y,i,jP (t, S, x, y)) (4)

subject to the boundary condition P (T, S, x, y) = Φ(S) for all x = 1, . . . , x̄ and y = 1, . . . , ȳ.

• If σ(x) = σ̄ ∀x, then P (t, S, x, y) =
∫ +∞
−∞ e−r(T−t)Φ(Se(r−

σ̄2

2
)(T−t)+σ̄

√
T−t z) e

− z2

2√
2π

dz satis-

fies the Black-Scholes pricing PDE and the derivative price is independent of demand.

• Instead, if there are (at least) two distinct volatility states (σ(1) 6= σ(2)) that occur

41Empirically, option demand and volatility are often correlated. Therefore, we allow the transition probability
in the exogenous demand to depend on the volatility state of the underlying. For parsimony, in the numerical
illustration we abstract from this effect.

42This myopic mean-variance utility function reduces to maxE[−e−γWT ] if the wealth process has deterministic
expected return and variance. When Wt follows a more general process, then under some conditions discussed
in Collin-Dufresne, Daniel, and Saglam (2020a), it can be interpreted as a ‘source-dependent’ recursive
utility agent, who is CARA with respect to wealth-level shocks but risk-neutral with respect to shocks in
the investment opportunity set (i.e., changes in the mean and volatility of wealth).
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with positive probability, then the derivative price is independent of demand if and only

if the representative dealer is risk-neutral. That is:

{P (t, S, x, y) = P (t, S, x) ∀x, y} ⇐⇒ {γθ(y) = 0 ∀y}.

Proof. See Appendix A.1

Note that within each volatility and demand state indexed by (x, y), the equilibrium

derivative price must satisfy a Black-Scholes type PDE given by equation (4). These PDEs

are interdependent as long as volatility and demand are stochastic.

Because of stochastic volatility, markets are incomplete and the risk premium on the

derivative is affected by demand. As the paper focuses on delta-hedged options, the following

lemma shows the risk premium on the delta-hedged derivative:

Lemma 1. The conditional expected excess dollar return on the delta-hedged derivative is

given by:

µV (t, S, x, y) = γ θ(y)

(
∑

i,j

1
{x=i}

λx,i,j (∆x,i,jP (t, S, x, y))2 +
∑

i,j

1
{y=i}

λy,i,j(x) (∆y,i,jP (t, S, x, y))2
)

.

The expected excess return is zero if dealers are risk-neutral. Further, if dealers are risk-

averse (γ > 0), then it has the same sign as the dealer’s position:

µV R 0 ⇐⇒ γ θ(y) R 0 ∀y.

Proof. See Appendix A.2

7.2.2 Testable predictions

To illustrate how end-user demand affects option prices and risk premia, we consider a 3-

month ATM put option. We allow for two volatility states σ = {0.1, 0.3} and two demand

states {1, 3} resulting in θ = {−1,−3} (we assume that end-user demand is positive in
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both states so that dealer positions are negative), and assume constant transition intensities,

λx = 3 and λy = 1.43 We solve the system of four coupled PDEs using an explicit finite

difference scheme described in Appendix A.3.

Figure 6 shows option prices (expressed in terms of implied Black-Scholes volatilities)

in Panel A and expected excess delta-hedged option returns in Panel B as a function of

end-user demand. Values are shown for two levels of dealer risk aversion, γ = 5 and 10,

and conditional on being in the low-volatility state (the figure is qualitatively similar in the

high-volatility state).44

Clearly, because the unconditional end-user demand is positive, the unconditional ex-

pected excess option return is negative. This is consistent with the large negative Sharpe

ratios on the credit index options (Section 6.1) and the credit option residual factor (Sec-

tion 6.4).

Furthermore, we can infer how variation in end-user demand affects realized and expected

excess returns: an increase in demand causes an increase in the option price and, therefore,

a positive contemporaneous excess return. At the same time, it causes a decrease in (that is,

more negative) expected future excess return. Moreover, the option price is more sensitive

to variation in demand when dealer risk aversion is higher.

When mapping these results into testable predictions regarding the credit option residual

factor, it is important to recognize that we do not observe the stock of credit index options

held by end-users (i.e., the total demand); rather, we observe the anonymized order flow

as described in Section 7.1. To circumvent this issue, we make the identifying assumption

(supported by industry publications, see above) that end-users are predominantly net buyers

of credit index options in order to hedge existing credit-risk related exposures. Further,

because virtually all options have short maturities, a certain “base flow” is necessary to

43Further, S0 = K = 10 and r = 0.05.
44Naturally, option prices and expected excess returns also respond to changes in volatility. However, because
we aim to explain the credit option residual factor—which is orthogonal to fundamental market volatility as
captured by equity index options—we focus on the demand dimension.
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maintain a given hedge exposure.45 Under these assumptions, high daily order flow (above

the base flow) is associated with an increase in end-user demand, while low daily order flow

(below the base flow) is associated with a decrease.

Then, we get the following testable predictions regarding the relation between the credit

option residual factor and order flow in credit index options:

1. A positive contemporaneous relation between the factor and order flow

2. The contemporaneous relation is stronger when dealers are more risk averse

3. The expected excess return on the factor is more negative following high order flow

7.3 Linking the credit option residual factor to credit option order flow

In the credit option residual factor, the IG and HY options have roughly equal weight

(compare the IG and HY factor loadings in Figure 3). Therefore, to appropriately aggregate

order flow, we first standardize the order flow in IG and HY options and then sum across

the two (not standardizing the order flow would overweigh IG options). We focus on order

flow measured in terms of the number of capped trades and trading volume.

Next, we regress the credit option residual factor on contemporaneous and lagged daily

order flow. We also interact the contemporaneous order flow with the (de-meaned) interme-

diary capital ratio (HKM) from He, Kelly, and Manela (2017), which can be interpreted as

being inversely related to dealer risk aversion in the model. Specifically, we estimate versions

of the regression

F 1
t = β0 + (β1 + β2HKMt−1)flowt + β3flowt−1 + ut

45Strictly speaking, options expire only on the third Wednesday of each month, but the greeks continually
change as option maturities shorten.
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with lagged order flow averaged over the past two trading days. The testable predictions

laid out in Section 7.2.2 map into β1 > 0, β2 < 0, and β3 < 0.46

Table 9 reports the regression results, which are very consistent across the US and Euro-

pean markets. Consistent with Prediction 1, on its own, or with lagged order flow included,

the coefficient on contemporaneous order flow is always positive and highly statistically sig-

nificant. Consistent with Prediction 2, the coefficient on the HKM capital ratio always

has the expected negative sign, although it is only statistically significant in one regres-

sion. Finally, consistent with Prediction 3, the coefficient on lagged order flow always has

the expected negative sign, although it too is only statistically significant in one regression.

Taken together, the results support the hypothesis that the market structure and order-flow

characteristics of credit index options drive a wedge between the pricing of credit and equity

index options.

8 Conclusion

We study the relative valuation of credit and equity index options. We find consistent

evidence across ratings and regions that delta-hedged credit index options have very large

negative Sharpe ratios—much more so than their equity index counterparts. Risk-factors

extracted from equity index options have only moderate explanatory power for the time-

series and cross-sectional variation in credit option returns, while a single credit-specific

factor explains much of the remaining variation. We link this factor to credit-specific order

flow in a manner that is consistent with the predictions of a demand-based option pricing

model, in which order-flow risk is priced in equilibrium.

46Given that we link daily order flow to daily close-to-close returns, it is important to verify that the order flow
predominantly takes place before the end-of-day prices are recorded by Markit. Figure IA6 in the Internet
Appendix shows that this is indeed the case. That is, trading in options on the European (US) credit indexes
predominantly takes place during European (US) trading hours.
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A.1 Proof of Proposition 1

It is natural to conjecture that in the proposed equilibrium, the derivative price will be

a function of the volatility and demand state variables. Specifically, we conjecture that

P (t, St) ≡ P (t, St, xt, yt). It follows that the dynamics of P can be found by Itô’s formula:

dP (t) =µP (t, S, x, y)dt+ σP (t, S, x, y)dZt +
∑

i,j

∆x,i,jP (t, S, x, y)1{x
t−

=i}dNx,i,j

+
∑

i,j

∆y,i,jP (t, S, x, y)1{y
t−

=i}dNy,i,j (5)

µP (t, S, x, y) =
∂

∂t
P (t, S, x, y) + µS

∂

∂S
P (t, S, x, y) +

1

2
σ(x)2S2 ∂2

∂S2
P (t, S, x, y) (6)

σP (t, S, x, y) =σ(x)S
∂

∂S
P (t, S, x, y) (7)

∆x,i,jP (t, S, x, y) =P (t, S, j, y)− P (t, S, i, y) (8)

∆y,i,jP (t, S, x, y) =P (t, S, x, j)− P (t, S, x, i). (9)

Since the objective function of the representative dealer is myopic, we can rewrite the

instantaneous objective function as
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max
nt,qt

Et[dWt]−
γ

2
Et[(dWt)

2]

1

dt
Et[dWt] = rWt + n(µ− r)S + q{µP − rP +

∑

i,j

1
{x=i}

λx,i,j∆x,i,jP +
∑

i,j

1
{y=i}

λy,i,j∆y,i,jP}

1

dt
Et[(dWt)

2] = (nσS + qσP )
2 + q2

∑

i,j

1
{x=i}

λx,i,j(∆x,i,jP )2 + q2
∑

i,j

1
{y=i}

λy,i,j(∆y,i,jP )2.

Her first-order conditions read

(µ− r)S =γ(nSσ(x) + qσP (t, S, x, y))Sσ(x) (10)

(µP (t, S, x, y)− rP (t, S, x, y)) =γ(nSσ(x) + qσP (t, S, x, y))σP (t, S, x, y)

−
∑

i,j

1
{x=i}

λx,i,j∆x,i,jP (t, S, x, y)(1− γ q∆x,i,jP (t, S, x, y))

−
∑

i,j

1
{y=i}

λy,i,j(x)∆y,i,jP (t, S, x, y)(1− γ q∆y,i,jP (t, S, x, y)).

(11)

In equilibrium, we have qt = θt, and thus we can solve for the equilibrium price by

substituting the optimal position in the underlying asset from equation (10):

n∗S =
µ− r

γσ(x)2
− θ(y)

σP (t, S, x, y)

σ(x)

into equation (11) along with the definitions from (6)-(9) to get the PDE (4).

A.1.1 Proof of bullet 1

Substituting the constant-volatility assumption into the PDE (4), we get

∂

∂t
P (t, S) + rS

∂

∂S
P (t, S) +

1

2
σ2S2 ∂2

∂S2
P (t, S)− rP (t, S) = 0
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subject to the boundary condition P (T, S) = Φ(S). This is the Black-Scholes PDE. The

solution in terms of the expectation follows from the Feynman-Kac theorem:

P (t, St) = Ēt[e
−r(T−t)Φ(ST )].

A.1.2 Proof of bullet 2

The proof is by contradiction. Suppose that under the assumptions of the proposition, the

equilibrium price were actually a function independent of the demand state; i.e., P (t, S, x).

Substituting into the PDE (4) we see that it should satisfy (for all values of x, y):

0 =
∂

∂t
P (t, S, x) + rS

∂

∂S
P (t, S, x) +

1

2
σ(x)2S2 ∂2

∂S2
P (t, S, x)− rP (t, S, x)

+
∑

i,j

1
{x=i}

λx,i,j∆x,i,jP (t, S, x)(1− γ θ(y)∆x,i,jP (t, S, x)).

Clearly, if σ(1) 6= σ(2), then we must have that ∆x,i,jP (t, S, x) 6= 0 for t < T . Indeed,

suppose instead that P (t, S, 1) = P (t, S, 2) = P (t, S), then this implies (since the right-hand

side equals zero in that case) that the same function must satisfy the Black-Scholes PDE for

two distinct volatility values, a contradiction. But, if necessarily there must be a jump in

the price when the volatility regime shifts, then we can rewrite the PDE simply as:

∂
∂t
P (t, S, x) + rS ∂

∂S
P (t, S, x) + 1

2
σ(x)2S2 ∂2

∂S2P (t, S, x)− rP (t, S, x) +
∑

i,j 1{x=i}
λx,i,j∆x,i,jP (t, S, x)

∑

i,j 1{x=i}
λx,i,j(∆x,i,jP (t, S, x))2

= γ θ(y).

