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Abstract

Classical asset pricing models predict that optimizing investors exhibit extremely high demand
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returns, and “unspanned returns,” reflecting a stock’s lack of perfect substitutes. In a factor
model framework, we show that unspanned returns become significant when models include
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empirical evidence.
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1 Introduction

In classical asset pricing models, stock-level investor demand curves are nearly flat, implying

virtually no price impacts from flows and supply shocks (e.g., Gabaix and Koĳen, 2022). In stark

contrast, empirical estimates indicate that flows can create sizeable price impacts and that investor

demand is inelastic. This gap is large: theoretical models often predict demand elasticity in the

thousands, while empirical estimates are lower by three orders of magnitude.1 Why do investors

exhibit low demand elasticities in practice? One might hypothesize that this gap arises from

severe portfolio frictions or behavioral deviations from rational portfolio choice. For example,

prior research has shown that investors face benchmarking incentives, leverage constraints, and

transaction costs, and they also exhibit behavioral deviations from optimal portfolio choice, all of

which can dampen demand elasticities (e.g., Gromb and Vayanos, 2010; Basak and Pavlova, 2013;

Haddad, Huebner, and Loualiche, 2022).

In this paper, we show that, without relying on the aforementioned frictions, the bulk of the

demand elasticity gap can be explained by two factors: (1) stocks are poor substitutes for each

other, and (2) the limited effect of price changes on next-period returns. We analytically study

investors who form optimal mean-variance (MV) portfolios and present a novel decomposition of

their demand elasticity into these two components. We find that classical models predict extremely

high demand elasticities due to unrealistic assumptions about the magnitude of these two factors.

When we use empirically estimated values, the predicted demand elasticity decreases dramatically

from approximately 7,000 to about 7, much closer to the empirical estimates around one.2

We begin by analytically showing that the stock-level MV investor demand elasticity decomposes

1To appreciate the difference in magnitude, note that for a 1% change in share supply, classical models predict
a price movement of approximately 0.02 basis points (1%/5,000), which is very close to zero, whereas empirical
estimates imply a price impact of around 1%.

2For empirical estimates of demand elasticities, see Shleifer (1986), Lou (2012), Chang, Hong, and Liskovich
(2015), Koĳen and Yogo (2019), Haddad et al. (2022), and Pavlova and Sikorskaya (2023), among others.
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into two components. For any stock 𝑖, the elasticity of an investor’s share demand (𝑄𝑖) to price (𝑃𝑖)

is approximately equal to one plus the product of two terms:

−𝜕 log(𝑄𝑖)
𝜕 log(𝑃𝑖)

≈ 1 +
(
− 𝜕𝜇𝑖

𝜕 log(𝑃𝑖)

)
︸           ︷︷           ︸
price pass-through

× 𝜕 log(𝑤𝑖)
𝜕𝜇𝑖︸      ︷︷      ︸

=1/𝜇𝑖,unspanned

, (1)

where the first term, “price pass-through”, measures the extent to which price movements unrelated

to cash flows affect next-period expected returns (𝜇𝑖). The second term captures how the investor’s

log portfolio weight responds to changes in next-period expected return and equals the reciprocal of

the “unspanned return” of stock 𝑖—defined as the residual expected return of the stock not explained

by a linear projection onto other stocks. Unspanned return measures the degree to which stock

𝑖 is substitutable. If it has near-perfect substitutes, its unspanned return will be close to zero, as

assumed in classical asset pricing models like the CAPM. Otherwise, its unspanned return can be

non-negligible. Importantly, both terms in Equation (1), price pass-through and unspanned return,

depend only on the properties of stock returns and can be estimated from data.

Using our decomposition, we find that classical models predict extremely high demand

elasticities because they assume high price pass-through and low unspanned returns. Are these

assumptions supported by the data? To investigate, we estimate the two components using monthly

U.S. stock return data. First, we estimate price pass-through using Fama-MacBeth regressions

to predict next-month stock returns using the “price wedge” in van Binsbergen, Boons, Opp, and

Tamoni (2023), which captures price variations unrelated to cash flows. We estimate price pass-

through to be approximately 0.014 at the monthly horizon—meaning that each 1% drop in cash

flow-unrelated prices leads to a 1.4 basis points increase in expected returns the following month.

For robustness, we also consider alternative instruments aimed at isolating non-fundamental price

variation, and find similar or lower estimates. Incorporating the estimated pass-through of 0.014
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Figure 1. Explaining the gap between theoretical and empirical demand elasticities.
This figure illustrates our explanation of the gap between high demand elasticity values in classical asset pricing
models and low values from empirical estimates. The leftmost bar illustrates predictions from classical models with
high price pass-through and low unspanned return (e.g., Gabaix and Koĳen, 2022; Petajisto, 2009, ≈ 7,000). Taking
into account empirically estimated price pass-through reduces elasticity by a factor of 6 to approximately 1,200, as
shown by the second bar from the left. Taking into account empirically estimated unspanned returns, we arrive at
elasticity estimates of around 7, further reducing elasticity by a factor of approximately 170, as shown by the third bar
from the left. Therefore, taking into account empirical estimates of price processes can explain the gap from 7,000 to 7.
We hypothesize that the remaining gap from 7 to 1 (empirical estimates) may be explained by additional considerations
such as transaction costs. The 𝑦-axis is in log scale.

reduces the demand elasticity prediction from 7,000 to approximately 1,200, as illustrated in the

second bar of Figure 1.

We then estimate unspanned returns, which requires models of expected returns and covariance

matrices for stocks. We estimate stock expected returns using Fama-MacBeth regressions with

commonly used stock characteristics, and estimate covariance matrices using rolling one-year

windows of daily stock returns with Ledoit and Wolf (2004) shrinkage to ensure matrix invertibility.

Our results indicate that while about two-thirds of individual stock returns are spanned by linear

combinations of other stocks, approximately one third remains unspanned. For an average stock

with positive MV portfolio weights, we estimate its monthly unspanned return to be 0.23%. This
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contrasts sharply with classical models, which typically assume monthly unspanned returns around

0.001% (Gabaix and Koĳen, 2022). When we incorporate empirical estimates, the predicted

demand elasticity decreases sharply from 1,200 to approximately 7, as shown in Figure 1.

Thus, we find that the majority of the demand elasticity gap—from 7,000 to 7—can be explained

by incorporating empirical features of stock returns. What about the remaining gap from 7 to 1?

One plausible explanation is the consideration of transaction costs. However, there are many other

possibilities, and we do not take a definitive stance on the exact mechanism.

For robustness, we also examine additional factors that may affect investor demand elasticity.

Our two-part decomposition in Equation (1) focuses on the effects driven by changes in expected

returns, but one might naturally question the impact of changes in return volatility or correlations.

We empirically show that these effects tend to be small. Additionally, we consider alternative

investor preferences, such as constant relative risk aversion and Epstein-Zin, which account for

wealth effects and intertemporal hedging. We find that their differences from the mean-variance

model are also quantitatively small for the purpose of studying demand elasticities. Finally, while

demand elasticities can be mechanically high for stocks with very small portfolio weights due to

the magnification effect of small denominators, when we consider more economically relevant

quantities such as portfolio holdings-weighted averages, our finding of low demand elasticity

remains unchanged.

Our paper finds that stocks exhibit low price pass-throughs and high unspanned returns. How

can we interpret these empirical facts? The former simply implies that variations in expected return

are often persistent, a common feature in many dynamic asset pricing models. The latter may seem

less familiar to researchers used to factor model frameworks. To clarify the connection, we show

that stocks with high unspanned returns can be understood as reflecting the presence of “weak

factors”, as described by Lettau and Pelger (2020). In this context, “weak factors” refer to factors
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that explain cross-section of expected returns but not much of the time-series variation of returns.

While early factor models, such as the CAPM, assume the absence of weak factors, subsequent

research found that more (and weaker) factors are necessary to describe the cross-section. Recent

asset pricing models have incorporated a large number of stock characteristics (e.g., Kelly, Pruitt,

and Su, 2019; Lettau and Pelger, 2020; Chen, Roussanov, and Wang, 2023). We show that these

models can accommodate weak factors, and when the number of factors is sufficiently large, they

invariably imply high unspanned returns and low demand elasticities.

In interpreting our results, two clarification are in order. First, we do not consider our estimate

of a demand elasticity of seven to be extremely precise. For instance, investors may use different

models of expected returns and covariance in practice, which could lead them to identify different

unspanned returns. However, our findings remain within the same order of magnitude across various

estimation techniques. Regardless of the specific estimation method, we find that using empirically

estimated properties of stock returns can explain the majority of the gap between classical theory

predictions and empirical estimates of demand elasticity.

Second, why do we focus on frictionless MV investors, even though many real-life investors

face constraints and frictions? It is not because we believe those considerations are unimportant.

Rather, we aim to ensure that our results are not driven by those additional factors, all of which can

further reduce demand elasticities. We find that, once we account for empirically estimated return

processes, even MV investors exhibit relatively inelastic demand. Thus, the demand of investors

with constraints and frictions is likely even more inelastic. In other words, our paper provides

a simple frictionless benchmark for asset-level demand elasticities, similar to how Modigliani

and Miller (1958) offers a benchmark for frictionless capital structure choice. Related to this

point, we clarify that our paper focuses on how optimal investor demand theoretically responds to
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price movements. While we empirically estimate statistical properties of stock returns, we do not

empirically estimate demand elasticity and therefore do not need or propose a new price instrument.

This paper offers an explanation for the majority of the gap between the extremely high

predictions of demand elasticity in classical models and the low empirical estimates. Specifically,

we show that MV investor demand elasticity depends on two components—price pass-through

and unspanned return—and that incorporating empirical estimates can lower theoretical demand

elasticity predictions from 7,000 to around 7. Of the two components, incorporating empirically

estimated unspanned returns have the greatest impact. Empirically, stocks are not perfect substitutes,

which results in significantly lower investor demand elasticities.

There is an extensive literature estimating demand elasticities in stocks using the price impacts

of demand or supply shocks: index exclusion (Shleifer, 1986; Chang et al., 2015; Pavlova and

Sikorskaya, 2023), dividend payments (Schmickler, 2020), mutual fund flows (Lou, 2012), and

transaction costs of realized trades (Frazzini, Israel, and Moskowitz, 2018; Bouchaud, Bonart,

Donier, and Gould, 2018). More recently, structural approaches have been employed to estimate

demand elasticities using asset demand systems (Koĳen and Yogo, 2019; van der Beck, 2022;

Haddad et al., 2022). The findings consistently show that stock-level demand is far less elastic than

what classical theories predict. In this paper, we take the empirical behavior of stock returns as

given and show that optimizing investors would naturally exhibit inelastic demand.

Our finding that most stock price movements exhibit low pass-through to future expected returns

is consistent with existing evidence from the cross-section of stock returns. Stock returns typically

exhibit reversals within a month (Jegadeesh, 1990), momentum over quarterly to annual frequency

(Jegadeesh and Titman, 1993), and reversals over multiple years (De Bondt and Thaler, 1985).

These effects are far less than one-for-one and are consistent with our estimates. The innovation of
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our paper lies not in estimating price pass-throughs, but in clarifying that weak price pass-throughs

lead to low demand elasticities.

We show that demand elasticity should be low because stocks are not perfect substitutes, a topic

that has received attention since the early days of capital markets theory. Scholes (1972) argues that

stocks should be highly substitutable and not “unique works of art.” However, our findings suggest

that stocks are also not as substitutable as classical theory assumes. Early factor models, such as

the CAPM or the Fama-French three factor model, assume that only systematic risk factors, which

explain a large fraction of common return variation, are priced. However, subsequent research has

discovered an increasing number of factors, and more recent factor models are designed to flexibly

incorporate “weak factors” (e.g., Kelly et al., 2019; Lettau and Pelger, 2020; Chen et al., 2023).

Researchers find that stock returns are poorly spanned by systematic risk factors (e.g., Lopez-Lira

and Roussanov, 2023; Dello-Preite, Uppal, Zaffaroni, and Zviadadze, 2024) or a range of factor

models (e.g., Baba Yara, Boyer, and Davis, 2021). We contribute to the literature by showing that

weak factors lead to high unspanned returns, which, in turn, explain low demand elasticities.

The remainder of the paper is as follows. In Section 2, we show that MV investor demand

elasticity depends on two components, price pass-through and unspanned return. In Section 3,

we show that using empirical estimates of these two components lowers theoretical predictions

of demand elasticities by three orders of magnitude. Section 4 discusses additional influences on

demand elasticities. Section 5 shows that high unspanned returns in stocks can be understood as

the existence of weak factors. Section 6 concludes.
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2 Determinants of Demand Elasticities in Portfolio Choice

In this section, we show that asset-level demand elasticities in standard portfolio choice can be

decomposed into two components: price pass-through and unspanned return. The former measures

how price changes “pass-through” to expected returns, while the latter depends on the extent to

which assets are substitutable in the cross-section. We then apply our decomposition framework to

explain why classical models predict very high demand elasticities.

Why do we adopt a portfolio choice approach rather than use preference-based logistic style

models, which are commonly used in the industrial organization literature? This choice is motivated

by the simple insight that demand for assets is fundamentally different from demand for consumption

goods, such as bananas. A consumer’s demand elasticity for bananas is directly determined by their

primitive preference for bananas. In contrast, an investor only has indirect preference over assets:

they do not care about the assets themselves, but with the returns they generate, which ultimately

affect their consumption or wealth. Thus, how an investor adjusts their portfolio in response to

price changes primarily depends on their perception of how returns have changed.

Our subsequent results focus on the portfolio choice of mean-variance (MV) investors. For MV

investors, the only factor that dampens demand elasticity is risk aversion. Therefore, we do not

consider any portfolio constraints or frictions, such as benchmarking considerations and indexing,

all of which tend to further reduce demand elasticities (e.g., Pavlova and Sikorskaya, 2023; Haddad

et al., 2022). We make this modeling choice not because of realism, but to ensure that our results

are not driven by additional frictions.

Some researchers use alternative models of investor preferences such as constant relative risk

aversion (CRRA) or Epstein-Zin. These models differ from MV by incorporating intertemporal

hedging considerations. Later in Section 4.2, we find that the impact of intertemporal hedging on
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demand elasticity is quantitatively minor. Therefore, for analytical simplicity, we focus on MV in

this section.

2.1 A two-part decomposition of demand elasticity

Definition. Consider an investor who holds𝑄𝑖,𝑡 shares of asset 𝑖 at time 𝑡. The investor’s demand

elasticity 𝜂𝑖,𝑡 for asset 𝑖 is defined as:

𝜂𝑖,𝑡 ≡ −
𝜕 log(𝑄𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)

, (2)

where 𝑃𝑖,𝑡 represents the per-share asset price, and the price change is driven by non-cash flow-

related reasons. For example, an elasticity of 4 means that a 1% drop in price, unrelated to cash

flows, leads to a 4% increase in the demand for shares currently held. It is important to emphasize

that this definition only applies to price movements not driven by cash flows. In most models,

investor demand does not react to price changes purely driven by cash flows.

To express demand elasticity in terms of portfolio weight, 𝑤𝑖,𝑡 , we can write 𝑄𝑖,𝑡 = 𝐴𝑡𝑤𝑖,𝑡/𝑃𝑖,𝑡 ,

where 𝐴𝑡 denotes assets under management (AUM) or the investor’s wealth. Substituting this into

Equation (2) and assuming that 𝐴𝑡 is exogenous,3 we obtain:

𝜂𝑖,𝑡 = −
𝜕 log(𝐴𝑡𝑤𝑖,𝑡/𝑃𝑖,𝑡)

𝜕 log(𝑃𝑖,𝑡)
= 1 − 𝜕 log(𝑤𝑖,𝑡)

𝜕 log(𝑃𝑖,𝑡)
. (3)

3This means that we ignore wealth effects and assume, as in Koĳen and Yogo (2019), that 𝜕 log(𝐴𝑡 )
𝜕 log(𝑃𝑖,𝑡 ) = 0.

Appendix A.2 shows that wealth effects are small for reasonably diversified portfolios.
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Decomposition. We now apply the chain rule to Equation (3) to derive our decomposition based

on the effect of changes in expected return 𝜇𝑖,𝑡 :

𝜂𝑖,𝑡 ≈ 1 + 𝜕 log(𝑤𝑖,𝑡)
𝜕𝜇𝑖,𝑡︸       ︷︷       ︸

weight responsiveness

×
(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
︸            ︷︷            ︸
price pass-through

. (4)

The first term, 𝜕 log(𝑤𝑖,𝑡 )
𝜕𝜇𝑖,𝑡

, which we refer to as “weight responsiveness,” describes how responsive

the investor’s portfolio weights are to expected returns. The second term, − 𝜕𝜇𝑖,𝑡
𝜕 log(𝑃𝑖,𝑡 ) , which we refer

to as “price pass-through,” measures the fraction of price movements that are “passed through” to

changes in expected return. For instance, if a 1% decrease in price leads to a 0.3% increase in

next-period expected return, the price pass-through would be 0.3.

The equality in Equation (4) is approximate because our decomposition only considers the

demand response to changes in expected returns. Of course, price changes can also lead to changes

in other factors, such as the asset’s return volatility or its consumption-hedging properties, all of

which may also impact demand. However, under reasonable assumptions, as shown in Section 4,

these additional terms are quantitatively small. Therefore, in this section, we focus primarily on

the effects driven by expected returns.

2.2 Weight responsiveness depends on unspanned returns

What determines the two terms in Equation (4)? Price pass-through clearly depends on price

dynamics. If a price movement is expected to largely revert in the next period, the pass-through

will be close to one. However, if the price movement is more persistent, the pass-through will be

lower.

The determinants of weight responsiveness are less clear. In this section, we show that for
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an MV investor, weight responsiveness is inversely proportional to “unspanned return”, which

measures the asset’s distinctiveness.

Portfolio choice problem. We consider a standard portfolio choice problem with constant

absolute risk aversion (CARA) utility and multivariate normally distributed returns, which results

in mean-variance (MV) portfolio choice. Suppose there are 𝑁 risky assets and a risk-free asset

with an exogenously given gross return 𝑅 𝑓 ,𝑡 . The investor’s optimization problem is:

max
𝑤𝑡

E𝑡
[
− exp{−𝛾𝐴𝑡

(
𝑤′𝑡𝑟𝑡+1 + 𝑅 𝑓 ,𝑡

)
}
]
,

where 𝛾 is the coefficient of absolute risk aversion, 𝑤𝑡 is an 𝑁 dimensional vector of portfolio

weights for risky assets, and 𝑟𝑡 is an 𝑁 dimensional vector of excess returns on the risky assets.

Investor wealth, 𝐴𝑡 , is exogenously given. The first-order condition yields the familiar MV portfolio

weights:

𝑤𝑡 =
1
𝛾𝐴𝑡

Σ−1
𝑡 𝜇𝑡 , (5)

where Σ𝑡 is the 𝑁 × 𝑁 covariance matrix of returns, and 𝜇𝑡 is the 𝑁 dimensional vector of expected

excess returns.

Unspanned return determines weight responsiveness. To determine asset-level weight respon-

siveness, we need to study how the portfolio weight in asset 𝑖, 𝑤𝑖,𝑡 , responds to 𝜇𝑖,𝑡 . For this, Stevens

(1998) suggests that the key is isolating the component of asset 𝑖 that is not spanned by other assets.

