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Abstract

Firms’ payout decisions respond to expected returns: everything else equal, firms invest less

and pay out more when their cost of capital increases. Given investors’ demand for firm pay-

out, market clearing implies that productivity and payout demand dynamics fully determine

equilibrium asset prices and returns. Using this logic, we propose a payout-based asset pricing

framework. To operationalize it, we introduce a quantitative model, calibrating the productivity

and payout demand processes to match aggregate U.S. corporate output and payout moments.

Model-implied payout yields and firm returns match key empirical moments, and model-implied

expected returns predict future firm returns in the data.
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1 Introduction

This paper introduces a new framework within the production-based asset pricing paradigm, called

payout-based asset pricing. In our framework, a firm’s payout supply is derived from its optimality

conditions, while payout demand is treated as exogenous. Equilibrium expected returns are, then,

determined by the clearing of the payout market, without requiring the recovery of the economy’s

stochastic discount factor (SDF). Therefore, our approach differs from strands of the production-

based literature that either derive the SDF from the firm’s optimality conditions (e.g., Cochrane

(1988), Jermann (2010), Belo (2010)) or assume that the firm optimizes its behavior taking into ac-

count an exogenous SDF (e.g., Zhang (2005)). Our approach also differs from the investment-based

asset pricing strand of the production-based paradigm, which empirically examines the relation-

ship between realized firm returns and realized investment returns, without deriving the SDF or

equilibrium expected returns (e.g., Cochrane (1991)).

Our key insight is as follows. To pin down a firm’s equilibrium expected return, we focus on supply

and demand in the payout market: the firm’s optimality conditions yield its payout supply policy,

while we posit an exogenous process for payout demand, which reflects in reduced form the optimal

payout demand of investors, without the need to explicitly specify their preferences. It follows

that the firm’s equilibrium expected return exhibits time variation both due to changes in the

firm’s desired payout, which arise from supply-side shocks (such as productivity shocks), and due

to exogenous fluctuations in investors’ payout demand, which reflect demand-side shocks (such as

taste shocks) in reduced form. As we argue in our paper, if the exogenous payout demand process

is correctly specified (i.e., if it reflects the true equilibrium payout process), then market clearing

recovers the true equilibrium expected return.1

It can be argued that, alternatively, one could specify an exogenous process for investment (rather

than payout) demand and back out equilibrium expected returns by imposing clearing in the

investment market. However, that approach would lead to conceptual problems since both invest-

ment demand and investment supply arise from firms’, rather than investors’, optimizing behavior.

Furthermore, from a practical perspective, defining and measuring investment is a difficult task.

Whereas the early literature largely focuses on physical capital (the measurement of which poses

non-trivial problems, see Bai, Li, Xue and Zhang (2024)), recent papers demonstrate the impor-

tance of other capital inputs, such as intangibles and working capital (e.g., Gonçalves, Xue and

Zhang (2020) and Belo, Gala, Salomao and Vitorino (2022)), complicating the measurement issue

even further. On the other hand, firm payout can be unambiguously defined and measured, facili-

tating the calibration and testing of payout-based asset pricing models. As we show below, those

1In a sense, our framework flips the logic of the consumption-based asset pricing framework, which uses the
household’s optimality conditions in order to retrieve the payout demand policy and posits an exogenous process for
payout supply (which reflects in reduced form the optimal payout supply of firms, without explicitly specifying their
production technology).
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practical advantages yield important empirical benefits.

To operationalize our approach, we start by introducing a quantitative model which features an

equity-financed representative firm that optimally chooses its investment and payout policies, sub-

ject to capital adjustment costs. The firm faces an equity payout demand equal to the firm’s output

times an exogenous payout demand ratio (i.e., payout demand over output). Imposing payout mar-

ket clearing, the equilibrium expected firm return is a function of firm productivity, as well as the

payout demand ratio. It follows that exogenous shocks in that ratio generate fluctuations in the

firm’s equilibrium expected return. For example, an increase in the payout demand ratio increases

the firm’s expected return: for the payout market to clear, the firm needs to cut investment and

raise payout, which is achieved by an increase in the firm’s cost of capital. Our model is simple

by design: productivity and the payout demand ratio follow autoregressive processes and the firm

faces no frictions when raising capital. That simplicity allows us to easily calibrate the model to

match the empirical properties of aggregate firm output and payout.

We solve for the model’s equilibrium expected firm return numerically and show that it increases

with the payout demand ratio, but is almost completely insensitive to firm productivity, indicating

that most of the variation in the firm’s expected return arises from variation in the payout demand

ratio. Intuitively, exogenous fluctuations in the payout demand ratio necessitate corresponding

shifts in the firm’s payout supply for the payout market to clear, and those supply shifts are

achieved by changes in the firm’s equilibrium expected rate of return. Our model-implied expected

returns strongly predict future aggregate firm returns, with a regression adjusted R2 of 6.05%.2

Panel A of Figure 1 illustrates the ability of our model to produce empirically plausible expected

returns by plotting both the time series of our model-implied expected returns and the time series

of empirically estimated expected returns, i.e., expected returns recovered by regressing one-year

realized firm returns on lagged payout yields (payout over firm value), payout ratios (payout over

output), and productivity (output over capital). As seen in the graph, the two expected return

measures exhibit a very high degree of unconditional correlation (the correlation coefficient is 0.86),

suggesting that our model is able to match empirical measures of expected returns very well.

We, then, simulate the model and show that it goes a long way in matching key asset pricing

moments. Specifically, the model generates an average payout yield of 2.60% and payout yield

volatility of 4.37%, which are very close to the respective empirical values of 1.59% and 2.47%.

Furthermore, the model implies an average firm return of 5.46% and a firm return volatility of

12.78%, with the corresponding empirical moments being 7.86% and 14.88%. Using more sophis-

ticated processes for productivity and the payout demand ratio or introducing standard financing

frictions is likely to further improve the ability of the model to reproduce empirical asset pricing

2We also show that the expected firm returns generated by a model similar to ours, but with an exogenous
investment (rather than payout) process, do not predict realized firm returns in the data using a range of investment
measures, highlighting that payout-based and investment-based asset pricing models can yield very different expected
returns.
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moments. However, our main message is that even a simple payout-based asset pricing setup with

a reasonable parametrization goes a long way in generating realistic asset pricing implications.

Part of the firm return volatility in the model arises from time-varying expected returns. To explore

the properties of expected returns, we consider forecasting regressions of annual firm returns on

lagged payout yields. In both the data and the model, there is a positive association between the

two, with the model predictive coefficient (1.47) being close to its empirical counterpart (1.81). To

determine whether the return predictability we document arises from the firm’s optimizing payout

behavior, as our model suggests, we consider regressions of annual firm returns on the lagged payout

ratio, which is the main driver of expected returns in our model. In both the data and the model, we

find a positive association between payout ratios and subsequent returns, in line with the intuition

that, when payout demand is relatively high, the firm’s expected return rises in order to induce the

firm to cut investment and raise payout to the demanded level.

While our model’s main mechanism for time-varying expected returns is supported by the data,

we show that our model-implied expected equilibrium returns are overly sensitive to changes in

the payout ratio compared to the data. That “excess sensitivity puzzle” is illustrated in Panel B

of Figure 1, which plots the fitted values from regressions of one-year realized firm returns (in the

model and the data) on lagged payout ratios. As seen in the graph, model-implied expected returns

are far more sensitive to changes in the payout ratio than actual expected returns. We argue that

the excess sensitivity likely stems from the fact that baseline models, such as ours, assume that

raising external funding is frictionless. In richer models, the time variation in external financing

costs incentivizes firms to time payouts in order to reduce frictions, potentially attenuating the

sensitivity of firm payouts to expected returns. Hence, the excess sensitivity puzzle may be related

to the “saving waves” documented in Eisfeldt and Muir (2016).

Since our approach does not recover the full set of state prices, one drawback of payout-based asset

pricing is that, in the absence of additional information, it can only be used to price claims on

a particular payout process. However, that drawback is not particularly restrictive: we can use

our approach in order to price any claims, provided that we know the corresponding technologies

and payout demand processes. To highlight that, we also introduce a more complex version of

our model, which features a levered representative firm that is financed by equity and one-period

safe debt. The joint optimization of the firm’s investment and capital structure policies yields

separate optimal supply schedules for equity and debt payouts. The firm faces exogenous payout

demand ratios for debt and equity from investors, so equity and debt returns are endogenously

determined by the clearing of the equity and debt payout markets, respectively. The model is able

to match the properties of firm and equity returns quite well, replicating the good performance

of the unlevered firm model, but is less successful in matching debt returns. Our model’s limited

success in replicating the empirical properties of debt returns partly stems from the assumption

that the firm is able to only issue one-period safe debt, which implies that debt returns and risk-free
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rates are identical. Benchmarking our model-implied debt returns against empirical risk-free rates

yields a more favorable assessment of our model.

Our payout-based asset pricing approach is analogous to the consumption-based asset pricing frame-

work (Lucas (1978) and Breeden (1979)). In particular, while consumption-based asset pricing

models solve for equilibrium expected returns by equating a postulated payout supply process to

endogenous payout demand, in our payout-based asset pricing framework we solve for equilibrium

expected returns by equating a postulated payout demand process to endogenous payout supply.

Even though the consumption-based asset pricing setup is unrealistic, it generates the same ex-

pected return as a fully specified general equilibrium economy (i.e., an economy in which households

and firms both optimize their behavior) as long as the postulated payout supply process coincides

with the equilibrium payout process in the fully specified economy.3 Similarly, our payout-based

asset pricing framework generates the same expected return as a fully specified economy as long as

the postulated payout demand process coincides with the equilibrium payout in that economy.

Our paper contributes to the production-based asset pricing literature, which aims to connect the

production side of the economy with asset prices. Our key contribution lies in developing a frame-

work which uses firms’ optimality conditions and market clearing in order to retrieve equilibrium

expected returns, without the need to recover the economy’s SDF. Importantly, our approach shifts

the focus from firms’ investment processes to their payout processes. As discussed before, that shift

has both conceptual and practical advantages. As a result, our approach produces expected returns

that exhibit a tight connection with observed firm returns, consistent with the theory. We provide

a detailed discussion of the relation of our approach with the rest of the production-based asset

pricing literature in the next section.

The rest of this paper is organized as follows. Section 2 introduces our payout-based asset pricing

model with an unlevered firm and discusses its qualitative properties, as well as its relation to the

rest of the production-based asset pricing literature and to the consumption-based asset pricing

paradigm. Section 3 reports the quantitative output of our model. Section 4 discusses a version of

our model that includes a levered representative firm, which allows us to study the properties of

equity and debt returns separately. Finally, Section 5 concludes. The Internet Appendix includes

model derivations, as well as details on data sources and empirical measures, that are omitted from

the main text.

3For example, Campbell and Cochrane (1999) state that “if the statistical model of the ‘endowment’ is the same
as the equilibrium consumption process from a production economy, then the joint asset price-consumption process
is the same whether the economy is truly an endowment or a production economy.”
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2 Baseline Framework

In this section, we introduce our payout-based asset pricing framework. First, we describe our

model and discuss its properties. Then, we compare our approach with investment-based asset

pricing and consumption-based asset pricing and illustrate similarities and differences.