The left-hand side is independent of y, but the right hand-side is not iff γ θ(y) 6= 0. The

result follows.
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A.2 Proof of Lemma 1

Taking expectations of (5) yields

1

dt
E[dP (t, S, x, y)] = µP (t, S, x, y)+

∑

i,j

1
{x=i}

λx,i,j∆x,i,jP (t, S, x, y)+
∑

i,j

1
{y=i}

λy,i,j∆y,i,jP (t, S, x, y)

Using the expression for µP (t, S, x, y) in (6) and the pricing PDE (4) gives

1

dt
E[dP (t, S, x, y)] =rP (t−, S, x, y) + (µ− r)S

∂

∂S
P (t, S, x, y)

+
∑

i,j

1
{x=i}

λx,i,jγ θ(y) (∆x,i,jP (t, S, x, y))2

+
∑

i,j

1
{y=i}

λy,i,j(x)γ θ(y) (∆y,i,jP (t, S, x, y))2 .

The expected excess return (in dollar terms) on the delta-hedged derivative (i.e., long one

unit of the derivative and short ∂P
∂S

units of the underlying asset) is given by

µV =
1

dt
E[dP (t, S, x, y)]− rP (t−, S, x, y)− (µ− r)S

∂

∂S
P (t, S, x, y),

and the result follows.

A.3 Numerical solution of the coupled system of PDEs

In order to solve the system of equation (4), we use an explicit finite difference scheme.

We note that, effectively, we need to solve for four functions (P (t, S, 1, 1), P (t, S, 1, 2),

P (t, S, 2, 1), P (t, S, 2, 2)) that each satisfy a one-dimensional PDE and are connected through

the jump terms. We can effectively solve each function on the same stock price grid, and

by continuity of each of the functions (in t, S) we can approximate the jump term with the

previous steps values. This makes the explicit scheme very easy to implement.
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• We first make the change of variable s = lnS and define p(t, s, x, y) = P (t, S, x, y) ≡

P (t, es, x, y).

• Substituting into the PDE (with pt = Pt, ps = SPS, pss = S2PSS − SPS), we obtain

the PDE to be solved:

0 =pt(t, s, x, y) + (r − 1

2
σ(x)2)ps(t, s, x, y) +

1

2
σ(x)2pss(t, S, x, y)− rp(t, s, x, y)

+
∑

i,j

1
{x=i}

λx,i,j∆x,i,jp(t, s, x, y)(1− γ θ(y)∆x,i,jp(t, s, x, y))

+
∑

i,j

1
{y=i}

λy,i,j(x)∆y,i,jp(t, s, x, y)(1− γ θ(y)∆y,i,jp(t, s, x, y)).

• Set t = n×∆t and s = m×∆s for some small ∆t and ∆s steps.

• Define pxy(n,m) = p(n×∆t,m×∆s, x, y)

• Then the system of PDE can be approximated as:

0 = pxy(n,m)−pxy(n−1,m)
∆t

+ (r − 1
2
σ(x)2)pxy(n,m+1)−pxy(n,m−1)

2∗∆s
+

1
2
σ(x)2 pxy(n,m+1)−2pxy(n,m)+pxy(n,m−1)

∆s2
− rpxy(n− 1, m) + λx(px+y(n,m)− pxy(n,m))(1−

γθ(y)(px+y(n,m)− pxy(n,m)) + (α + βx)(pxy+(n,m)− pxy(n,m))(1−

γθ(y)(pxy+(n,m)− pxy(n,m))),

where we denote by x+ (y+) the value of the volatility (demand) state after the jump

from the current state x (y).

Given the“explicit scheme”approximation, we can recursively solve the value by solving

the recursion:

(1 + r∆t)pxy(n− 1, m) =

1
2
(σ(x)2 ∆t

∆s2
+ (r − 1

2
σ(x)2)∆t

∆s
)pxy(n,m+ 1) + (1− σ(x)2 ∆t

∆s2
)pxy(n,m) + 1

2
(σ(x)2 ∆t

∆s2
−
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(r − 1
2
σ(x)2)∆t

∆s
)pxy(n,m− 1) + ∆tλx(px+y(n,m)− pxy(n,m))(1− γθ(y)(px+y(n,m)−

pxy(n,m)) + ∆t(α + βx)(pxy+(n,m)− pxy(n,m))(1− γθ(y)(pxy+(n,m)− pxy(n,m))).

Starting from the terminal condition pxy(
T
∆t
, m) = max[K − em∆s, 0] ∀x, y, we can

work back through the ‘trees’.
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Calls Puts ∆-hedged calls ∆-hedged puts
EQ IG L-S EQ IG L-S EQ IG L-S EQ IG L-S

Panel A: Exposures
Asset delta 4.24 3.00 1.24 -3.56 -2.74 -0.82 0.24 0.12 0.12 0.24 0.12 0.12
Asset gamma 0.71 0.39 0.33 0.87 0.81 0.06 0.79 0.60 0.19 0.79 0.60 0.20
Asset vega 0.98 -0.55 1.53 0.92 2.23 -1.31 0.95 0.85 0.09 0.95 0.84 0.11

Panel B: Finite-sample distributions of mean excess returns
Mean 1.03 1.46 -0.43 -1.89 -2.29 0.40 -0.47 -0.42 -0.05 -0.46 -0.42 -0.04
2.5th %tile -1.29 -0.48 -1.25 -4.52 -4.79 -0.25 -1.29 -1.13 -0.29 -1.32 -1.10 -0.30
97.5th %tile 3.32 3.32 0.40 0.84 0.29 1.06 0.33 0.26 0.19 0.35 0.24 0.22

Panel C: Sharpe ratios
Std.dev. 3.85 3.44 1.39 4.72 4.86 1.21 1.38 1.22 0.38 1.41 1.17 0.42
SR 0.27 0.43 -0.31 -0.41 -0.48 0.33 -0.35 -0.35 -0.17 -0.34 -0.37 -0.13

Table 1: Simulated Option Exposures and Risk-Return Trade-Off
Simulations of daily excess returns on equity and credit (investment-grade) index options are based on the model in
Collin-Dufresne et al. (2024) with parameter estimates from Doshi et al. (2024). The options are 1-month ATM puts and
calls. Returns are for outright options and delta-hedged options, where the delta is with respect to the underlying index
and computed using the Black-Scholes model. Results are reported for equity and credit options separately, and for a
long-equity/short-credit option strategy. Panel A reports the factor exposures defined as the coefficients from regressing
option excess returns on asset excess returns (delta), returns squared (gamma), and changes in asset volatility (vega). The
factor exposures are normalized to reflect a one standard derivation change in each of the risk factors. Panel B reports
the finite-sample distributions of mean excess returns obtained from 10,000 simulations of 10-years of daily returns (2520
observations). Mean returns are annualized. Panel C reports the annualized volatilities and Sharpe ratios (SR).



IG HY EQ
-2 -1 0 1 -2 -1 0 1 -2 -1 0 1

Panel A: US market
Mean -3.78 -2.83 -1.28 -3.23 -4.87 -3.36 -1.54 -3.72 -2.15 -1.36 -0.43 -0.55

(-5.86) (-5.58) (-4.98) (-3.74) (-7.90) (-5.91) (-5.01) (-3.27) (-2.31) (-2.41) (-1.73) (-0.35)
Std.dev. 1.55 1.19 0.63 2.73 1.59 1.22 0.63 2.74 2.35 1.55 0.74 3.86
SR -2.44 -2.39 -2.04 -1.18 -3.06 -2.75 -2.46 -1.36 -0.91 -0.88 -0.59 -0.14
Skew 3.30 3.45 2.71 1.47 3.99 3.26 1.95 2.08 5.58 3.92 2.45 2.58
Kurt 28.6 31.8 23.9 10.0 55.0 33.6 30.6 16.5 65.4 37.1 17.0 21.0
N obs 2513 2530 2528 2510 2449 2508 2518 2499 2560 2560 2560 2560

Panel B: European market
Mean -3.90 -2.50 -1.05 -3.37 -3.59 -2.71 -1.15 -3.55 -0.64 -0.58 -0.14 0.43

(-6.98) (-4.94) (-3.98) (-3.29) (-4.69) (-4.77) (-4.22) (-3.53) (-0.69) (-1.04) (-0.52) (0.32)
Std.dev. 1.60 1.21 0.64 2.65 1.76 1.29 0.63 2.32 2.43 1.60 0.75 3.35
SR -2.43 -2.07 -1.64 -1.27 -2.03 -2.11 -1.84 -1.53 -0.26 -0.37 -0.18 0.13
Skew 3.76 3.26 3.41 3.39 4.23 3.72 3.05 2.90 5.48 3.76 2.91 2.74
Kurt 33.3 24.6 27.0 35.7 38.3 30.0 22.7 29.4 65.2 32.6 21.7 20.1
N obs 2444 2532 2536 2516 2334 2499 2508 2470 2547 2547 2547 2547

Table 2: Performance of Option Portfolios Sorted on Moneyness
Summary statistics of daily excess returns on option portfolios sorted on moneyness. Means, standard deviations, and
Sharpe ratios (“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation
up to 63 lags (equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant
at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



EQ-IG EQ-HY
-2 -1 0 1 -2 -1 0 1

Panel A: US market
Mean 1.78 1.45 0.85 2.27 2.58 2.07 1.12 2.84

(2.83) (3.91) (4.38) (2.33) (3.88) (4.89) (5.29) (3.34)
Std.dev. 2.31 1.50 0.73 3.55 2.23 1.50 0.74 3.46
SR 0.77 0.97 1.15 0.64 1.16 1.37 1.51 0.82
Skew 3.39 1.24 0.13 0.66 3.50 1.60 0.74 0.38
Kurt 59.8 32.6 11.7 10.3 64.7 35.4 16.1 9.0
N obs 2513 2530 2528 2510 2449 2508 2518 2499

Panel B: European market
Mean 3.31 2.11 1.03 4.13 3.34 2.36 1.14 4.12

(5.28) (4.66) (4.36) (3.46) (4.47) (5.42) (5.32) (4.34)
Std.dev. 2.22 1.53 0.76 3.30 2.20 1.51 0.73 3.04
SR 1.49 1.38 1.35 1.25 1.52 1.57 1.55 1.36
Skew 2.50 1.08 0.36 0.36 1.93 1.09 0.82 1.84
Kurt 29.8 12.2 10.0 28.4 25.4 13.8 12.0 20.6
N obs 2418 2509 2513 2492 2305 2476 2485 2444

Table 3: Performance of Long-Short Option Portfolios Sorted on Moneyness
Summary statistics of daily excess returns on short credit vs. long equity option portfolios sorted on moneyness. Means,
standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity
and serial correlation up to 63 lags (equal to three months) using the approach of Newey and West (1987). Mean estimates
that are significant at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



GMA VGA VNA VLG
IG HY EQ IG HY EQ IG HY EQ IG HY EQ

Panel A: US market
Mean -0.64 -0.71 -0.19 -0.21 -0.32 -0.11 -1.35 -1.88 -0.99 -0.15 0.14 -0.25

(-4.77) (-4.84) (-1.42) (-2.93) (-4.15) (-1.59) (-4.80) (-7.98) (-3.37) (-1.00) (0.98) (-1.67)
Std.dev. 0.39 0.41 0.45 0.22 0.22 0.19 0.81 0.71 0.89 0.44 0.45 0.38
SR -1.66 -1.71 -0.42 -0.93 -1.46 -0.58 -1.66 -2.65 -1.11 -0.33 0.31 -0.67
Skew 1.58 3.43 2.97 0.05 0.75 1.17 0.50 -0.39 0.96 -0.43 7.73 2.64
Kurt 10.6 35.1 25.8 11.8 12.9 13.3 10.3 13.3 55.8 9.3 216.5 32.9
N obs 2521 2504 2560 2521 2504 2560 2508 2483 2560 2501 2482 2560

Panel B: European market
Mean -0.60 -0.71 -0.02 -0.12 -0.14 -0.03 -0.84 -1.05 -0.55 -0.16 -0.04 -0.08

(-4.65) (-5.79) (-0.14) (-1.69) (-2.10) (-0.60) (-2.51) (-3.36) (-1.85) (-1.55) (-0.41) (-0.69)
Std.dev. 0.43 0.37 0.43 0.22 0.22 0.16 0.77 0.72 0.81 0.42 0.40 0.27
SR -1.41 -1.95 -0.04 -0.53 -0.63 -0.21 -1.09 -1.46 -0.67 -0.38 -0.11 -0.28
Skew 5.77 2.11 2.86 -0.42 1.08 0.98 -0.89 0.04 1.59 3.80 0.82 0.61
Kurt 99.4 17.6 19.7 28.2 13.8 10.4 41.5 8.1 43.1 87.0 23.7 15.4
N obs 2521 2461 2547 2521 2461 2547 2510 2459 2547 2510 2445 2547

Table 4: Performance of Factor-Mimicking Portfolios
Summary statistics of daily excess returns on factor-mimicking portfolios. Means, standard deviations, and Sharpe ratios
(“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags
(equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant at the 5%
level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