Specifically, consider the regression of asset 𝑖 excess return, 𝑟𝑖,𝑡+1, on the 𝑁 − 1 dimensional vector
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of excess returns of all other assets, 𝑟−𝑖,𝑡+1:

𝑟𝑖,𝑡+1 = 𝜇𝑖,unspanned,𝑡︸        ︷︷        ︸
non-replicable part

+ 𝛽′−𝑖,𝑡𝑟−𝑖,𝑡+1︸      ︷︷      ︸
replicating portfolio

+ 𝜖𝑖,𝑡+1, (6)

where 𝛽−𝑖,𝑡 is the (𝑁−1) dimensional vector of conditional slope coefficients, 𝜖𝑖,𝑡+1 is the mean-zero

error term, and 𝜇𝑖,unspanned,𝑡 is the conditional intercept term—representing the component of asset

𝑖’s return that cannot be replicated by other assets. Taking time-𝑡 conditional expectation of both

sides yields

𝜇𝑖,𝑡 = 𝜇𝑖,unspanned,𝑡 + 𝛽′−𝑖,𝑡𝜇−𝑖,𝑡︸    ︷︷    ︸
spanned returns

, (7)

where 𝜇𝑖,𝑡 and 𝜇−𝑖,𝑡 are the conditional expectations of 𝑟𝑖,𝑡+1 and 𝑟−𝑖,𝑡+1, respectively.

Our key result, Proposition 1, shows that the weight responsiveness for asset 𝑖 is equal to the

reciprocal of 𝜇𝑖,unspanned,𝑡 .4

Proposition 1. If the investor forms MV efficient portfolios, then for all assets with positive portfolio

weights (𝑤𝑖,𝑡 > 0), weight responsiveness is given by

𝜕 log(𝑤𝑖,𝑡)
𝜕𝜇𝑖,𝑡

=
1

𝜇𝑖,unspanned,𝑡
. (8)

Thus, the demand elasticity takes the following form:

𝜂𝑖,𝑡 = 1 + 1
𝜇𝑖,unspanned,𝑡︸        ︷︷        ︸

weight responsiveness

×
(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
︸            ︷︷            ︸
price pass-through

. (9)

4In Appendix D, we use a two-asset example to illustrate why unspanned returns—which capture the degree of
substitutability between assets—matter for asset-level demand elasticity for an MV investor.
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Proof. See Appendix A.1.

Equation (9) follows directly from Equations (4) and (8). In essence, Equation (8) shows that

the sensitivity of an investor’s portfolio to changes in expected return is inversely proportional to

the asset’s unspanned return. Therefore, investor demand is more inelastic for assets that are more

distinctive and have larger unspanned returns.

Where does Equation (8) come from? In the proof of Proposition 1, we show that MV demand

for asset 𝑖 can be written as:

𝑤𝑖,𝑡 =
1
𝛾𝐴𝑡

(
𝜇𝑖,unspanned,𝑡

𝜎2
𝑖,unspanned,𝑡

)
, (10)

where the numerator is the unspanned return of asset 𝑖, and the denominator, 𝜎2
𝑖,unspanned,𝑡 , is the

conditional variance of 𝜖𝑖,𝑡+1 in Equation (6), which we refer to the “unspanned variance” of asset

𝑖. This expression is similar to the result one would obtain if there were only a single risky asset

in the economy, where demand is linear in the expected return divided by the return variance. The

only difference is that, instead of standalone expected return and variance of asset 𝑖, Equation (10)

involves the unspanned return and variance of asset 𝑖, which arises from considering the impact of

other assets on portfolio choice.

If we assume that the unspanned variance,𝜎2
𝑖,unspanned,𝑡 , remains constant, applying the logarithm

and then taking the derivative with respect to 𝜇𝑖,𝑡 yields Equation (8). Later, we relax this assumption

and also consider changes in unspanned variance and betas (𝛽−𝑖,𝑡) in Section 4.1, finding that the

difference is quantitatively small.

Intuition and clarifications. What does unspanned return, 𝜇𝑖,unspanned,𝑡 , measure? We propose

that it captures the distinctiveness, or non-substitutability, of asset 𝑖. The higher 𝜇𝑖,unspanned,𝑡 , the

less replicable the asset is by other assets, making it a more important position in the MV investor’s

portfolio.
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As an intuitive example, consider an investor who believes that Tesla stock has high expected

returns. What is the investor’s demand elasticity on Tesla? Our result suggests that it depends on

whether the investor views Tesla as a unique investment opportunity. If the investor believes that a

significant portion of Tesla’s high expected returns is specific to Tesla and cannot be achieved using

other assets, her demand elasticity for Tesla will be low. Conversely, if the investor thinks Tesla’s

returns can be replicated by a combination of other stocks, her demand elasticity will be high.

It is important to clarify that unspanned return is not the same as asset pricing alpha in factor

models such as the CAPM. In the CAPM, the explanatory variable—the market portfolio—is

constructed using all assets, while in Equation (7), asset 𝑖 itself is excluded from the explanatory

variables. Therefore, even in a world where the CAPM holds, 𝜇𝑖,unspanned,𝑡 can be non-zero, albeit

small, for all assets, despite the CAPM alpha being zero by definition. Section 5 further explains

how to interpret unspanned returns within the traditional framework of factor models.

2.3 Why do classical models predict extremely high demand elasticities?

In this section, we offer a benchmark calibration that shows how classical assumptions yield

demand elasticities of approximately 7,000. While this is a specific calibration, it reflects the key

features of many classical models. Gabaix and Koĳen (2022) reach a similar conclusion, showing

that asset-level demand elasticities in classical pricing models are on the order of 5,000 or higher.

Similarly, Petajisto (2009) finds a demand elasticity exceeding 6,000.

Our goal is to explain why these models predict high demand elasticities. Using our

decomposition framework, we show that this is because classical models assume high price pass-

throughs and, more importantly, low unspanned returns. Below, we outline the steps in our

calibration.

1. Price pass-through. Many asset pricing models used for studying demand elasticities are
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static, assuming that payoffs are realized in the next period. As a consequence, they assume

that all current period price movements must revert, leading to a price pass-through of one

over a period.5 In the monthly calibration below, we follow this practice and assume that

all price movements revert within one year, implying a monthly pass-through of 1/12 (e.g.,

Petajisto, 2009).

2. Unspanned returns. More importantly, classical models often implicitly assume that

unspanned returns are very small. To provide a calibration, we solve for the unspanned

return of an asset 𝑖:

𝜇𝑖,𝑢𝑛𝑠𝑝𝑎𝑛𝑛𝑒𝑑,𝑡 =

(
𝜄′Σ−1

𝑡 𝜇𝑡

)
𝜎2
𝑖,unspanned,𝑡

(
𝑤𝑖,𝑡∑𝑁
𝑗=1 𝑤 𝑗 ,𝑡

)
, (11)

where 𝜄 is a column vector of ones. The expression above is derived by solving Equation (10)

for the unspanned return and using Equation (5) to substitute out 𝛾𝐴𝑡 .

We use Equation (11) to calibrate for unspanned returns using values that are often assumed

for U.S. stocks (e.g. Petajisto, 2009). Suppose there are 𝑁 = 1,000 stocks, each with a monthly

return volatility of 10% and a monthly expected excess return of 0.5%. Further, assume that

all pairwise correlations are 0.3. Under these assumptions, the 𝑅2 from regressing the return

of asset 𝑖 on all other assets, as in Equation (6), is approximately 30%, leading to an unspanned

volatility of 𝜎𝑖,𝑡,𝜖 =
√

0.7 × 0.12 ≈ 8.4%. The average portfolio weight, 𝑤𝑖,𝑡/(
∑𝑁
𝑗=1 𝑤 𝑗 ,𝑡), is

5Even in dynamic settings, if one assumes that future prices are fixed—making the current period price effect
fully temporary—then pass-through is also approximately one. To see this, consider the Campbell and Shiller (1988)
decomposition:

log(𝑅𝑖,𝑡+1) ≈ 𝜅𝑖,𝑡 + 𝛿 log(𝐷𝑖,𝑡+1) + (1 − 𝛿) log(𝑃𝑖,𝑡+1) − log(𝑃𝑖,𝑡 ),

where 𝑅𝑖,𝑡+1 is the gross return on the asset, 𝜅𝑖,𝑡 is the first order approximation constant, and 𝛿 is the dividend to
price-plus-dividend ratio. If 𝑃𝑖,𝑡+1 and 𝐷𝑖,𝑡+1 are fixed, then the derivative with respect to the log-price (log(𝑃𝑖,𝑡 ))
must be -1, implying a pass-through is 1.
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simply 1/𝑁 = 1/1,000. The first scalar in Equation (11) is 𝜄′Σ−1
𝑡 𝜇𝑡 ≈ 1.66. Combining these

values gives an unspanned return for this asset of 0.0012% (≈ 1.66 × 0.0842 × (1/1,000)).6

Unspanned returns of 0.0012% indicate that stocks are highly substitutable. For comparison,

the monthly average excess return of stocks is on the order of 0.5%, which is two orders of

magnitude higher. Therefore, such classical calibrations assume that only a tiny fraction of

expected return is unique to stock 𝑖 itself, while the vast majority of its expected return can

be replicated using a linear combination of other stocks (e.g., Scholes, 1972).

We are now ready to calibrate the implied demand elasticity of classical models. Substituting the

calibrations of price pass-throughs and unspanned returns into our decomposition in Equation (4)

yields a demand elasticity of 1 + 1/12
0.0012% ≈ 7,000. Naturally, demand elasticity depends on the

model parameters, but experimenting with a range of parameter values typically produces an average

elasticity across assets in the thousands. As mentioned earlier, our conclusion is consistent with

Petajisto (2009) and Gabaix and Koĳen (2022).

3 Empirical Estimates

In Section 2, we showed that demand elasticities for MV investors are determined by price

pass-throughs and unspanned returns. Notably, both terms depend solely on the properties of stock

returns. We empirically estimate these two terms in this section.

It is important to clarify that we do not claim our estimates are perfectly precise. Rather, they

provide insights into reasonable ranges for price pass-throughs and unspanned returns. However,

across various estimation approaches, the estimates differ from those assumed in classical models.

6For simplicity, this calibration assumes all stocks are symmetric. Appendix B.2 shows that calibrations with
heterogeneous stocks yield similar results.
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Variable 𝑁 Mean SD 5% 25% 50% 75% 95%

(1) (2) (3) (4) (5) (6) (7) (8)
Market cap ($ bn) 1,633 4.58 13.96 0.30 0.51 1.08 3.02 17.65
Monthly excess return 1,633 0.72% 9.77% -13.83% -4.68% 0.38% 5.67% 16.24%
Lagged monthly return 1,633 1.49% 9.88% -12.82% -4.16% 0.86% 6.31% 17.69%
log(𝐵/𝑀) 1,633 -0.59 0.82 -2.02 -1.06 -0.52 -0.06 0.63
Asset growth 1,633 0.13 0.19 -0.09 0.03 0.09 0.19 0.52
Dividend/book 1,633 2.91% 2.84% 0.00% 0.74% 2.11% 4.30% 9.36%
Profitability 1,633 0.24 0.22 -0.03 0.15 0.24 0.34 0.59

Table 1. Summary statistics
The sample consists of CRSP monthly U.S. stocks from 1970 to 2019. We excluded stocks smaller than the monthly
NYSE 20% percentiles. The table reports the average distributions of variables across months. The first column reports
the average number of stocks in each month. The next two columns report the mean and the standard deviation, and
the last five columns report percentiles.

Incorporating these estimates explains a substantial portion of the discrepancy between theoretical

predictions and empirical estimates of demand elasticities.

3.1 Data

We use the standard CRSP-Compustat merged dataset for returns and basic stock characteristics,

with the sample spanning from 1970 through 2019. To prevent our results from being driven by

microcap stocks, we exclude stocks with market capitalization lower than the 20th percentile of

NYSE stocks each month. Quarterly and annual returns are calculated by compounding monthly

returns. We obtain risk-free rate and factor returns from Ken French’s website. The return-

predicting stock characteristics data is from Freyberger, Neuhierl, and Weber (2020). Table 1

reports the summary statistics, with an average of 1,633 stocks included per month.

3.2 Estimates of price pass-through

As discussed in Section 2.1, price pass-through (−𝜕𝜇𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡)) measures the extent to

which price variation, unrelated to cash flows, forecasts next-period expected returns. The main
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empirical challenge in estimating this term is isolating the price variation that is unrelated to cash

flows. To address this, we use the “price wedge” measure from van Binsbergen et al. (2023), which

is specifically designed for this purpose.

The price wedge measure. We briefly discuss the methodology in van Binsbergen et al. (2023)

and refer readers to their paper for details. For each stock, their goal is to compute its “fundamental

price”, �̃�𝑖,𝑡 , via a present-value framework:

�̃�𝑖,𝑡 = 𝐸𝑡

[
𝐽∑︁
𝑠=1

𝑚𝑡+𝑠
𝑚𝑡
· 𝐷𝑖,𝑡+𝑠 +

𝑚𝑡+𝐽
𝑚𝑡

𝑃𝑖,𝑡+𝐽

]
,

where 𝑚𝑡 is the stochastic discount factor implied by the CAPM, 𝐷𝑖,𝑡+𝑠 denotes dividend payments

𝑠 periods ahead, 𝐽 = 15 years is the terminal period, and 𝑃𝑖,𝑡+𝐽 is the terminal stock price. van

Binsbergen et al. (2023) define the “price wedge” as:

𝑃𝑊𝑖,𝑡 = log
(
𝑃𝑖,𝑡

�̃�𝑖,𝑡

)
,

where 𝑃𝑖,𝑡 is the actual price of stock 𝑖 at time 𝑡. Thus, for example, a price wedge 𝑃𝑊𝑖,𝑡 = 5%

indicates that the current stock price is 5% higher than the model-implied fundamental value.

Crucial for our analysis, van Binsbergen et al. (2023) estimate price wedges using portfolios

sorted on 57 cross-sectional stock characteristics known to predict returns, and then project these

portfolio-level price wedges onto the stock level. As a result, the price wedges are approximately

equal to the present value of future expected excess returns above that implied by the CAPM. Stocks

with high (low) price wedges are, by construction, those with low (high) subsequent excess returns.

In other words, price wedges are designed to isolate price movements that are unrelated to cash

flows.
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Estimating price pass-through. We estimate price pass-through using Fama-MacBeth regres-

sions:

𝑟𝑖,𝑡+1→𝑡+𝐻 = 𝛼𝐻 − 𝛽𝐻 · log(𝑃𝑖,𝑡/�̃�𝑖,𝑡)︸          ︷︷          ︸
=𝑃𝑊𝑖,𝑡

+𝜖𝑖,𝑡+1→𝑡+𝐻 , (12)

where 𝑟𝑖,𝑡+1→𝑡+𝐻 is the log stock return over months 𝑡 + 1 through 𝑡 + 𝐻. We estimate standard

errors using the Newey-West procedure with 𝐻 lags.

The estimated price pass-through 𝛽𝐻 for horizons 𝐻 = 1, 3, 6, and 12 months are reported in

the first four columns of the first row of Table 2. We find positive price pass-through that increases

with the horizon, although the estimate at 12-month horizon loses statistical significance due to

larger standard errors. To make the estimates comparable across horizons, columns (6) through (9)

report the pass-through per month (𝛽𝐻/𝐻), which turns out to be roughly constant across horizons

at approximately 0.014, with the tightest 95% confidence interval ranging from 0.008 to 0.02.

This estimate implies that if a stock’s price is 1% lower due to cash flow-irrelevant reasons, its

subsequent expected return is higher by 0.014% in the following month.7

Robustness to alternative price variation measures. We also consider alternative measures of

cash flow-unrelated price variation. Bartram and Grinblatt (2018) measure the fundamental value-

justified price �̃�𝑖,𝑡 using “kitchen sink” regressions that incorporate various accounting variables.

We apply their methodology to compute price wedges and report the corresponding price pass-

throughs in the second row of Table 2. The point estimates are all positive but statistically

7The price wedge in van Binsbergen et al. (2023) aggregates price variations associated with many characteristics.
In Appendix B.1, we separate the characteristics into several types and estimate the price pass-throughs associated
with each. The results generally confirm low price pass-through for most types of characteristics.
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insignificant, and the magnitudes are smaller than those associated with the van Binsbergen et al.

(2023) price wedge.8

We also consider two price instruments to isolate cash flow-unrelated price variation. The first

one follows Koĳen and Yogo (2019), who develop an instrument for the market capitalization of

stocks using institutional holdings. We download their data and use their instrument in a two-

step procedure. Specifically, we regress the log of stock market capitalization on the log of their

instrument, and then use the predicted values as the independent variable in the Fama-MacBeth

regression (12) to estimate price pass-through. The results, reported in the third row of Table 2,

indicate a slightly negative price pass-through. In other words, the price variation isolated by the

Koĳen and Yogo (2019) instrument exhibit slight momentum rather than reversals.

The second instrument is the flow-induced trading (FIT) measure in Lou (2012). In short,

FIT captures the mechanical trading responses by mutual funds as they scale up or down existing

holdings in response to fund flows. The resulting FIT variable has been shown to create price

effects that tend to revert over time. In the first stage, we regress the log of stock price on the most

recent four quarterly values of FIT. The second stage Fama-MacBeth results, shown in the last row

of Table 2, indicate a positive pass-through of slightly less than 0.01 per month, though the results

are not statistically significant.

Overall, across four different specifications of cash flow-unrelated price variation, we do not

find very strong price pass-throughs. The highest monthly pass-through, associated with the van

Binsbergen et al. (2023) price wedge measure, is 0.014. This is much lower than typical theoretical

calibrations, such as in Petajisto (2009), which assumes a monthly price pass-through of 1/12

8This is largely expected, as the model in Bartram and Grinblatt (2018) is built to estimate fundamental valuation
and only yields return predictability as a secondary outcome, whereas the price wedges in van Binsbergen et al. (2023)
are directly estimated using characteristics known to predict returns. The degree of return predictability implied in our
price pass-through estimate is consistent with the original findings in Bartram and Grinblatt (2018).
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Independent Estimated coefficient 𝛽𝐻 Obs Implied monthly price pass-through (𝛽𝐻/𝐻)

variable 𝐻 = 1 3 6 12 𝐻 = 1 3 6 12

(1) (2) (3) (4) (5) (6) (7) (8) (9)
van Binsbergen et al. (2023) 0.014∗∗∗ 0.040∗∗∗ 0.079∗∗ 0.157 1,270,646 0.014∗∗∗ 0.013∗∗∗ 0.013∗∗ 0.013
price wedge (0.003) (0.014) (0.038) (0.102) (0.003) (0.005) (0.006) (0.009)

Bartram and Grinblatt (2018) 0.001 0.002 0.003 0.006 782,431 0.001 0.001 0.000 0.000
price wedge (0.001) (0.002) (0.005) (0.012) (0.001) (0.001) (0.001) (0.001)

Koĳen and Yogo (2019)- −0.002∗∗∗ −0.004∗∗∗ −0.009∗∗∗ −0.021∗ 1,519,519 −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.002∗
instrumented log(𝑃𝑖,𝑡) (0.000) (0.002) (0.003) (0.011) (0.000) (0.001) (0.001) (0.001)

FIT-instrumented 0.006 0.020 0.040 0.094 1,443,296 0.006 0.007 0.007 0.008
log(𝑃𝑖,𝑡) (0.005) (0.016) (0.045) (0.084) (0.005) (0.005) (0.008) (0.007)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2. Estimating price pass-through using different measures of cash flow-unrelated price variation.
We estimate price pass-through using Fama-MacBeth regressions:

𝑟𝑖,𝑡+1→𝑡+𝐻 = 𝛼𝐻 − 𝛽𝐻 · log
(
𝑃𝑖,𝑡/�̃�𝑖,𝑡

)
+ 𝜖𝑖,𝑡+1→𝑡+𝐻 ,

where the dependent variable is the log return of stocks from months 𝑡 + 1 to 𝑡 +𝐻. The independent variable captures
cash flow-unrelated price variation as of time 𝑡, where �̃�𝑖,𝑡 is a measure of fundamental valuation, and 𝑃𝑖,𝑡 is the
actual price. In the first two rows, the independent variables are the “price wedge” measures in van Binsbergen et al.
(2023) and Bartram and Grinblatt (2018), respectively. In the last two rows, the independent variables are the log
market capitalization of stocks instrumented by the Koĳen and Yogo (2019) instrument and the flow-induced-trading
(FIT) measure in Lou (2012), respectively. Columns (1) through (4) report the estimated regression coefficients 𝛽𝐻 for
horizons𝐻 = 1, 3, 6, and 12 months. Column (5) reports the number of stock-months used in each regression. Columns
(6) through (9) report 𝛽𝐻/𝐻, which can be interpreted as the monthly price pass-through estimate. Throughout, standard
errors of the Fama-MacBeth forecasting coefficients are calculated using the Newey-West procedure, with the number
of lags equal to the forecasting horizon 𝐻.