2.1 A payout-based asset pricing model

We start with the description of our payout-based asset pricing model, which features an optimiz-

ing equity-financed representative firm with an infinite horizon and an exogenous payout demand

process. All derivations for the results in this section can be found in Internet Appendix A.

2.1.1 Setting

Consider an unlevered representative firm with operating profit

Π(K,Z) = α · Z ·K = α · Y, (1)

where K is the firm’s capital stock, Z is an exogenous productivity process, Y = Z ·K is the firm’s

output, and α ∈ (0, 1) is the firm’s operating profit margin.4 The exogenous productivity process

Z satisfies Zt = ezt , where z is a stationary process that has law of motion

zt+1 = µz + φz(zt − µz) + σzε
z
t+1, (2)

with εzt+1 ∼ N(0, 1), φz ∈ (0, 1), and σz > 0. Capital depreciates at a constant rate δ ∈ [0, 1] per

period, so capital accumulation satisfies

Kt+1 = It + (1− δ)Kt, (3)

where I is the firm’s investment. Finally, we assume that the firm faces capital adjustment costs,

with the adjustment cost function being

Φ(K, I) =
a

2
· (I/K)2 ·K. (4)

4Our specification is consistent with a constant returns to scale production function that includes additional
inputs (such as energy, purchased services, and costlessly adjustable labor). Footnote 4 in Gonçalves et al. (2020)
provides a detailed discussion. Inter alia, that implies that our model is consistent with an economy in which labor
is a factor of production and, thus, households’ consumption demand is different from their firm payout demand, as
they also receive labor income.
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As standard, we assume that the capital adjustment costs are tax-deductible. It follows that the

firm’s flow payout is given by

Dt = (1− τ) (Π(Kt, Zt)− Φ(Kt, It))− It + τδKt, (5)

where τ ∈ (0, 1) is the corporate tax rate.

The firm’s manager chooses investment I and payout D in order to maximize the cum-payout firm

value Vt,

Vt = max
{It+h,Dt+h}∞h=0

{Dt +
∞∑
h=1

Et[Mt,t+hDt+h]}, (6)

where {Mt,t+h}∞h=1 is the set of stochastic discount factors, the properties of which the firm takes

as given when optimizing.

Finally, the firm faces an exogenous payout demand Dd
t = Dd(Kt, Zt, dt) from investors, where d

is an exogenous stochastic process. In particular, the payout demand process Dd satisfies

Dd(K,Z, d) = d · Z ·K = d · Y, (7)

where the exogenous stochastic process d (payout demand per unit of output) has law of motion

dt+1 = µd + φd · (dt − µd) + σd,t · εdt+1, (8)

where φd ∈ (0, 1), εdt+1 ∼ N(0, 1) and corr(εzt+1, ε
d
t+1) = ρz,d. The conditional volatility process is

σd,t = σd ·
√
dmaxt − dt, (9)

where σd > 0 and dmaxt is the conditional upper bound of d, given by

dmaxt = (1− τ)α+ e−zt
[(

1− (1− τ)a

2
· ϕ
)
ϕ+ τδ

]
, (10)

where ϕ = min{1/(a(1− τ)), 1− δ}.

In our specification, the payout demand function Dd is linear in the firm’s capital stock K. That

assumption is necessary in order for the exogenous payout demand to be consistent with the firm’s

behavior: given its technology, the firm’s optimal payout is always (i.e., for any SDF specification)

proportional to its capital stock, so a postulated Dd process that violates that restriction cannot

be consistent with any investor preferences. Similarly, as shown in Internet Appendix A, the

assumption that the realizations of d have the conditional upper bound given by Equation 10

ensures that the model generates feasible firm payout and investment processes in equilibrium: in

the absence of that bound, payout demand could have realizations too large to be satisfied by any
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feasible firm investment policy. Inter alia, as will be made clear when we derive the equilibrium

properties of our model, that upper bound ensures that the equilibrium marginal q of the firm is

always real-valued and non-negative.

2.1.2 Payout supply

The firm’s problem can be rewritten recursively as

V (Kt, Zt; {ft(Mt,t+h)}∞h=1) = max
{It}
{Dt + Et[Mt,t+1V (Kt+1, Zt+1; {ft+1(Mt+1,t+1+h)}∞h=1)]}, (11)

where ft(·) denotes the probability distribution conditional on information available at time t.

This specification is consistent with the fact that the firm picks the optimal investment-payout

policy taking the conditional distribution of the current and future SDFs as given. Note that the

exogenous payout demand process Dd (and, hence, the state variable d) does not directly enter the

firm’s problem. To clarify, that does not mean that the distribution of equilibrium current and

future SDFs is independent of d. Rather, the meaning is that, taking the conditional distribution

of current and future SDFs as given, the firm’s optimal policy depends on the state variables Z

and K, but not on d.

The firm’s first order condition is

Et[Mt+1∂KV (Kt+1, Zt+1; {ft+1(Mt+1,t+1+h)}∞h=1)]︸ ︷︷ ︸
≡qt

= 1 + (1− τ)∂IΦ(Kt, It), (12)

where q is Tobin’s marginal q. That condition yields the familiar investment function

It = I(Kt; qt) =
qt − 1

a(1− τ)
Kt, (13)

which specifies that the firm’s optimal investment is proportional to its capital stock and increasing

in the marginal q.5 Therefore, the firm’s payout supply satisfies

Dt = (1− τ) (Π(Kt, Zt)− Φ(Kt, I(Kt; qt)))− I(Kt; qt) + τδKt, (14)

5Since the firm’s capital stock has to be non-negative, investment needs to satisfy It ≥ −(1 − δ)Kt for all t.
We assume that capital adjustment costs are sufficiently large so that the non-negativity constraint never binds
and, hence, the firm always optimally picks an interior solution for investment. In particular, we assume that the
adjustment cost parameter a satisfies the condition a > 1

(1−τ)(1−δ) . That condition ensures the feasibility of the

interior solution, given the non-negativity of the firm’s marginal q. Indeed, for 0 ≤ qt < 1, we have It = qt−1
a(1−τ)

Kt >

(qt − 1)(1− δ)Kt ≥ −(1− δ)Kt. For qt ≥ 1, the interior optimality condition yields It ≥ 0 ≥ −(1− δ)Kt.
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which, plugging in the investment function of Equation 13, yields the payout supply function

Dt = D(Kt, Zt; qt) =

[
(1− τ)αZt −

q2
t − 1

2a(1− τ)
+ τδ

]
Kt. (15)

The period t payout supply is increasing in productivity Zt and capital stock Kt and decreasing in

qt. The negative relationship between payout supply and marginal q is intuitive: higher marginal

q implies higher investment, which reduces the firm resources available to be paid out. Notably,

the firm’s marginal q is a sufficient statistic for investor preferences as regards characterizing the

firm’s optimal payout behavior – no other information regarding conditional SDF distributions is

needed. In other words, any configuration of conditional SDF distributions that yields the same q

process leads to the same firm investment and payout processes.

Using the envelope condition, we obtain6

qt = Et [Mt+1 ((1− τ)(∂KΠ(Kt+1, Zt+1)− ∂KΦ(Kt+1, It+1)) + τδ + (1− δ)qt+1)] . (17)

For any given set of conditional SDF distributions, Equation 17 implies a particular qt process,

which potentially depends on both the current state of the economy and the properties of future

SDFs. Plugging that qt into I(Kt; qt) and D(Kt, Zt; qt) yields firm investment and payout policies.

This is the approach taken by the subset of the production-based asset pricing literature that

specifies exogenous SDFs (e.g., Zhang (2005)). We take a different approach: instead of specifying

an exogenous SDF, we specify a payout demand process (Equation 8), which allows us to recover

the equilibrium q process by imposing payout market clearing, as we detail next.

2.1.3 Equilibrium

We have seen that, in our economy, the firm’s payout supply depends on the state variables K and

Z, as well as the firm’s q, which summarizes investor preferences. We now show that payout market

clearing allows us to back out the firm’s equilibrium q and, hence, all the information regarding

investor preferences that is relevant to the firm’s decisions. In other words, specifying the investor

payout demand process Dd (and then imposing payout market clearing) is enough for backing out

the equilibrium q – no further information about investor preferences is needed.

Indeed, in equilibrium the firm’s endogenous payout supply needs to equal the exogenous payout

6We can write Equation 17 as

Et
[
Mt+1 ·RIt+1

]
= 1, (16)

where RIt+1 =
(1−τ)(∂KΠ(Kt+1,Zt+1)−∂KΦ(Kt+1,It+1))+τδ+(1−δ)qt+1

qt
is the one-period investment return, as in Cochrane

(1991). Intuitively, taking SDF properties (and, hence, state prices) as given, the firm should adjust its investment
(and, therefore, payout) until the investment return is such that the firm is adequately compensated for the risk that
it takes and, thus, no arbitrage opportunities remain.
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demand:

D(Kt, Zt; qt) = Dd(Kt, Zt, dt). (18)

Using Equations 7 and 15, we can rewrite the payout market clearing condition as[
(1− τ)αZt −

q2
t − 1

2a(1− τ)
+ τδ

]
Kt = dtZtKt, (19)

so we can solve for the equilibrium q, denoted by q∗, as a function of the exogenous state variables

zt and dt:

q∗t = q∗(zt, dt) =
√

1 + 2a(1− τ) [((1− τ)α− dt)ezt + τδ]. (20)

Notably, q∗t does not depend on the firm’s capital stock Kt. As discussed previously, our d specifi-

cation (which imposes the restriction that dt ≤ dmaxt for all t) ensures that q∗t is always real-valued

and increasing in productivity Zt.

Determining the firm’s equilibrium marginal q allows us to write the equilibrium investment rate

and equilibrium payout ratio as a function of the state variables zt and dt:

I∗t /K
∗
t = i∗(zt, dt) =

√
1 + 2a(1− τ) [((1− τ)α− dt)ezt + τδ]− 1

a(1− τ)
, (21)

and, trivially,

D∗t /Y
∗
t = d∗(zt, dt) = dt, (22)

respectively.

2.1.4 Equilibrium asset prices

In Internet Appendix B, we show the firm’s optimality conditions imply

Vt = Dt + qtKt+1, (23)

so that

Qt = qt, (24)

where the firm’s average Tobin’s q is defined as the ex-dividend value of the firm (Pt) per unit

of capital: Qt ≡ Pt
Kt+1

= Vt−Dt
Kt+1

. Furthermore, we show that the firm return is identical to the

investment return:

Rt+1 = RIt+1. (25)

9



It follows that the firm’s equilibrium Q is a function of the exogenous stationary variables z and d:

Q∗t = Q∗(zt, dt) =
√

1 + 2a(1− τ) [((1− τ)α− dt)ezt + τδ], (26)

We now turn to the firm’s return, which satisfies Rt+1 = (Pt+1 + Dt+1)/Pt. The equilibrium

expected firm return function is

R∗(zt, dt) = E
[
R∗t+1

∣∣ zt, dt] , (27)

where

R∗t+1 =
dt+1e

zt+1 +Q∗(zt+1, dt+1)
(

1− δ + Q∗(zt+1,dt+1)−1
a(1−τ)

)
Q∗(zt, dt)

. (28)

We evaluate the functions Q∗(z, d) and R∗(z, d) using Equations 26 and 27 and the laws of motion

for the stationary state variables z and d (Equations 2 and 8, respectively). The integral needed

for the evaluation of the R∗(z, d) function is computed using Gauss-Hermite quadrature, with 31

grid points per shock.