GMA VGA VNA VLG
EQ-IG EQ-HY EQ-IG EQ-HY EQ-IG EQ-HY EQ-IG EQ-HY

Panel A: US market
Mean 0.64 0.74 0.09 0.22 0.51 1.18 0.11 -0.29

(3.89) (4.85) (1.45) (2.96) (1.57) (3.41) (0.46) (-1.42)
Std.dev. 0.54 0.49 0.26 0.26 1.33 1.14 0.75 0.67
SR 1.19 1.51 0.35 0.84 0.38 1.03 0.14 -0.43
Skew 0.45 1.27 0.09 -0.32 0.08 1.43 1.70 -0.27
Kurt 16.5 18.2 11.8 13.0 29.8 25.0 22.4 76.1
N obs 2521 2504 2521 2504 2508 2483 2501 2482

Panel B: European market
Mean 0.75 0.81 0.10 0.12 0.26 0.46 0.24 0.19

(5.17) (6.49) (1.60) (2.12) (0.68) (1.26) (1.35) (1.13)
Std.dev. 0.54 0.45 0.25 0.24 1.21 1.05 0.70 0.66
SR 1.38 1.79 0.41 0.48 0.22 0.44 0.34 0.28
Skew -3.05 1.04 0.57 -0.25 1.29 -0.13 -8.24 0.74
Kurt 91.7 10.8 19.3 11.2 46.5 10.3 240.0 58.0
N obs 2494 2436 2494 2436 2486 2433 2486 2419

Table 5: Performance of Long-Short Factor-Mimicking Portfolios
Summary statistics of daily excess returns on short credit vs. long equity factor-mimicking portfolios. Means, standard
deviations, and Sharpe ratios (“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and
serial correlation up to 63 lags (equal to three months) using the approach of Newey and West (1987). Mean estimates
that are significant at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



IG HY EQ
Panel A: US market

Max SR, options 2.94 3.28 1.72
Max SR, factors 2.77 3.64 1.37
Max SR, options+factors 3.05 3.95 1.87
GRS p-value 0.03 0.00 0.02
Average |α| 0.14 0.27 0.27
Average |t| 0.53 0.90 0.95
Average R2 0.82 0.87 0.93
N obs 2447 2382 2560

Panel B: European market
Max SR, options 3.62 3.14 1.65
Max SR, factors 2.75 2.66 1.15
Max SR, options+factors 3.75 3.48 1.78
GRS p-value 0.00 0.00 0.03
Average |α| 0.41 0.29 0.27
Average |t| 1.52 0.99 1.01
Average R2 0.89 0.89 0.94
N obs 2341 2118 2152

Table 6: Performance of Index-Specific Factor Pricing Models
The table reports the maximum Sharpe ratio of the option portfolios, the index-specific
factors (IDX, GMA, VGA, VNA, and VLG), and the options and factors jointly; the p-value
of the Gibbons et al. (1989) test of the alphas from the index-specific factor model being
jointly zero; the average (across option portfolios) of the absolute alphas, absolute t-statistics,
and R2s; and the number of daily observations. Alphas are annualized and t-statistics are
corrected for heteroscedasticity and serial correlation up to 63 lags (equal to three months)
using the approach of Newey and West (1987). Sample period is from January 1, 2013 to
April 3, 2023.



Average |α| Average |t| Average R2

IG HY IG HY IG HY
Panel A: US market

mdl1 1.66 2.30 3.57 4.41 0.26 0.27
mdl1+F 1

t 0.67 0.98 2.03 2.72 0.73 0.74
mdl1+F 1

t +F 2
t 0.62 0.86 2.11 2.54 0.79 0.82

mdl2 1.61 2.31 3.38 4.52 0.27 0.29
mdl2+F 1

t 0.71 0.92 2.00 2.80 0.73 0.74
mdl2+F 1

t +F 2
t 0.67 0.81 2.16 2.66 0.79 0.82

mdl3 1.56 2.23 3.45 4.58 0.28 0.31
mdl3+F 1

t 0.71 0.92 2.04 2.79 0.74 0.74
mdl3+F 1

t +F 2
t 0.71 0.81 2.30 2.74 0.79 0.83

Panel B: European market
mdl1 2.28 2.41 5.26 5.27 0.28 0.30
mdl1+F 1

t 0.68 0.45 2.39 1.87 0.81 0.79
mdl1+F 1

t +F 2
t 0.47 0.48 2.37 2.85 0.85 0.87

mdl2 2.25 2.38 5.17 5.38 0.29 0.31
mdl2+F 1

t 0.68 0.49 2.35 2.09 0.81 0.80
mdl2+F 1

t +F 2
t 0.48 0.53 2.30 3.13 0.85 0.88

mdl3 2.29 2.34 5.34 5.18 0.30 0.32
mdl3+F 1

t 0.66 0.50 2.29 2.11 0.81 0.80
mdl3+F 1

t +F 2
t 0.47 0.54 2.24 3.14 0.85 0.88

Table 7: Performance of Equity-Based Factor Models on Credit Options
The equity-based model with five factors (IDX, GMA, VGA, VNA, and VLG) is applied
to the pricing of credit index options. Three versions are considered: the unconditional
model (mdl1 ), a conditional version where factor exposures of credit option portfolios are
conditioned on their greeks (mdl2 ), and a conditional version where factor exposures of credit
option portfolios are conditioned on both their greeks and implied volatility (mdl3 ). To each
equity-based model, one or two residual factors (F 1

t , F
2
t ) constructed from the unexplained

credit option portfolio returns are added sequentially. For each credit index, the table reports
the average (across option portfolios) of the absolute alphas, absolute t-statistics, and R2s.
Alphas are annualized. t-statistics are corrected for heteroscedasticity and serial correlation
up to 63 lags (equal to three months) using the approach of Newey and West (1987). Sample
period is from January 1, 2013 to April 3, 2023.



IG HY
N trades N capped Volume N trades N capped Volume

Panel A: US market
Mean 18.67 11.93 1.55 14.89 4.91 0.96
5th pcntile 3 2 0.25 2 0 0.10
Median 15 10 1.35 13 4 0.82
95th pcntile 40 28 3.49 34 14 2.30

Panel B: European market
Mean 10.87 7.30 0.79 6.24 2.57 0.37
5th pcntile 1 1 0.09 0 0 0.00
Median 8 6 0.64 5 2 0.27
95th pcntile 24 18 2.05 17 9 1.10

Table 8: Daily Order-Flow in Credit Index Options
Summary statistics of daily order flow in credit index options. Order-flow is measured in
terms of number of trades, number of capped trades (i.e., where the notional amount of the
underlying swap is above the reporting cap), and trading volume in billions (USD in US
market and EUR in European market). Sample period is from January 1, 2013 to April 3,
2023.



N capped Volume
Panel A: US market

Flow 0.026 0.029 0.029 0.023 0.026 0.028

(3.322) (3.847) (4.295) (3.194) (3.633) (4.294)
Flow × HKM — -0.721 — — -0.611 —

— (-1.979) — — (-1.847) —
Lagged flow — — -0.008 — — -0.009

— — (-0.857) — — (-0.987)
R2 0.016 0.019 0.017 0.015 0.018 0.016
N obs 2547 2547 2545 2547 2547 2545

Panel B: European market
Flow 0.038 0.038 0.041 0.031 0.031 0.039

(4.460) (4.483) (5.752) (3.930) (3.938) (5.934)
Flow × HKM — -0.603 — — -0.469 —

— (-1.334) — — (-0.931) —
Lagged flow — — -0.009 — — -0.018

— — (-1.191) — — (-2.812)
R2 0.030 0.031 0.031 0.023 0.023 0.027
N obs 2509 2456 2508 2509 2456 2508

Table 9: Regression of Credit Option Residual Factor on Order Flow
In each market, the credit option residual factor is regressed on credit option order flow.
Frequency is daily. The residual factor is the first principal component of residuals from
applying the equity-based factor model to the credit option portfolios. The independent
variables are contemporaneous order flow, contemporaneous order flow interacted with the
de-meaned HKM intermediary capital ratio, and order flow averaged over the past two trad-
ing days. Order-flow is measured as either number of capped trades (i.e., where the notional
amount of the underlying swap is above the reporting cap) or trading volume, and is first
standardized for each index and then summed over IG and HY. t-statistics in parentheses are
corrected for heteroscedasticity and serial correlation up to 63 lags (equal to three months)
using the approach of Newey and West (1987). Sample period is from January 1, 2013 to
April 3, 2023.
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Figure 1: Performance of Option Portfolios, Sharpe Ratios
Annualized Sharpe ratios of option portfolios sorted on moneyness and maturity. -2, -1, 0, 1
refer to moneyness, m, defined in (3). M1, M2, and M3 refer to 1, 2, and 3 month options.
Top panels are for the US market and bottom panels are for the European market. Left,
middle, and right panels are for IG, HY, and EQ indexes, respectively. Returns are daily.
Sample period is from January 1, 2013 to April 3, 2023.
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Figure 2: Average Sharpe Ratios on Option Portfolios per Year
For every full year in the sample: First, using daily returns, compute annualized Sharpe
ratios on option portfolios sorted on moneyness and maturity (seven portfolios per index).
Second, average the Sharpe ratios across portfolios. Top panels are for the US market and
bottom panels are for the European market. Left, middle, and right panels are for IG, HY,
and EQ indexes, respectively.
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Figure 3: Loadings on Main Credit Option Residual Factor
In each market, the equity-based factor model is applied to the 14 credit option portfolios (two
credit indexes, each with seven portfolios sorted on moneyness and maturity) and a principal
component analysis (PCA) is applied to the residuals. -2, -1, 0, 1 refer to moneyness, m,
defined in (3). M1, M2, and M3 refer to 1, 2, and 3 month options. The top (bottom) panels
show the portfolio loadings on the first PC in the US (European) market. The left (right)
panels are for the IG (HY) indexes.
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Figure 4: Fit of Equity-Based Factor Model to Credit Options
Predicted mean excess returns on credit option portfolios versus actual mean excess returns.
Predicted returns are obtained from the risk exposures in two models: mdl1 refers to the
unconditional equity-based factor model and mdl1+F 1

t refers to that model with the credit
option residual factor added. The distance from the 45-degree line represents the alphas.
The top (bottom) panels show results for the US (European) market. The left (right) panels
are for the IG (HY) index options.
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Figure 5: Empirical Distribution of Trade Sizes in US Credit Index Options
The figure shows the trade-size distributions for CDX.IG (left panel) and CDX.HY (right
panel) options based on data from October 7, 2024 to June 13, 2025. We assume a Pareto
distribution for capped trades with an estimated parameter of 1.81 (1.83) for CDX.IG
(CDX.HY) options. Data consists of 4119 (3914) CDX.IG (CDX.HY) options of which
50.7% (6.5%) are capped. Trade size refers to the notional value of the underlying swap
measured in million USD. The vertical dotted lines for CDX.IG mark the 67th and 75th
percentiles of the notional-weighted size distribution as computed in CFTC (2024).
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Figure 6: Illustration of Demand-Based Option Pricing Model
Implied volatility (left panel) and expected excess delta-hedged option return (right panel)
for a 3-month ATM put option. The model has two volatility states σ = {0.1, 0.3}, two
demand states resulting in θ = {−1,−3}, and transition intensities λx = 3 and λy = 1.
Further, S0 = K = 10 and r = 0.05. Implied volatility and risk premia are shown for two
levels of dealer risk aversion, γ = 5 and 10, and conditional on being in the low-volatility
state.
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IA.1 Return computations

We show how to mark-to-market an option when there are defaults in the underlying index.

Consider a credit index put option at time t with expiration T , strike KS, and price

Pt(T,K
S) = E

Q
t

[

e−
∫ T
t

rsds
(
KS − ST

)+
]

.

Suppose that one of the index constituents defaults between t and t+∆. In this case, options

on the series’ original version are no longer quoted; only options on the series’ new version

are quoted. However, we can express the former in terms of the latter. Specifically, if the

loss rate on the defaulted name is ℓ, we have that

Pt+∆(T,K
S) = E

Q
t+∆

[

e−
∫ T
t+∆ rsds

(
KS − ST

)+
]

= E
Q
t+∆



e−
∫ T
t+∆ rsds

(

KS −
(

NT

Nt

S̃T +
1

Nt

Nt−NT∑

i=1

(1− ℓi)

))+




= E
Q
t+∆



e−
∫ T
t+∆ rsds

(

KS − 1

Nt

(1− ℓ)−
(

NT

Nt

S̃T +
1

Nt

Nt+∆−NT∑

i=1

(1− ℓi)

))+




=
Nt − 1

Nt

× E
Q
t+∆

[

e−
∫ T
t+∆ rsds

(
Nt

Nt − 1

(

KS − 1

Nt

(1− ℓ)

)

−
(

NT

Nt+∆
S̃T +

1

Nt+∆

Nt+∆−NT∑

i=1

(1− ℓi)

))+




=
Nt − 1

Nt

× P̃t+∆

(

T,
Nt

Nt − 1

(

KS − 1

Nt

(1− ℓ)

))

,

where P̃ denotes the price of an option on the series’ new version. Therefore, at time t+∆,

the value of the original option with strike KS is given by Nt−1
Nt

times the value of an option

on the series’ new version with strike K̃S = Nt

Nt−1

(

KS − 1
Nt
(1− ℓ)

)

.