(annual pass-through of 1). Therefore, incorporating empirically estimated price pass-through

would reduce the predicted demand elasticity by a factor of approximately 1/12
0.014 ≈ 6.

3.3 Estimates of unspanned returns

We now estimate the second term—unspanned returns—in our decomposition of demand

elasticity. Recall that, for each asset 𝑖, its unspanned return is defined as the component of its

expected return that is not spanned by other assets in a linear regression. To compute this, we need

to estimate both the vector of expected excess stock returns 𝜇𝑡 and the covariance matrix, Σ𝑡 . In this
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section, we present one set of estimates for brevity, but Section 5.2 shows that our main conclusion

is robust to alternative estimation approaches.

To estimate 𝜇𝑡 , we follow a long literature on the cross-section of stock returns (e.g., Lewellen,

2015) and predict expected returns using stock characteristics in Fama-MacBeth regressions.

We estimate a full-sample Fama-MacBeth regression for simplicity, but the results are similar

when using rolling window regressions. The characteristics include beta, size, book-to-market,

investment, profitability, momentum, and past one-month returns. As the characteristics vary over

time, so do the return forecasts.

To estimate the time-varying covariance matrix Σ𝑡 , we follow Lopez-Lira and Roussanov (2023)

by using a one-year lag of daily returns, and then slightly shrink the sample covariance matrix using

the methodology in Ledoit and Wolf (2004).9 Specifically, we use Σ𝑡 = (1 − ℎ)Σ̂𝑡 + ℎΣ𝑡 , where Σ̂𝑡

is the sample covariance matrix estimate, Σ𝑡 is the shrinkage target, and ℎ is the scalar shrinkage

weight. The shrinkage target Σ𝑡 has the average stock-specific return variance along the diagonal

( 1
𝑁

∑𝑁
𝑖=1 Σ̂𝑖,𝑖,𝑡) and the average covariance on the off-diagonal ( 1

𝑁 (𝑁−1)
∑𝑁
𝑖=1

∑
𝑗≠𝑖 Σ̂𝑖, 𝑗 ,𝑡). We use

shrinkage weight ℎ = 0.05 but the results are not sensitive to reasonable variations.

Implied unspanned returns. We then use our estimates of 𝜇𝑡 and Σ𝑡 to compute the implied

spanned and unspanned returns (𝛽′−𝑖,𝑡𝜇−𝑖,𝑡 and 𝜇𝑖,𝑡 − 𝛽′−𝑖,𝑡𝜇−𝑖,𝑡).10 We compute these for each stock-

month and graphically illustrate the results in Figure 2. We sort the sample by each stock’s total

expected excess return, 𝜇𝑖,𝑡 , into 100 bins and plot the average spanned component 𝛽′−𝑖,𝑡𝜇−𝑖,𝑡 on

the 𝑦-axis. The gap between the 45-degree black dotted line and the red line labeled “Estimated”

9There are two reasons for shrinking the covariance matrix. First, because we have more stocks than the number
of days in a year, the sample covariance matrix is not full-rank. This poses a problem, as computing unspanned returns
and forming mean-variance efficient portfolios requires inverting the covariance matrix. Shrinkage ensures that the
matrix is full-rank. Second, and more importantly, it is well-known that using the sample covariance matrix with
a large number of assets leads to poorly conditioned portfolio choices (e.g., Ledoit and Wolf, 2004; Brandt, 2010).
Shrinkage is a common regularization technique that produces implementable portfolios.

10The proof of Proposition 1 in Appendix A.1 shows how to calculate unspanned returns from 𝜇𝑡 and Σ𝑡 .
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Figure 2. Decomposing spanned and unspanned returns
This figure examines the fraction of expected excess return that is spanned by other stocks. As described in Section 3.2,
we estimate expected excess returns 𝜇𝑡 using stock characteristics-based Fama-MacBeth predictions. We estimate the
covariance matrix Σ𝑡 using daily returns in the previous 12 months, with a minor Ledoit and Wolf (2004) shrinkage
to ensure positive definiteness (shrinkage parameter = 0.05). We sort the full sample into 100 bins based on each
stock’s estimated excess return 𝜇𝑖,𝑡 and plot the average spanned component (𝛽′−𝑖𝜇−𝑖,𝑡 ) on the vertical axis. The red
line represents the spanned returns estimated from data and, for comparison, the blue line shows the unspanned returns
assumed by classical theory.

represents the asset’s unspanned return. When the black dotted line is above (below) the red,

the unspanned return is positive (negative). For example, in the top bin, the monthly excess

return is 2.10%, while the spanned component is 1.67%, resulting in an unspanned return of

2.1% − 1.67% = 0.43%.

To highlight the difference with classical models, we also plot the spanning implied by the

model of Petajisto (2009) in Figure 2, shown in teal color. In that model, which is representative

of classical models, approximately 99.8% of all returns are spanned, meaning the line essentially

overlaps with the 45-degree line.

Overall, our empirical results indicate that while a substantial fraction of expected return is
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spanned, the spanning is far from complete. For stocks with positive MV portfolio weights, we

calculate the average monthly unspanned return to be 0.23%.11 In Table 3, we show that our

finding is robust to using alternative Ledoit and Wolf (2004) shrinkage parameters for estimating

the covariance matrix or simply using the Fama-French-Carhart (FFC) four-factor model to forecast

returns. When we estimate the Fama-MacBeth regressions using 10-year rolling windows instead

of the full sample, unspanned returns increase slightly. Later, Section 5.2 shows that the conclusion

of non-trivial unspanned returns holds robustly across several alternative factor pricing models that

capture a wide range of characteristics-implied return predictability.

In columns (5) through (8) of Table 3, we report the realized annual Sharpe ratios of the MV

portfolios that trade on these return predictors. In our implementation, we scale the portfolio

weights to have the same L1 norm across all periods. When using all six characteristics mentioned

in Section 3.3 to forecast returns, these strategies achieve Sharpe ratios of around 1.2 to 1.4 when

expected returns are estimated using the full sample, and around 1.1 to 1.3 when estimated using

rolling windows, which is a more realistic approach. The Sharpe ratio declines to a range of 0.6 to

0.7 when only using the characteristics used to construct the FFC four factors. These results are

comparable to, or lower than, those obtained in other academic studies that use stock characteristics

to predict returns (e.g., Kelly et al., 2019; Kim, Korajczyk, and Neuhierl, 2021).

3.4 Demand elasticity implied by empirical estimates

We now show that incorporating empirical estimates of price pass-throughs and unspanned

returns significantly reduce the demand elasticity prediction. This process is visually shown in the

waterfall graphic in Figure 1.

11Since demand elasticities are computed using logs, they are only well-defined for assets with positive portfolio
weights. See Appendix C.1 for a discussion on extending this to cases with negative portfolio weights.
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Monthly unspanned return Sharpe ratio

Expected return All characteristics FFC All characteristics FFC

Full sample Rolling Full sample Rolling Full sample Rolling Full sample Rolling

Shrinkage (1) (2) (3) (4) (5) (6) (7) (8)

0.010 0.233% 0.285% 0.227% 0.265% 1.261 1.152 0.632 0.698
0.025 0.233% 0.285% 0.227% 0.265% 1.272 1.161 0.634 0.700
0.050 0.233% 0.284% 0.227% 0.265% 1.292 1.175 0.638 0.703
0.100 0.232% 0.283% 0.226% 0.264% 1.332 1.205 0.645 0.708
0.150 0.231% 0.282% 0.225% 0.263% 1.374 1.237 0.652 0.714
0.200 0.230% 0.281% 0.225% 0.262% 1.418 1.269 0.660 0.720

Table 3. Unspanned return and Sharpe ratio
This table reports the unspanned return and annual portfolio Sharpe ratio for different mean-variance portfolio
implementations. We estimate the return covariance matrix using one-year lag of daily returns and apply Ledoit
and Wolf (2004) shrinkage, with results for different shrinkage parameters presented in different rows. Columns
(1) through (4) report the average monthly unspanned returns of stocks with positive portfolio weights. To estimate
expected returns, we use Fama-MacBeth regressions to predict stock returns using either a larger set of characteristics
(beta, size, book-to-market, profitability, investment, momentum, reversal) in columns (1) through (2) or just the Fama-
French-Carhart (FFC) four characteristics in columns (3) through (4). Columns (5) through (8) report the resulting
portfolio-level annual Sharpe ratios. In forming the mean-variance efficient portfolios over time, we scaled the portfolio
so that the L1 norm of portfolio weights is equal through all time periods.

At the left of the figure, we start from the classical calibration in Section 2.3, which yields a

demand elasticity of approximately 7,000. First, we incorporate our price pass-through estimate

into the decomposition (Equation 4), lowering demand elasticity to approximately 1,200 (≈ 1 +

0.014/0.000012), as illustrated by the second bar in Figure 1. Next, we apply our empirical estimate

of unspanned returns of 0.23%, which is significantly larger than the 0.0012% assumed in classical

models. This further reduces demand elasticity to approximately 7 (≈ 1 + 0.014 / 0.0023), as

illustrated by the next drop in the waterfall chart. While using estimated pass-throughs reduces

demand elasticity by a factor of approximately 6, using empirical estimates of unspanned returns

decreases it by another two orders of magnitude.

Our primary specification in the paper studies MV investors who rebalance portfolios monthly.

However, some investors in practice rebalance less frequently and have longer investment horizons.

Appendix C.3 shows that the demand elasticity predictions do not change significantly with
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reasonable variations in rebalancing frequency. While longer investment horizons necessarily

mean higher price pass-throughs, they are also associated with larger unspanned returns, and these

two effects roughly offset each other in the demand elasticity formula of Equation (9).

Negative or small portfolio weights. Up to this point, we have followed Koĳen and Yogo

(2019) to only compute demand elasticities for stocks with positive portfolio weights, as demand

elasticities—defined using the log of holdings—are only defined for stocks with positive holdings.

However, an MV investor would naturally hold short positions. It would be desirable to also

consider these negative positions.

In Appendix C.1, we use a generalized definition of demand elasticity that includes short

positions. Under this generalized definition, we show that our two-component decomposition

still holds if we replace unspanned returns with their absolute value in Equation (9). Since the

distribution of the absolute value of unspanned returns is roughly symmetric between positive and

negative holdings, as shown in Figure 2, the (generalized) demand elasticities for short positions

are similar to those for long positions.

So far, we use the same average unspanned returns across stocks for simplicity, and find that the

demand elasticity is low. A discerning reader may note that stocks have heterogeneous unspanned

returns, and those with near-zero unspanned returns would exhibit much higher demand elasticities

(Equation (9)). That is true, but since the MV investor’s portfolio weight is proportional to

unspanned returns (Equation (10)), the investor would hold negligible positions in those stocks.

In Appendix C.2, we show that positions with very small portfolio weights have small impact on

aggregate demand elasticities. When considering more economically relevant measures, such as

the portfolio size-weighted average demand elasticity, we still obtain an estimate of approximately

7, even with heterogeneous unspanned returns across stocks.
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Understanding low price pass-throughs and high unspanned returns. As detailed in Ap-

pendix A.3, low price pass-throughs suggest that the variation in expected returns is relatively

persistent. While we do not adopt a specific stance on the microfoundations underlying this

persistence, it is a natural prediction of many dynamic asset pricing models. It is important to

recognize that stocks are long-lived assets, and the use of a one-period model, such as in Petajisto

(2009), inevitably leads to the assumption that price pass-through equals one.

What does it mean for unspanned returns to be high? Section 5 provides additional

interpretations of this finding. In the context of factor models, we show that high unspanned returns

are linked to the presence of many “weak factors”, defined as factors that explain subsets of stocks

but not necessarily the broad cross-section (Lettau and Pelger, 2020; Lopez-Lira and Roussanov,

2023). Empirically, we also show that several modern factor pricing models that incorporate a

multitude of stock characteristics (and thus exhibit weak factors) predict high unspanned returns.

Therefore, our finding of high unspanned returns is not specific to the model used in this section.

4 Additional Considerations

Our analysis of demand elasticity so far has focused on how MV investor demand responds to

changes in expected returns. In principle, price movements can also lead to changes in volatilities

and covariances, which in turn affect demand. Additionally, long-horizon investors are concerned

about hedging future consumption risk. We study these effects in Sections 4.1 and 4.2, and find

that their impact is small under reasonable calibrations.

As shown by the estimates in Section 3, incorporating empirically estimated properties of

stock returns reduces demand elasticity predictions to around 7. While this is significantly lower

than the classical theoretical calibrations, which are in the thousands, it remains higher than most
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empirical estimates, which are typically around one. What accounts for the remaining gap? For

completeness, Section 4.3 suggests that introducing transaction costs is one plausible explanation.

Other possibilities exist, and we do not take a definitive stance on the correct mechanism.

4.1 Volatility and correlation effects are small

In Section 2, we assume that the covariance matrix is fixed. We relax this assumption here.

When the price of asset 𝑖 changes, it may also affect volatilities and correlations. Considering these

additional adjustments results in the inclusion of two additional terms in our demand elasticity

decomposition, as shown in Proposition 2. The proof is provided in Appendix A.1.

Proposition 2. The elasticity of MV investor demand can be decomposed into three parts:

𝜂𝑖,𝑡 = 1 + 1
𝜇𝑖,unspanned,𝑡

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
︸                                   ︷︷                                   ︸

main component

+
(

1
𝜎2
𝑖,unspanned,𝑡

)
𝜕𝜎2

𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                            ︷︷                            ︸
volatility component

+ 1
𝜇𝑖,unspanned,𝑡

𝜇′−𝑖,𝑡
𝜕𝛽−𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
−

(
1

𝜎2
𝑖,unspanned,𝑡

)
𝜕𝜎2
−𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                                                                      ︷︷                                                                      ︸
correlation component

.(13)

where 𝜕𝛽−𝑖,𝑡
𝜕 log(𝑃𝑖,𝑡 ) is an 𝑁 − 1 dimensional vector and the scalar 𝜎2

−𝑖,𝑡 = Var(𝛽′−𝑖,𝑡𝑟−𝑖,𝑡+1) is the

conditional variance of the replicating portfolio of asset 𝑖.

In Equation (13), the first term is the same as in Proposition 1. The second term accounts for

the effect of prices on the return volatility of asset 𝑖. The third term considers the effect on 𝛽−𝑖,𝑡 ,

the loading of asset 𝑖 on other assets. The variance of the replicating portfolio, 𝜎2
−𝑖,𝑡 , is included

because it is influenced by 𝛽−𝑖,𝑡 , as 𝜎2
−𝑖,𝑡 = Var𝑡 (𝛽′−𝑖,𝑡𝑟−𝑖,𝑡+1) = 𝛽′−𝑖,𝑡Σ−𝑖,−𝑖,𝑡𝛽−𝑖,𝑡 .
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How large are these two additional terms? As discussed below, we estimate that incorporating

these two effects changes the demand elasticity prediction by−2.2 and+1.4, respectively. Therefore,

these effects are quantitatively small in explaining the substantial gap between theoretical and

empirical estimates of demand elasticities, which is the central research question of this paper.

The volatility component. Accounting for volatility further decreases demand elasticity. Since

Black (1976), it has been well-known that asset return volatility changes negatively with prices,

a phenomenon often referred to as the “leverage effect.” In Appendix B.3, consistent with the

literature, we find that
𝜕𝜎2

𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡 ) is approximately −0.06 for monthly return variance. Meanwhile,

the average monthly 𝜎2
𝑖,unspanned,𝑡 is approximately 0.027. Thus, this “volatility component” of

demand elasticity is approximately 1
0.027 × (−0.06) ≈ −2.2. This, considering the volatility effect

slightly lowers the demand elasticity prediction.

The correlation component. The correlation effect is analyzed by Davis (2024), who specifies a

model where the stock covariance matrix contains both systematic and idiosyncratic components,

with the systematic components parameterized by stock characteristics. When a stock’s price

changes, it affect the price-related characteristics such as the book-to-market ratio, thereby

influencing the systematic component of the covariance matrix.12 Davis (2024) empirically

estimates the model’s coefficients and finds that accounting for the correlation effect increases

MV investor demand elasticity by approximately 1.4. Further details are provided in Appendix B.3.

12For example, if a stock’s price declines, its book-to-market ratio increases, leading the stock to comove more with
value stocks.
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4.2 Consumption hedging effects are small

While we focus on MV demand, many researchers use demand derived from CRRA or Epstein-

Zin (EZ) utility functions to incorporate wealth effects and intertemporal hedging considerations.

We find these considerations have only minor effects on demand elasticities. This is intuitive, as

we are examining the demand elasticity of an individual asset. As long as the investor holds a

reasonably large number of assets, the relationship between the price of a single asset and future

consumption should not be too large.

We follow Campbell, Chan, and Viceira (2003) to study EZ multivariate demand for 𝑁 risky

assets. Let 𝑦𝑡 denote the 𝑁 dimensional vector of log asset returns minus the log risk-free return.

After log-linearization, the authors demonstrate that portfolio weights can be approximated by

𝑤𝑡 =
1
�̃�
Σ̃−1
𝑡 �̃�𝑡 −

𝜃

𝜓�̃�
Σ̃−1
𝑡 𝜎𝑐−𝑤,𝑡 , (14)

where �̃�𝑡 = E𝑡 [𝑦𝑡+1] + 1
2 �̃�

2
𝑡 , Σ̃𝑡 is the 𝑁 × 𝑁 conditional covariance matrix of 𝑦𝑡+1, �̃�2

𝑡 is the

𝑁 dimensional vector containing the diagonal elements of Σ̃𝑡 , and 𝜎𝑐−𝑤,𝑡 is the 𝑁 dimensional

vector of the conditional covariance between the log consumption-to-wealth ratio and 𝑦𝑡+1.13 The

preference parameters are as follows: �̃� > 0 is the relative risk aversion coefficient, 𝜓 > 0 is the

elasticity of intertemporal substitution, and 𝜃 ≡ (1 − �̃�)/(1 − 𝜓−1). Note that CRRA is a special

case of EZ with 𝜃
𝜓�̃�

= 1.