Figure 2 displays the equilibrium average q function, Q∗(z, d), and the equilibrium expected return

function, R∗(z, d), under the calibration described in Section 3.1. Panels A and B show the value

of Q∗ for different values of z and d, respectively, keeping the other state variable constant. We

see that Q∗ is increasing in z and decreasing in d. For a given level of d, the average price of a

unit of installed capital is higher when firm productivity is higher. On the other hand, for a given

level of z, the firm’s Q∗ is lower when the demanded payout is higher, suggesting a higher cash flow

discount rate.

Panels C and D of Figure 2 show the value of R∗ for different values of z and d, respectively,

everything else constant. R∗ is almost completely flat in z and strongly increasing in d. As

regards z, there are two opposing forces operating on the equilibrium expected return. On the

one hand, higher current productivity increases the firm’s current operating profit and, hence,

tends to increase the firm’s desired payout, so payout market clearing requires a lower equilibrium

expected return, given a fixed payout demand. On the other hand, due to the persistence of

process z, higher current productivity implies higher future productivity, which entices the firm

to increase current investment and lower current payout, pushing the equilibrium expected return

higher. Under our parametrization, these two forces offset each other, producing an equilibrium

expected return function that is effectively insensitive to z. As regards the payout demand process,

an increase in d, other things equal, raises the payout demand from investors, without affecting the

firm’s operating profit, so payout market clearing requires an increase in the firm’s cost of capital,

which lowers investment and increases the firm’s payout supply. Crucially, while the firm’s expected

return exhibits very moderate variation across different values of z, it is very sensitive with respect
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to d, underscoring the importance of payout demand as a driver of equilibrium expected returns.

For the same reason, the firm’s Q∗ is much more sensitive to changes in d than to changes in z.

2.2 Relation to production-based asset pricing

Our payout-based asset pricing framework is part of the production-based asset pricing paradigm,

which aims to connect the production side of the economy with asset prices (see Kogan and Pa-

panikolaou (2012) and Zhang (2017) for literature reviews). This section details the similarities

and differences between our framework and the main strands of the production-based asset pricing

literature. Our key contribution lies in developing a framework which uses firms’ optimality con-

ditions and market clearing in order to retrieve equilibrium expected returns without the need to

back out the economy’s SDF. Furthermore, our framework shifts the focus from firms’ investment

processes to their payout processes, an approach that has considerable conceptual and practical

benefits, as we detail below.

One strand of the production-based asset pricing literature consists of papers that retrieve the econ-

omy’s SDF using firms’ optimality conditions. A number of those papers (for instance, Cochrane

(1988), Jermann (2010), and Jermann (2013)) consider standard production functions, which do

not allow firms to shift resources across states of nature. In that case, recovering state prices re-

quires the “complete technologies” assumption, i.e., that there are as many types of capital inputs

as there are states of nature: for example, both Cochrane (1988) and Jermann (2010) assume two

states of nature, consider two types of capital (each an input in a corresponding production tech-

nology) and recover state prices by positing exogenous investment growth processes. To avoid the

“complete technologies” assumption, other papers (such as Belo (2010) and Cochrane (2021)) use

non-standard production functions that allow producers to shift output across states of nature and

generate firm optimality conditions that allow for the SDF to be recovered.7

The main difference of our payout-based asset pricing framework from that strand of the production-

based asset pricing literature is that we do not need to recover the economy’s SDF in order to

characterize firms’ expected returns; instead, we are able to back out a firm’s equilibrium expected

return process from its payout decisions by positing an exogenous payout demand process and

imposing market clearing. The benefit of our approach is that it accommodates a continuum of

states of nature while relying on a standard neoclassical model of firms (i.e., a standard production

function with standard investment and financing structures). On the other hand, our approach

has the obvious drawback that, in the absence of additional information, it can only be used to

price claims on a particular payout process. However, this drawback is not as restrictive as it may

appear: in principle, we can use the same approach in order to price other claims provided we know

7Relatedly, Steri (2023) considers standard production functions and recovers state prices within an optimal
contracting framework in which firms transfer resources to lenders in a state-contingent way (which can be thought
of as a “complete contracting” requirement).

11



the corresponding technologies and payout demand processes. As an example, Section 4 shows that

our framework can be used to price debt and equity claims on a levered firm: given payout demand

processes for equityholders and debtholders, we can jointly pin down the equilibrium expected

equity and debt returns.

Another strand of the production-based asset pricing literature, often referred to as investment-

based asset pricing, builds on the q-theory of investment.8 Those papers do not attempt to back out

the economy’s SDF. Instead, they take the realizations of firms’ investment and output, as well as

equity and debt returns, as given and estimate firms’ technological parameters by matching realized

investment returns to realized firm returns, as dictated by the firms’ optimality conditions. The

closest paper to ours in that literature is Cochrane (1991), which, like ours, focuses on aggregate

returns (other papers in this literature focus on the cross-section of returns). In particular, Cochrane

(1991) postulates a firm production technology and uses aggregate U.S. investment data in order

to retrieve the time-series of U.S. realized aggregate investment returns, statistically testing their

similarity with the empirically observed realized aggregate equity returns.

The payout-based asset pricing framework is similar to investment-based asset pricing in one re-

spect: neither approach relies on recovering the economy’s SDF. However, our approach focuses

on specifying an exogenous stochastic process for payout demand in order to retrieve equilibrium

expected returns. On the other hand, the investment-based asset pricing literature has focused on

testing the properties of realized returns, without specifying exogenous processes for investment

demand that would allow for calculating expected returns. As a result, investment-based asset

pricing papers have not explored the drivers of time variation in equilibrium expected returns,

which is the focus of our paper. As we detail in Section 3, we use aggregate data on firm output

and payout in order to calibrate exogenous processes for firm productivity and payout demand and

we solve for equilibrium expected returns by imposing payout market clearing. Then, we simulate

that economy and study the properties of equilibrium expected returns. Furthermore, in Section

4 we introduce a model that features a levered firm, which allows us to discuss expected equity

returns and expected debt returns separately.

It is worth noting that, mathematically, a firm’s expected return can also be recovered by assuming

an exogenous process for investment demand and then imposing market clearing. While this is

not what the investment-based asset pricing literature currently does, we could use that approach

to recover expected returns in the context of a model that falls within the investment-based asset

pricing framework. For example, we could replace Equations 7 and 8 with an expression for an

8This part of the literature relies on the insight that, under linear homogeneity, firm returns are equal to investment
returns (Cochrane (1991) and Restoy and Rockinger (1994)). Notable contributions include, among others, Liu,
Whited and Zhang (2009), Belo, Xue and Zhang (2013), Lin and Zhang (2013), Liu and Zhang (2014), Gonçalves et
al. (2020), Belo et al. (2022), Li, Ma, Wang and Yu (2023), and Belo, Deng and Salomao (2023).
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investment demand process,

Id(K, i) = i ·K, (29)

with the exogenous stochastic process i (investment demand per unit of capital) having law of

motion

it+1 = µi + φi · (it − µi) + σi · εit+1, (30)

where φi ∈ (0, 1), εit+1 ∼ N(0, 1), corr(εzt+1, ε
i
t+1) = ρz,i. Then, we could, in principle, impose

market clearing by equating the exogenous investment demand with the firm’s desired investment,

I(Kt; qt) = Id(Kt, it), (31)

and get an expression for the firm’s Q as a function of the exogenous state variables,

Q∗t = Q∗(zt, it) = 1 + a(1− τ)it, (32)

which would allow us to obtain the firm’s expected return function:

R∗(zt, it) = E
[
R∗t+1

∣∣ zt, it] , (33)

where

R∗t+1 =
(1− τ)(αezt+1 + a

2 i
2
t+1) + τδ + (1− δ)Q∗(zt+1, it+1)

Q∗(zt, it)
. (34)

However, exogenously specifying investment demand is less preferable than exogenously specifying

payout demand for two main reasons, one conceptual and the other more empirical in nature. Con-

ceptually, both investment demand and investment supply arise from firms’ optimizing behavior,

as firms are both the buyers and the sellers of capital goods. Thus, in our representative firm

economy, an exogenous investment demand process raises a fundamental issue: where does the

exogenous investment demand process come from and what does it represent? By contrast, as

we explain in detail in the next section, an exogenous payout demand process reflects household

preferences in a reduced form manner, thereby providing the production-based counterpart to the

consumption-based asset pricing framework.

From an empirical point of view, properly defining and measuring investment, which is essential

for calibrating an exogenous investment process, is not easy. The early literature largely focuses on

physical capital, the measurement of which can pose issues – see Bai et al. (2024). Furthermore,

recent papers in the investment-based asset pricing literature demonstrate the importance of other

capital inputs such as intangibles and working capital (e.g., Gonçalves et al. (2020) and Belo et al.

(2022)), which complicates the definition and measurement of investment even more. In contrast,
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firm payout can be unambiguously defined and measured, making the calibration and testing of

payout-based asset pricing models simpler and less subjective. As we show in Section 3, focusing

on firm payout (rather than investment) has important quantitative benefits.

Finally, a number of production-based asset pricing papers propose partial equilibrium models that

include an exogenous SDF (or exogenous risk neutral dynamics). In these models, firms’ expected

returns arise from their corporate policies, which determine the covariance of firms’ returns with

the SDF.9 We take a different approach: instead of specifying an exogenous SDF, we assume an

exogenous payout demand process and impose market clearing. The main benefit of our approach is

that firm payout is observable: the payout demand processes can be calibrated to corporate payout

data, ensuring that the model calibration is based on quantities, as opposed to prices. Thus, our

approach sidesteps the problem of calibrating SDF parameters, which is often done by matching

asset pricing moments (i.e., a subset of the moments the model is meant to explain).

2.3 Relation to consumption-based asset pricing

Our payout-based asset pricing framework is a direct analogue of the consumption-based approach.

In particular, while consumption-based asset pricing focuses on household optimizing behavior and

obtains equilibrium asset prices by equating the endogenous payout demand of households with

an exogenous firm payout supply (i.e., cash flow), payout-based asset pricing relies on the optimal

behavior of firms and retrieves equilibrium asset prices by equating the firm’s endogenous payout

supply with exogenous household payout demand.