In our empirical analyses, we always use actual quoted strikes. However, in this particular

case, we need to use interpolation to get the correct option price.
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Example 1. In our dataset, the index series that has the most defaults while being on the run

is CDX.HY Series 34, see Table IA.3. Version 1 of Series 34 (S34.V1) with 100 names is

launched on March 20, 2020. On April 1, 2020, index member Whiting Petroleum files for

bankruptcy. On May 6, 2020, the CDS settlement auction is held which results in a loss rate

of ℓ = 93%. On May 7, 2020, Version 2 of Series 34 (S34.V2) with the 99 remaining names

is launched.

The return on the credit index from May 6 to May 7 is computed as follows: The closing

index price of S34.V1 on May 6 is 0.9280. The closing index price of S34.V2 on May 7 is

0.9410. Furthermore, rt = 0.06%, cpn = 5%, and ∆ = 1
252

. Therefore, the one-day return

on the credit index is

R =
99
100

0.9410 + 1
100

(1− 0.93) + (0.0006 + 0.05) 1
252

0.9280
− 1 = 0.48%

(On the other hand, there is a −3.17% return on the day that Whiting Petroleum files for

bankruptcy.)

Consider a put option on S34.V1 with strike KS = 0.92 and expiration on June 17. The

closing price on May 6 is 0.02550. On May 7, the adjusted strike is K̃S = 0.9286. Prices of

put options on S34.V2 with strike KS = {0.92, 0.93} are {0.01988, 0.02331}. Interpolating to

get the price corresponding to K̃S and multiplying by 99
100

gives that the value of the original

option is 0.02260. Therefore, the one-day return on the option is −11.37%. (On the other

hand, there is a 38.14% return on this option on the day that Whiting Petroleum files for

bankruptcy.)

IA.2 Option greeks

We illustrate the properties of the relevant option greeks within the Black-Scholes model.

Assume that the underlying index price follows a geometric Brownian motion with risk-

2



neutral dynamics

dSt

St

= (r − q)dt+ σdZt,

where q is the payout rate. Consider a put and call option with strike K and time-to-expiry

τ = T − t. Define

d1 =
ln(S/K) +

(
r − q + 1

2
σ2
)
τ

σ
√
τ

, d2 = d1 − σ
√
τ

and let ϕ and Φ denote the pdf and cdf of the standard normal distribution. Then, the put

(P ) and call (C) prices and their relevant greeks (scaled as in the paper) are given by

• Price:

P = e−rτKΦ(−d2)− Se−qτΦ(−d1), C = Se−qτΦ(d1)− e−rτKΦ(d2)

• Gamma: γ = ∂2P
∂S2S

2σ2 = ∂2C
∂S2S

2σ2

γ = e−qτ ϕ(d1)√
τ

Sσ (IA1)

• Vega: ν = ∂P
∂σ
σ = ∂C

∂σ
σ

ν = e−qτϕ(d1)
√
τSσ (IA2)

• Vanna: ζ = ∂2P
∂σ∂S

Sσ2 = ∂2C
∂σ∂S

Sσ2

ζ = −e−qτϕ(d1)d2Sσ (IA3)

• Volga: ω = ∂2P
∂σ2 σ

2 = ∂2C
∂σ2 σ

2

ω = e−qτϕ(d1)
√
τd1d2Sσ (IA4)
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Example 1. Assuming parameter values St = 100, r = 0.02, q = 0.01, and σ = 0.20,

Figure IA1 shows gamma, vega, vanna, and volga for two-month options as a function of

moneyness, m.

Gamma and vega display the familiar patterns, being positive everywhere, highest for

ATM options, and symmetric around the ATM level.

Vanna is asymmetric, being negative for low-strike options, approximately zero for ATM

options, and positive for high-strike options. Intuitively, vanna is the change in vega for

a change in the underlying. For a low-strike (OTM put or ITM call) option, an increase

in the underlying brings the option further away from ATM, decreasing vega and making

vanna negative. Conversely, for a high-strike (ITM put or OTM call) option, an increase in

the underlying brings the option towards ATM, increasing vega and making vanna positive.

Finally, around ATM, vega takes the maximum value making vanna approximately zero.

This can also be seen analytically from Equation (IA3) where sign(ζ) = sign(−d2) and

−d2 = m+ 1
2
σ
√
τ ≈ m for short-term options and reasonable levels of volatility.

Volga is roughly symmetric around the ATM level, being approximately zero for ATM

options and positive for low-strike and high-strike options. Intuitively, volga is the convexity

of the relation between option price and volatility. Around ATM, the relation is roughly

linear making volga approximately zero, whereas away from ATM, the relation is convex

making volga positive. That volga is symmetric can also be seen from Equation (IA4) since

ϕ(d1) is approximately symmetric in m and d1d2 = (−m+ 1
2
σ
√
τ )(−m− 1

2
σ
√
τ) ≈ m2, which

is also symmetric in m (again, for short-term options and reasonable levels of volatility).

Example 2. Continuing with the same parameter values, Figure IA2 shows gamma, vega,

vanna, and volga for ATM options as a function of time-to-expiry, τ .

Clearly, gamma is decreasing in τ and vega is increasing in τ , while vanna and volga are

approximately zero.
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Example 3. Continuing with the same parameter values, we construct the gamma and vega

factors using 1- and 3-month ATM options as well as the vanna and volga factors using

2-month options. Table IA.18 displays the resulting greeks. Clearly, the factors have the

desired exposures

The gamma factor (GMA) goes long one 1-month straddle and short N = ν1
ν2

= 0.5788 3-

month straddles. Note from Equations (IA2) and (IA3) and with m = 0, that the vega-vanna

ratio is independent of τ ,

ν

ζ
=

2

σ
.

Therefore, ν1
ν2

= ζ1
ζ2

so not only is the vega exposure exactly zero but so is the vanna exposure.

The vega factor (VGA) goes long one 3-month straddle and short N = γ2
γ1

= 0.5759

1-month straddles.

The vanna factor (VNA) goes long one 2-month put with moneyness m = −1 and short

N =
ν
p
−

νc+
= 0.9216 2-month calls with moneyness m = 1. Note from Equations (IA1) and

(IA2), that the vega-gamma ratio is independent of m,

ν

γ
= τ.

Also, note from Equations (IA2) and (IA4), that the vega-volga ratio depends on the absolute

moneyness,

ν

ω
=

1

m2 − 1
4
σ2τ

.

Therefore,
ν
p
−

νc+
=

γ
p
−

γc
+
=

ω
p
−

ωc
+
so not only is the vega exposure exactly zero but so are the gamma

and volga exposures.

The volga factor (VLG) goes long one 2-month put with moneyness m = −1 and one 2-

month call with moneyness m = 1, and shorts N =
ν
p
−+νc+
ν
p
0+νc0

= 1.2141 2-month ATM straddles.

By the same argument as above we have that not only is the vega exposure exactly zero but
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so is the gamma exposure.

IA.3 Data filters

First, we apply filters on the index options data in the following order:

1. The data include bid, ask, and mid prices. Use mid prices, but only those for which

the associated bid price is positive.

2. For the spread-quoted IG options (CDX.IG and iTraxx.main), only use options with

strikes on a 5 bps grid; say 80 bps, 85 bps,. . .

For the spread-quoted HY option (iTraxx.Crossover), only use options with strikes on

a 25 bps grid; say 400 bps, 425 bps,. . .

For the price-quoted HY option (CDX.HY), only use options with strikes on a 0.0050

grid; say 1.0100, 1.0150,. . .

We ignore options with strikes away from these “benchmark” grids because they typi-

cally have fewer dealers contributing to the composite quotes making them more noisy

and less representative.

3. Impose standard no-arbitrage filters.

Second, on each trading day, we select the options that fall on the 4×3 moneyness-

maturity grid described in the text.

Third, we remove a few outliers. A clear indication of an outlier is a large reversal in

implied volatility from one day to the next. Specifically, we use the following procedure:

1. For each option, compute the percentage daily change in its implied volatility.

2. For each moneyness-maturity combination convert the time series of implied volatility

changes into a time series of z-scores and eliminate observations for which a z-score
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larger than three is followed on the next trading day by a z-score less than minus three,

or vice versa.

For OTM and ATM puts with moneyness -2, -1, and 0 (ATM and OTM calls with mon-

eyness 0 and 1) the fraction of observations that are removed is 0.40%, 0.26%, 0.12%,

and 0.06% (0.46%, 0.37%, 0.23%, and 0.23%) for CDX.IG, CDX.HY, iTraxx.main, and

iTraxx.Crossover, respectively.

Removing outliers mainly affects the higher-order moments of the return distributions

and only to a very limited extent the mean returns and Sharpe ratios. This is largely because

the procedure always removes return pairs with opposite signs.

IA.4 Holding period and transaction costs

In the paper we consider a holding period of one day. Here we consider an alternative strategy

of holding options to expiry while delta hedging on a daily basis. The purpose is threefold:

1. demonstrate the robustness of the results to the choice of holding period,

2. study the impact of transaction costs, and

3. examine the profitability of selling options in a setting that is closer to actual option

trading.

Specifically, we consider a strategy of selling 1-month ATM straddles. As in the paper,

1-month means the shortest option maturity with more than two weeks to expiration and

ATM means the strike for which moneyness m is closest to zero.

IA.4.1 Selling straddles, no transaction costs

A straddle is sold on each trading day and delta hedged over the life of the options. We

assume that the trader must put up a certain amount of capital, V0, when selling options.
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This amount along with the option premium received from selling options, P0, is held in a

margin account earning the risk-free rate. All cash-flows from the delta-hedge are brought

forward to option expiry by investing/borrowing at the risk-free rate.

Specifically, consider a set of dates t0, t1, ..., tn where t0 = 0 is the date the options are

sold, tn = T is the option expiry, and ti − ti−1 = δ is one trading day. The value of the

delta-hedged credit index option portfolio at time T is

VT =(P0 + V0)e
rT −

(
(UT −KU)+ + (KU − UT )

+
)

−∆0U0e
rT −

n−1∑

i=1

((∆i −∆i−1)Ui +∆i−1cδ) e
r(T−iδ) +∆n−1 (UT − cδ) , (IA5)

where the second term is the straddle payoff, the third term is the cost of the initial delta

hedge, the fourth term is the cost of rebalancing the delta hedge n − 1 times, and the last

term is the final value of the delta hedge. We assume that the CDS index coupon, c, is paid

continuously over time.1

Similarly, the value of the delta-hedged equity index option portfolio at time T is

VT =(P0 + V0)e
rT −

(
(ST −K)+ + (K − ST )

+
)

−∆0S0e
rT −

n−1∑

i=1

((∆i −∆i−1)Si −∆i−1qi−1Si−1δ) e
r(T−iδ) +∆n−1 (ST + qn−1Sn−1δ) ,

(IA6)

where q is the dividend yield.

1For notational convenience, we write the interest rate as being constant. In the implementation, we account
for time-varying interest rates.
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IA.4.2 Selling straddles, with transaction costs

The credit index option data contains indicative bid and ask prices for options (except for

a period in 2017 and 2018). We also have bid and ask prices for SPX options (via CBOE),

but not for Eurostoxx 50 options (via OptionMetrics).

On each trading day, we compute the percentage spread between bid- and mid-prices,

P bid
t −Pmid

t

Pmid
t

. Figure IA3 displays the frequency distribution of the spreads. The mean (me-

dian) spread is -7.9% (-7.2%) for CDX.IG, -8.6% (-7.8%) for CDX.HY, -6.4% (-6.0%) for

iTraxx.main, -6.2% (-5.7%) for iTraxx.Crossover, and -1.7% (-1.5%) for SPX. As such, trans-

action costs for credit index options are about four to five times larger than those for equity

index options, on average.