In Equation (14), the first term is identical to MV demand, aside from the quantitatively minor

difference between using log returns versus simple returns (i.e., Σ̃𝑡 vs. Σ𝑡). The second term

13See equation (20) in Campbell et al. (2003). Their expression is more general and includes additional terms, as
they consider 𝑦𝑡 as the log return relative to a benchmark with possible additional covariance terms. In our case, the
benchmark is the risk-free rate which simplifies the expression by omitting those extra terms.
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introduces a new component that captures consumption-hedging considerations, which leads to an

additional term in demand elasticity in Proposition 3 below. The proof is given in Appendix A.1.

Proposition 3. The elasticity of demand for an EZ investor is given by:

𝜂𝑖,𝑡 = 1 + 1
𝜇𝑖,unspanned,𝑡

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
︸                              ︷︷                              ︸

main component

+ 1
𝜇𝑖,unspanned,𝑡

· 𝜃
𝜓
· 𝜕𝜎𝑖,𝑐−𝑤,𝑡
𝜕 log(𝑃𝑖,𝑡)︸                                ︷︷                                ︸

consumption-hedging component

(15)

where 𝜎𝑖,𝑐−𝑤,𝑡 is the covariance between asset 𝑖 return and the log consumption-to-wealth ratio.

If assets have stable covariance with the consumption-to-wealth ratio, then the consumption

hedging component would be zero. It can only play a role if the covariance varies with prices.

To assess the significance of the component, we provide a calibration, with details provided in

Appendix B.4. We find the effect to be quantitatively small. Specifically, we aim to calculate the

sensitivity of E𝑡 [𝑟𝑢𝑛𝑒𝑥𝑡+1 cay𝑡+1] to price changes, where 𝑟𝑢𝑛𝑒𝑥
𝑡+1 ≡ 𝑟𝑡+1 − E𝑡 [𝑟𝑡+1] and cay𝑡+1 represents

the consumption-to-wealth ratio log deviations from Lettau and Ludvigson (2001). Since the cay

data is available quarterly, we use quarterly returns. To approximate 𝑟𝑢𝑛𝑒𝑥
𝑡+1 , we take the residuals

from a regression of quarterly returns on the van Binsbergen et al. (2023) price wedge used

earlier, including stock fixed effects. We then regress 𝑟𝑢𝑛𝑒𝑥
𝑡+1 · cay𝑡+1 on the van Binsbergen et al.

(2023) price instrument, again including stock fixed effects, which produces a slope coefficient of

−0.0005. Standard errors are double-clustered at the stock and quarter level, yielding a standard

error of 0.0004 (Table B.3 in the appendix). This indicates the hedging component of demand

elasticity is not statistically different from zero. When translated to a monthly level, our estimate

indicates that 𝜕𝜎𝑖,𝑐−𝑤,𝑡

𝜕 log(𝑃𝑖,𝑡 ) is around −0.00017 (≈ −0.0005/3), which is two orders of magnitude

smaller than our pass-through estimates of 0.014. This suggests that the EZ hedging component

affects demand elasticity by about 1% of its total value, according to the point estimate.
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4.3 Transaction costs

In Section 3, we show that empirically estimated models of stock returns reduce MV demand

elasticity to around 7. While this is significantly lower than the theoretical calibrations in the

thousands, it remains higher than empirical estimates. For instance, Koĳen, Richmond, and

Yogo (2024) estimate a demand elasticity of about 0.5 for the hedge fund sector. To address this

“remaining gap,” we explore one potential factor: transaction costs, which can significantly lower

elasticity. However, we acknowledge that many alternative mechanisms may be simultaneously at

play, and we do not take a stance on which is the most relevant.14

In this section, we demonstrate that applying cost optimization to MV demand, following the

approach in Gârleanu and Pedersen (2013), can reduce demand elasticity from 7 to levels consistent

with empirical estimates. We explain the intuition behind the optimizer, present a simple equation

for cost-optimized elasticity, and provide a rough calibration suggesting that cost optimization may

bring elasticity in line with the empirical estimates. Further details are provided in Appendix B.5.

In the cost optimization model of Gârleanu and Pedersen (2013), the optimized portfolio

weights, 𝑤∗
𝑖,𝑡

, are a convex combination of the passively adjusted previous weights and an “aim”

portfolio, aim𝑖,𝑡 , weighted by 𝑠aim ∈ [0,1]. A higher 𝑠aim indicates that the portfolio is weighted

more heavily toward the aim portfolio and puts lower weights on the passive portfolio. As shown

in Equation (B.5) in the appendix, the aim portfolio averages current and expected future non-

cost-optimized weights, E𝑡 [𝑤𝑡+𝜏], using geometric weights based on 𝜌aim ∈ [0,1]. The future

weights, E𝑡 [𝑤𝑡+𝜏], have their own price elasticity that follows an AR(1) process with the parameter

𝜌𝜂 (see Equation (B.8) in the appendix). Intuitively, a small 𝑠aim leads to a predominantly passive,

14We provide a possible mechanism here for completeness, though readers less focused on this detail can proceed
without significant impact on understanding our main findings.
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inelastic portfolio. Even with a large 𝑠aim, a high 𝜌aim results in inelasticity as the portfolio targets

a long-term position that is less sensitive to current prices.

Appendix B.5 shows that the cost-optimized elasticity 𝜂∗
𝑖,𝑡

is approximately:

𝜂∗𝑖,𝑡 ≈ 𝑠aim

(
aim𝑖,𝑡

𝑤∗
𝑖,𝑡

) (
1 − 𝜌aim

1 − 𝜌𝜂𝜌aim

)
𝜂𝑖,𝑡 . (16)

where 𝜌𝜂 is a parameter slightly lower than one and explained further in Appendix B.5. In our

calibration in the Appendix, cost optimization reduces elasticity to within the empirical range of 0.3

to 1.6, as reported by Gabaix and Koĳen (2022). Table 4 summarizes the parameter values and the

resulting cost-optimized elasticity. We set 𝜌𝜂 = 0.99 (with lower values further reducing elasticity)

and consider 𝑠aim between 0.03 and 0.1, and 𝜌aim between 0.9 and 0.97. For the non-cost-optimized

elasticity, 𝜂𝑖,𝑡 , we use a value of 7, as previously discussed, and also explore higher values of 20, 50,

and 1,200 to assess the impact of increased elasticity. We consider aim𝑖,𝑡/𝑤∗𝑖,𝑡 ∈ [0.5, 2], meaning

the aim portfolio targets anywhere from doubling to halving the current position. Table 4 shows

that with 𝜂𝑖,𝑡 = 7, cost optimization brings elasticity within the empirical range, though it remains

above this range for the high unspanned return elasticity of 1,200.

In summary, low pass-throughs, high unspanned returns, and trading costs are sufficient to

deliver inelastic demand consistent with the empirical estimates. It is important to note that many

other mechanisms can also reduce demand elasticities. In practice, institutional investors face

leverage constraints, short-selling constraints, and are often subject to benchmarking or indexing

incentives (e.g., Basak and Pavlova, 2013; Koĳen and Yogo, 2019; Haddad et al., 2022). All of

these factors may contribute to lower demand elasticities. Therefore, while transaction costs are

one possible explanation, we do not take a stance on which mechanisms are the most relevant.
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𝑠aim 𝜌aim 𝜂𝑖,𝑡 Cost Optimized
Elasticity (𝜂∗

𝑖,𝑡
)

0.03 0.97 7 [0.1, 0.3]
20 [0.2, 0.9]
50 [0.6, 2.3]

1200 [13.6, 54.4]
0.03 0.90 7 [0.1, 0.4]

20 [0.3, 1.1]
50 [0.7, 2.8]

1200 [16.5, 66.1]

𝑠aim 𝜌aim 𝜂𝑖,𝑡 Cost Optimized
Elasticity (𝜂∗

𝑖,𝑡
)

0.10 0.97 7 [0.3, 1.1]
20 [0.8, 3.0]
50 [1.9, 7.6]

1200 [45.3, 181.4]
0.10 0.90 7 [0.3, 1.3]

20 [0.9, 3.7]
50 [2.3, 9.2]

1200 [55.0, 220.2]

Table 4. Cost optimized demand elasticity
This table shows the cost-optimized demand elasticity ranges using Equation (16) with several values for parameters
𝑠aim and 𝜌aim. We provide a range for the cost-optimized elasticity, 𝜂∗

𝑖,𝑡
, because we use aim𝑖,𝑡/𝑤∗𝑖,𝑡 ∈ [0.5, 2]. In our

calibration, we use 𝜌𝜂 = 0.99.

5 Understanding High Unspanned Returns

Our analysis thus far suggests that unspanned returns are elevated, which implies that demand

elasticities should be low. In finance, factor models are traditionally employed to explain the

cross-section of expected returns. Within this framework, one might question how high unspanned

returns fit within the factor model context. At first glance, our finding seems at odds: if factor

models can accurately price assets, shouldn’t unspanned returns be zero? Furthermore, it is also

worth checking whether the high unspanned returns observed in our empirical results are unique to

the model examined in Section 3.

In this section, we address these two questions. First, we theoretically show that, even if

expected returns are fully captured by a factor model, unspanned returns remain large if the model

exhibits “weak factors,” as defined by Lettau and Pelger (2020). Second, we empirically implement

a broad set of asset pricing models from the literature. We show that, once these models are allowed

to incorporate weak factors, they all predict high unspanned returns.
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5.1 Theoretical results

This section introduces a proposition that helps interpret unspanned returns within the context

of factor models.

Unspanned returns as “weak factors”. We drop the 𝑡 subscripts for simplicity. Consider the

pricing of 𝑁 securities, where 𝑟 represents the vector of realized excess returns, and 𝜇 = E(𝑟) and

Σ = Var(𝑟) denote the expected return and the covariance matrix, respectively. Consider a factor

model with 𝐹 factors, where the factor portfolio weights are given by an 𝑁 × 𝐹 matrix 𝑊 . Thus,

the realized and expected factor excess returns are defined as 𝑓 = 𝑊′𝑟 and 𝜇 𝑓 = 𝑊′𝜇, respectively.

The vector of expected excess returns for assets can then be expressed as:

𝜇 = 𝛼 + 𝐵 · 𝜇 𝑓 ,

where 𝛼 is a vector of pricing errors, and 𝐵 = Σ𝑊 (𝑊′Σ𝑊)−1 is the 𝑁 ×𝐹 matrix of factor loadings.

Because we allow for alphas, or pricing errors, this is without loss of generality. Additionally, we

define 𝜔 𝑓 = Var−1( 𝑓 ) ·E( 𝑓 ), which represents the vector of (unscaled) factor portfolio weights for

a mean-variance efficient investor. Proposition 4 connects the stock-level unspanned returns to the

factor model.

Proposition 4. The unspanned return of asset 𝑖 can be decomposed into two terms:

𝜇𝑖,unspanned = 𝛼𝑖 − 𝛽′−𝑖𝛼−𝑖︸       ︷︷       ︸
𝛼𝑖,unspanned

+ Σ′𝑖 (𝑊 −𝑊∗−𝑖)𝜔 𝑓︸              ︷︷              ︸
weak factor term for asset 𝑖

, (17)
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where Σ𝑖 is the 𝑖𝑡ℎ column of the covariance matrix Σ and

𝑊∗−𝑖 =
(
𝐼′−𝑖Σ

−1
−𝑖,−𝑖 𝐼−𝑖Σ

)
︸             ︷︷             ︸
projection-like matrix

𝑊, (18)

where 𝐼−𝑖 is the identity matrix with the 𝑖𝑡ℎ row removed (resulting in an (𝑁 − 1) × 𝑁 matrix), and

Σ−𝑖,−𝑖 is the (𝑁 − 1) × (𝑁 − 1) covariance matrix excluding asset 𝑖.

Proof. See Appendix A.1.

Proposition 4 states that, in the context of a factor model, the unspanned return of an asset is

determined by its unspanned alpha in the first term and its association with “weak factors” in the

second term.

The first term in Equation (17) represents the alpha of asset 𝑖 minus the alpha of its replicating

portfolio, formed using all other assets. This part is intuitive: if the factor model does not explain

expected returns well, unspanned returns can be high.

The second term in Equation (17) represents the more important realization: even if factor

model alphas are zero, we can still have non-zero unspanned returns. Intuitively, this term captures

the incremental contribution of asset 𝑖 to the factor model, as the term 𝑊 − 𝑊∗−𝑖 represents the

difference in factor weights with and without asset 𝑖. Specifically, the matrix 𝑊∗−𝑖 represents the

factor portfolio weights that drop any weight on asset 𝑖 by placing a zero in its place and update

weights on other assets based on the importance of asset 𝑖. This importance is calculated using

the projection-like matrix,
(
𝐼′−𝑖Σ

−1
−𝑖,−𝑖 𝐼−𝑖Σ

)
. The (𝑁 − 1) × (𝑁 − 1) matrix Σ−1

−𝑖,−𝑖 is the inverse of

the covariance matrix without asset 𝑖. The matrix 𝐼′−𝑖Σ
−1
−𝑖,−𝑖 𝐼−𝑖 expands this back up to an 𝑁 × 𝑁

matrix, by placing zeros in all positions related to asset 𝑖. Thus, this matrix can be viewed as the

inverse covariance matrix that excludes asset 𝑖. If asset 𝑖 is not important in the covariance matrix,
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then 𝐼′−𝑖Σ
−1
−𝑖,−𝑖 𝐼−𝑖Σ ≈ 𝐼, which implies 𝑊∗−𝑖 ≈ 𝑊 , and the weak factor term Σ′

𝑖
(𝑊 −𝑊∗−𝑖)𝜔 𝑓 will be

very close to zero. In the language of Lettau and Pelger (2020), the second term in Equation (17)

captures the “weak factor” term associated with asset 𝑖, and its size is determined by the importance

of asset 𝑖 for the factor model.

Can an individual asset play a non-negligible role in a factor model? This depends on the nature

of expected returns. Classical models such as the CAPM assume that only factors that explain

a large amount of time-series variation matter for expected returns, while other factor portfolios

have zero expected excess returns. If this were the case, removing a single asset from the factor

model would have a negligible effect, consistent with the calibration in Section 2.3.15 However, in

recent decades, researchers have identified an increasing number of “weak factors” that can explain

non-zero variation in the cross-section of expected returns, even if they do not account for a high

fraction of time-series return variation (e.g., Lettau and Pelger, 2020). In such cases, the second

term in Equation (17) can become non-negligible.

5.2 Empirical illustrations

In this section, we examine the demand elasticities implied by a wide range of factor models.

This analysis illustrates the central intuition from Section 5.1, which suggests that factor models with

more weak factors exhibit higher unspanned returns and, consequently, lower demand elasticities.

To isolate the effect of unspanned returns, we apply the same price pass-through of 0.014 from

Section 2 when calculating demand elasticities across all models. To compute unspanned returns

15We can use Proposition 4 to arrive at an identical model-implied elasticity as in Section 2.3. Consider a CAPM
model, where𝑊 represents the market portfolio weights. As before, assume monthly pass-through is equal to one, and
all 𝑁 = 1,000 stocks have an annual return of 6%, volatility of 30%, and a correlation of 0.3. The market portfolio
weights are simply𝑊 = 1

𝑁
· 1, where 1 is a vector of ones. We can compute the projection-like matrix in (18), and find

that𝑊∗−𝑖 = (0.001001, . . . , 0.001001)′. Then, from (17), the unspanned return is 𝜇unspanned ≈ 0.0012%, leading to an
elasticity of about 7,000, identical to what we find in Section 2.3.
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of any factor model, we need three components: unspanned variance, factor portfolio weights, and

the weight of the MV efficient portfolio in each factor (𝜔 𝑓 ). Appendix B.6 provides further details.

We implement two types of factor models: classical models (e.g., CAPM, FF3, etc.) and those

based on a larger number of characteristics that utilize principal component analysis (PCA). The

details of each type are discussed below.

Classical factor models. We begin by considering classical factor models with an increasing

number of factors. These include the CAPM, Fama and French (1993) (FF3), Hou, Xue, and Zhang

(2015) (HXZ), Fama and French (2015) (FF5), and Fama and French (2015) with the momentum

factor (FF6). For model implementation, we follow the methodology outlined in the original papers

to construct the factor portfolio weights. For example, Fama and French (1993) describe how they

construct their 𝑁 × 3 matrix of portfolio weights𝑊𝑡 , where the column of market portfolio weights

is simply the market equity divided by the sum of market equity across all stocks. The high-minus-

low factor portfolio weights are calculated as the average of the “Small Value” and “Big Value”

weights minus the average of the “Small Growth” and “Big Growth” portfolio weights, and so on.

We then construct the stochastic discount factor (SDF) portfolio weight in factors, 𝜔 𝑓 , using

its empirical counterpart as in Brandt, Santa-Clara, and Valkanov (2009): V̂ar
−1( 𝑓 )Ê( 𝑓 ), where

V̂ar(·) and Ê(·) are the empirical estimates of the covariance matrix and expected value vector,

respectively.16

To calculate the residual variance, we model the covariance matrix of stock returns as Σ𝑡 =

𝛽𝑡Ω𝛽
′
𝑡 +𝐸𝑡 , where Ω is the covariance matrix of factor returns estimated from the full sample, 𝛽𝑡 are

time-varying betas, and 𝐸𝑡 is a diagonal matrix containing the unspanned variances. We estimate

betas using five-year rolling window time-series regressions. We then estimate the diagonal terms

16Kozak, Nagel, and Santosh (2020) discuss an extension of Brandt et al. (2009) where shrinking is applied, though
it has minimal impact on our results. Davis (2024) outline alternative ways of calculating 𝜔 𝑓 .
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of 𝐸𝑡 using five-year rolling windows, after subtracting the factor-explained components from stock

returns.

PCA factor models. Recently, researchers have proposed several approaches for constructing

models with PCA-style factors based on a broad set of stock characteristics. These models primarily

differ in how they form characteristics-based factors. To implement these models, we use data

for 𝐾 = 62 stock characteristics from Freyberger et al. (2020) and transform them into uniform

distributions between−0.5 and 0.5 using cross-sectional ranks, following a normalization procedure

employed by Kelly et al. (2019) and Kozak et al. (2020), among others. In the model descriptions

below, 𝑍𝑡 denotes the 𝑁 × 𝐾 matrix where these stock characteristics are stacked.

In these models, the number of factors can be specified by the researcher, and we implement all

possible configurations. The initial factors selected typically explain a larger fraction of time-series

return variation, similar to those in classical models, while the later factors tend to be progressively

weaker. We consider three types of PCA factor models:

1. RPCA. Chen et al. (2023) develop a method where characteristic-based portfolio returns are

obtained by regressing returns, 𝑟𝑡+1, on lagged characteristics, 𝑍𝑡 : 𝑦𝑡+1 = (𝑍′𝑡𝑍𝑡)−1𝑍′𝑡𝑟𝑡+1.

Regressed PCA (RPCA) factors are then calculated through a PCA decomposition on the

covariance matrix of 𝑦𝑡+1. To calculate the residual variance for stocks, we model the stock

return covariance matrix as Σ𝑡 = 𝛽𝑡Ω𝛽
′
𝑡 + 𝜎2

𝜖 𝐼, where Ω represents the covariance matrix

of factor returns, 𝛽𝑡 is the vector of betas estimated from Chen et al. (2023), and 𝜎2
𝜖 is the

average stock-level residual variance.