We formalize that point through a simple two-period general equilibrium (GE) model. To conserve

space, we relegate the two-period model details and all derivations to Internet Appendix B. The

model features a representative (equity-financed) firm and a representative household. As is stan-

dard, the firm chooses its investment-payout policies by maximizing firm value while the household

chooses its consumption-savings policies by maximizing lifetime utility. The firm’s optimization

problem yields a payout supply function, whereas the household’s optimization problem yields a

payout demand function. The equilibrium expected return of the firm is determined by the clearing

of the payout market (i.e., it is the expected return that equalizes the desired payout supply of the

firm with the desired payout demand of the household). Then, we show that the firm’s equilibrium

expected return in both the consumption-based model and our payout-based model retrieves its GE

counterpart, provided that the respective exogenous processes are correctly specified. The difference

9That literature builds on the models developed in Berk, Green and Naik (1999) and Zhang (2005) and includes,
inter alia, the models in Kogan and Papanikolaou (2010), Belo and Lin (2012), Belo and Yu (2013), Jones and Tuzel
(2013), Belo, Lin and Bazdresch (2014), Belo, Li, Lin and Zhao (2017), Li (2018), Belo, Lin and Yang (2018), Kogan,
Li and Zhang (2023), Grigoris and Segal (2023), Grigoris, Hu and Segal (2023), and Belo and Li (2023). Among
the papers in that literature, Belo and Li (2023) is the closest to ours: they use an exogenous SDF, but rely on
firms’ optimality decisions to write the SDF in closed form as a function of variables related to firm investment and
profitability.
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between the two models is that each of them focuses on a different side of the payout market.

In consumption-based asset pricing, the payout supply (i.e., the firm’s payout policy) is exogenous,

and the expected return is determined from the equalization of the exogenous payout supply with

the endogenous household payout demand. The payout market clears when the optimizing house-

hold’s equilibrium consumption is equal to the firm’s exogenous payout supply (i.e., the economy’s

endowment). This implies that the equilibrium expected return is pinned down by the household’s

optimality condition: it is the expected return that satisfies the household’s Euler equation when

the market clearing condition is imposed (i.e., the expected return for which the household opti-

mally consumes the firm’s exogenous payout supply). If the exogenously specified payout supply

(i.e., endowment) process in the consumption-based model is equal to the endogenously determined

equilibrium payout in the GE economy, then the expected return process in the consumption-based

model retrieves the same equilibrium expected return process as the GE economy. It follows that the

endowment shocks reflect, in reduced form, the supply-side shocks (for example, firm productivity

shocks) of the GE economy.

Our payout-based asset pricing framework turns that logic around. In our model, we have an

exogenous payout demand (which is equal to the household consumption demand in a simple model

without labor income). The equilibrium expected return is pinned down by the equalization of the

optimizing firm’s endogenous payout supply with the exogenous payout demand: in equilibrium,

the firm’s payout needs to match the exogenous payout demand. So the equilibrium expected

return is the expected return that satisfies the firm’s Euler equation (i.e., the expected return for

which the firm optimally supplies the household’s exogenous payout demand). If the exogenously

specified payout demand process in the payout-based model is equal to the endogenously determined

equilibrium payout in the GE economy, then the payout-based model retrieves the same equilibrium

expected return process as the GE economy. Thus, the payout demand shocks reflect, in reduced

form, the demand-side shocks (e.g., household taste shocks) of the GE economy.10

3 Quantitative Results

This section provides the quantitative results from our payout-based asset pricing model. We start

by describing our calibration process. Then, we provide a comparison between our model and

an analogous investment-based asset pricing model. Finally, we simulate our payout-based asset

pricing model and discuss its properties.

10In a payout-based asset pricing model with multiple assets, multiple payout demand processes would need to be
specified, one for each asset. That is analogous to the consumption-based asset pricing framework: in a consumption-
based model with multiple assets (sometimes called a Lucas orchard – see, for example, Martin (2013)), there is one
exogenous payout supply process per asset.
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3.1 Calibration

We report our model calibration in Table 1. Tax and technological parameters are calibrated

following the extant literature: we set τ = 0.35 and δ = 0.15, following DeAngelo, DeAngelo and

Whited (2011). Since the capital adjustment cost specification in DeAngelo et al. (2011) is not

comparable to ours, we set the adjustment cost parameter such that the adjustment cost annual

expense is 10% of the firm’s capital in the steady state (which corresponds to less than 5% of the

firm’s annual output in the steady state).11 The resulting value of a = 9.953 is squarely within the

range of values used in the prior quantitative literature, as documented by Li et al. (2023). Finally,

we set the profit margin parameter to a = 0.15, which is the estimated value in Li et al. (2023) and

also very close to the estimate obtained in Gonçalves et al. (2020).

The rest of the parameters are calibrated so as to match empirical moments. The data sample used

to calculate those moments comprises annual observations of aggregate output Y and payoutD from

1974 to 2017. We construct those measures using CRSP and COMPUSTAT data, as well as the

dataset in Davydiuk, Richard, Shaliastovich and Yaron (2023), with D representing total payout of

U.S. public firms to equity and debt investors (which includes dividends, interest payments, equity

repurchases and issuances, and debt paydowns and issuances). The sample period is restricted by

the Davydiuk et al. (2023) dataset, which is important for our analysis since it provides information

on debt payouts as well as the market value of corporate debt. Internet Appendix D provides details

on the data sources and empirical measurement for Y and D. It also discusses the methodology

we use to generate the productivity (Z) time series, which relies on combining the Y and D data

with the budget constraint and capital accumulation equation, in a fashion analogous to how the

aggregate investment-to-capital ratio is calculated in Cochrane (1991).

The time series for the U.S. aggregate firm payout ratio (i.e., firm payout divided by firm output)

from 1974 to 2017 is plotted in Figure 3. The figure also plots its two components, the aggregate

equity payout ratio and the aggregate debt payout ratio. As seen in the figure, the firm payout

ratio exhibits considerable time variation, taking both positive and negative values over the sample

period. It is worth noting that the payout ratio turns sharply negative in the late 1990s and

spikes up during the global financial crisis: since the former period is generally associated with low

expected returns and the latter period with high expected returns in the asset pricing literature,

there appears to be a positive relationship between firm payout ratios and firm expected returns,

in line with the predictions of our model.

We set µz = 0.983, φz = 0.745, and σz = 0.061 to match the average log productivity level, the

autocorrelation of the log productivity process, and the volatility of the log productivity autore-

11Mathematically, we set a
2
(1 − τ)i2ss = 0.1, which implies a = 0.2/((1 − τ)i2ss). We, then, set the steady state

investment-to-capital ratio to iss = eg − 1 + δ, as dictated by the capital accumulation equation, where g = 0.025 in
order to match the average output growth in our dataset.
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gressive shocks, respectively. The payout demand parameters are set to µd = 0.015, φd = 0.595,

and σd = 0.073 in order to match, respectively, the mean and the autocorrelation of the empiri-

cal payout-to-output ratio d, as well as the volatility of the payout-to-output ratio autoregressive

shocks normalized by lagged
√
dmaxt − dt, in line with Equation 8.12 Finally, we set ρd,z = −0.125

so as to match the unconditional correlation between the d and z autoregressive shocks.

3.2 Payout-based vs. investment-based returns

Before simulating our model, it is worth considering the properties of the model-implied realized

and expected investment returns (which are equal to the model-implied realized and expected firm

returns, respectively), taking the time series of aggregate firm productivity, Z, and payout, D,

as given. In particular, for this exercise, we set all parameter values to the calibrated values of

Table 1 and implicitly set the realizations of the productivity and payout demand shocks to the

values needed so that our model generates exactly the U.S. aggregate productivity and payout

realizations observed in the 1974-2017 period (calculated as discussed in the calibration section).

Given the time series for Z and D, realized annual investment returns are calculated using Equation

28. To retrieve the time series of the expected annual returns, we use the laws of motion for z

and d (Equations 2 and 8, respectively) and evaluate the resulting integrals of Equation 27 using

Gauss-Hermite quadrature, with 31 grid points per shock. As pointed out in Cochrane (1991),

production-based models in which investment return realizations and firm return realizations have

to coincide every period can be trivially rejected. For that reason, the level of success of those

models, including ours, needs to be evaluated on a more realistic standard: the degree of similarity

between investment returns and firm returns.

Our findings are reported in the second column of Table 2. As seen in Panel A, our model generates

investment returns that have unconditional moments that are quite close to the corresponding mo-

ments of U.S. aggregate firm returns. In particular, the model-implied investment returns have an

unconditional mean of 5.63% and unconditional volatility of 14.82%, with the former being some-

what below the empirically observed U.S. aggregate return mean (7.86%) and the latter almost

identical to the realized volatility of U.S. firm returns (14.88%). Furthermore, our model-implied

investment returns are highly positively correlated with observed U.S. firm returns: the uncondi-

tional correlation coefficient is 0.57. Following the logic of Cochrane (1991) on the timing on in-

vestment expenditures, we also calculate the unconditional correlation between our model-implied

investment returns and U.S. aggregate firm returns shifted by six months, denoted by Rs – for

12Note that we calibrate d to match equilibrium firm payout data, rather than data related to the household
payout demand curve. This approach is analogous to how consumption growth is calibrated in consumption-based
asset pricing models. It is also consistent with the theoretical implication of our 2-period model in Internet Appendix
B: payout-based asset pricing yields the same asset pricing implications as a fully specified general equilibirum model if
and only if the exogenous payout ratio reflects the properties of the equilibrium payout ratio in the general equilibrium
economy.
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example, the shifted return for the year 2000 is the return from July of 1999 to June of 2000.13

However, shifting firm returns lowers their association with model-implied investment returns, as

the correlation coefficient drops to 0.22, suggesting that our model better matches firm returns

when the standard timing convention is used.

Panel B of Table 2 considers predictability regressions of annual U.S. aggregate firm returns on

the lagged payout ratio D/Y . Consistent with our model, the slope coefficient is positive and

statistically significant and the regression adjusted R2 is 8.60%, suggesting that the payout ratio has

forecasting ability for future returns. That finding is robust to controlling for lagged productivity z

(Panel C), but the regression adjusted R2 drops to 6.34%, indicating that including the productivity

level does not add return forecasting power. Finally, as seen in Panel D, when we regress realized

firm returns on model-implied expected investment returns, we get a slope coefficient of 0.55.

Although that coefficient is below the model-implied value of one, it is statistically different from

zero, suggesting that our model-implied expected returns are positively associated with future

realized firm returns. Importantly, the regression adjusted R2 is 6.05%, implying that the model-

implied expected investment returns can account for a non-trivial amount of the variation in realized

firm returns.

Figure 1 provides graphical evidence of the ability of the payout model-implied expected returns

to match salient properties of aggregate U.S. expected returns. Panel A plots the 1974-2017 time

series of both our model-implied aggregate expected returns (green solid line) and the corresponding

empirically estimated expected returns (red dashed line). The latter are estimated by regressing

realized annual U.S. aggregate firm returns on lagged payout yields (payout over firm value), payout

ratios (payout over output), and productivity (output over capital). The two series track each other

very well, exhibiting an unconditional correlation of 0.86. However, as discussed in the introduction

of our paper, model-implied expected returns are too sensitive to changes in the payout ratio. To

illustrate that point, we regress annual realized firm returns in the model and in the data on lagged

payout ratios and plot the fitted values (green solid line and red dashed line, respectively) in Panel

B of Figure 1. We see that model-implied expected returns are more sensitive to changes in the

payout ratio than their empirically estimated counterparts, giving rise to an “excess sensitivity

puzzle”.