We implement the strategy from Section IA.4.1 with straddles sold at bid-prices rather

than mid-prices. Because many bid-price data points are missing, we assume that transaction

costs are constant across time and apply one transaction cost to all credit index options and

another to both equity index options. Specifically, we assume that bid-prices are lower

than mid-prices by 7.5% for credit index options and 1.5% for equity index options (to be

conservative, we set the difference to be a factor five). We do not apply a bid-ask spread to

the delta-hedge.2 The amount of initial capital is the same as in the case of no transaction

costs.

IA.4.3 Results

Table IA.19 shows the performance of three straddle-selling strategies:

1. Holding period of one day

2. Hold to expiration without transaction costs (as in Section IA.4.1)

2To start with, transaction costs are much lower for the underlying index. Moreover, trades for delta-hedging
purposes are uninformed and can typically be executed at lower costs than the average trade. See Collin-
Dufresne et al. (2020b) for an analysis of transaction costs in credit indexes.
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3. Hold to expiration with transaction costs (as in Section IA.4.2)

Means, standard deviations, and Sharpe ratios are annualized; in cases 2 and 3 this is

done based on an average holding period of one month. In all cases, t-statistics are computed

using Newey and West (1987) with 63 lags.

Taking the US market as an example, with a daily holding period, the Sharpe ratios are

2.18, 2.46, and 0.56 for IG, HY, and equity, respectively. This largely mirrors the (absolute

value of) Sharpe ratios for delta-hedged ATM put options in Figure 1 in the main paper.

With hold-to-expiry, the ordering is maintained, even if the Sharpe ratios decrease somewhat

to 1.46, 2.28, and 0.32, respectively.

Transaction costs reduce profitability; however, despite the relatively high costs of trad-

ing credit index options, the mean returns remain statistically significant and generate re-

spectable Sharpe ratios of 0.73 for IG and 1.33 for HY. For comparison, the Sharpe ratio for

EQ drops to 0.14.3

The general pattern is the same in the European market, and we conclude that our results

are robust to variation in holding period and transaction costs.

IA.5 Index option returns in calibrated structural model

Doshi et al. (2024) estimate a structural credit risk model features three priced sources of

systematic risk: diffusive risk, jump risk, and variance risk. The underlying asset dynamics

are identical to the specification in Collin-Dufresne et al. (2024), although the debt structure

and the conditions triggering default differ somewhat. Both papers allow for the consistent

3Note that the number of observations differ somewhat. With a daily holding period, the return computation
necessitates that the option price at the end of the holding period is available. This is sometimes not the
case, for instance on days when the underlying index series goes off the run (because only options on the
on-the-run series are quoted). With hold-to-expiration, the return computation necessitates that the price of
the underlying index series is available until option expiration. This is not a problem, even when the series
goes off the run, because dealers continue to quote prices on first-off-the-run series. However, it does lead to
a loss of observations at the end of the sample period.
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pricing of credit and equity index options, with Collin-Dufresne et al. (2024) having analytical

option prices based on transform analysis and Doshi et al. (2024) relying on simulation.

In this section, we briefly review this model that forms the basis for the simulation exercise

in Section 3 in the paper. We also derive expressions for the factor exposures and mean and

volatility of instantaneous excess returns of index options. Finally, we compute these values

conditional on the variance state variable being equal to its long-run mean and compare with

the simulated values reported in the paper.

IA.5.1 The model

We use the notation in Collin-Dufresne et al. (2024). The P dynamics are

dAi
t

Ai
t−

=
dAt

At−
+ σidW

i
t + (eγi − 1)dN i

t − λiνidt

dAt

At−
= (r − δ + µt)dt+

√
ωt

(

ρdWt +
√

1− ρ2dZt

)

+ (eγ − 1)dNt − λtνdt

dωt = κ(ω̄ − ωt)dt+ σ
ω

√
ωtdWt,

whereW i
t , Wt, and Zt are independent Brownian motions, Nt andN i

t are independent Poisson

counting processes with intensities λt = λωωt and λi, respectively, γ ∼ N (m, v) and γi ∼

N (mi, vi) are independent normal random variables, and we define ν = E[eγ −1] = em+ v
2 −1

and νi = E[eγi − 1] = emi+
vi
2 − 1.4 The dividend payout rate is δ and the asset risk premium

is µ.

With the risk premium specification in Doshi et al. (2024), the Q dynamics are of the

form

dAi
t

Ai
t−

=
dAt

At−
+ σidW

i
t + (eγi − 1)dN i

t − λiνidt

4We impose that λt is linear (rather than affine) in ωt as in Doshi et al. (2024).
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dAt

At−
= (r − δ)dt+

√
ωt

(

ρdWQ
t +

√

1− ρ2dZQ
t

)

+ (eγ
Q − 1)dNQ

t − λQ
t ν

Qdt

dωt = κQ(ω̄Q − ωt)dt+ σ
ω

√
ωtdW

Q
t ,

where WQ
t and ZQ

t are independent Brownian motions, NQ
t is a Poisson counting process

with intensity λQ
t = λQ

ωωt, γ ∼ N (mQ, v), and νQ = EQ[eγ
Q − 1] = em

Q+ v
2 − 1.

In Doshi et al. (2024), there are three risk premium parameters, ξω, ξA⊥ω, and ξJ . The

asset risk premium is

µt = µc
t +
(
λtν − λQ

t ν
Q
)
,

with

µc
t =

(

ρξω +
√

1− ρ2ξA⊥ω

)

ωt

being the premium for diffusive risk, and the remaining parameters are

κQ = κ+ σ
ω
ξω

θQ = κθ/κQ

λQ
ω = λωe

ξJm+ 1
2
ξ2Jv

mQ = m+ ξJv.

IA.5.2 Returns and factor exposures

Consider a derivative It. Could be an index or an index option. Applying Ito’s Lemma

dIt =
∂It
∂t

dt+
∂2It
∂A2

t

(dAc
t)

2 +
∂2It
∂ω2

t

(dωt)
2 +

∂2It
∂At∂ωt

dAc
tdωt +

∂It
∂At

dAc
t +

∂It
∂ωt

dωt+

(I(At−e
γ , ωt)− It−) dNt. (IA7)
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Taking risk-neutral expectation of (IA7) and subtracting the result from (IA7) gives the

expression for the realized dollar return:

dIt − EQ [dIt] =
∂It
∂At

(
dAc

t − EQ [dAc
t ]
)
+

∂It
∂ωt

(
dωt − EQ[dωt]

)
+

(I(At−e
γ , ωt)− It−) dNt − EQ [I(At−e

γ , ωt)− It−]λ
Q
t dt. (IA8)

We can write the realized excess return as

Rt =∆A

(
dAc

t

At

− EQ

[
dAc

t

At

])

+∆ω

(
dωt − EQ[dωt]

)
+∆NdNt − EQ [∆N ]λ

Q
t dt,

where

∆A =
∂It
∂At

At

It
, ∆ω =

∂It
∂ωt

1

It
, ∆N =

I(At−e
γ, ωt)− It−
It−

denote the exposures to diffusive asset risk, asset variance risk, and asset jump risk, respec-

tively.

It follows that the annualized expected excess return is

1

dt
E [Rt] =∆Aµ

c
t +∆ωσω

ξωωt +
(
E [∆N ]λω − EQ [∆N ]λ

Q
ω

)
ωt, (IA9)

and the annualized return variance is

1

dt
V ar (Rt) = (∆A)

2 ωt + (∆ωσω
)2 ωt + 2∆A∆ωσω

ρωt + E
[
(∆N )

2]λωωt. (IA10)

We consider

• Underlying index (credit or equity) with price St and excess return

RS
t =

dSt

St

− (r − δS)dt,
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where δS is the index yield.

• Naked options on the index with price Pt and excess return

RP
t =

dPt

Pt

− rdt,

• Delta-hedged options on the index, where the delta is computed using the Black-Scholes

model and the delta-position is financed at the risk-free rate (so that the upfont cost

remains Pt). The change in the value of such a delta-hedged option is

dPt +∆BS
S (dSt − (r − δS)Stdt)

so that the excess return is

RP
t − wRS

t , w = ∆BS
S

St

Pt

IA.5.3 Conditional factor exposures and risk-return trade-off

Table IA.17 has the same structure as Table 1 in the paper, but here we use the expressions

above for instantaneous returns and condition on the variance state variable being equal to

its long-run mean, ωt = ω̄.

Panel A reports the conditional factor exposures. Note that the delta and gamma ex-

posures in Table 1 become exposures to diffusive and jump risk in Table IA.17. The risk

exposures are normalized to reflect a one standard derivation change in each of the risk

factors, and in case of jump risk, the expected exposure is reported; that is, the table reports

∆A

√
ωt, ∆ωσω

√
ωt, E [∆N ]

√

λωωt.
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The conditional (and instantaneous) values in Table IA.17 are similar to the unconditional

(and daily) values in Table 1. The exception is the jump exposure in Table IA.17 which is not

directly comparable to the gamma exposure in Table 1 in case of outright option returns.5

Panel B reports the conditional means and Sharpe ratios. Importantly, the mean excess

returns are more negative for delta-hedged equity index options than credit index options,

with the differences being very similar to the ones reported in Table 1.

IA.5.4 Marking-to-market of CDX and SPX Options

In our simulation exercise, options are bought at time 0 and sold (or marked-to-market) one

day later at time t. The expressions for the time-0 option values are given in Collin-Dufresne

et al. (2024). Here, we provide the expressions for the time-t option values.

The time-t value of a CDX call option with strike K and expiration at T0 is

CCDX
t = e−r(T0−t)E[max(UT0(xT0)−K, 0) | xt]

= e−r(T0−t)E[(UT0(xT0)−K)1{AT0
<A(ωT0

)} | xt]

= e−r(T1−t)
(

(1 + C1)E[1{AT0
<A(ωT0

),Ai
T1

<Φ(ωT1
)} | xt]−

α

D1 +D2
E[Ai

T1
1{AT0

<A(ωT0
),Ai

T1
<Φ(ωT1

)} | xt]
)

+ e−r(T2−t)
(

E[1{AT0
<A(ωT0

),Ai
T1

≥Φ(ωT1
),Ai

T2
<D2} | xt]−

α

D2

E[Ai
T2
1{AT0

<A(ωT0
),Ai

T1
≥Φ(ωT1

),Ai
T2

<D2} | xt]
)

− e−r(T0−t)K̃E[1{AT0
<A(ωT0

)} | xt].

Similarly, the time-t value of an SPX call option with strike K and expiration at T0 is

CSPX
t = e−r(T0−t)E[max(ST0(xT0)−K, 0) | xt]

5One should be careful when comparing the exposures for outright CDX options in Table IA.17 with the
exposures in Figure 1 in Doshi et al. (2024). In our paper, CDX options refer to options on the index price,
while in Doshi et al. (2024), CDX options refer to options on the index spread. Because price and spread
are inversely related, CDX call (put) options here should be compared with CDX put (call) options in Doshi
et al. (2024). With this is mind, exposures for outright index options in Table IA.17 are very similar to the
exposures in Figure 1 in Doshi et al. (2024).
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= e−r(T0−t)E[(ST0(xT0)−K)1{AT0
≥A(ωT0

)} | xt]

= e−r(T0−t)E[AT01{AT0
≥A(ωT0

)} | xt]

− e−r(T1−t)
(

D1E[1{AT0
≥A(ωT0

),Ai
T1

≥Φ(ωT1
)} | xt] + E[Ai

T1
1{AT0

≥A(ωT0
),Ai

T1
<Φ(ωT1

)} | xt]
)

− e−r(T2−t)
(

D2E[1{AT0
≥A(ωT0

),Ai
T1

≥Φ(ωT1
),Ai

T2
≥D2} | xt] + E[Ai

T2
1{AT0

≥A(ωT0
),Ai

T1
≥Φ(ωT1

),Ai
T2

<D2} | xt]
)

− e−r(T0−t)KE[1{AT0
≥A(ωT0

)} | xt].

IA.6 Distribution of trade sizes in US credit index options

This section descibes how we infer the distributions of capped trade sizes. We do this

separately for CDX.IG and CDX.HY options.

IA.6.1 CDX.IG options

For the purpose of updating regulatory block and cap thresholds, CFTC (2024) uses all

transactions from 2023 and computes the 67th and 75th percentiles of the notional-weighted

size distribution. The x’th percentile is defined as the trade size below which trades account

for x percent of total notional volume. For CDX.IG options, the 67th and 75th percentiles are

1.2 and 2.0 billion USD, repectively. While for other asset classes, including the underlying

CDX contracts, the new cap thresholds were set at their 75th percentiles, for credit index

options the CFTC decided to apply a uniform cap threshold of 0.4 billion USD.