2. RP-PCA. We also implement the risk-premium PCA (RP-PCA) model in Lettau and Pelger

(2020). Unlike traditional PCA models, which construct factors based solely on the

covariance matrix of time-series variation (e.g., Connor and Korajczyk, 1986), the RP-

39



PCA model also accounts for the cross-section of returns. As explained in Lettau and

Pelger (2020), this model is designed to capture “weak factors” that explain cross-sectional

variation, even if they have limited contribution to time-series variation. Following their

baseline specification, we set 𝛾, the parameter in Lettau and Pelger (2020) that governs

the weight assigned to cross-sectional variation, to 10. To ensure consistency with the

other PCA models, we apply their procedure to portfolios formed through linear projection

onto characteristics (which generates the 𝑦𝑡+1 portfolio returns above), rather than portfolios

formed by sorting based on characteristics, as in the original paper. We use the same method

for calculating the covariance matrix and residual variance as with the RPCA model.

3. IPCA. Finally, we implement the instrumented PCA (IPCA) model from Kelly et al. (2019).

Their methodology produces estimates for factor portfolio weights and betas as by-products

of the optimization process. For further details, we refer the reader to their original paper.

We use the same method to calculate the covariance matrix and the residual variance as for

the RPCA model.

To focus on the role of weak factors, we implement versions of these three PCA-style factor

models without alpha terms. In other words, we assume that the factors fully explain the cross-

section of expected returns. The results that include alphas are presented in Appendix C.4.

Consistent with Proposition 4, when alphas are included, unspanned returns increase, and demand

elasticities decline further.

For each of these PCA factor models, we compute demand elasticities as a function of the

number of factors included. Following the procedure outlined in Section 3, we calculate the

average unspanned return conditional on having a positive MV portfolio weight. Appendix B.6

provides additional details on how unspanned returns are computed. We then compute the implied

demand elasticity, assuming a pass-through of 0.014, as estimated in Section 3.2.
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Table 5 presents the results. Classical factor models exhibit extremely elastic demand, consistent

with the notion that these models imply assets are highly substitutable, as returns are driven by

only a few systematic factors. In contrast, the data-driven PCA factor models display lower demand

elasticities, consistent with the idea that stocks are imperfect substitutes for one another.

In Figure 3, we plot the demand elasticity of these asset pricing models as the number of factors

increases. Among the classical factor models, the CAPM exhibits the highest demand elasticity,

reaching into the thousands, consistent with the discussion in Section 2.3. Notably, as additional

factors are incorporated, demand elasticity steadily declines, reflecting larger unspanned returns.

The FF3 model, which adds size and value factors to the CAPM, already shows demand elasticity

below one thousand, while the FF5 and FF6 models have elasticities around one hundred.

Compared to the classical factor models, the PCA factor models exhibit lower demand elasticity,

particularly as the number of factors increases. Among the three PCA models, RPCA shows the

highest demand elasticity, followed by RP-PCA, with IPCA exhibiting the lowest, around 20 with

just four factors. Importantly, as additional (weaker) factors are included, the demand elasticity of

all three PCA models steadily declines, converging to approximately 7 when the number of factors

approaches the number of characteristics.17 Interestingly, this is similar to the demand elasticity we

estimated in Section 3.4.

To summarize, this section shows that high unspanned returns are consistent with the cross-

section of expected stock returns explained by factor models that include weak factors. Additionally,

we empirically implement several recently proposed factor models. When these models include

weak factors, they consistently exhibit high unspanned returns and predict low demand elasticities,

in line with our earlier findings in Section 3. This suggests that our previous estimation is not

unique to the specific model used but is a common feature of factor models with weak factors.

17It is important to note that we are not forcing these models to include weak factors. If the true model only contains
𝐾 factors, even if we allow for 𝐹 > 𝐾 factors, the estimation will show that the factors 𝐾 + 1,...,𝐹 have little variation.
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Factor Model Number of Unspanned Weight Demand
Factors Return Responsiveness Elasticity

Classical Factor Models

CAPM 1 0.0006% 159678 2236.5
FF3 3 0.0020% 51145 717.0
HXZ 4 0.0083% 12018 169.3
FF5 5 0.0124% 8063 113.9
FF6 6 0.0109% 9164 129.3

RPCA

PCA Factor Model 5 0.0207% 4839 68.7
PCA Factor Model 10 0.0313% 3193 45.7
PCA Factor Model 15 0.0753% 1328 19.6
PCA Factor Model 20 0.0795% 1258 18.6
PCA Factor Model 50 0.1956% 511 8.2
PCA Factor Model 60 0.2449% 408 6.7

RP-PCA

PCA Factor Model 5 0.0368% 2716 39.0
PCA Factor Model 10 0.0549% 1820 26.5
PCA Factor Model 15 0.0830% 1204 17.9
PCA Factor Model 20 0.1026% 975 14.6
PCA Factor Model 50 0.1920% 521 8.3
PCA Factor Model 60 0.2373% 421 6.9

IPCA

PCA Factor Model 5 0.0886% 1129 16.8
PCA Factor Model 10 0.1112% 900 13.6
PCA Factor Model 15 0.1431% 699 10.8
PCA Factor Model 20 0.1560% 641 10.0
PCA Factor Model 50 0.2085% 480 7.7
PCA Factor Model 60 0.2414% 414 6.8

Table 5. Demand Elasticity Across Factor Models
This table presents the demand elasticity, calculated using Equation (9), for various factor models. The first set consists
of classical factor models. The next three sets are PCA-style models, where RPCA refers to the regression PCA model
in Chen et al. (2023), RP-PCA refers to the risk-premium PCA model in Lettau and Pelger (2020), and IPCA is the
instrumented PCA model in Kelly et al. (2019). For the PCA factor models, we vary the number of factors included.
The second column reports the average monthly unspanned returns for stocks with positive MV portfolio weights. The
third column reports the weight responsiveness, calculated as the reciprocal of unspanned returns (Equation 8). The
elasticity is computed with a pass-through of 0.014 using Equation (9). Appendix B.6 offers further details on how we
compute the unspanned returns of these models.
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Figure 3. Demand Elasticity Across Factor Models
This figure examines a variety of factor models with different numbers of factors. The 𝑥-axis displays the number of
factors, while the model-implied demand elasticity is plotted on a log scale on the 𝑦-axis, using a price pass-through
of 0.014. In the legend, “Classic” refers to traditional factor models. RPCA refers to the model in Chen et al. (2023),
RP-PCA refers to the model in Lettau and Pelger (2020), and IPCA refers to the model in Kelly et al. (2019).

6 Conclusion

Classical asset pricing theories predict extremely high stock-level demand elasticities, often in

the thousands, implying that trading flows would have minimal impact on asset prices. However,

empirical studies find demand elasticities around one, which is three orders of magnitude lower. In

this paper, we show that this gap is largely explained by incorporating empirically estimated

properties of stock returns. For investors forming mean-variance efficient portfolios, using

empirically estimated—rather than assumed—moments of stock returns reduces the predicted

demand elasticity from 7,000 to around 7.

We begin the analysis by analytically showing that mean-variance investor demand elasticity

decomposes into two components: price pass-through and the reciprocal of unspanned returns.

The former measures how much cash flow-unrelated price movements predict future returns, while
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the latter captures the extent to which assets are substitutable. The less substitutable an asset is, the

less its returns are spanned by others, leading to lower demand elasticity.

Guided by this analytical result, we then empirically estimate these two components for U.S.

stocks. We estimate the price pass-through to be around 0.014, meaning that a 1% cash flow-

unrelated price drop leads to an increase in next-month return of 1.4 basis points. Using this

empirically estimated pass-through, rather than classical theoretical assumptions, reduces the

predicted demand elasticity from 7,000 to 1,200. More importantly, when estimating unspanned

returns, we find that stocks are far from the perfect substitutes typically assumed in theory.

Incorporating empirically estimated unspanned returns further reduces the demand elasticity to

around 7. We show that stocks exhibiting high unspanned returns can be understood as exhibiting

“weak factors”, and our finding that stocks are imperfect substitutes is consistent with the literature

showing that the cross-section of stock returns is poorly spanned by systematic risk factors.
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Appendix

A Supporting Derivations

A.1 Proofs of Propositions

Proof of Proposition 1. In this proof, we drop the 𝑡 subscripts and tildes for notational simplicity.
Without loss of generality, just consider the last asset, asset 𝑁 . Subdivide the matrix into blocks

Σ =

[
Σ−𝑁,−𝑁 Σ−𝑁

Σ′−𝑁 𝜎2
𝑁

]
.

Using the block diagonal matrix formula, note that:

Σ−1 =

[
Σ−1
−𝑁,−𝑁 + 𝜏𝑁Σ−1

−𝑁,−𝑁Σ−𝑁Σ
′
−𝑁Σ

−1
−𝑁,−𝑁 −𝜏𝑁Σ−1

−𝑁,−𝑁Σ−𝑁

−𝜏𝑁Σ′−𝑁Σ−1
−𝑁,−𝑁 𝜏𝑁

]
where 𝜏𝑁 = (𝜎2

𝑁
−Σ′−𝑁Σ−1

−𝑁,−𝑁Σ−𝑁 )−1. The MV optimal portfolio weights are (up to a multiplicative
constant) given by:

𝑤 = Σ−1𝜇

⇒


𝑤−𝑁 =

(
Σ−1
−𝑁,−𝑁 + 𝜏𝑁Σ−1

−𝑁,−𝑁Σ−𝑁Σ
′
−𝑁Σ

−1
−𝑁,−𝑁

)
𝜇−𝑁 − 𝜏𝑁Σ−1

−𝑁,−𝑁Σ−𝑁 · 𝜇𝑁

𝑤𝑁 = −𝜏𝑁Σ′−𝑁Σ−1
−𝑁,−𝑁𝜇−𝑁 + 𝜏𝑁𝜇𝑁

(A.1)

To make these expressions more intuitive, note that 𝛽−𝑁 = Σ−1
−𝑁,−𝑁Σ−𝑁 is the 𝑁 − 1 vector of

the beta of asset 𝑁 to all other assets. Therefore, we can simplify (A.1) into:

𝑤−𝑁 = (Σ−1
−𝑁,−𝑁 + 𝜏𝑁 𝛽−𝑁 𝛽′−𝑁 )𝜇−𝑁 − 𝜏𝑁 𝛽−𝑁𝜇𝑁

𝑤𝑁 = −𝜏𝑁 𝛽′−𝑁𝜇−𝑁︸   ︷︷   ︸
=𝜇𝑁,spanned

+𝜏𝑁𝜇𝑁 (A.2)

These expressions make clear the “hedging relationship”: if 𝜇𝑁 changes, the investor responds
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by increasing holdings 𝑤𝑁 but also reduces 𝑤−𝑁 in a way that is proportional to 𝛽−𝑁 , the portfolio
that hedges 𝑁 using all other assets. This can be thought of as an arbitrage trade with asset
𝑁 on the long side and the other assets on the short side (with portfolio weights 𝛽−𝑁 ). Also,
𝜏−1
𝑁

= 𝜎2
𝑁
− 𝛽′−𝑁Σ−𝑁,−𝑁 · 𝛽−𝑁 is the residual variance of 𝑁 after hedging out exposure to other

assets.
We are now ready to derive Equation (8) in Proposition 1. Rewrite Equation (A.2) and take

derivatives:

𝑤𝑁 = 𝜏𝑁 ·
(
𝜇𝑁 − 𝛽′−𝑁𝜇−𝑁︸   ︷︷   ︸

=𝜇𝑁,spanned

)
= 𝜏𝑁 · 𝜇𝑁,unspanned.

⇒ 𝜃𝑁 =
𝜕 log(𝑤𝑁 )
𝜕𝜇𝑁

=
1
𝑤𝑁
· 𝜕𝑤𝑁
𝜕𝜇𝑁

=
1

𝜇𝑁,unspanned
.

Also, note that:
𝜏𝑁 =

1
𝜎2
𝑁,unspanned

⇒ 𝑤𝑁 =
𝜇𝑁,unspanned

𝜎2
𝑁,unspanned

,

which also shows that Equation (10) holds.

Proof of Proposition 2. We take the derivative of Equation (10) as a function of prices:

𝜂𝑖,𝑡 = 1 − 1
𝑤𝑖,𝑡
· 𝜕𝑤𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

= 1 − 1
𝑤𝑖,𝑡

(
𝜕𝑤𝑖,𝑡

𝜕𝜇𝑖,𝑡

𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
+

(
𝜕𝑤𝑖,𝑡

𝜕𝛽−𝑖,𝑡

)′
𝜕𝛽−𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
+ 𝜕𝑤𝑖,𝑡

𝜕𝜎2
𝑖,unspanned,𝑡

𝜕𝜎2
𝑖,unspanned,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
= 1 + 1

𝑤𝑖,𝑡

[
1

𝛾𝐴𝑡𝜎
2
𝑖,unspanned,𝑡

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
+

(
𝜇−𝑖,𝑡

𝛾𝐴𝑡𝜎
2
𝑖,unspanned,𝑡

)′
𝜕𝛽−𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

+
(
𝜇𝑖,𝑡 − 𝛽′−𝑖,𝑡𝜇−𝑖,𝑡
𝛾𝐴𝑡𝜎

4
𝑖,𝑡,𝜖

)
𝜕𝜎2

𝑖,unspanned,𝑡

𝜕 log(𝑃𝑖,𝑡)

]
= 1 + 1

𝜇𝑖,unspanned,𝑡

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
+ 𝜇′−𝑖,𝑡

𝜕𝛽−𝑖,𝑡
𝜕 log(𝑃𝑖,𝑡)

)
+

(
1

𝜎2
𝑖,unspanned,𝑡

)
𝜕𝜎2

𝑖,unspanned,𝑡

𝜕 log(𝑃𝑖,𝑡)
, (A.3)

where the last step uses the result from Proposition 1 that 𝜇𝑖,unspanned,𝑡 = 𝑤𝑖,𝑡𝛾𝐴𝑡𝜎
2
𝑖,unspanned,𝑡 . Here,

𝜕𝑤𝑖,𝑡/𝜕𝛽−𝑖,𝑡 and 𝜕𝛽−𝑖,𝑡/𝜕 log(𝑃𝑖,𝑡) are (𝑁−1) dimensional vectors, while the other terms are scalars.
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Using Equation (6), we can write 𝜎2
𝑖,unspanned,𝑡 = 𝜎2

𝑖,𝑡
− 𝜎2

−𝑖,𝑡 , where 𝜎2
−𝑖,𝑡 is the scalar conditional

variance of the replicating portfolio, 𝜎2
−𝑖,𝑡 = 𝑉𝑎𝑟𝑡 (𝛽′−𝑖,𝑡𝑟−𝑖,𝑡+1). Plugging this into Equation (A.3)

gives:

𝜂𝑖,𝑡 = 1 + 1
𝜇𝑖,unspanned,𝑡

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
︸                                   ︷︷                                   ︸

main component

+ 1
𝜇𝑖,unspanned,𝑡

𝜇′−𝑖,𝑡
𝜕𝛽−𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)
−

(
1

𝜎2
𝑖,unspanned,𝑡

)
𝜕𝜎2
−𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                                                                     ︷︷                                                                     ︸
correlation component

+
(

1
𝜎2
𝑖,unspanned,𝑡

)
𝜕𝜎2

𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)︸                            ︷︷                            ︸
Black leverage component

.

Proof of Proposition 3. To focus on the demand for asset 𝑖, we modify Proposition 1 by using
demand of Equation (14) in Equation (10):

𝑤𝑖,𝑡 ≈
1
�̃�

(
𝜇𝑖,𝑡 − 𝛽′−𝑖,𝑡𝜇−𝑖,𝑡
𝜎2
𝑖,unspanned,𝑡

)
︸                   ︷︷                   ︸

main component

+ 𝜃

�̃�𝜓
·
(
𝜎𝑖,𝑐−𝑤,𝑡 − 𝜎−𝑖,𝑐−𝑤,𝑡
𝜎2
𝑖,unspanned,𝑡

)
︸                            ︷︷                            ︸
consumption-hedging component

, (A.4)

where 𝜎𝑖,𝑐−𝑤,𝑡 and 𝜎−𝑖,𝑐−𝑤,𝑡 are the covariances between 𝑦𝑖,𝑡 and 𝑦−𝑖,𝑡 with the log consumption-
to-wealth ratio, respectively. We continue to use the notation of 𝜇𝑖,𝑡 , 𝛽−𝑖,𝑡 , and 𝜎2

𝑖,unspanned,𝑡 from
Equation (10). They are now based on 𝑦𝑡 , rather than 𝑟𝑡 , but the difference is quantitatively minor.
Plugging in Equation (A.4) into Equation (9) leads to the following modified demand elasticity:

𝜂𝑖,𝑡 = 1 + 1
𝑤𝑖,𝑡

(
1

�̃�𝜎2
𝑖,unspanned,𝑡

) (
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
+ 1
𝑤𝑖,𝑡 �̃�𝜎

2
𝑖,unspanned,𝑡

𝜃

𝜓

𝜕𝜎𝑖,𝑐−𝑤,𝑡
𝜕 log(𝑃𝑖,𝑡)

= 1 + 1
𝜇𝑖,𝑡,unspanned

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
︸                              ︷︷                              ︸

main component

+ 𝜃

𝜓𝜇𝑖,𝑡,unspanned
· 𝜕𝜎𝑖,𝑐−𝑤,𝑡
𝜕 log(𝑃𝑖,𝑡)︸                            ︷︷                            ︸

consumption-hedging component
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Proof of Proposition 4. From Equation (7), the unspanned return is 𝜇𝑖,unspanned = 𝜇𝑖 − 𝛽′−𝑖𝜇−𝑖.
Under a factor model, we can write the expected return on asset 𝑖 as:

𝜇𝑖 = 𝛼
𝐹
𝑖 + (𝛽𝐹𝑖 )′ E[ 𝑓 ],

where 𝐹 is the expected return of the factors. Similarly, we can write:

𝜇−𝑖 = 𝛼
𝐹
−𝑖 + (𝛽𝐹−𝑖)′ E[ 𝑓 ]

Plugging this into the the expression for 𝜇𝑖,unspanned, we can write the unspanned return as:

𝛼𝑖 = 𝛼
𝐹
𝑖 − 𝛽′−𝑖𝛼𝐹−𝑖︸         ︷︷         ︸
≡Δ𝛼𝑖

+ (𝛽𝐹𝑖 )′E[ 𝑓 ] − 𝛽′−𝑖 (𝛽𝐹−𝑖)′𝐸 [ 𝑓 ]︸                              ︷︷                              ︸
≡Δ𝛽𝑖

To prove this, then it should be noted that:

𝛽𝐹𝑖 = Var−1( 𝑓 ) Cov( 𝑓 , 𝑟𝑖)
= Var−1( 𝑓 ) Cov(𝑊′𝑟, 𝜄′𝑖𝑟)
= Var−1( 𝑓 )𝑊′Σ𝜄𝑖
= Var−1( 𝑓 )𝑊′Σ𝑖

where 𝜄𝑖 is a vector of zeros, but 1 in the 𝑖𝑡ℎ spot.
We can also calculate

𝛽−𝑖 = Var−1(𝑟−𝑖)Cov(𝑟−𝑖, 𝑟𝑖) = Var−1(𝑟−𝑖)Cov(𝐼−𝑖𝑟, 𝜄′𝑖𝑟)
= Σ−1

−𝑖,−𝑖 𝐼−𝑖Σ𝜄𝑖 = Σ−1
−𝑖,−𝑖 𝐼−𝑖Σ𝑖

𝛽𝐹−𝑖 = Var−1( 𝑓 )Cov( 𝑓 , 𝑟−𝑖) = Var−1( 𝑓 )Cov(𝑊′𝑟, 𝐼−𝑖𝑟)
= Var−1( 𝑓 )𝑊′Σ𝐼′−𝑖

Then putting this together we have:

𝛽′−𝑖 (𝛽𝐹−𝑖)′E[ 𝑓 ] = Σ′𝑖 𝐼
′
−𝑖Σ
−1
−𝑖,−𝑖 𝐼−𝑖Σ𝑊Var−1( 𝑓 )E[ 𝑓 ]
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Thus if we define:

𝑊∗−𝑖 = 𝐼′−𝑖Σ
−1
−𝑖,−𝑖 𝐼−𝑖Σ︸         ︷︷         ︸

projection-like matrix

𝑊,

we have:

𝜇𝑖,unspanned = 𝛼𝑖 − 𝛽′−𝑖𝛼−𝑖︸       ︷︷       ︸
𝛼𝑖,unspanned

+ Σ′𝑖 (𝑊 −𝑊∗−𝑖)𝜔 𝑓︸              ︷︷              ︸
weight dependence on 𝑖

It should be noted that pre-multiplying by 𝐼′−𝑖 changes the 𝑁 − 1 dimensional vector to be
𝑁 dimensional, with all terms unchanged but zero in the 𝑖𝑡ℎ spot. So the projection-like matrix
𝐼′−𝑖Σ

−1
−𝑖,−𝑖 𝐼−𝑖Σ is close to the identity matrix if dropping the asset does not change the covariance

matrix very much. Another way to see this is to note that:

𝐼′−𝑖Σ
−1
−𝑖,−𝑖 𝐼−𝑖Σ = 𝐼′−𝑖

(
𝐼−𝑖Σ𝐼

′
−𝑖
)−1

𝐼−𝑖Σ.