Finally, we compare the performance of our payout-based model against models in which investment

is an exogenous process. In particular, we consider six different implementations of the investment-

based approach, the details of which are discussed in Internet Appendix E and mainly differ on the

measure of U.S. investment that is used to calculate (realized and expected) investment returns.

In all cases, the exogenous investment-to-capital ratio is assumed to be a first-order autoregressive

13As detailed in Internet Appendix D, annual aggregate firm returns are obtained from the Davydiuk et al. (2023)
dataset. To calculate the shifted annual aggregate firm returns, we use the quarterly aggregate firm returns available
in that dataset.
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process, as in Equation 30. To retrieve the time series of the realized U.S. aggregate I/K ratio, the

first five implementations follow the approach in Cochrane (1991), whereas the last implementation

directly measures the I/K ratio. We obtain realized investment returns from Equation 34 and

expected investment returns from Equation 33, using the laws of motion for z and i (Equations 2

and 30, respectively) and evaluating the resulting integrals using Gauss-Hermite quadrature. All

parameters are set to their Table 1 calibrated values, with the exception of the parameters for

processes i and z, which are calibrated in a fashion identical to how we calibrate the parameters

for processes d and z in our payout-based model.

Our findings appear in the last six columns of Table 2. The first three implementations of the

investment-based approach use measures of aggregate investment from the NIPA tables: total in-

vestment, physical investment, and the sum of physical and intangible investment (columns three,

four, and five, respectively). The last three implementations use COMPUSTAT data to retrieve the

time series of U.S. aggregate investment: the first uses a measure of physical investment (column

six), the second a measure of the sum of physical and intangible investment (column seven), and

the third measures of physical investment and directly-measured physical capital (column eight).

As seen in Panel A, all implementations generate both counterfactually low and counterfactually

smooth investment returns – the exceptions are the two implementations that use COMPUSTAT

data and focus on physical capital, which are able to generate reasonably volatile investment re-

turns. Furthermore, the unconditional correlation between model-implied investment returns and

observed firm returns is low across the board, both using the standard and the shifted timing of

firm returns. As we see in Panels B and C of Table 2, firm returns are not forecastable by I/K

ratios: none of the slope coefficients is statistically significant, and almost all regression adjusted

R2s are negative. Even worse, as documented in Panel D, there is complete disconnect between

model-implied expected investment returns and observed firm returns, as the former appear to have

no forecasting ability for the latter.

In summary, we find that aggregate firm returns are largely disconnected from aggregate investment

returns, in contrast to the findings in Cochrane (1991). As we document in Internet Appendix E,

that disparity is mainly due to the difference in the corresponding sample periods: we focus on

the 1974-2017 period, whereas the analysis in Cochrane (1991) refers to the 1947-1987 period. A

likely explanation for the deterioration in the performance of the investment-based approach in

recent years is the increased importance of intangible capital (see, for example, Corrado, Haskel,

Jona-Lasinio and Iommi (2022) and Crouzet, Eberly, Eisfeldt and Papanikolaou (2022)), which

increases the difficulty of accurately measuring firm capital and investment.

Overall, we show that the payout-based approach generates realized and expected investment re-

turns that are much more connected to observed firm returns than any implementation of the

investment-based approach. Thus, apart from the conceptual reasons discussed in the previous

section, shifting the focus from investment to payout, as our framework does, yields more realistic
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asset pricing implications. It should be stressed that our findings are not due to a particular cal-

ibration of the model parameters. To check the robustness of our results to alternative values of

the model parameters, we redo our exercise by considering model-specific parameters (estimated

using a Non-Linear Least Squares approach), which provide each model with its best chance to

match firm returns. We find that, using model-specific parameters, the investment return volatility

of all models declines substantially, but the superior performance of out payout-based approach is

confirmed. The details are provided in Internet Appendix E.14

3.3 Model simulation

We run 10,000 model simulations, each of which consists of 44 annual observations (after a burn-in

period of 1,000 years) in order to match the size of our sample period. In our simulations, we

update state variables according to their law of motion (with no state space discretization). Table

3 provides key asset pricing statistics in the data and in model simulations. Importantly, none

of those statistics was used as a target moment for calibrating the model. For each simulation

statistic, we report the median value across the 10,000 simulations, as well as the corresponding

1st and 99th percentiles.

Panel A presents unconditional moments of the output growth, the payout yield, and the return

of the representative firm. As we see, the model generates realistic output growth properties: the

output growth of the simulated firm closely matches the first and second moments of the U.S.

aggregate output growth. In addition, in line with the properties of actual U.S. aggregate returns,

simulated firm returns are uncorrelated with the firm’s output growth rates, weakly positively

correlated with the firm’s productivity shocks, and strongly negatively correlated with the firm’s

payout shocks (although that correlation is stronger in the simulated data than in the U.S. data).

Hence, in both the model and the data, aggregate firm returns are mainly associated with payout

shocks.

Furthermore, the model captures payout yield dynamics quite well. In the data, the payout yield

has an unconditional mean of 1.59%, an unconditional volatility of 2.47% and unconditional au-

tocorrelation of 0.44. Our model is able to match the unconditional payout yield moments, with

the caveat that model-implied payout yield volatility is somewhat elevated: the median values

are E[D/P ] = 2.60%, σ[D/P ] = 4.37% and AC[D/P ] = 0.52. The model also yields empiri-

cally plausible return dynamics: the model-implied median values for the firm return mean and

volatility (E[R] = 5.46% and σ[R] = 12.78%) are not far from the corresponding empirical values

(E[R] = 7.86% and σ[R] = 14.88%). Despite that success, the model is not perfect: the U.S. firm

return mean is above the 99th percentile of its simulated moment values, therefore, very unlikely

to be generated in the model. Nonetheless, our payout-based asset pricing model goes a long way

14We obtain similar results when we assume that aggregate productivity Z is constant, as in Cochrane (1991).
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in capturing the key moments of firm returns. It is worth noting that expected returns are very

volatile in our model: the median unconditional volatility of E[R] is 5.79%. Due to the large

discount rate fluctuations, the simulated realized returns exhibit negative autocorrelation: in the

model, the median return autocorrelation is -0.20 (very close to the corresponding empirical value

of -0.17).

Panel B reports the output of regressions of annual returns, Rt+1, on the lagged payout yield, Dt/Pt.

Those forecasting regressions allow us to explore the properties of time variation in expected returns

in a setting analogous to the one typically used in the evaluation of consumption-based asset pricing

models. In the data, high payout yields forecast high future returns: the predictive coefficient is

1.81 (and significant at the 1% level) and the regression adjusted R2 is 9.20%. The model yields

a median predictive coefficient of 1.47 and a median regression adjusted R2 of 23.66%, with the

corresponding empirical values being well within the range of simulated outcomes.

Another important feature of return predictability is the underlying mechanism that generates it.

In our model, return predictability arises from the payout decisions of the firm: when the payout

demand is relatively high, the equilibrium expected return increases to induce the firm to cut

investment and optimally supply the demanded payout level, which suggests a positive relationship

between the firm’s payout ratio, D/Y , and its future return. Notably, there is no mechanical

relationship between the payout ratio and future returns, as the payout ratio (unlike the payout

yield) is not scaled by firm value. Panel C of Table 3 reports the output of regressions of Rt+1 on

Dt/Yt. Both in the data and in our model, the predictive coefficient is positive, confirming that the

aggregate firm return predictability observed in the data is consistent with our model mechanism.

That said, our simulated expected results exhibit excess sensitivity to payout ratios, consistent with

our findings in the previous section. In particular, the median model-implied forecast coefficient on

D/Y is much higher than its empirical counterpart: 2.01 in the model, compared with 1.36 in the

data. Furthermore, the model tends to generate excessive return predictability with respect toD/Y :

the median adjusted R2 is 21.84%, more than double the corresponding empirical value of 8.60%.

Despite the fact that the empirical values of both the forecast coefficient and the regression R2 are

within the 98% simulation range, the disparity between the empirical values and the corresponding

model median values is substantial and (as seen in Panel B of Figure 1, which refers to the 1974-

2017 sample period) can be economically meaningful. The excess sensitivity puzzle is likely related

to the fact that, in our model, firms are able to raise external capital costlessly. In the presence

of time-varying external financing costs, the responsiveness of investment (and, hence, expected

returns) to fluctuations in the investors’ desired payout ratio may be attenuated, as firms are

incentivized to accumulate internal cash in order to reduce their need for costly external financing.

Hence, the excess sensitivity puzzle may be related to firms’ “saving waves”, explored in Eisfeldt

and Muir (2016).
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To examine the relationship between firm productivity and future returns, we regress Rt+1 on both

the lagged payout ratio Dt/Yt and lagged productivity Zt, and report our findings in Panel D of

Table 3. We find that, both in simulated and actual data, the payout ratio is a strong predictor of

subsequent firm returns, but productivity is not.15 It follows that the model-implied mechanism

for return predictability, which relies on variation in the investor payout demand ratio, rather than

in productivity, is consistent with the data. However, as a result, controlling for productivity does

not alleviate the aforementioned excess sensitivity problem.

We have established that the main source of variation in firm value and expected returns in our

model is payout demand variation, whereas productivity fluctuations have a muted effect. To

illustrate that point, we run a single 100-year simulation of the model and report the paths of state

variables z and d, as well as the paths of the firm’s equilibrium Q and expected return, in Figure

4. As seen in Panels A and B, both z and d exhibit substantial variation across time. Nevertheless,

Panels C and D show that Q and expected returns vary mainly due to variation in d. Specifically,

Panel C plots the simulated path of the firm’s equilibrium Q, as well as two counterfactual paths,

each allowing for time variation in only one state variable. Similarly, Panel D plots the simulated

path, and the two counterfactual paths, of the firm’s equilibrium expected return. As seen in both

panels, almost all of the variation in the firm’s Q and its expected return is due to variation in d.

4 Adding Firm Leverage

In this section, we retain all our previous assumptions, with the exception that we now allow for

firm leverage. The assumption that the firm can finance itself using both equity and debt allows us

to separately consider firm equity returns and firm debt returns. In the interests of simplicity, the

only type of debt we consider is one-period risk-free debt. Following Hennessy and Whited (2005),

we assume that the firm is subject to a collateral constraint which ensures that all the debt that

it issues is riskless. Due to the deductability of interest payments, debt is beneficial to the firm, as

it yields a tax shield. On the other hand, debt generates financial distress costs, which we model

in reduced form as convex leverage costs.16 It follows that the firm optimally chooses its capital

structure by trading off the tax benefits of debt against the costs of leverage.