We assume that the trade-size distribution in our sample from October 7, 2024 until June

13, 2025 is the same as in 2023 so that we can apply the percentiles from CFTC (2024) to the

more recent sample. There are 2030 uncapped trades (with notionals less than 400 million)

which have a combined notional of V unc = 337.07 billion USD. There are N cpd = 2089 capped

trades. For these, we assume that the trade sizes are described by a Pareto distribution with
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density

f cpd(x) =
αxα

min

xα+1
, x > xmin

and xmin = 0.4 billion. Then, the cumulative notional of all trades up to size x > 0.4 is

V (x) = V unc +N cpd

∫ x

0.4

uf cpd(u)du

= V unc +N cpd α

α− 1

(

0.4− x

(
0.4

x

)α)

,

and the total notional is

V total = V unc +N cpd α

α− 1
0.4.

We estimate α to minimize the sum of squared errors:

ǫ1 =
V (1.2)

V total
− 0.67

ǫ2 =
V (2.0)

V total
− 0.75.

which gives the estimate α = 1.81. The fit is very good with error terms ǫ1 = −0.0185 and

ǫ2 = 0.0197.

IA.6.2 CDX.HY options

In the case of CDX.HY, the 75th percentile computed in CFTC (2024) is below the cap

threshold of 0.4 billion, so we cannot use the approach that we use for CDX.IG. Instead, we

assume that the Pareto distribution for trade sizes applies not only to capped trades, but to

trades larger than 200 million. There are 912 such trades of which 28.1% are capped. Since

Prob(X > x) =
(xmin

x

)α
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we get

α =
log(0.281)

log
(
0.2
0.4

) = 1.83,

which, incidentally, is very close to he value for CDX.IG.

IA.6.3 CDX.IG options, alternative approach

A robust but conservative approach assumes that the true notionals of capped trades are

either 0.4, 1.2, or 2.0 billion, and that the fraction of capped trades with these notionals are

w1, w2, and 1− w1 − w2, respectively. Then, the total notional is

V total = V unc +N cpd(w10.4 + w21.2 + (1− w1 − w2)2.0).

We find w1, w2 as the solution to

V unc +N cpdw10.4

V total
= 0.67

V unc +N cpd(w10.4 + w21.2)

V total
= 0.75,

which gives w1 = 85.59% and w2 = 5.01%. With this approach, 2.5% (4.8%) of trades have

notional values of 1.2 (2.0) billion, and the average daily trading volume is 9.18 billion.
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Panel A: US market
New Year’s Day
Martin Luther King Day
Presidents Day
Good Friday
Memorial Day
Juneteenth (from 2022)
Independence Day
Labor Day
Columbus Day
Veterans Day
Thanksgiving Day
Christmas Day
Panel B: European market
New Year’s Day
Good Friday
Easter Monday
May 1st
U.K. May Day
U.K. Spring Bank Holiday
U.K. Summer Bank Holiday
December 24th
Christmas Day
U.K. Boxing Day
December 31st

Table IA.1: Non-Trading Days
The table shows the non-trading days in the US and European markets. In the European
market, it is the union of non-trading days in the U.K. and on Eurex in Frankfurt.
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IG HY EQ
Panel A: US market

Mean 0.012 0.047 0.126

(2.87) (2.37) (3.19)
Std.dev. 0.017 0.076 0.166
SR 0.68 0.62 0.76
Skew 0.81 0.46 -0.43
Kurt 44.3 30.3 12.3
N obs 2558 2556 2560
N defaults 0 21 —

Panel B: European market
Mean 0.015 0.052 0.095

(2.99) (2.54) (1.86)
Std.dev. 0.019 0.072 0.196
SR 0.78 0.73 0.48
Skew -0.64 -0.49 -0.57
Kurt 17.9 17.0 11.9
N obs 2568 2569 2547
N defaults 0 6 —

Table IA.2: Performance of Indexes
Summary statistics of daily excess returns on indexes. Means, standard deviations, and
Sharpe ratios (“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedas-
ticity and serial correlation up to 63 lags (equal to three months) using the approach of Newey
and West (1987). Mean estimates that are significant at the 5% level are highlighted in bold.
Sample period is from January 1, 2013 to April 3, 2023.



Default Date Auction Date Company Name Loss Rate Index Series
2014-04-29 2014-05-21 Texas Electric 91.50 22
2015-01-15 2015-02-19 Caesars Entertainment 84.12 23
2015-02-05 2015-03-05 RadioShack 88.50 23
2015-05-21 2015-06-23 Sabine Oil & Gas 84.12 24
2016-12-20 2017-02-02 iHeartCommunications 64.50 27
(2017-09-19 2017-10-11 Toys R Us 74.00 28)
2018-10-15 2019-01-17 Sears Roebuck 20.13 31
2018-12-12 2019-01-23 Parker Drilling 51.00 31
(2019-02-25 2019-04-03 Windstream Services 70.50 31)
2019-07-01 2019-07-24 Weatherford Int. 55.50 32
2019-11-12 2019-12-10 Dean Foods 90.75 33
2020-02-13 2020-03-10 McClatchy 98.00 33
2020-04-01 2020-05-06 Whiting Petroleum 93.00 34
2020-04-26 2020-05-22 Diamond Drilling 92.62 34
2020-05-07 2020-05-29 Neiman Marcus 97.00 34
2020-05-15 2020-06-09 J. C. Penney 99.88 34
2020-05-22 2020-06-24 Hertz 73.62 34
2020-06-03 2020-07-07 California Resources 98.88 34
2020-06-28 2020-08-04 Chesapeake Energy 96.50 34
2020-07-31 2020-09-10 Noble 99.00 34
2022-05-09 2022-06-07 Talen Energy Supply 30.00 38

Table IA.3: Defaults in CDX.HY
The table shows the defaults in the on-the-run series of CDX.HY. Loss rate is in percent.
Note that although the defaults of Toys R Us and Windstream Services happen while Series
28 and 31 are on-the-run, the settlement auctions and, therefore, the version changes take
place after the series have gone off-the-run.
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Default Date Auction Date Company Name Loss Rate Index Series
(2013-09-15 2013-10-09 Codere 45.50 19)
2018-09-27 2018-11-29 Astaldi 69.12 30
2020-08-14 2020-09-08 Hema 31.50 33
2020-07-29 2020-09-15 Matalan 63.50 33
2020-11-29 2021-01-13 Europcar 0.00 34

Table IA.4: Defaults in iTraxx.Crossover
The table shows the defaults in the on-the-run series of iTraxx.Crossover. Loss rate is in
percent. Note that although the default of Codere happens while Series 19 is on-the-run, the
settlement auction and, therefore, the version change takes place after the series has gone
off-the-run. Note also the 100% recovery in the case of Europcar.
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IG HY EQ
M1 M2 M3 M1 M2 M3 M1 M2 M3

Panel A: US market
Mean -3.78 -2.50 -1.61 -4.81 -3.00 -1.79 -1.43 -1.16 -0.78

(-3.87) (-4.99) (-3.55) (-5.45) (-4.87) (-3.19) (-1.33) (-1.57) (-1.28)
Std.dev. 2.31 1.37 1.14 2.11 1.40 1.14 2.89 1.80 1.42
SR -1.64 -1.83 -1.42 -2.27 -2.15 -1.57 -0.50 -0.65 -0.55
Skew 6.32 2.69 2.67 3.31 1.97 2.68 3.21 3.20 3.15
Kurt 88.9 22.3 28.5 32.0 23.4 21.2 24.0 25.3 25.2
N obs 2515 2525 2505 2491 2516 2496 2560 2560 2560

Panel B: European market
Mean -4.64 -2.29 -1.25 -4.74 -2.27 -1.47 -0.03 -0.28 0.19

(-6.59) (-4.40) (-2.64) (-6.29) (-3.98) (-2.87) (-0.03) (-0.44) (0.34)
Std.dev. 1.88 1.30 1.17 1.81 1.33 1.10 2.73 1.73 1.36
SR -2.47 -1.75 -1.07 -2.62 -1.71 -1.33 -0.01 -0.16 0.14
Skew 3.59 2.72 3.35 3.19 3.33 3.25 3.68 3.33 2.83
Kurt 31.5 18.8 30.7 25.6 26.1 26.7 30.5 25.9 20.8
N obs 2524 2521 2452 2458 2469 2289 2547 2547 2152

Table IA.5: Performance of Option Portfolios Sorted on Maturity
Summary statistics of daily excess returns on option portfolios sorted on maturity. Means, standard deviations, and Sharpe
ratios (“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63
lags (equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant at the
5% level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



EQ-IG EQ-HY
M1 M2 M3 M1 M2 M3

Panel A: US market
Mean 2.25 1.41 0.97 3.31 1.86 0.93

(2.17) (3.04) (2.51) (4.25) (4.46) (2.90)
Std.dev. 2.96 1.71 1.39 2.70 1.70 1.40
SR 0.76 0.82 0.70 1.23 1.10 0.66
Skew -2.02 1.81 1.49 1.00 1.45 -1.02
Kurt 52.8 24.5 23.1 23.8 19.2 27.6
N obs 2515 2525 2505 2491 2516 2496

Panel B: European market
Mean 4.62 2.22 1.30 4.67 2.20 1.24

(5.68) (4.58) (3.65) (6.69) (4.93) (3.38)
Std.dev. 2.54 1.61 1.31 2.40 1.61 1.22
SR 1.82 1.38 0.99 1.95 1.36 1.01
Skew 1.24 1.01 0.75 1.58 1.34 0.41
Kurt 16.4 13.5 17.0 14.2 17.1 10.9
N obs 2501 2498 2106 2435 2446 2041

Table IA.6: Performance of Long-Short Option Portfolios Sorted on Maturity
Summary statistics of daily excess returns on short credit vs. long equity option portfolios
sorted on maturity. Means, standard deviations, and Sharpe ratios (“SR”) are annualized.
t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63
lags (equal to three months) using the approach of Newey and West (1987). Mean estimates
that are significant at the 5% level are highlighted in bold. Sample period is from January
1, 2013 to April 3, 2023.



IG HY EQ
M1-M2 M2-M3 M1-M3 M1-M2 M2-M3 M1-M3 M1-M2 M2-M3 M1-M3

Panel A: US market
Mean -0.69 -1.00 -0.27 -0.78 -1.14 -0.32 -0.15 -0.29 -0.13

(-4.69) (-4.93) (-3.80) (-5.11) (-5.21) (-5.09) (-1.01) (-1.45) (-2.18)
Std.dev. 0.46 0.59 0.25 0.47 0.59 0.24 0.53 0.68 0.18
SR -1.49 -1.71 -1.07 -1.65 -1.93 -1.34 -0.28 -0.43 -0.73
Skew 1.37 1.59 0.91 2.50 2.53 2.02 3.03 2.97 2.66
Kurt 10.1 10.6 11.8 25.3 20.8 20.7 26.8 25.4 27.5
N obs 2471 2444 2494 2468 2447 2477 2560 2560 2560

Panel B: European market
Mean -0.75 -1.01 -0.34 -0.84 -1.20 -0.26 0.06 0.11 -0.05

(-5.92) (-5.67) (-5.33) (-5.97) (-6.02) (-3.98) (0.42) (0.51) (-0.81)
Std.dev. 0.43 0.59 0.23 0.43 0.53 0.24 0.48 0.66 0.20
SR -1.75 -1.72 -1.47 -1.97 -2.26 -1.08 0.13 0.17 -0.25
Skew 1.88 3.22 1.25 1.74 1.92 1.74 2.76 2.86 2.59
Kurt 13.8 37.4 25.5 16.1 15.1 20.3 18.9 19.5 19.7
N obs 2461 2386 2416 2335 2163 2243 2545 2150 2152

Table IA.7: Performance of Gamma-Mimicking Portfolios
Summary statistics of daily excess returns on gamma-mimicking portfolios. Means, standard deviations, and Sharpe ratios
(“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags
(equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant at the 5%
level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



IG HY EQ
M1-M2 M2-M3 M1-M3 M1-M2 M2-M3 M1-M3 M1-M2 M2-M3 M1-M3

Panel A: US market
Mean -0.27 -0.25 -0.09 -0.40 -0.38 -0.14 -0.17 -0.13 -0.03

(-3.30) (-2.65) (-1.71) (-4.36) (-3.86) (-2.74) (-2.08) (-1.51) (-0.61)
Std.dev. 0.29 0.29 0.20 0.28 0.27 0.18 0.23 0.24 0.11
SR -0.94 -0.86 -0.45 -1.44 -1.38 -0.80 -0.75 -0.56 -0.23
Skew 0.65 0.23 0.43 0.68 0.85 0.38 1.35 1.10 0.83
Kurt 11.3 11.7 13.8 12.5 8.8 9.9 13.4 13.9 11.5
N obs 2471 2444 2494 2468 2447 2477 2560 2560 2560