A.2 Wealth effects are small

Our derivations in Section 2 ignore wealth effects. This section shows that the effect of wealth
changes on asset-level demand elasticity is minimal, as the effect of price changes in an individual
asset has limited effect on overall wealth for reasonably diversified portfolios.

Let 𝐴𝑡 represent the assets under management (AUM) for a fund or the wealth for an investor.
Recall that the quantity of shares demanded, 𝑄𝑖,𝑡 , is given by 𝑄𝑖,𝑡 =

𝐴𝑡𝑤𝑖,𝑡

𝑃𝑖,𝑡
. The demand elasticity

that incorporates wealth effects is:

𝜂𝑖,𝑡 ≡ −
𝜕 log(𝑄𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)

= 1 − 𝜕 log(𝑤𝑖,𝑡)
𝜕 log(𝑃𝑖,𝑡)︸             ︷︷             ︸

original term

− 𝜕 log(𝐴𝑡)
𝜕 log(𝑃𝑖,𝑡)︸       ︷︷       ︸
wealth effect

.
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Focusing on the wealth effect, 𝐴𝑡 can be expressed as:

𝐴𝑡 = 𝐴𝑡−1
[
𝑤′𝑡−1(𝑟𝑡 + 𝑅 𝑓 ,𝑡 𝜄) + (1 − 𝜄

′𝑤𝑡−1)𝑅 𝑓 ,𝑡
]
,

where 𝑟𝑡 represents the vector of excess returns, 𝑅 𝑓 ,𝑡 the gross risk-free rate, and 𝜄 a vector of ones.
In response to the change of the price of asset 𝑖, the wealth effect on demand elasticity is given by:

− 𝜕 log(𝐴𝑡)
𝜕 log(𝑃𝑖,𝑡)

= −
(
𝐴𝑡−1
𝐴𝑡

) (
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1

)
𝑤𝑖,𝑡−1.

Typically, both AUM and stock prices exhibit only minor fluctuations, keeping the first two
terms close to one. Additionally, 𝑤𝑖,𝑡−1 is small in a well-diversified portfolio. Thus, wealth effects
on demand elasticities are negligible.

A.3 Understanding low price pass-through

Section 3.2 found price pass-through to be significantly lower than one in empirical estimates.
How should we understand this result? We first provide intuition that low price pass-through means
that the variation of expected returns is persistent. We then note that many dynamic equilibrium
models feature low price pass-throughs.

Persistent variation in expected returns. For the simplest example with persistent expected
return variation, consider the Gordon growth model:

𝑃 =
𝐷

𝑟 − 𝑔

where𝐷 is the current dividend, 𝑟 is the expected return, and 𝑔 is the dividend growth rate. Consider
a cash flow-unrelated price movement driven by a permanent change in 𝑟. Then, the implied price
pass-through is simply the dividend yield,

− 𝑑𝑟

𝑑 log(𝑃) =
𝐷

𝑃
.

To quantify this, note that after World War II, the average annual dividend yield of the U.S. stock
market is 0.032. At a monthly frequency, this translates to price pass-through of approximately
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0.032/12 = 0.0027, which is a fraction of the point estimate of 0.014 in Section 3.2. While this
is an extreme example with fully persistent expected return variation, many important stock return
predictors that explain a large amount of price variation—size, value, etc.—are associated with
slowly-varying expected return variation (van Binsbergen et al., 2023). As a consequence, they are
all associated with low price pass-throughs, a finding that we empirically confirm in Appendix B.1.

Equilibrium models with low price pass-through. Because our goal is to study demand
elasticity as a portfolio choice problem, in this paper, we take expected return variation as given and
do not take a stance on its origin. However, one may still wonder whether low price pass-throughs
can be sustained in equilibrium. The answer is yes: many dynamic models explicitly predict
low price pass-throughs. In fact, whenever expected return variation is induced by slow-moving
preferences changes and trading flows, price pass-through is naturally low. Such models are featured
in Duffie (2010), Kozak, Nagel, and Santosh (2018), Gabaix and Koĳen (2022), among others.

B Empirical Details

B.1 Price pass-through for different anomalies

In Section 3.2, we estimated price pass-through using the van Binsbergen et al. (2023) “price
wedge”, which combines the effect of 57 stock characteristics. However, some researchers highlight
that characteristics in different categories may have different properties. In this section, we
decompose the price wedge by characteristic categories and separately estimate price pass-throughs
for each.

Following Freyberger et al. (2020), we group characteristics into six categories: (1) “past
returns”-based predictors (e.g., momentum and short-term reversal); (2) “investment”-related
characteristics (e.g., the annual percentage change in total assets or the change in PP&E and
inventory over total assets); (3) “profitability”-related characteristics (e.g., gross profitability over
the book-value of equity or return on operating assets); (4) “intangibles” (e.g., operating accruals
or tangibility); (5) “value”-related characteristics (e.g., the book-to-market ratio or cash to total
assets); and (6) “trading frictions” (e.g., the average daily bid-ask spread and standard deviation of
daily volume). See Table 1 in Freyberger et al. (2020) for the complete list of characteristics in
each group.
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We begin by computing the first principal component (PC1) of the characteristics in each of the
six categories described above, treating each (stock, year-month) as an independent observation.
Next, we perform linear regressions on the full sample to project the price wedge from van
Binsbergen et al. (2023) for each stock 𝑖 onto the PC1 of each of the six categories:

log
(
𝑃𝑖,𝑡

�̃�𝑖,𝑡

)
= 𝑎 𝑗 + 𝑏 𝑗 × PC1 𝑗

𝑖,𝑡
+ 𝜖 𝑗

𝑖,𝑡
, 𝑗 = 1, . . . ,6, (B.1)

where PC1 𝑗
𝑖,𝑡

represents the first PC of characteristics of stock 𝑖 in category 𝑗 in month 𝑡. Finally,
we run Fama-MacBeth regressions at different horizons, similar to specification (12), with the
independent variables replaced by the fitted values from regression (B.1).

The estimated (negative of) price pass-through for horizons 𝐻 = 1, 3, 6, and 12 months are
reported in Table B.1. At the one-month horizon, all anomalies other than the ones in the trading
friction category have low price pass-throughs. For the categories of past returns, investment,
and value, price pass-throughs are not statistically distinguishable from zero. For profitability
and intangibles, the price pass-throughs are actually negative, indicating that price movements in
those components exhibit continued momentum. The only category with large price pass-through
is trading frictions, but it explains only a small fraction of overall price variation. Specifically,
column (5) reports the R-squared when projecting price wedge on the PC1 of each category of
characteristics. While value and intangibles have high R-squared, implying that these characteristics
explain a higher fraction of price wedge variation, the other categories have low R-squared. Trading
frictions, in particular, only explain 2.7% of overall price wedge variations.

B.2 Calibrating demand elasticity with heterogeneous stocks

Section 2.3 shows that classical asset pricing models predict very high demand elasticities
based on a calibration that assumes stocks to be symmetric. In this section, we use simulations
to introduce heterogeneity in asset expected returns, volatilties, and correlations, and see how this
affects the demand elasticity calibration.

In each simulation with 1,000 stocks, to calibrate the term 𝜄′Σ−1
𝑡 𝜇𝑡 in Equation (11), we draw

𝜇𝑡 as a vector of random normal variables with mean of 0.06/12 per month (annual return of 6%)
and a standard deviation of 0.01/12. For the covariance matrix, we draw 𝐺 ∼ W(𝑉, 2𝑁), where
W(𝑉, 𝑑) is the Wishart distribution with scale matrix 𝑉 and degrees of freedom 𝑑. Matrix 𝑉 is
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Estimated coefficient 𝛽𝐻
Independent variable 𝐻 = 1 3 6 12 𝑅2 obs

(1) (2) (3) (4) (5) (6)
P̂C1

past returns −0.002 0.063 0.164 0.438 0.0405 526,807
(0.044) (0.163) (0.424) (0.813)

P̂C1
investment

0.034 0.094 0.138 0.240 0.0112 526,807
(0.023) (0.099) (0.188) (0.232)

P̂C1
profitability

4.566∗∗∗ 13.635∗∗ 28.195∗∗ 51.058∗ 0.0002 526,807
(1.644) (6.194) (13.494) (28.616)

P̂C1
intangibles

0.037∗∗ 0.107∗ 0.207 0.432 0.1013 526,807
(0.016) (0.062) (0.176) (0.369)

P̂C1
value

0.022 0.061 0.122 0.179 0.2202 526,807
(0.016) (0.086) (0.265) (0.626)

P̂C1
trading frictions −0.235∗∗∗ −0.645∗∗∗ −1.206∗∗ −2.208∗∗ 0.0270 526,807

(0.061) (0.251) (0.538) (0.972)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.1. Estimating price pass-through for characteristics groups.
We estimate price pass-through for each of the six characteristics groups in Freyberger et al. (2020) using Fama-
MacBeth regressions:

𝑟𝑖,𝑡+1→𝑡+𝐻 = 𝛼𝐻 + 𝛽𝐻 · ̂log
(
𝑃𝑖,𝑡/�̃�𝑖,𝑡

) 𝑗
𝑖,𝑡
+ 𝜖 𝑗

𝑖,𝑡+1→𝑡+𝐻 , 𝑗 = 1, . . . ,6,

where the dependent variable is the log return of stocks in months 𝑡 +1 to 𝑡 +𝐻. The independent variables are the fitted
values of the “price wedge” measure in van Binsbergen et al. (2023) projected onto the first PC of characteristics of
stock 𝑖 in category 𝑗 in month 𝑡. Columns 1 through 4 report estimated regression coefficients 𝛽𝐻 for horizons 𝐻 = 1,
3, 6, and 12 months. Column (5) reports the R-squared from regressing price wedge on PC1s of the characteristics
from regression (B.1). Column (6) reports the number of stock-months used in each specification. The standard errors
of the Fama-MacBeth forecasting coefficients are estimated using the Newey-West procedure with the number of lags
equal to the forecasting horizon 𝐻.

constructed so that all pairwise correlations are 0.3 and the stock volatilities are 10%. We then
set Σ𝑡 = 𝐺/𝑁 , which in expectation equals 𝑉 . While 𝑉 assumes uniform pairwise covariances, Σ𝑡
introduces variation, making the simulations realistic. The degrees of freedom 𝑑 = 2𝑁 ensures
that the matrix is well-conditioned.1 We do 1,000 simulations, yielding 𝜄′Σ−1

𝑡 𝜇𝑡 ≈ 3.35 on average.
The average 𝑅2 from regression (6) becomes 65%, indicating that for an asset with total volatility
of 10%, the unspanned volatility is reduced to 6% compared to 8.4% in Section 2.3. Plugging these
results into Equation (11) again yields unspanned returns of approximately 0.0012% as in the main
calibration.

1We require at least 𝑑 ≥ 𝑁 , but larger values of 𝑑 help ensure that the matrix is well-conditioned
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B.3 Quantifying the volatility and correlation components

In this section, we quantify the “volatility” and “correlation” components of demand elasticity
in Proposition 2.

The volatility component. For this, we need to estimate the unspanned variance of stocks
(𝜎2
𝑖,unspanned,𝑡) and how the stock return variance 𝜎2

𝑖,𝑡
responds to price movements.

For the first term, we obtain the daily return residuals for each stock-year after controlling for
the Fama-French five factors, and then compute its average monthly variance to be 0.027 in our
sample. For the second term, we regress the monthly return variance (computed from daily returns)
for each stock 𝑖 and month 𝑡 in a panel regression:

𝜎2
𝑖,𝑡 = 𝑏0 + 𝑏1𝑟𝑖,𝑡−1 + 𝑏2𝜎

2
𝑖,𝑡−1 + 𝜖𝑖,𝑡 ,

where 𝑟𝑖,𝑡−1 is the lagged monthly log stock return. We cluster standard errors by year-month
and stock, and the results are reported in Table B.2. Consistent with the “leverage effect” of
Black (1976), stock return variance co-moves negatively with returns. Over the full sample, when
controlling for both stock and year-month fixed effects, we estimate the response of monthly return
variance to log returns to be around -0.065. Results in columns (4) through (9) show that the
relationship is relatively stable over subsamples.

The correlation component. Davis (2024) considers an 𝑁 × 𝐾 matrix of 𝐾 characteristics for
stocks in time 𝑡 and estimates a model where the covariance matrix and vector of expected returns
are linear functions of predictors:

𝜇𝑡 = 𝑍𝑡Θ𝜇, Γ𝑡 = 𝑍𝑡ΘΓ, Σ𝑡 = Γ𝑡Γ
′
𝑡 + Θ𝜁 𝐼, (B.2)

whereΘ𝜇 andΘΓ are vectors of parameters that govern the mean and covariance matrix, respectively,
andΘ𝜁 > 0 is a positive scalar that controls unspanned variance. Some characteristics are functions
of prices (e.g. book-to-market), and therefore a movement in asset price changes both the mean
returns 𝜇𝑡 and the covariance matrix through Γ𝑡 . In Davis (2024), the model in Equation (B.2)
is estimated using maximum likelihood with monthly return data and normalized versions of the
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Dependent variable: 𝜎2
𝑖,𝑡

Full sample 1970 - 1994 1995 - 2019

(1) (2) (3) (4) (5) (6) (7) (8) (9)
𝑟𝑖,𝑡−1 −0.077∗∗∗ −0.063∗∗∗ −0.065∗∗∗ −0.070∗∗∗ −0.058∗∗∗ −0.064∗∗∗ −0.081∗∗∗ −0.062∗∗∗ −0.059∗∗∗

(0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.005) (0.005) (0.004)
𝜎2
𝑖,𝑡−1 0.633∗∗∗ 0.472∗∗∗ 0.456∗∗∗ 0.689∗∗∗ 0.537∗∗∗ 0.528∗∗∗ 0.596∗∗∗ 0.392∗∗∗ 0.366∗∗∗

(0.010) (0.011) (0.011) (0.013) (0.014) (0.014) (0.013) (0.012) (0.011)
Stock FE N Y Y N Y Y N Y Y
Time FE N N Y N N Y N N Y
Obs 2,136,330 2,136,330 2,136,330 960,031 960,031 960,031 1,176,299 1,176,299 1,176,299
𝑅2 37.51% 43.55% 44.59% 44.75% 49.70% 50.36% 33.20% 41.55% 42.98%

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.2. Estimating the effect of prices on return variance.
We estimate the Black (1976) effect using panel regressions of monthly stock return variance the lagged monthly
log stock return. Stock return variance is estimated using daily Fama-French 5-factor model residuals. Columns (1)
through (3) uses the full sample. Columns (4) through (6) use the first half of the sample. Columns (7) through (9)
use the second half of the sample. When using the same sample, the regressions differ in whether they include stock-
or time-fixed effects. Standard errors are clustered by month and stock.

characteristics from Freyberger et al. (2020). The implied demand elasticity due to price-induced
changes in covariance is approximately 1.4.

B.4 Impact of consumption hedging: details

To assess the quantitative importance of the consumption-hedging component in Equation (15),
we perform a calibration using data. Specifically, we estimate the sensitivity of the covariance
between stock returns and the log consumption-to-wealth ratio, 𝜎𝑖,𝑐−𝑤,𝑡 , to changes in stock prices.
Our approach involves three steps:

Step 1: Estimating unexpected returns. First, we estimate the unexpected component of stock
returns, 𝑟unex

𝑖,𝑡+1, by regressing realized quarterly returns on the (log) price wedge instrument from van
Binsbergen et al. (2023), controlling for stock fixed effects:

𝑟𝑖,𝑡+1 = 𝛼𝑖 + 𝛽1 𝑃𝑊𝑖,𝑡 + 𝜀𝑖,𝑡+1, (B.3)
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where 𝑟𝑖,𝑡+1 is the realized return for stock 𝑖 in quarter 𝑡 + 1, 𝑃𝑊𝑖,𝑡 = log
(
𝑃𝑖,𝑡/�̃�𝑖,𝑡

)
is the (log) price

wedge from van Binsbergen et al. (2023), and 𝛼𝑖 captures stock fixed effects. The residuals from
this regression, 𝜀𝑖,𝑡+1, represent the unexpected returns: 𝑟unex

𝑖,𝑡+1 = 𝜀𝑖,𝑡+1.

Step 2: Estimating the sensitivity of the consumption-hedging term. Next, we estimate the
sensitivity of the covariance between unexpected returns and the log consumption-to-wealth ratio
deviations, cay𝑡+1, with respect to the price wedge. We achieve this by regressing the product of
unexpected returns and cay𝑡+1 on the (log) price wedge, again controlling for stock fixed effects:

𝑟unex
𝑖,𝑡+1 · cay𝑡+1 = 𝛼𝑖 + 𝛽2 𝑃𝑊𝑖,𝑡 + 𝜂𝑖,𝑡+1, (B.4)

where cay𝑡+1 is the consumption-to-wealth ratio log deviations from Lettau and Ludvigson (2001).
Since the cay data is available quarterly, we use quarterly returns. We obtain the cay data from
Amit Goyal’s website (https://sites.google.com/view/agoyal145), as the data is frequently updated
there. In regression (B.4), 𝛽2 captures the sensitivity of the consumption-hedging term to (cash
flow-unrelated) changes in the asset price

(
𝜕𝜎𝑖,𝑐−𝑤,𝑡

𝜕 log(𝑃𝑖,𝑡 )

)
. Note that the expected value of the left-hand

side is E𝑡 [𝑟unex
𝑖,𝑡+1 · cay𝑡+1] = 𝜎𝑖,𝑐−𝑤,𝑡 .