The firm determines its supply of debt and equity payouts by jointly optimizing its investment and

capital structure decisions, taking the SDF as given. As we will show, determining the optimal debt

15The lack of return predictability of aggregate productivity is not a consequence of our methodology of measuring
productivity without directly using profitability data. We obtain similar results in our predictability regressions when
we replace aggregate productivity with aggregate profitability (measured as aggregate operating profits over assets).

16Note that financial distress costs arise despite the fact that debt is riskless from the perspective of outside
investors. Those costs refer to the operational and financial costs that the firm incurs to ensure that it always pays
back its debt. For example, Hennessy and Whited (2005) propose a model in which financial distress costs arise from
the fact that the firm may have to engage in costly fire sales of capital in order to raise resources to pay back the
firm’s (safe) debt in full. In our model, we do not take a stand on the particular nature of financial distress costs.
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and equity payouts for a given SDF is equivalent to determining those optimal payouts taking the

firm’s marginal q and the risk-free rate as given, respectively. Then, we pin down the equilibrium

marginal q and the equilibrium risk-free rate by imposing market clearing in the debt and equity

payout markets.

4.1 Setting

The firm’s capital structure decision has the following characteristics. The firm can issue one-

period risk-free debt (up to a limit determined by a collateral constraint, to be discussed below):

at each period t, the firm raises Bt+1 in safe debt and agrees to pay Rbt+1Bt+1 at t + 1, where

Rbt+1 is the gross borrowing rate. Thus, Bt+1 is the market value of debt and Ft+1 = Rbt+1Bt+1 is

the corresponding face value of debt, both determined at period t. The firm can expense interest

payments, so the period t + 1 interest tax shield is τ(Rbt+1 − 1)Bt+1 and the after-tax gross debt

return is Rb,at+1 = Rbt+1 − τ(Rbt+1 − 1). Therefore, the firm’s period t debt payout, denoted by Db
t ,

is the difference between the repayment of existing debt and the funds raised by issuing new debt:

Db
t = RbtBt −Bt+1. (35)

Since interest payments are tax deductible, debt yields a benefit to the firm in the form of a tax

shield. In the absence of any countervailing leverage cost, the firm would choose to borrow up

to its collateral constraint. Instead, we assume that leverage entails costs to the firm (such as

potential costs of financial distress), which we model in reduced form by assuming that the firm

pays a (non-deductible) cost Gt = G(Bt,Kt) at period t.17 In particular, we assume that

G(Bt,Kt) =
κ

2

(
Bt
Kt

)2

Kt, (36)

for κ > 0, so the leverage cost is increasing and convex in the firm’s debt Bt.
18

Firm borrowing has to satisfy a collateral constraint that ensures that the firm issues safe debt. In

particular, the amount promised to the debtholders cannot exceed the minimum resources available

to them, i.e.,

Rbt+1Bt+1 ≤ (1−δ)Kt+1 +(1−τ)αZmint+1 Kt+1 +τδKt+1 +τ(Rbt+1−1)Bt+1−
κ

2

(
Bt+1

Kt+1

)2

Kt+1, (37)

17The non-deductibility of the leverage cost does not impact our results. To see that, consider a model with
tax-deductible leverage cost and leverage cost parameter κ′. We can easily show that, under the parametrization
κ = (1− τ)κ′, that model is identical to our model.

18In principle, B can be negative, in which case the firm holds cash and Rb represents the (pre-tax) interest rate
that the firm receives on its cash position. In that case, G is assumed to reflect the pecuniary impact of the agency
cost of holding cash. In our model, B is negative if and only if the (net) riskless rate is negative. In our simulation,
this is a relatively rare event, as it only happens in less than 0.5% of the years.
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where Zmint+1 is the minimum value that Zt+1 can attain conditional on the information available

at period t. The right-hand side collects the minimum resources available to the firm’s creditors.

Those resources consist of the value of the firm’s undepreciated capital, plus the combined value

of the firm’s operating profit, depreciation tax shield, and interest tax shield, minus the leverage

cost. Using the definition of the after-tax bond return, we can write the collateral constraint as

Rb,at+1bt+1 ≤ (1− δ) + (1− τ)αZmint+1 + τδ − κ

2
b2t+1, (38)

where bt+1 ≡ Bt+1

Kt+1
is the firm’s leverage ratio.19

At each period t, the firm’s manager chooses investment It, equity payout De
t , and debt issuance

Bt+1 in order to maximize the cum-payout value of firm equity V e
t :

V e
t = max

{It+h,Det+h,Bt+1+h}∞h=0

{De
t +

∞∑
h=1

Et[Mt,t+hD
e
t+h]}, (39)

where {Mt,t+h}∞h=1 is the set of stochastic discount factors and De
t is the period t equity payout of

the firm, given by

De
t = (1− τ)(Π(Kt, Zt)− Φ(It,Kt)) + τδKt − It −Rb,at Bt +Bt+1 −G(Bt,Kt). (40)

Finally, there is an exogenous equity payout demand process De,d
t and an exogenous debt payout

demand process Db,d
t from investors. In particular, the equity payout demand process De,d satisfies

De,d(K,Z, d) = Z ·K · de = Y · de, (41)

and the debt payout demand process Db,d satisfies

Db,d(K,Z, db) = Z ·K · db = Y · db. (42)

We also define total payout demand Dd = De,d + Db,d = Y · d, where d = de + db. It follows that

de, db, and d are the firm’s equity payout, debt payout, and total payout, respectively, per unit of

output.

The law of motion for d is given by Equation 8, except that the conditional upper bound of d is

19Since the firm issues safe debt, its pre-tax cost of debt Rbt+1 is the (pre-tax) risk-free rate in the economy:

1 = Et[Mt+1R
b
t+1] = Et[Mt+1]Rbt+1 =

Rbt+1

R
f
t+1

=⇒ Rbt+1 = Rft+1 = 1
Et[Mt+1]

. It follows that the firm’s after-tax cost

of debt, Rb,at+1 = Rbt+1 − τ(Rbt+1 − 1), also depends solely on the SDF and, thus, is taken as given by the firm. Our

derivation implicitly assumes that the investor tax rate, denoted by τ i, is zero. If, instead, τ i > 0, then Rbt+1 is still
the pre-tax gross risk-free rate, but the investor Euler equation is 1 = Et[Mt+1(Rbt+1 − τ i(Rbt+1 − 1))]. In our paper,
we assume τ > τ i = 0. That assumption ensures that the firm optimally chooses positive debt (i.e., that Bt+1 ≥ 0)
when the net risk-free rate is positive (i.e., when Rbt+1 ≥ 1).
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given by

dmaxt = (1− τ)α+ e−zt
[(

1− (1− τ)a

2
· ϕ
)
ϕ+ τδ +

κ

2
b2t

]
. (43)

As in the case of the unvelered firm, this upper bound for d ensures that the firm’s equilibrium

investment and payout processes are feasible and that the firm’s marginal q is real-valued and

non-negative (see Internet Appendix C). The debt payout ratio process, db, is stationary, with law

of motion

dbt+1 = µb + φb · (dbt − µb) + σb · εbt+1, (44)

where φb ∈ (0, 1), σb > 0, εbt+1 ∼ N(0, 1), corr(εzt+1, ε
b
t+1) = ρz,b, and corr(εdt+1, ε

b
t+1) = ρd,b.

It follows that the equity payout ratio process, de, is implicitly determined by the relationship

de = d− db.

4.2 Payout supply

The firm’s problem can be rewritten recursively as

V e(Kt, Bt, Zt; {ft(Mt,t+h)}∞h=1) = max
{It,Bt+1}

{De
t+Et[Mt,t+1V

e(Kt+1, Bt+1, Zt+1; {ft+1(Mt+1,t+1+h)}∞h=1)]},

(45)

where, as before, ft(·) denotes the distribution conditional on information available at time t. The

firm’s optimality conditions for investment and debt jointly determine the firm’s equity and debt

payout supply, taking the SDF properties as given.

We start with the firm’s capital structure choice. The firm’s interior optimality condition for Bt+1

yields

1 + Et[Mt+1∂BV
e(Kt+1, Bt+1, Zt+1; {ft(Mt+1,t+1+h)}∞h=1)] = 0, (46)

and the envelope condition with respect to Bt is

∂BV
e(Kt, Bt, Zt; {ft(Mt,t+h)}∞h=1) = −Rb,at − ∂BGt. (47)

Together, Equations 46 and 47 yield the Euler equation

Et
[
Mt,t+1 · (Rb,at+1 + ∂BGt+1)

]
= 1. (48)

The left-hand side of the equation is the present value of the firm’s effective cost of one additional

unit of debt raised at period t: at period t + 1, the firm pays both the after-tax return Rb,at+1

and the marginal leverage cost ∂BGt+1. Conversely, the right-hand side of the equation is the
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marginal benefit to the firm of one unit of additional debt raised at t, which is always equal to

1. Intuitively, for a given SDF, the firm’s optimal capital structure is the one that eliminates any

arbitrage opportunities for the firm.

We can alternatively characterize the firm’s optimal capital structure in more familiar terms: since

Rb,at+1, Kt+1, and Bt+1 are known at period t, and using the fact that Et
[
Mt,t+1 ·Rbt+1

]
= 1, we can

rewrite the Euler equation above as

τ(Rbt+1 − 1) = κ

(
Bt+1

Kt+1

)
. (49)

The left-hand side is the firm’s interest tax shield and, thus, corresponds to the firm’s marginal

benefit of debt at period t + 1, whereas the right-hand side is the firm’s marginal cost of leverage

at period t+ 1. Thus, we get a simple trade-off condition: the optimal (interior) capital structure

of the firm is the one that equates the firm’s marginal cost and marginal benefit of debt. Solving

for the firm’s optimal leverage ratio bt+1, we get

bt+1 =
τ

κ
(Rbt+1 − 1). (50)

Therefore, for a given SDF (and, hence, for a given risk-free rate Rbt+1), the firm’s optimal leverage

ratio bt+1 is increasing in the risk-free rate (as a higher rate is associated with a more valuable

interest tax shield). As regards comparative statics, the optimal leverage ratio is increasing in the

corporate tax rate τ (as a higher tax rate implies a larger tax shield) and decreasing in the leverage

cost parameter κ.