Panel B: European market
Mean -0.17 -0.17 -0.01 -0.16 -0.19 -0.07 -0.10 0.02 0.07

(-2.02) (-1.76) (-0.29) (-2.08) (-2.00) (-1.47) (-1.59) (0.30) (1.76)
Std.dev. 0.25 0.29 0.19 0.27 0.27 0.19 0.19 0.21 0.11
SR -0.70 -0.59 -0.07 -0.61 -0.68 -0.38 -0.53 0.11 0.63
Skew 1.40 0.51 0.69 1.62 0.70 0.50 0.93 1.04 0.96
Kurt 13.8 18.8 15.1 24.5 8.6 9.9 10.8 11.0 12.4
N obs 2461 2386 2416 2335 2163 2243 2545 2150 2152

Table IA.8: Performance of Vega-Mimicking Portfolios
Summary statistics of daily excess returns on vega-mimicking portfolios. Means, standard deviations, and Sharpe ratios
(“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags
(equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant at the 5%
level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



IG HY EQ
M1 M2 M3 M1 M2 M3 M1 M2 M3

Panel A: US market
Mean -2.10 -1.11 -0.62 -3.73 -1.19 -0.63 -1.92 -0.64 -0.41

(-4.02) (-3.98) (-3.14) (-10.20) (-5.45) (-3.70) (-4.42) (-2.33) (-1.88)
Std.dev. 1.52 0.82 0.62 1.17 0.69 0.57 1.37 0.82 0.63
SR -1.38 -1.35 -1.00 -3.18 -1.72 -1.12 -1.39 -0.78 -0.64
Skew 1.50 0.12 0.17 -0.10 0.21 0.50 0.87 0.63 -0.07
Kurt 26.0 8.2 10.0 7.6 7.1 9.2 46.1 68.5 55.6
N obs 2163 2418 2431 2307 2440 2414 2560 2559 2560

Panel B: European market
Mean -1.13 -0.83 -0.50 -2.21 -0.92 -0.60 -1.10 -0.36 -0.30

(-1.73) (-2.97) (-2.45) (-3.96) (-3.20) (-2.87) (-2.42) (-1.39) (-1.43)
Std.dev. 1.29 0.68 0.67 1.12 0.75 0.65 1.25 0.73 0.55
SR -0.87 -1.21 -0.74 -1.98 -1.23 -0.92 -0.88 -0.50 -0.55
Skew 3.19 -0.06 -0.93 -0.12 0.41 0.24 1.86 1.24 0.75
Kurt 58.6 8.2 86.9 8.2 10.7 10.9 41.0 47.8 36.5
N obs 2210 2445 2379 1921 2314 2180 2545 2547 2151

Table IA.9: Performance of Vanna-Mimicking Portfolios
Summary statistics of daily excess returns on vanna-mimicking portfolios. Means, standard deviations, and Sharpe ratios
(“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags
(equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant at the 5%
level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



IG HY EQ
M1 M2 M3 M1 M2 M3 M1 M2 M3

Panel A: US market
Mean -0.41 -0.11 -0.10 0.22 -0.05 -0.07 -0.22 -0.30 -0.25

(-1.21) (-0.74) (-1.10) (0.94) (-0.43) (-0.66) (-1.00) (-2.12) (-2.13)
Std.dev. 0.81 0.46 0.41 0.69 0.43 0.38 0.53 0.38 0.32
SR -0.51 -0.23 -0.25 0.32 -0.11 -0.18 -0.41 -0.78 -0.78
Skew -0.03 -0.02 -0.00 1.58 0.15 -0.12 2.25 2.54 2.56
Kurt 18.8 6.8 9.1 56.0 8.3 5.3 28.1 32.2 33.5
N obs 2135 2418 2425 2306 2438 2413 2560 2559 2560

Panel B: European market
Mean -0.50 -0.04 -0.11 0.01 -0.12 -0.05 -0.05 -0.10 -0.13

(-3.28) (-0.35) (-1.26) (0.06) (-0.98) (-0.54) (-0.27) (-0.99) (-1.50)
Std.dev. 0.57 0.43 0.42 0.50 0.46 0.42 0.42 0.28 0.24
SR -0.88 -0.09 -0.27 0.02 -0.25 -0.13 -0.11 -0.38 -0.53
Skew -0.30 0.23 3.97 0.80 -0.66 1.99 -0.31 1.21 1.10
Kurt 9.4 7.1 92.8 12.3 33.4 37.5 16.3 20.1 16.1
N obs 2182 2440 2369 1844 2305 2166 2543 2547 2151

Table IA.10: Performance of Volga-Mimicking Portfolios
Summary statistics of daily excess returns on volga-mimicking portfolios. Means, standard deviations, and Sharpe ratios
(“SR”) are annualized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags
(equal to three months) using the approach of Newey and West (1987). Mean estimates that are significant at the 5%
level are highlighted in bold. Sample period is from January 1, 2013 to April 3, 2023.



EQ-IG EQ-HY
M1-M2 M2-M3 M1-M3 M1-M2 M2-M3 M1-M3

Panel A: US market
Mean 0.78 0.95 0.22 0.90 1.08 0.24

(3.86) (3.83) (3.09) (4.70) (4.45) (3.60)
Std.dev. 0.66 0.82 0.30 0.59 0.72 0.25
SR 1.19 1.17 0.72 1.51 1.49 0.96
Skew 0.35 0.44 0.28 1.42 1.35 0.16
Kurt 19.8 17.4 13.7 21.0 17.9 12.0
N obs 2471 2444 2494 2468 2447 2477

Panel B: European market
Mean 1.01 1.19 0.34 1.05 1.33 0.23

(6.75) (5.07) (4.40) (7.09) (7.02) (3.26)
Std.dev. 0.54 0.78 0.28 0.52 0.66 0.28
SR 1.86 1.53 1.19 2.03 2.03 0.81
Skew 1.39 -0.26 0.90 1.42 1.04 -0.31
Kurt 12.5 33.7 11.7 14.4 9.3 17.9
N obs 2436 2049 2081 2310 1914 1996

Table IA.11: Performance of Long-Short Gamma-Mimicking Portfolios
Summary statistics of daily excess returns on short credit vs. long equity gamma-mimicking
portfolios. Means, standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics
in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal
to three months) using the approach of Newey and West (1987). Mean estimates that are
significant at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to
April 3, 2023.



EQ-IG EQ-HY
M1-M2 M2-M3 M1-M3 M1-M2 M2-M3 M1-M3

Panel A: US market
Mean 0.10 0.12 0.05 0.22 0.27 0.11

(1.29) (1.40) (0.83) (2.62) (2.75) (1.85)
Std.dev. 0.34 0.34 0.23 0.33 0.32 0.20
SR 0.29 0.35 0.20 0.67 0.84 0.56
Skew -0.11 -0.12 -0.45 -0.41 0.05 -0.08
Kurt 8.8 12.4 13.9 13.5 6.3 9.4
N obs 2471 2444 2494 2468 2447 2477

Panel B: European market
Mean 0.08 0.19 0.05 0.05 0.14 0.12

(0.98) (1.97) (0.91) (0.72) (1.86) (2.45)
Std.dev. 0.28 0.31 0.21 0.30 0.29 0.20
SR 0.30 0.59 0.24 0.16 0.49 0.62
Skew -0.75 0.01 -0.82 -1.75 -0.05 0.08
Kurt 11.2 13.7 13.6 32.1 6.2 7.2
N obs 2436 2049 2081 2310 1914 1996

Table IA.12: Performance of Long-Short Vega-Mimicking Portfolios
Summary statistics of daily excess returns on short credit vs. long equity vega-mimicking
portfolios. Means, standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics
in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal
to three months) using the approach of Newey and West (1987). Mean estimates that are
significant at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to
April 3, 2023.



EQ-IG EQ-HY
M1 M2 M3 M1 M2 M3

Panel A: US market
Mean 0.39 0.38 0.09 2.49 0.63 0.38

(0.66) (1.12) (0.36) (4.55) (1.87) (1.54)
Std.dev. 2.24 1.24 0.97 1.86 1.06 0.86
SR 0.17 0.31 0.09 1.34 0.59 0.44
Skew -0.02 0.73 0.60 1.95 1.31 0.65
Kurt 18.8 25.4 24.3 30.2 21.9 12.7
N obs 2163 2417 2431 2307 2439 2414

Panel B: European market
Mean -0.27 0.52 0.15 0.81 0.44 0.07

(-0.35) (1.57) (0.66) (1.18) (1.24) (0.27)
Std.dev. 1.84 1.04 1.02 1.55 1.08 0.91
SR -0.14 0.50 0.15 0.52 0.40 0.08
Skew -3.43 0.35 1.78 -0.15 -0.05 -0.85
Kurt 67.7 14.0 110.2 9.3 14.8 14.5
N obs 2187 2422 2052 1899 2292 1962

Table IA.13: Performance of Long-Short Vanna-Mimicking Portfolios
Summary statistics of daily excess returns on short credit vs. long equity vanna-mimicking
portfolios. Means, standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics
in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal
to three months) using the approach of Newey and West (1987). Mean estimates that are
significant at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to
April 3, 2023.



EQ-IG EQ-HY
M1 M2 M3 M1 M2 M3

Panel A: US market
Mean 0.67 -0.10 -0.08 -0.16 -0.37 -0.25

(1.32) (-0.43) (-0.60) (-0.40) (-2.14) (-1.76)
Std.dev. 1.33 0.73 0.65 1.18 0.63 0.56
SR 0.51 -0.13 -0.12 -0.13 -0.58 -0.45
Skew 1.95 1.04 0.27 8.45 0.49 0.53
Kurt 23.4 17.4 16.9 232.7 10.0 8.6
N obs 2135 2417 2425 2306 2437 2413

Panel B: European market
Mean 0.69 0.05 0.12 0.11 0.24 -0.04

(2.55) (0.26) (0.84) (0.36) (1.11) (-0.30)
Std.dev. 0.89 0.61 0.73 0.77 0.78 0.70
SR 0.77 0.08 0.16 0.14 0.31 -0.06
Skew 0.30 0.08 -7.98 0.08 5.94 -5.70
Kurt 8.7 7.8 261.0 11.6 176.0 145.8
N obs 2159 2417 2049 1821 2283 1948

Table IA.14: Performance of Long-Short Volga-Mimicking Portfolios
Summary statistics of daily excess returns on short credit vs. long equity volga-mimicking
portfolios. Means, standard deviations, and Sharpe ratios (“SR”) are annualized. t-statistics
in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal
to three months) using the approach of Newey and West (1987). Mean estimates that are
significant at the 5% level are highlighted in bold. Sample period is from January 1, 2013 to
April 3, 2023.



IG HY EQ
-2 -1 0 1 -2 -1 0 1 -2 -1 0 1

Panel A: US market

α -2.84 -2.00 -0.81 -1.22 -3.98 -2.60 -1.16 -1.76 0.17 0.01 0.02 0.81

(-5.04) (-4.82) (-3.76) (-2.11) (-6.32) (-5.34) (-4.66) (-2.58) (0.58) (0.14) (0.48) (2.09)
IDX -1.62 -1.65 -0.90 -5.55 -1.95 -1.72 -0.95 -4.89 0.64 -0.26 -0.16 -1.49

(-4.19) (-5.77) (-5.96) (-8.20) (-3.25) (-3.97) (-5.41) (-10.42) (2.36) (-1.62) (-1.70) (-2.61)
GMA 0.49 0.50 0.29 0.90 0.65 0.55 0.31 1.29 2.63 1.96 1.05 4.89

(3.60) (5.56) (6.49) (5.60) (3.77) (4.92) (6.18) (7.11) (29.29) (26.95) (27.43) (17.98)
VGA 1.40 1.06 0.60 2.31 1.00 0.97 0.49 2.05 4.36 3.33 1.89 9.52

(4.19) (4.83) (5.41) (5.53) (3.09) (4.65) (4.48) (5.31) (25.00) (45.50) (63.35) (27.66)
VNA 0.02 0.03 0.02 -0.01 0.09 0.06 0.01 -0.08 0.92 0.42 0.04 -1.53

(0.19) (0.42) (0.47) (-0.09) (0.89) (0.62) (0.17) (-0.48) (11.18) (10.99) (2.19) (-6.53)
VLG 0.24 0.17 0.08 0.19 0.09 0.17 0.08 0.36 2.02 0.84 0.04 2.88

(1.59) (1.85) (1.86) (1.07) (0.46) (1.42) (1.26) (2.17) (10.49) (10.28) (0.78) (11.47)
R2 0.20 0.27 0.28 0.29 0.18 0.26 0.27 0.32 0.94 0.97 0.96 0.90