Results. Table B.3 presents the results of the regressions discussed above. In column (1), we
report the estimates from Equation (B.3). The negative and significant coefficient 𝛽1 indicates
that higher price wedges are associated with lower expected returns, as expected.2 In column (2),
we present the estimates from Equation (B.4). The coefficient 𝛽2 is small in magnitude and not
statistically significant, suggesting that the sensitivity of the consumption-hedging term to price
changes is negligible.

When we convert the quarterly estimate of 𝛽2 = −0.0005 to a monthly value (by dividing
by 3), we get approximately −0.00017. This value is two orders of magnitude smaller than our
pass-through estimate of 0.014, indicating that the consumption-hedging component has a minimal
impact on overall demand elasticity.

2It is worth noting that this coefficient should not be interpreted as the quarterly price pass-through, as we also
control for stock fixed effects. By doing so, we incorporate information from the future, and thus this is not a true
forecasting regression.
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Dependent variable:
𝑟𝑡+1 𝑟𝑢𝑛𝑒𝑥

𝑡+1 cay𝑡+1

(1) (2)

(log) price wedge -0.1918∗∗∗ -0.0005
(0.0167) (0.0004)

Observations 425,777 425,777
𝑅2 0.0104 0.0001
Stocked fixed effects Yes Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.3. Consumption hedging term price sensitivity regressions
This table presents the regression estimates used to calibrate the importance of the Epstein-Zin intertemporal hedging
term for demand elasticity. First, we regress stock-level quarterly returns on the (log) price wedge from van Binsbergen
et al. (2023) at time 𝑡, with stock fixed effects, as shown in column (1). We then take the residual for this regression,
labeled 𝑟𝑢𝑛𝑒𝑥

𝑡+1 . Next, we regress 𝑟𝑢𝑛𝑒𝑥
𝑡+1 cay𝑡+1 on the (log) price wedge with stock fixed effects, which is a quarterly

measure of 𝜕𝜎𝑖,𝑐−𝑤,𝑡/𝜕 log(𝑃𝑖,𝑡 ) from Equation (15), as shown in column (2).

B.5 Impact of transaction costs: details

To study the impact transaction costs on portfolio choice, we use a slightly adapted version of
the model in Gârleanu and Pedersen (2013) . In their model, the cost-optimized portfolio weight
vector, 𝑤∗𝑡 , is a linear combination of the existing portfolio and the “aim” portfolio:

𝑤∗𝑡 = (1 − 𝑠aim) 𝑤𝑡←𝑡−1 + (𝑠aim) aim𝑡 ,

where 𝑤𝑡←𝑡−1 represents the previous period’s portfolio weight, passively adjusted based on price
movements in the current period. The “aim” portfolio is a weighted average of current and expected
future optimal portfolios in the absence of transaction costs:

aim𝑡 =

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 E𝑡 [𝑤𝑡+𝜏], (B.5)

where 𝑤𝑡 are the optimal portfolio weights without transaction costs. The parameters 𝑠aim and 𝜌aim

are scalar values, each bounded between zero and one.
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Let 𝜂𝑖,𝑡→𝑡+𝜏 be the elasticity of the future not-cost-optimized portfolio:

𝜂𝑖,𝑡→𝑡+𝜏 = 1 − 1
E𝑡 [𝑤𝑡+𝜏]

𝜕E𝑡 [𝑤𝑡+𝜏]
𝜕 log(𝑃𝑖,𝑡)

.

In terms of elasticity, assuming 𝑤𝑖,𝑡←𝑡−1 > 0 and E𝑡 [𝑤𝑖,𝑡+𝜏] > 0 for all 𝜏, the cost-optimized
elasticity, 𝜂∗

𝑖,𝑡
, can be expressed as:

𝜂∗𝑖,𝑡 ≡ 1 −
𝜕 log(𝑤∗

𝑖,𝑡
)

𝜕 log(𝑃𝑖,𝑡)

= 1 − 1
𝑤∗
𝑖,𝑡

𝜕𝑤∗
𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

= 1 − 1
𝑤∗
𝑖,𝑡

(
(1 − 𝑠aim)

𝜕𝑤𝑡←𝑡−1
𝜕 log(𝑃𝑖,𝑡)

+ (𝑠aim)
∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏

𝜕E𝑡 [𝑤𝑡+𝜏]
𝜕 log(𝑃𝑖,𝑡)

)
. (B.6)

Note that by definition of passively floated portfolio weights, we must have:

𝜕 log(𝑤𝑡←𝑡−1)
𝜕 log(𝑃𝑖,𝑡)

= 1. (B.7)

In other words, when prices move up 1%, passive weights also increase by 1%. This makes the
passively floated component of the portfolio completely inelastic (i.e., elasticity is 0 = 1 − 1).
Equation (B.7) implies:

𝜕𝑤𝑡←𝑡−1
𝜕 log(𝑃𝑖,𝑡)

= 𝑤𝑡←𝑡−1.

We can substitute this into Equation (B.6) above and proceed with calculating the cost-optimized
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elasticity:

𝜂∗𝑖,𝑡 = 1 − 1
𝑤∗
𝑖,𝑡

(
(1 − 𝑠aim) 𝑤𝑡←𝑡−1 + (𝑠aim)

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏

𝜕E𝑡 [𝑤𝑡+𝜏]
𝜕 log(𝑃𝑖,𝑡)

)
= 1 − 1

𝑤∗
𝑖,𝑡

(
(1 − 𝑠aim) 𝑤𝑡←𝑡−1 − (𝑠aim)

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 E𝑡 [𝑤𝑡+𝜏]

(
𝜂𝑖,𝑡→𝑡+𝜏 − 1

))
= 1 − 1

𝑤∗
𝑖,𝑡

(
(1 − 𝑠aim) 𝑤𝑡←𝑡−1 + (𝑠aim)aim𝑖,𝑡 − (𝑠aim)

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 E𝑡 [𝑤𝑡+𝜏]

(
𝜂𝑖,𝑡→𝑡+𝜏

))
= 1 − 1

𝑤∗
𝑖,𝑡

(
𝑤∗𝑖,𝑡 − (𝑠aim)

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 E𝑡 [𝑤𝑡+𝜏]

(
𝜂𝑖,𝑡→𝑡+𝜏

))
=
𝑠aim
𝑤∗
𝑖,𝑡

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 E𝑡 [𝑤𝑡+𝜏]

(
𝜂𝑖,𝑡→𝑡+𝜏

)
.

Note that 𝜂𝑖,𝑡→𝑡+𝜏 should decay as 𝜏 increases because portfolio weights in the more distant
future should be less sensitive to current prices. To further simplify, we assume a geometric decay
of 𝜂𝑖,𝑡→𝑡+𝜏:

𝜂𝑖,𝑡→𝑡+𝜏 = 𝜌
𝜏
𝜂 𝜂𝑖,𝑡 , (B.8)

where 𝜌𝜂 ∈ (0,1) is the decay coefficient. If 𝜌𝜂 ≈ 1, then using the definition of the aim portfolio
in Equation (B.5), we can write:

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 E𝑡 [𝑤𝑡+𝜏]𝜌𝜏𝜂 𝜂𝑖,𝑡

≈ aim𝑖,𝑡

∞∑︁
𝜏=0
(1 − 𝜌aim) (𝜌aim)𝜏 𝜌𝜏𝜂 𝜂𝑖,𝑡

= aim𝑖,𝑡

(
1 − 𝜌aim

1 − 𝜌𝜂𝜌aim

)
𝜂𝑖,𝑡

Thus, we arrive at the approximation given in Equation (16) of the paper:

𝜂∗𝑖,𝑡 ≈ 𝑠aim

(
aim𝑖,𝑡

𝑤∗
𝑖,𝑡

) (
1 − 𝜌aim

1 − 𝜌𝜂𝜌aim

)
𝜂𝑖,𝑡 . (B.9)
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Equation (B.9) shows that, depending on the two parameters 𝑠aim and 𝜌aim, a cost-optimized
portfolio can result in very inelastic demand. As Gârleanu and Pedersen (2013) discuss, if
transaction costs are high, 𝑠aim is close to 0. In this case, the elasticity becomes nearly zero.
If 𝜌aim is close to one and 𝜌𝜂 < 1 then the elasticity is further dropped through the aim portfolio
being less sensitive to prices today. This logic is intuitive: the aim portfolio is a long-run portfolio
when 𝜌aim is large, so if 𝜌𝜂 < 1, then this long-run portfolio is less sensitive to price variation today.

Using a method similar to that of Gârleanu and Pedersen (2013), we calibrate 𝑠aim to be
approximately 0.03 and 𝜌aim to be approximately 0.97. Specifically, we use an annual discount rate
of 4%, and, following Gârleanu and Pedersen (2013), we set the absolute risk aversion parameter
to 𝛾 = 10−9. For the trading cost parameter 𝜆, we adopt their more conservative estimate of
𝜆 = 10 × 10−7. This implies 𝑠aim = 𝑎/𝜆 ≈ 0.03 and 𝜌aim = 1 − 𝛾/(𝛾 + 𝑎) ≈ 0.97, where parameter
𝑎 can be calculated from Equation (9) in Gârleanu and Pedersen (2013).

These values suggest large transaction costs. For robustness, we also consider values that imply
lower transaction costs: 𝑠aim = 0.1 and 𝜌aim = 0.9. To calibrate 𝜌𝜂, we estimate an AR(1) regression
of the log-price wedge from van Binsbergen et al. (2023), which yields an estimated 𝜌𝜂 of 0.99.
It is worth noting that if price pass-throughs are generally low, then price variation must also be
persistently high on average.

B.6 Computing unspanned returns in factor models

This section explains how we compute unspanned returns for different factor models in
Section 5.2. Proposition 5 shows a computationally efficient formula. Specifically, to compute
unspanned returns, we need four components: the unspanned alpha, unspanned variance, asset
portfolio weights across factors, and the MV portfolio weight across factors (𝜔 𝑓 ). Unspanned
alpha calculation is discussed in Appendix C.4. Unspanned variances can simply be calculated
by taking the inverse of each term in the diagonal of Σ−1

𝑡 . The other terms in Proposition 5 have
already been calculated following the methods described in Section 5.2.3

3Note that the𝑊𝑖𝜔
𝑓 term is invariant to scale. In other words, consider �̃� defined as �̃� = 𝑐𝑊 , where 𝑐 is a scalar.

Then �̃�𝑖 = 𝑐𝑊𝑖 . However, �̃�𝑖�̃�
𝑓 = 𝑐𝑊𝑖Var−2 (𝑐 𝑓 )E[𝑐 𝑓 ] = 𝑊𝑖𝜔

𝑓 . Thus, scaling the factor model weights up and
down has no effect on demand elasticity, which is sensible, as elasticity is defined in percentage changes.
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Proposition 5. We can write the unspanned return of asset 𝑖 as:

𝜇𝑖,unspanned = 𝛼𝑖,unspanned + 𝜎2
𝑖,unspanned︸      ︷︷      ︸

unspanned variance

× 𝑊𝑖𝜔
𝑓︸︷︷︸

weight of asset 𝑖 in SDF portfolio

,

where 𝜎2
𝑖,unspanned = 𝜎2

𝑖
− 𝛽′−𝑖Σ−𝑖,−𝑖𝛽−𝑖 is the return variance of asset 𝑖 not spanned by other assets.

Proof. Here we prove the result for asset 1, and this obviously generalizes to asset 𝑖. From
Equation (18), we have:

𝑊∗−1 =

(
𝐼′−1Σ

−1
−1,−1𝐼−1Σ

)
𝑊

Note that

𝐼′−1Σ
−1
−1,−1𝐼−1 =

[
0 0′𝑁−1

0𝑁−1 Σ−1
−1,−1

]
,

where 0𝑁−1 is an (𝑁 − 1) dimensional column vector of zeros. We can also write:

Σ =

[
𝜎2

1 Σ′−1
Σ−1 Σ−1,−1

]
.

Thus we can calculate:

𝐼′−1Σ
−1
−1,−1𝐼−1Σ =

[
0 0′𝑁−1

Σ−1,−1Σ−1 𝐼

]
=

[
0 0′𝑁−1
𝛽−1 𝐼

]
.

We partition𝑊 into the following:

𝑊 =

[
𝑊1

𝑊−1

]
,

where𝑊1 is the row vector containing the 𝑖𝑡ℎ row of𝑊 . Then we can write:

𝑊∗−1 =

(
𝐼′−1Σ

−1
−1,−1𝐼−1Σ

)
𝑊 =

[
0 0′𝑁−1
𝛽−1 𝐼

] [
𝑊1

𝑊−1

]
=

[
0

𝛽−1𝑊1 +𝑊−1

]
.
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Thus we have the following:

𝑊 −𝑊∗−1 =

[
𝑊1

−𝛽−1𝑊1

]
=

[
1
−𝛽−1

]
𝑊1.

Furthermore:

Σ′1

[
1
−𝛽−1

]
= 𝜎2

1 − Σ−1𝛽−1 = 𝜎2
1 − 𝛽−1Σ−1,−1𝛽−1 = 𝜎2

1,unspanned.

So putting this altogether means that:

Σ′1(𝑊 −𝑊
∗
−1)𝜔

𝑓 = 𝜎2
1,unspanned𝑊1𝜔

𝑓 .

C Additional Considerations

This section discusses various additional considerations in MV portfolio choice. Sections
C.1 and C.2 discuss the case of negative and small portfolio weights. Section C.3 explains why
extending investment horizon to quarterly or annual does not materially affected predicted demand
elasticities. Section C.4 examines extensions of the PCA factor models with non-zero alphas.

C.1 Negative portfolio weights

Demand elasticity is calculated using log quantities, and thus is undefined for short position.
Due to this reason, we follow Koĳen and Yogo (2019) to compute demand elasticities for stocks
with positive portfolio weights in Section 3.4. In this section, we extend the definition of demand
elasticity to short positions. Under this extended definition, demand elasticities for long and short
positions are quantitatively similar, so our main insights also carry over to short positions.

We extend the definition of demand elasticity to

𝜂±𝑖,𝑡 = 1 − 1
|𝑤𝑖,𝑡 |

(
𝜕𝑤𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
,

66



which is identical to the regular definition for long positions. For short positions, the |𝑤𝑖,𝑡 | term
means the interpretation is maintained that a positive elasticity implies a downward sloping demand
curve, except that 𝜂±

𝑖,𝑡
is in terms of a percentage change of the absolute value of the position size

instead of just the position size.
Our decomposition of demand elasticity into two components also extend naturally to short

positions. It is not hard to follow the proof of Proposition 1 to show that

𝜂±𝑖,𝑡 = 1 + 1
|𝜇𝑖,unspanned,𝑡 |

(
− 𝜕𝜇𝑖,𝑡

𝜕 log(𝑃𝑖,𝑡)

)
.

Thus, as long as unspanned returns are close to being symmetric around zero, demand elasticities
would be close to symmetric between long and short positions. Figure 2 shows this to be the case in
empirical estimates. We also verified that unspanned returns tend to have a symmetric distribution
around zero for all the PCA factor models in Section 5.2. Therefore, elasticities are also low for
short positions under this generalized definition of demand elasticities.

C.2 Small portfolio weights

Figure 2 shows that there are stocks for which the unspanned return is positive but very small
(i.e., where the two lines almost intersect), and by our decomposition, an MV investor would have
a very high demand elasticity in these stocks. In fact, as the unspanned return approaches zero,
an MV investor’s demand elasticity approaches infinity (Equation 9). However, the MV investor
also has vanishingly small positions in these stocks (Equation 10), and thus would exert very little
influence on the aggregate demand elasticities. When using more economically relevant quantities,
such as portfolio holdings-weighted demand elasticities, we again find demand elasticities to be
low.

To see that small portfolio positions have small effects on the aggregate demand elasticity,
consider the following derivation for an arbitrary asset. We omit the asset and time subscripts for
notational simplicity. Suppose there are a total of 𝑗 = 1, . . . ,𝐽 investors, each of which demand
𝑄 𝑗 shares of the asset. Define aggregate shares demand as 𝑄 =

∑
𝑗 𝑄 𝑗 . The aggregate demand

67



elasticity is given by:

𝜂agg ≡ −𝜕 log(𝑄)
𝜕 log(𝑃) = −

1
𝑄

𝜕
∑
𝑗 𝑄 𝑗

𝜕 log(𝑃)

=
∑︁
𝑗

𝑄 𝑗

𝑄
·
𝜕 log(𝑄 𝑗 )
𝜕 log(𝑃)

=
∑︁
𝑗

𝑄 𝑗

𝑄
· 𝜂 𝑗 ,

where 𝜂 𝑗 is the demand elasticity of investor 𝑗 . Therefore, aggregate demand elasticity is simply the
holdings-weighted demand elasticities across investors, meaning that investors with small holdings
have a limited impact on the aggregate demand elasticity. For simplicity, we have assumed that all
investors have long positions, but this can be extended to include short positions using the method
in Appendix C.1.

C.3 Alternative investment horizons

Our analysis in Section 3 assumes a monthly investment horizon. In practice, some investors
adjust their portfolios more slowly and have longer holding horizons. Naturally, price pass-throughs
are higher over longer horizons. This raises a question: would investors with longer horizons have
significantly higher demand elasticities?

Not necessarily, as unspanned returns may also increase with the investment horizon. Our main
demand elasticity formula in Equation (4), reproduced below, can be applied to any investment
horizon 𝐻,

𝜂𝑖,𝑡→𝑡+𝐻 ≈ 1 + 1
𝜇𝑖,unspanned,𝑡→𝑡+𝐻︸               ︷︷               ︸
weight responsiveness

×
(
− 𝜕𝜇𝑖,𝑡→𝑡+𝐻
𝜕 log(𝑃𝑖,𝑡)

)
︸            ︷︷            ︸
price pass-through

.

While an investor with longer horizon—e.g., quarterly instead of monthly—would foresee
higher price pass-through, they would also have higher unspanned returns. If these two factors
scale similarly with the investment horizon, their effects may offset, leaving the demand elasticity
prediction unchanged.

To investigate this empirically, the first row of Table C.4 reports the point estimates of price
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Investment horizon 𝐻 (months)

1 3 6 12

(1) (2) (3) (4)

Original Price pass-through 0.014 0.040 0.079 0.157
Unspanned returns 0.23% 1.25% 2.02% 3.40%

Monthly Price pass-through 0.014 0.013 0.013 0.013
Unspanned returns 0.23% 0.42% 0.34% 0.28%
Implied demand elasticity 6.9 4.2 4.9 5.6

Table C.4. Demand elasticity by investment horizon
This table computes the demand elasticity of mean-variance investors for investment horizons of 1, 3, 6, and 12 months,
respectively. The first row reports the estimated price pass-through based on the first row in Table 2. The second row
reports the average unspanned return of all positive portfolio positions using the methodology in Section 3.3. The next
two rows report the equivalent values after converting to monthly frequency. The last row reports the implied demand
elasticity.

pass-through for horizons of 𝐻 = 1, 3, 6, and 12 months, taken from the estimates in Table 2.
To estimate unspanned returns at different horizons, we re-estimate the Fama-MacBeth regression
in Section 3.3 for each horizons, and report the implied average unspanned returns for positive
portfolio positions in the second row of Table 2.