We now turn to the firm’s investment policy. The firm’s interior optimality condition for investment

It is

Et[Mt+1∂KV
e(Kt+1, Bt+1, Zt+1; {ft(Mt+1,t+1+h)}∞h=1)]︸ ︷︷ ︸

≡qt

= 1 + (1− τ)∂IΦ(Kt, It), (51)

which yields the firm’s investment function:

It =
qt − 1

a(1− τ)
Kt. (52)

As in the case of the unlevered firm, the firm’s optimal investment is increasing in its marginal q

and proportional to its capital stock.20

After solving for the firm’s optimal investment and capital structure policies, we are ready to

characterize the firm’s optimal debt and equity payout policies. Substituting the firm’s optimal

20Using the envelope condition with respect to Kt, we can show that the firm’s optimal investment decision satisfies
the condition

qt = Et [Mt,t+1 ((1− τ) (∂KΠ(Kt+1, Zt+1)− ∂KΦ(It+1,Kt+1)) + τδ − ∂KG(Bt+1,Kt+1) + (1− δ)qt+1)] . (53)

This condition is analogous to Equation 17 for the unlevered firm.
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investment policy (Equation 52) and optimal debt policy (Equation 50) into Equation 35, we get

the firm’s debt payout function,

Db
t =

[
Rbtbt −

(τ
κ

(Rbt+1 − 1)
)(

(1− δ) +
qt − 1

a(1− τ)

)]
Kt. (54)

Similarly, substituting the firm’s optimal investment and debt policy into Equation 40, we derive

the firm’s equity payout function,

De
t =

[
α(1− τ)Zt + τδ − q2

t − 1

2a(1− τ)
−Rb,at bt +

(τ
κ

(Rbt+1 − 1)
)(

(1− δ) +
qt − 1

a(1− τ)

)
− κ

2
b2t

]
Kt.

(55)

In summary, the firm’s optimality conditions determine the firm’s optimal payout supply functions

(Equations 54 and 55), for given SDF properties. Notably, the firm’s period t optimal payouts

are functions of one contemporaneous exogenous variable (productivity Zt), two contemporaneous

endogenous variables (the firm’s marginal qt and the risk-free rate Rbt+1), and one pre-determined

endogenous variable (Rbt – note that bt is a function of Rbt through Equation 50). It is easy to

see that the firm’s marginal q and the risk-free rate are summary statistics for investor preferences

regarding firm payout: keeping the exogenous productivity process Z the same, any SDFs that yield

the same q and Rb processes also yield the same debt payout Db and equity payout De processes.

What remains is to pin down the equilibrium qt and Rbt+1 at each period t. For that, we rely on

the two market clearing conditions, one for debt payout and the other for equity payout.

4.3 Equilibrium

In equilibrium, both payout markets clear. We start with the debt payout market, which has the

following market clearing condition:

Db
t = Db,d

t . (56)

Substituting for the firm’s debt payout supply (Equation 54) and investors’ debt payout demand

(Equation 42), and using Equation 50 in order to write Rbt as a function of bt, we get an expression

for the equilibrium risk-free rate:

Rb,∗t+1 =
κ

τ

(
κ
τ b
∗
t + 1

)
b∗t − dbtezt

(1− δ) +
q∗t−1
a(1−τ)

+ 1. (57)

We now turn to the equity payout market. Imposing the market clearing condition

De
t = De,d

t , (58)

substituting for the firm’s equity payout supply (Equation 55) and investors’ equity payout de-
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mand (Equation 41), imposing the expression for the equilibrium risk-free rate (Equation 57) and

rearranging, we get an expression for the firm’s equilibrium marginal q:

q∗t =

√
1 + 2a(1− τ)

[
(α(1− τ)− dt) ezt + τδ +

κ

2
(b∗t )

2
]
. (59)

To summarize, payout market clearing yields Equations 57 and 59, which express Rb,∗t+1 and q∗t ,

respectively, as functions of contemporaneous exogenous variables (zt, dt, and dbt) and an endoge-

nous pre-determined variable (b∗t ). Moreover, Equation 35 and the firm’s debt optimality condition

(Equation 50) yield the following expression for the evolution of the firm’s equilibrium leverage

ratio:

b∗t+1 =

(
κ
τ b
∗
t + 1

)
b∗t − dbtezt

(1− δ) +
q∗t−1
a(1−τ)

. (60)

4.4 Equilibrium asset prices

In Internet Appendix C, we show that the firm’s optimality conditions imply that the ex-payout

equity value is given by

P et = qtKt+1 −Bt+1 = (qt − bt+1)Kt+1. (61)

As a result, the ex-payout firm value is

Pt = P et +Bt+1 = qtKt+1, (62)

which implies that the firm’s average Tobin’s q is equal to its marginal Tobin’s q, denoted by Q:

Qt = qt, (63)

where Q is defined as before: Qt ≡ Pt
Kt+1

. Therefore, the equilibrium Q function is

Q∗t = Q∗(b∗t , zt, dt) =

√
1 + 2a(1− τ)

[
(α(1− τ)− dt) ezt + τδ +

κ

2
(b∗t )

2
]
, (64)

and the equilibrium expected firm return function is

R∗(b∗t , zt, dt, dbt) = E
[
R∗t+1

∣∣ b∗t , zt, dt, dbt] , (65)

where

R∗t+1 =
dt+1e

zt+1 +Q∗(b∗t+1, zt+1, dt+1)
(

1− δ +
Q∗(b∗t+1,zt+1,dt+1)−1

a(1−τ)

)
Q∗(b∗t , zt, dt)

. (66)

We can also characterize the firm’s equity and debt expected returns separately. As regards the

equity return, Ret+1 = (P et+1 + De
t+1)/P et , Equations 61 and 63 imply the equilibrium expected
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equity return function

Re,∗(b∗t , zt, dt, dbt) = E
[
Re,∗t+1

∣∣ b∗t , zt, dt, dbt] , (67)

where

Re,∗t+1 =
dt+1Zt+1 +Q∗(b∗t+1, zt+1, dt+1)

(
1− δ +

Q∗(b∗t+1,zt+1,dt+1)−1

a(1−τ)

)
−
(
κ
τ b
∗
t+1 + 1

)
b∗t+1

Q∗(b∗t , zt, dt)− b∗t+1

. (68)

As regards debt, the equilibrium (expected and realized) debt return satisfies

Rb,∗t+1 =
κ

τ
b∗t+1 + 1, (69)

which is nothing more than the equilibrium version of the firm’s debt optimality condition (Equation

50). Intuitively, the risk-free rate needs to adjust so that, in equilibrium, the firm’s leverage ratio

b∗t+1, which is pinned down by the payout market clearing conditions, is optimal for the firm. In

other words, the equilibrium risk-free rate is the rate that clears the debt payout market, i.e., the

rate that makes the firm optimally issue the amount of debt that is desired by investors.21

Substituting Equation 60 into Equation 69, taking conditional expectations, and using Equation

63, we get the equilibrium expected debt return,

Rb,∗(b∗t , zt, dt, dbt) =
κ

τ

(
κ
τ b
∗
t + 1

)
b∗t − dbtezt

(1− δ) +
Q∗(b∗t ,zt,dt)−1

a(1−τ)

+ 1, (70)

which equals the equilibrium realized debt return, Rb,∗t+1, as the firm issues one-period riskless debt.

To solve for the expected firm, equity, and debt returns, we use Equations 65, 67, and 70, as well

as the expression for the firm’s equilibrium Q (Equation 64), the laws of motion of the exogenous

processes z, d, and db, and the law of motion for the equilibrium leverage ratio, b∗ (Equation 60).

Figures 5, 6, and 7 display the expected equilibrium firm return R∗, the expected equilibrium

equity return Re,∗, and the expected equilibrium debt return Rb,∗, respectively, as functions of the

four state variables: productivity z, demanded firm payout ratio d, demanded debt payout ratio db,

and lagged leverage ratio b. For our calculations, we use the calibrated parameter values discussed

in the next section and Gauss-Hermite quadrature (with 31 grid points per shock) to compute the

21The intuition is analogous to risk-free determination in the consumption-based asset pricing framework: in
that framework, there are no firms and debt is in zero net supply amongst households, so the risk-free rate is
the rate that makes the representative household optimally demand zero debt each period. Thus, economies that
feature different preferences for the representative household generate different risk-free rate processes, even if the
aggregate endowment is the same, as optimal debt demand is preference-specific. In our economy, debt is also in
zero net supply economy-wide: the representative firm has negative debt holdings (as it issues debt) and investors
have perfectly offsetting positive debt holdings. Furthermore, economies that feature different firm technologies (for
example, different leverage cost functions) generate different risk-free rate processes, even if the investor debt payout
demand process is the same, as optimal debt supply is technology-specific.
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integrals needed for the evaluation of the R∗ and Re,∗ functions.

As seen in Figure 5, the firm’s expected return is sharply increasing in total payout d, whereas it

is essentially flat with respect to productivity z, debt payout db, and lagged leverage ratio b. Thus,

as in the case of the unlevered firm, most of the variation in the firm’s expected return arises from

fluctuations in the investors’ demanded total payout ratio d. As seen in Panel C (in which d is kept

fixed, whereas the relative magnitudes of de and db change), it is just the size of the overall payout

d that matters for the magnitude of the firm’s expected return, but not its composition.

The composition of the firm’s total demanded payout becomes important when we focus on the

firm’s expected equity and debt returns separately. As seen in Panel C of Figure 6, the firm’s

expected equity return is decreasing in the debt payout ratio db, holding everything else (including

the total payout ratio d) fixed. This is because, for d to remain fixed, an increase in db has to be

offset by an equivalent decline in the equity payout ratio de. To satisfy a lower demanded equity

payout ratio, the firm has to cut its equity payout and increase investment, so the equity discount

rate has to fall to incentivize the firm to do so. An increase in db, keeping d fixed, decreases not only

the firm’s cost of equity, but also its cost of debt: as seen in Panel C of Figure 7, the firm’s debt

return is negatively associated with db. Intuitively, a reduction of db, everything else equal, implies

that investors desire to hold less newly-issued debt. Taking into account the positive relationship

between the firm’s debt supply and the risk-free rate in our model, the firm’s cost of debt has to

fall in order for the firm to want to supply the reduced amount of new debt that investors want to

hold. On the other hand, the firm’s debt return is strongly increasing in the lagged leverage ratio

b (Panel D of Figure 7). This is because a higher b, keeping everything else (and, in particular db)

the same, implies a stronger investor desire for holding newly-issued debt. To match the higher

investor demand for debt, the equilibrium risk-free rate needs to rise, so that the firm is willing to

issue more debt.

4.5 Quantitative results

We investigate the quantitative properties of the model with a levered representative firm by con-

sidering a simulation exercise. The calibrated parameter values for our model are reported in the

last column of Table 1. All parameters common to both the levered and the unlevered firm model

are calibrated using the methodology discussed in the previous section.22 The new parameters are

the leverage cost parameter κ and the debt payout ratio parameters (µb, φb, σb, ρz,b, and ρd,b).

The leverage cost parameter κ is calibrated to match the average U.S. aggregate leverage ratio,23

22All common parameter values are identical across the two models, with the exception of the values of the
productivity parameters, which change slightly because the implied productivity process changes slightly due to the
different budget constraints in the two models.

23We back out the time series for the aggregate leverage ratio (market value of debt per unit of capital) by
multiplying the market value of debt per unit of output by productivity, which is equal to output per unit of capital.
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whereas the debt payout parameters are calibrated to match the corresponding moments of the

U.S. aggregate debt payout ratio.