Panel B: European market

α -3.44 -2.12 -0.86 -2.59 -3.10 -2.36 -0.98 -2.97 0.34 -0.06 -0.01 0.44
(-7.57) (-5.32) (-4.32) (-3.27) (-4.85) (-5.95) (-4.96) (-4.36) (1.39) (-0.54) (-0.15) (1.13)

IDX -2.16 -1.57 -0.79 -3.93 -2.36 -1.71 -0.84 -3.92 0.47 -0.17 -0.11 -0.72
(-6.19) (-8.99) (-7.34) (-7.06) (-4.35) (-6.45) (-7.73) (-10.91) (1.96) (-1.45) (-1.63) (-1.50)

GMA 0.62 0.53 0.30 1.01 0.74 0.62 0.29 0.82 3.52 2.54 1.30 5.78

(4.45) (4.32) (4.39) (5.73) (3.70) (4.74) (4.56) (4.31) (28.42) (37.81) (38.79) (20.01)
VGA 1.20 0.71 0.38 2.20 1.02 0.93 0.53 2.20 5.06 3.68 1.92 8.54

(3.60) (4.05) (4.29) (6.71) (2.75) (4.29) (4.48) (4.97) (23.70) (39.36) (47.15) (32.30)
VNA 0.34 0.23 0.11 0.15 0.35 0.26 0.09 0.14 1.07 0.48 0.04 -1.12

(5.30) (5.63) (4.81) (2.06) (3.89) (4.46) (3.72) (1.72) (12.63) (9.05) (1.42) (-6.91)
VLG 0.07 0.18 0.08 0.51 -0.15 -0.01 -0.04 0.34 2.29 0.85 0.05 2.35

(0.24) (0.84) (0.66) (1.43) (-0.33) (-0.03) (-0.33) (0.95) (15.10) (12.14) (1.02) (5.11)
R2 0.25 0.28 0.27 0.27 0.25 0.29 0.29 0.32 0.93 0.96 0.96 0.91

Table IA.15: Equity Factor Exposures for Option Portfolios Sorted on Moneyness
The table shows the factor loadings from regressing daily excess returns on IG option portfolios onto a constant (α) and the
daily excess returns on the equity factors. The α coefficient is annualized. The regression also includes the factor returns
lagged one day to take potential non-synchronicity into account, but for brevity the factor loadings are not displayed.
t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal to three months)
using the approach of Newey and West (1987). Coefficients that are significant at the 5% level are highlighted in bold.
Sample period is from January 1, 2013 to April 3, 2023.



IG HY EQ
M1 M2 M3 M1 M2 M3 M1 M2 M3

Panel A: US market

α -2.55 -1.43 -0.77 -3.62 -2.03 -0.94 0.36 0.14 0.25
(-2.82) (-3.97) (-2.47) (-5.00) (-4.66) (-2.28) (1.97) (0.68) (1.22)

IDX -1.89 -2.51 -2.62 -1.89 -2.68 -2.57 0.43 -0.56 -0.83

(-3.28) (-9.18) (-8.20) (-3.84) (-8.40) (-12.65) (1.99) (-2.28) (-3.41)
GMA 0.86 0.45 0.33 1.24 0.56 0.31 4.75 1.97 1.17

(5.89) (5.09) (4.83) (7.12) (5.86) (3.75) (33.92) (17.58) (12.73)
VGA 1.61 1.39 0.94 1.44 1.03 0.89 5.13 4.85 4.35

(4.34) (5.87) (4.31) (4.68) (6.07) (5.37) (48.04) (35.51) (22.46)
VNA 0.07 -0.00 0.01 0.03 -0.01 0.03 -0.05 -0.02 -0.04

(0.73) (-0.03) (0.16) (0.20) (-0.09) (0.54) (-0.56) (-0.21) (-0.48)
VLG 0.43 0.16 0.01 0.39 0.11 0.09 1.91 1.38 1.05

(2.93) (1.70) (0.09) (2.14) (1.23) (0.76) (17.84) (9.21) (6.66)
R2 0.15 0.31 0.33 0.23 0.31 0.33 0.96 0.91 0.88

Panel B: European market

α -4.25 -1.87 -0.87 -4.35 -1.93 -1.20 0.44 0.10 0.15
(-7.88) (-5.61) (-2.83) (-8.06) (-5.15) (-3.57) (1.76) (0.68) (1.02)

IDX -1.76 -2.23 -2.27 -1.78 -2.32 -1.91 0.33 -0.26 -0.44

(-5.41) (-10.80) (-9.71) (-6.63) (-11.09) (-13.63) (1.59) (-1.09) (-2.27)
GMA 0.93 0.53 0.36 1.02 0.49 0.40 5.25 2.69 1.69

(4.92) (5.10) (4.04) (4.86) (3.59) (4.00) (40.45) (22.79) (15.10)
VGA 1.26 1.00 0.85 1.13 1.09 1.12 5.07 4.97 4.48

(5.36) (5.96) (6.94) (3.63) (4.77) (4.82) (31.98) (42.57) (41.33)
VNA 0.27 0.19 0.12 0.31 0.14 0.12 0.18 0.08 0.02

(4.04) (4.94) (3.96) (3.98) (2.90) (3.89) (1.53) (1.18) (0.41)
VLG 0.42 0.21 0.05 0.23 -0.02 0.10 1.90 1.27 0.96

(1.53) (0.99) (0.21) (0.70) (-0.09) (0.54) (11.53) (7.65) (4.92)
R2 0.23 0.35 0.34 0.25 0.33 0.35 0.95 0.93 0.91

Table IA.16: Equity Factor Exposures for Option Portfolios Sorted on Maturity
The table shows the factor loadings from regressing daily excess returns on HY option portfolios onto a constant (α)
and the daily excess returns on the equity factors. The α coefficient is annualized. The regression also includes the
factor returns lagged one day to take potential non-synchronicity into account, but for brevity the factor loadings are not
displayed. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal to three
months) using the approach of Newey and West (1987). Coefficients that are significant at the 5% level are highlighted in
bold. Sample period is from January 1, 2013 to April 3, 2023.



Calls Puts ∆-hedged calls ∆-hedged puts
EQ IG L-S EQ IG L-S EQ IG L-S EQ IG L-S

Panel A: Exposures
Asset diffusive 4.49 3.15 1.34 -3.64 -2.82 -0.82 0.33 0.17 0.17 0.34 0.16 0.18
Asset jumps -0.84 -0.74 -0.10 1.90 1.44 0.46 0.56 0.35 0.21 0.56 0.35 0.21
Asset variance 1.11 -0.62 1.74 1.02 2.47 -1.44 1.07 0.92 0.15 1.07 0.92 0.14

Panel B: Mean excess returns and Sharpe ratios
Mean 1.34 1.77 -0.43 -2.35 -2.78 0.43 -0.55 -0.51 -0.04 -0.54 -0.51 -0.03
Std.dev. 4.02 3.64 1.42 4.81 4.99 1.26 1.13 0.94 0.28 1.12 0.94 0.28
SR 0.33 0.49 -0.30 -0.49 -0.56 0.34 -0.48 -0.54 -0.14 -0.48 -0.54 -0.11

Table IA.17: Conditional Option Exposures and Risk-Return Trade-Off
Instantaneous excess returns on equity and credit (investment-grade) index options are computed from the model in
Collin-Dufresne et al. (2024) with parameter estimates from Doshi et al. (2024). The options are 1-month ATM puts
and calls. Returns are for outright options and delta-hedged options, where the delta is with respect to the underlying
index and computed using the Black-Scholes model. Results are reported for equity and credit options separately, and for
a long-equity/short-credit option strategy. Panel A reports the conditional factor exposures normalized to reflect a one
standard derivation change in each of the risk factors. Panel B reports the conditional annualized means, volatilities, and
Sharpe ratios (SR). All values are conditional on the variance state variable being equal to its long-run mean.



γ ν ζ ω
GMA 36.81 0 0 0.01
VGA 0 5.30 0.53 -0.02
VNA 0 0 -9.27 0
VLG 0 0 0.39 3.94

Table IA.18: Greeks of Gamma, Vega, Vanna, and Volga Factors
The figure shows the greeks for the gamma (GMA), vega (VGA), vanna (VNA), and volga
(VLG) factors in the Black-Scholes model. Parameter values are St = 100, r = 0.02, q = 0.01,
and σ = 0.20.



IG HY EQ
Holding period Daily Expiry Expiry Daily Expiry Expiry Daily Expiry Expiry
T-cost — — 7.5% — — 7.5% — — 1.5%

Panel A: US market
Mean 1.93 1.81 0.91 2.16 2.16 1.26 0.62 0.32 0.14

(5.11) (5.93) (2.98) (5.36) (8.03) (4.69) (1.75) (1.27) (0.56)
Std.dev. 0.89 1.24 1.24 0.88 0.95 0.95 1.11 1.00 1.00
SR 2.18 1.46 0.73 2.46 2.28 1.33 0.56 0.32 0.14
Skew -2.22 -2.00 -2.00 -3.12 -0.79 -0.79 -2.66 -1.53 -1.53
Kurt 17.2 9.1 9.1 24.8 4.2 4.2 18.6 8.6 8.6
N obs 2485 2501 2501 2465 2512 2512 2560 2537 2537

Panel B: European market
Mean 1.77 1.97 1.07 1.96 1.82 0.92 0.17 0.22 0.04

(5.26) (9.15) (4.97) (5.42) (8.31) (4.20) (0.50) (0.80) (0.16)
Std.dev. 0.85 0.83 0.83 0.82 0.92 0.92 1.06 1.02 1.02
SR 2.08 2.37 1.29 2.38 1.98 1.00 0.16 0.22 0.04
Skew -3.21 -0.84 -0.84 -2.95 -1.81 -1.81 -2.71 -1.06 -1.06
Kurt 27.3 5.0 5.0 23.0 13.9 13.9 18.0 4.8 4.8
N obs 2480 2507 2507 2369 2425 2425 2545 2527 2527

Table IA.19: Performance of Straddles
Summary statistics of daily excess returns on straddles. Means, standard deviations, and Sharpe ratios (“SR”) are annu-
alized. t-statistics in parentheses are corrected for heteroscedasticity and serial correlation up to 63 lags (equal to three
months) using the approach of Newey and West (1987). Mean estimates that are significant at the 5% level are highlighted
in bold. Sample period is from January 1, 2013 to April 3, 2023.
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Figure IA1: Option Greeks as Function of Moneyness
The figure shows gamma, vega, vanna, and volga for two-month options in the Black-Scholes
model as a function of moneyness, m. Parameter values are St = 100, r = 0.02, q = 0.01,
and σ = 0.20.
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Figure IA2: Option Greeks as Function of Time-to-Expiry
The figure shows gamma, vega, vanna, and volga for ATM options in the Black-Scholes
model as a function of time-to-expiry, τ . Parameter values are St = 100, r = 0.02, q = 0.01,
and σ = 0.20.
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Figure IA3: Percentage Bid-Mid Spreads on ATM Straddles

Frequency distribution of percentage bid-mid spreads,
P bid
t −Pmid

t

Pmid
t

, on 1-month ATM straddles.

Note that data is missing for the European equity index option. Daily data from January 1,
2013 to April 3, 2023.
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Figure IA4: Performance of Option Portfolios, t-statistics
t-statistics for the mean excess daily returns of option portfolios sorted on moneyness and
maturity. -2, -1, 0, 1 refer to moneyness, m, defined in (3). M1, M2, and M3 refer to 1, 2, and
3 month options. Top panels are for the US market and bottom panels are for the European
market. Left, middle, and right panels are for IG, HY, and EQ indexes, respectively. The
t-statistics are corrected for heteroscedasticity and serial correlation up to 63 lags (equal to
three months) using the approach of Newey and West (1987). Sample period is from January
1, 2013 to April 3, 2023.
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Figure IA5: Loadings on Second Credit Option Residual Factor
In each market, the equity-based factor model is applied to the 14 credit option portfolios (two
credit indexes each with seven portfolios sorted on moneyness and maturity) and a principal
component analysis (PCA) is applied to the residuals. -2, -1, 0, 1 refer to moneyness, m,
defined in (3). M1, M2, and M3 refer to 1, 2, and 3 month options. The top (bottom) panels
show the portfolio loadings on the second PC in the US (European) market. The left (right)
panels are for the IG (HY) indexes.
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Figure IA6: Distribution of Execution Times for Option Trades
The figure shows for each index the empirical distribution of the execution time stamps on
option trades in Coordinated Universal Time (UTC). The grey shaded area marks typical
trading hours in New York (for the US indices) and London (for the European indices).
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