In the next two rows, we report the implied monthly price pass-through and unspanned returns
by dividing by the horizon 𝐻. The results indicate that both price pass-through and unspanned
returns scale approximately linearly with the horizon. As a consequence, the predicted demand
elasticities, shown in the last row, remain roughly constant across horizons. This indicates that, at
least for investment horizons within a year, demand elasticity predictions do not vary significantly
with the horizon.

C.4 Factor models with non-zero alphas

When implementing the PCA-style factor models in Section 5.2, we did not allow for alphas
that are not captured by the factors. In this section, we relax this restriction and estimate the
𝑁-dimensional vector of alphas (𝛼𝑡). For the RPCA and IPCA models, we estimate alphas using
the methods in their respective original papers. While Lettau and Pelger (2020) does not allow for
stock-level alphas, we compute it using the same method as the RPCA model. We then compute
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Figure C.1. Demand Elasticity Across Factor Models: Non-zero alphas
This figure is similar to Figure 3 but also adds PCA-style models with non-zero alphas. The number of factors is
shown on the 𝑥-axis. The model-implied demand elasticity is plotted on a log scale on the 𝑦-axis, which uses price
pass-through of 0.014. In the legend, “Classic” refers to traditional factor models. RPCA refers to the regression-PCA
model in Chen et al. (2023). RP-PCA refers to the model in Lettau and Pelger (2020). IPCA refers to the model in
Kelly et al. (2019).

unspanned alphas as 𝛼𝑖,unspanned,𝑡 = 𝛼𝑖,𝑡 − 𝛽′−𝑖,𝑡𝛼−𝑖,𝑡 as in Equation (17). The betas are derived using
the estimated covariance matrix Σ𝑡 whose computation has been described in Section 5.2.

Figure C.1 and Table C.5 display the results. When comparing to the PCA-style models without
alphas, including alphas further reduces elasticity. When the number of factors increase and
converge towards the number of characteristics, the alphas are mechanically absorbed into factors
and thus the difference shrinks. However, when there are fewer factors, the models exhibit lower
demand elasticity when alphas are included. For instance, when there are 10 or fewer factors, the
predicted demand elasticities are all below 5 for the three PCA-style models with alphas. This
should be intuitive as unspanned alpha, by definition, is an asset-specific characteristic that is
difficult to replicate, leading to even lower substitutability and lower demand elasticity.
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Factor Model Number of Unspanned Weight Demand
Factors Return Responsiveness Elasticity

Classic

CAPM 1 0.0006% 159678 2236.5
FF3 3 0.0020% 51145 717.0
HXZ 4 0.0083% 12018 169.3
FF5 5 0.0124% 8063 113.9
FF6 6 0.0109% 9164 129.3

RPCA with alpha

PCA factor model 5 0.7637% 131 2.8
PCA factor model 10 0.7340% 136 2.9
PCA factor model 15 0.6357% 157 3.2
PCA factor model 20 0.5875% 170 3.4

RP-PCA with alpha

PCA factor model 5 0.7484% 134 2.9
PCA factor model 10 0.7336% 136 2.9
PCA factor model 15 0.6363% 157 3.2
PCA factor model 20 0.5719% 175 3.4

IPCA with alpha

PCA factor model 5 0.7883% 127 2.8
PCA factor model 10 0.4249% 235 4.3
PCA factor model 15 0.3533% 283 5.0
PCA factor model 20 0.3401% 294 5.1

Table C.5. Demand Elasticity Across Factor Models: Non-zero alphas
This table presents the demand elasticity, calculated using Equation (9), for various factor models. The elasticity is
computed with a pass-through of 0.014 and the average unspanned return of a factor model using Proposition 4. Note
that Proposition 5 in the appendix offers a more efficient method for calculating the unspanned return of these models.
This table essentially replicates Table 5, but includes alphas in the PCA factor models.

D Two-Asset Example

In this section, we use a two-asset example to illustrate why the degree of substitutability
between assets matters for asset-level demand elasticity for a mean-variance investor. The following
derivations also clarify where each term in Proposition 2 comes from.

Consider an investor with CARA utility who is forming an optimal portfolio at time 𝑡. In
addition to a risk-free asset with an exogenously given risk-free rate, the investor can invest in two
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risky assets. The covariance matrix of the next-period dollar payoffs is defined as follows:[
Λ1,𝑡 Λ1,2,𝑡

Λ1,2,𝑡 Λ2,𝑡

]
=

[
Var𝑡 (𝑃1,𝑡+1 + 𝐷1,𝑡+1) Cov𝑡 (𝑃1,𝑡+1 + 𝐷1,𝑡+1, 𝑃2,𝑡+1 + 𝐷2,𝑡+1)

Cov𝑡 (𝑃1,𝑡+1 + 𝐷1,𝑡+1, 𝑃2,𝑡+1 + 𝐷2,𝑡+1) Var𝑡 (𝑃2,𝑡+1 + 𝐷2,𝑡+1)

]
The investor’s share demand is

𝑄𝑡 =
1
𝛾

[
Λ1,𝑡 Λ1,2,𝑡

Λ1,2,𝑡 Λ2,𝑡

]−1 [
E𝑡 [𝑃1,𝑡+1 + 𝐷1,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃1,𝑡

E𝑡 [𝑃2,𝑡+1 + 𝐷2,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃2,𝑡 ,

]
where 𝛾 is the risk aversion parameter. We can explicitly expand out the matrix inverse above to
get:

𝑄1,𝑡 =
Λ2,𝑡

(
E𝑡 [𝑃1,𝑡+1 + 𝐷1,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃1,𝑡

)
− Λ1,2,𝑡

(
E𝑡 [𝑃2,𝑡+1 + 𝐷2,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃2,𝑡

)
𝛾

(
Λ1,𝑡Λ2,𝑡 − Λ2

1,2,𝑡

)
𝑄2,𝑡 =

Λ1,𝑡
(
E𝑡 [𝑃2,𝑡+1 + 𝐷2,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃2,𝑡

)
− Λ1,2,𝑡

(
E𝑡 [𝑃1,𝑡+1 + 𝐷1,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃1,𝑡

)
𝛾

(
Λ1,𝑡Λ2,𝑡 − Λ2

1,2,𝑡

) ,

which can be slightly manipulated to get:

𝑄1,𝑡 =

(
E𝑡 [𝑃1,𝑡+1 + 𝐷1,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃1,𝑡

)
− Λ1,2,𝑡

Λ2,𝑡

(
E𝑡 [𝑃2,𝑡+1 + 𝐷2,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃2,𝑡

)
𝛾

(
Λ1,𝑡 −

Λ2
1,2,𝑡
Λ2,𝑡

) ,

𝑄2,𝑡 =

(
E𝑡 [𝑃2,𝑡+1 + 𝐷2,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃2,𝑡

)
− Λ1,2,𝑡

Λ1,𝑡

(
E𝑡 [𝑃1,𝑡+1 + 𝐷1,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃1,𝑡

)
𝛾

(
Λ2,𝑡 −

Λ2
1,2,𝑡
Λ1,𝑡

) .

Note that Λ1,2,𝑡
Λ2,𝑡

is the regression coefficient of asset 1 payoff on asset two. Therefore, the
expressions above look like unspanned return in dollar terms divided by unspanned variance in

72



dollar terms. To simplify notations, we define the following:

𝐵−1,𝑡 =
Λ1,2,𝑡

Λ2,𝑡

𝐵−2,𝑡 =
Λ1,2,𝑡

Λ1,𝑡

𝑀1,𝑡 =
(
E𝑡 [𝑃1,𝑡+1 + 𝐷1,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃1,𝑡

)
𝑀2,𝑡 =

(
E𝑡 [𝑃2,𝑡+1 + 𝐷2,𝑡+1] − 𝑅 𝑓 ,𝑡𝑃2,𝑡

)
𝑀1,unspanned,𝑡 = 𝑀1,𝑡 − 𝐵−1,𝑡𝑀2,𝑡

𝑀2,unspanned,𝑡 = 𝑀2,𝑡 − 𝐵−2,𝑡𝑀1,𝑡

Λ1,unspanned,𝑡 =
(
Λ1,𝑡 − 𝐵−1,𝑡Λ1,2,𝑡

)
Λ2,unspanned,𝑡 = Λ2,𝑡 − 𝐵−2,𝑡Λ1,2,𝑡 ,

where these unspanned returns and unspanned variance terms have the same interpretation as the
𝜇𝑖,unspanned,𝑡 and 𝜎2

𝑖,unspanned,𝑡 terms, except that these are in dollar terms. Then, we can simplify the
share demand expressions as:

𝑄1,𝑡 =
𝑀1,unspanned,𝑡

𝛾Λ1,unspanned,𝑡

𝑄2,𝑡 =
𝑀2,unspanned,𝑡

𝛾Λ2,unspanned,𝑡
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We can then directly calculate the elasticity for asset 1 as:

𝜂𝑖,𝑡 = −
𝜕 log(𝑄1,𝑡)
𝜕 log(𝑃1,𝑡)

= − 1
𝑄1,𝑡

𝜕𝑄1,𝑡

𝜕 log(𝑃1,𝑡)

= −
𝛾Λ1,unspanned,𝑡

𝑀1,unspanned,𝑡

𝜕𝑄1,𝑡

𝜕 log(𝑃1,𝑡)

=
𝛾Λ1,unspanned,𝑡

𝑀1,unspanned,𝑡

( (
1

𝛾Λ1,unspanned,𝑡

) (
− 𝜕𝑀1,𝑡

𝜕 log(𝑃1,𝑡)

)
+

(
1

𝛾Λ1,unspanned,𝑡

) (
𝜕𝐵−1,𝑡

𝜕 log(𝑃1,𝑡

)
+

(
𝑀1,unspanned,𝑡

𝛾Λ2
1,unspanned,𝑡

) (
𝜕Λ1,unspanned,𝑡

𝜕 log(𝑃1,𝑡)

) )
=

(
1

𝑀1,unspanned,𝑡

) (
− 𝜕𝑀1,𝑡

𝜕 log(𝑃1,𝑡)

)
+

(
1

𝑀1,unspanned,𝑡

) (
𝜕𝐵−1,𝑡

𝜕 log(𝑃1,𝑡)

)
+

(
1

Λ1,unspanned,𝑡

) (
𝜕Λ1,unspanned,𝑡

𝜕 log(𝑃1,𝑡)

)
=

(
1

𝑀1,unspanned,𝑡

) (
− 𝜕𝑀1,𝑡

𝜕 log(𝑃1,𝑡)

)
+

(
1

𝑀1,unspanned,𝑡

) (
𝜕𝐵−1,𝑡

𝜕 log(𝑃1,𝑡

)
+

(
1

Λ1,unspanned,𝑡

) (
𝜕Λ1,𝑡

𝜕 log(𝑃1,𝑡)

)
−

(
1

Λ1,unspanned,𝑡

) (
𝜕Λ−1,𝑡

𝜕 log(𝑃1,𝑡)

)
.

where

Λ−1,𝑡 = 𝐵−1,𝑡Λ1,2,𝑡 .

Thus, this calculation closely mirrors Proposition 2. The demand elasticity for asset 1 is broken
into three components: the “main component”, which reflects changes in the expected dollar return
𝑀1,𝑡 , the “volatility component”, related to changes in the variance Λ1,𝑡 , and the “correlation
component”, which captures the changes in cross-asset exposure 𝐵−1,𝑡 and covariances. The final
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elasticity expression is:

𝜂1,𝑡 =
1

𝑀1,unspanned,𝑡

(
− 𝜕𝑀1,𝑡

𝜕 log(𝑃1,𝑡)

)
︸                                ︷︷                                ︸

main component

+ 1
Λ1,unspanned,𝑡

(
𝜕Λ1,𝑡

𝜕 log(𝑃1,𝑡)

)
︸                             ︷︷                             ︸

volatility component

+ 1
𝑀1,unspanned,𝑡

(
𝜕𝐵−1,𝑡

𝜕 log(𝑃1,𝑡)

)
− 1
Λ1,unspanned,𝑡

(
𝜕Λ−1,𝑡

𝜕 log(𝑃1,𝑡)

)
︸                                                                      ︷︷                                                                      ︸

correlation component

.

Notice here that there is no “one plus” term that Equation (13) starts with. This is because we
write demand here not in terms of portfolio weights, but as shares. Now we walk through this math
in terms of returns, unspanned returns, and unspanned variances. Thus, we will now use excess
returns in percentages, not dollars, as in the following:

𝑟𝑖,𝑡+1 =
𝑃𝑖,𝑡+1 + 𝐷𝑖,𝑡+1 − 𝑅 𝑓 ,𝑡𝑃𝑖,𝑡

𝑃𝑖,𝑡
,

and thus

𝑀𝑖,𝑡 = 𝑃𝑖,𝑡E𝑡 [𝑟𝑖,𝑡+1] = 𝑃𝑖,𝑡𝜇𝑖,𝑡
Λ𝑖,𝑡 = 𝑃

2
𝑖,𝑡Var𝑡 [𝑟𝑖,𝑡+1] = 𝑃2

𝑖,𝑡𝜎
2
𝑖,𝑡

Λ𝑖, 𝑗 ,𝑡 = 𝑃𝑖,𝑡𝑃 𝑗 ,𝑡Cov𝑡 (𝑟𝑖,𝑡+1, 𝑟 𝑗 ,𝑡+1) = 𝑃𝑖,𝑡𝑃 𝑗 ,𝑡𝜎𝑖, 𝑗 ,𝑡
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We can use the above to solve for these terms:

𝐵−1,𝑡 =
Λ1,2,𝑡

Λ2,𝑡
=
𝑃1,𝑡𝑃2,𝑡𝜎1,2,𝑡

𝑃2
2,𝑡𝜎

2
2,𝑡

=
𝑃1,𝑡𝜎1,2,𝑡

𝑃2,𝑡𝜎
2
2,𝑡

=
𝑃1,𝑡

𝑃2,𝑡
𝛽−1,𝑡

𝐵−2,𝑡 =
Λ1,2,𝑡

Λ1,𝑡
=
𝑃1,𝑡𝑃2,𝑡𝜎1,2,𝑡

𝑃2
1,𝑡𝜎

2
1,𝑡

=
𝑃2,𝑡𝜎1,2,𝑡

𝑃1,𝑡𝜎
2
1,𝑡

=
𝑃2,𝑡

𝑃1,𝑡
𝛽−2,𝑡

𝑀1,𝑡 = 𝑃1,𝑡𝜇1,𝑡

𝑀2,𝑡 = 𝑃2,𝑡𝜇2,𝑡

𝑀1,unspanned,𝑡 = 𝑀1,𝑡 − 𝐵−1,𝑡𝑀2,𝑡 = 𝑃1,𝑡𝜇1,𝑡 −
𝑃1,𝑡𝜎1,2,𝑡

𝑃2,𝑡𝜎
2
2,𝑡
𝑃2,𝑡𝜇2,𝑡 = 𝑃1,𝑡

(
𝜇1,𝑡 −

𝜎1,2,𝑡𝜇2,𝑡

𝜎2
2,𝑡

)
= 𝑃1,𝑡𝜇1,unspanned,𝑡

𝑀2,unspanned,𝑡 = 𝑀2,𝑡 − 𝐵−2,𝑡𝑀1,𝑡 = 𝑃2,𝑡𝜇2,𝑡 −
𝑃2,𝑡𝜎1,2,𝑡

𝑃1,𝑡𝜎
2
1,𝑡
𝑃1,𝑡𝜇1,𝑡 = 𝑃2,𝑡

(
𝜇2,𝑡 −

𝜎1,2,𝑡𝜇1,𝑡

𝜎2
1,𝑡

)
= 𝑃2,𝑡𝜇2,unspanned,𝑡

Λ1,unspanned,𝑡 = Λ1,𝑡 − 𝐵−1,𝑡Λ1,2,𝑡 = 𝑃
2
1,𝑡𝜎

2
1,𝑡 −

𝑃1,𝑡𝜎1,2,𝑡

𝑃2,𝑡𝜎
2
2,𝑡
𝑃1,𝑡𝑃2,𝑡𝜎1,2,𝑡

= 𝑃2
1,𝑡

(
𝜎2

1,𝑡 −
𝜎2

1,2,𝑡

𝜎2
2,𝑡

)
= 𝑃2

1,𝑡𝜎1,unspanned,𝑡

Λ2,unspanned,𝑡 = Λ2,𝑡 − 𝐵−2,𝑡Λ
2
1,2,𝑡 = 𝑃

2
2,𝑡𝜎

2
2,𝑡 −

𝑃2,𝑡𝜎1,2,𝑡

𝑃1,𝑡𝜎
2
1,𝑡
𝑃1,𝑡𝑃2,𝑡𝜎1,2,𝑡

= 𝑃2
2,𝑡

(
𝜎2

2,𝑡 −
𝜎2

1,2,𝑡

𝜎2
1,𝑡

)
= 𝑃2

2,𝑡𝜎2,unspanned,𝑡

So we can use this to write:

𝑄1,𝑡 =
𝑀1,unspanned,𝑡

𝛾Λ1,unspanned,𝑡
=
𝑃1,𝑡𝜇1,unspanned,𝑡

𝛾𝑃2
1,𝑡𝜎1,unspanned,𝑡

=
𝜇1,unspanned,𝑡

𝛾𝑃1,𝑡𝜎1,unspanned,𝑡

𝑄2,𝑡 =
𝑀2,unspanned,𝑡

𝛾Λ2,unspanned,𝑡
=
𝑃2,𝑡𝜇2,unspanned,𝑡

𝛾𝑃2
2,𝑡𝜎2,unspanned,𝑡

=
𝜇2,unspanned,𝑡

𝛾𝑃2,𝑡𝜎2,unspanned,𝑡
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To calculate the elasticity of asset 1, we can first take the log of demand:

log(𝑄1,𝑡) = log
(
𝜇1,unspanned,𝑡

𝛾𝜎1,unspanned,𝑡

)
− log(𝑃1,𝑡)

Thus the elasticity is given by:

𝜂𝑖,𝑡 = −
𝜕 log(𝑄1,𝑡)
𝜕 log(𝑃1,𝑡)

= 1 − 𝜕

𝜕 log(𝑃1,𝑡)
log

(
𝜇1,unspanned,𝑡

𝛾𝜎1,unspanned,𝑡

)
Thus we can walk through the same steps above to obtain the following:

𝜂1,𝑡 = 1 + 1
𝜇1,unspanned,𝑡

(
− 𝜕𝜇1,𝑡

𝜕 log(𝑃1,𝑡)

)
︸                                    ︷︷                                    ︸

main component

+
(

1
𝜎2

1,unspanned,𝑡

)
𝜕𝜎2

1,𝑡

𝜕 log(𝑃1,𝑡)︸                             ︷︷                             ︸
volatility component

+ 1
𝜇1,unspanned,𝑡

𝜇−1,𝑡
𝜕𝛽−1,𝑡

𝜕 log(𝑃1,𝑡)
−

(
1

𝜎2
1,unspanned,𝑡

)
𝜕𝜎2
−1,𝑡

𝜕 log(𝑃1,𝑡)︸                                                                        ︷︷                                                                        ︸
correlation component

.

This matches Proposition 2.
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