Again, we run 10,000 model simulations, each of which consists of 44 annual observations (after an

initial period of 1,000 years, to reduce the dependence on initial conditions). We report empirical

and simulated moments for firm returns, equity returns, and debt returns in Tables 4, 5, and 6,

respectively.24

As seen in Table 4, our model is able to capture many of the salient properties of U.S. aggregate

firm returns. This is not surprising: the simulated moments in Table 4 are almost identical to the

simulated moments of the unlevered firm discussed in the previous section (Table 3). The only new

component of Table 4 is Panel E, which reports the output of return forecasting regressions that

use equity and debt payout ratios as the predictive variables. In both the data and the model, both

ratios have a positive forecasting coefficient, underscoring the ability of the model to accurately

capture important return predictability attributes. Furthermore, Panel E shows that the excess

sensitivity of the firm’s return to its payout ratio is due to its excess sensitivity to the firm’s equity

payout ratio, whereas firm returns do not exhibit excess sensitivity to the firm’s debt payout ratio.

When we consider equity and debt returns separately, the performance of the model gets more

mixed. As seen in Panel A of Table 5, the model generates realistic correlations of equity returns

with output growth rates, productivity shocks, equity payout shocks, and debt payout shocks.

However, simulated equity payout yields are higher on average, and more volatile, than their

empirical counterparts. On the other hand, the model is able to generate realistic equity return

unconditional moments: the average equity return is 10.23% and the unconditional equity return

volatility is 24.20%, both quite close to their empirical values (8.96% and 17.76%, respectively).

Furthermore, the model is able to produce empirically plausible conditional expected returns, as

evidenced by the fact that the output of the simulated return predictability regressions (Panels

B–E of Table 5) is qualitatively similar to the output of the corresponding regressions that use U.S.

aggregate firm data. Notably, as seen in Panels D and E, equity returns exhibit excess sensitivity

to equity payout ratios.

When we turn to debt prices and returns (Table 6), we see that the model is able to generate

realistic unconditional moments for debt payout yields, but not for debt returns: in the model,

debt returns are low (mean of 1.02%) and almost constant (unconditional volatility of 0.12%), quite

different from actual U.S. aggregate debt returns (which have a mean of 4.84% and an unconditional

24Under the law of motion for z shown in Equation 2, Zmint = 0 for all t, since normally distributed shocks have
infinite support. As discussed in Internet Appendix C, a lower bound of Zmint = 0 sometimes leads to a binding
collateral constraint. To ensure that the collateral constraint binds very infrequently (and, hence, can be ignored
when solving the model), we introduce the following slight modification: we set the value of Zmin

t+1 to be equal to the
value that Zt+1 would take if the realization of the productivity shock at t+ 1 were equal to four standard deviations
below zero. Since realizations below four standard deviations from zero are extremely rare for normally distributed
shocks, our modification helps ensure that the collateral constraint almost never binds without substantially violating
our distributional assumptions for z.
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volatility of 7.47%). Given that the model generates essentially constant debt returns, it is unable

to match the empirical debt return predictability properties: as seen in Panels B–E, all simulated

forecasting coefficient estimates are extremely close to zero. It should be noted that a key reason

for the inability of our model to match the empirical debt return properties is the fact that our

representative firm is constrained to only issue one-period safe debt, so the debt return is always

equal to the risk-free rate. If we compare the debt returns in our model with the empirical risk-free

rate time series, then the performance of our model improves significantly: in the data, the average

(real) risk-free rate has a mean of 0.82% and an unconditional volatility of 2.56%.

Finally, in order to quantify the contribution of each state variable to the overall volatility of key

asset pricing measures, we run a single 100-year simulation of the model and report the paths of

the firm’s equilibrium Q, expected firm return, expected equity return, and expected debt return

in Figure 8. As seen in Panels A, B, and C, fluctuations in the firm payout ratio d account for

almost all of the variation in the firm’s Q, firm expected returns, and equity expected returns. On

the other hand, the volatility of the firm’s expected debt returns is mainly due to changes in the

lagged leverage ratio b.

5 Conclusion

In this paper, we propose a payout-based asset pricing framework within the production-based asset

pricing paradigm. Our framework allows us to back out firms’ equilibrium expected returns using

the clearing of the payout market, without the need to recover the economy’s SDF. Our model-

implied equilibrium expected firm returns successfully predict subsequent realized firm returns in

the data. Furthermore, simulations show that our model is able to closely match key asset pricing

moments, producing empirically plausible payout yields, firm returns, and equity returns.

Our model is intentionally simple, as our goal is to highlight the baseline implications of the payout-

based asset pricing approach. That simplicity leaves room for more sophisticated models that could

better capture the key properties of asset prices and returns. For example, our model-implied

equilibrium expected returns are too sensitive to changes in the payout ratio compared to the data.

That excess sensitivity may arise because our baseline model does not incorporate external financing

costs, underscoring the need for richer models. Furthermore, our framework opens the door to new

potential research paths. For instance, future work could extend our payout-based asset pricing

approach to the cross-section of firm returns, helping to better understand the relationship between

firm returns and investors’ payout demand and potentially addressing well-known anomalies.
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Fig. 1: Comparison of model-implied and empirically estimated expected returns

Panel A of this figure plots the time series of model-implied expected returns (solid green line) and
the time series of empirically estimated expected returns (dashed red line). The latter are the fitted
values from regressions of one-year realized aggregate firm returns on lagged payout yields (payout
over firm value), lagged payout ratios (payout over output), and lagged productivity (output over
capital). Panel B of this figure plots the time series of the fitted values from regressions of one-year
realized returns, in the model and the data, on lagged payout ratios (solid green line and dashed
red line, respectively).
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Fig. 2: Equilibrium Q and expected firm return as functions of the state variables

This figure presents the equilibrium average Tobin’s q, denoted by Q, and the equilibrium expected
return of the representative firm in the quantitative model with an unlevered firm. Panels A and
B of this figure plot the firm’s Q as a function of the state variable z and d, respectively, keeping
the other state variable constant. Panels C and D of this figure plot the equilibrium expected firm
return as a function of the state variable z and d, respectively, keeping the other state variable
constant.
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Fig. 3: U.S. aggregate payout ratio

This figure plots the annual time series of the U.S. aggregate firm payout ratio (firm payout divided
by firm revenue) from 1974 to 2017 (solid green line). The figure also plots the annual time series of
the U.S. aggregate equity and debt payout ratio (dashed red line and blue dotted line, respectively)
for the same time period.
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Fig. 4: Simulated paths: model with unlevered firm

This figure reports the output of a 100-year simulation of the quantitative model with an unlevered
representative firm. Panels A and B plot the simulated paths of the state variables z and d,
respectively. Panels C and D plot the simulated path of the firm’s average Tobin’s q, denoted
by Q, and the firm’s equilibrium expected return (in black solid line), respectively, as well as the
equilibrium Q path and expected return path when z and d varies (in red and blue dotted line,
respectively) and the other state variable is kept constant.
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Fig. 5: Expected return of the levered firm as a function of the state variables

This figure presents the equilibrium expected return of the representative firm in the quantitative
model with a levered representative firm. In particular, Panels A, B, C, and D of this figure plot the
firm’s equilibrium expected return as a function of the state variable z, d, db, and b, respectively,
keeping the other state variables constant.
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Fig. 6: Equity expected return of the levered firm as a function of the state variables

This figure presents the equilibrium equity expected return of the levered representative firm in
the quantitative model with a levered representative firm. In particular, Panels A, B, C, and D of
this figure plot the firm’s equilibrium equity expected return as a function of the state variable z,
d, db, and b, respectively, keeping the other state variables constant.
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Fig. 7: Debt expected return of the levered firm as a function of the state variables

This figure presents the equilibrium debt expected return of the levered representative firm in the
quantitative model with a levered representative firm. In particular, Panels A, B, C, and D of this
figure plot the firm’s equilibrium debt expected return as a function of the state variable z, d, db,
and b, respectively, keeping the other state variables constant.
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Fig. 8: Simulated paths: model with levered firm

This figure reports the output of a 100-year simulation of the quantitative model with a levered
representative firm. In particular, Panels A, B, C, and D plot the simulated path of the firm’s
average Tobin’s q (denoted by Q), the firm’s equilibrium expected return, the firm’s equilibrium
expected equity return, and the firm’s equilibrium expected debt return, respectively (in solid black
line). Furthermore, each plot reports the corresponding variable path when each of z, d, db or b
varies (in blue, red, green, and turquoise dotted line, respectively) and the other state variables are
kept constant.
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Table 1: Model calibration

This table reports the calibrated parameters in our quantitative model. For each parameter, the
first column provides its description, the second column shows its symbol, and the third and fourth
columns report its calibrated value in the model with an unlevered and a levered firm, respectively.

Calibrated Value

Parameter Description Symbol Unlevered Firm Levered Firm

Adjustment Cost Parameter a 9.953 9.953

Depreciation Rate δ 0.150 0.150

Corporate Tax Rate τ 0.350 0.350

Profit Margin α 0.150 0.150

Leverage cost parameter κ – 0.003

Average z µz 0.983 0.979

Autocorrelation of z φz 0.745 0.743

Volatility Parameter of z σz 0.061 0.061

Average d µd 0.015 0.015

Autocorrelation of d φd 0.595 0.595

Volatility Parameter of d σd 0.073 0.073

Average db µb – -0.006

Autocorrelation of db φb – 0.167

Volatility Parameter of db σb – 0.021

Correlation(z , d) ρz,d -0.125 -0.125

Correlation(z , db) ρz,b – -0.057

Correlation(d , db) ρd,b – 0.568

44



Table 2: Payout-based vs. investment-based returns

This table reports the properties of model-implied realized and expected investment returns for
seven different models. In particular, Panel A reports the unconditional moments of realized and
expected investment returns, whereas Panels B, C, and D report the output of regressions of
observed firm returns on different forecasting signals. The seven models are, in order, the payout-
based model (column two) and six implementations of the investment-based model (columns three
to eight). We report Newey and West (1987) standard errors, with lag selection as in Newey and
West (1994).

Model d iNIPA ipNIPA ip&i
NIPA ipCS ip&i

CS ip,KCS

Panel A: Unconditional moments

Average Firm Return 7.86% 7.86% 7.86% 7.86% 7.86% 7.86% 7.86%

Volatility of Firm Return 14.88% 14.88% 14.88% 14.88% 14.88% 14.88% 14.88%

Average Investment Return 5.63% -2.53% 1.12% -1.70% 1.86% -1.69% 2.54%

Volatility of Investment Return 14.82% 5.27% 4.70% 3.93% 13.30% 8.37% 13.73%

Volatility of E[RI ] 7.02% 1.78% 1.37% 1.14% 6.29% 3.63% 5.69%

Corr(RI ,R) 0.57 -0.08 -0.10 -0.08 0.18 0.20 0.14

Corr(RI , Rs) 0.22 0.21 0.09 0.09 0.07 0.08 0.07

Panel B: Regressions of Rt+1 on Dt/Yt or It/Kt

Predictive Coefficient 1.36 -0.25 -1.02 -1.15 -0.46 -0.56 -0.78

s.e. [0.40] [0.86] [1.15] [1.32] [0.50] [0.68] [0.49]

Adjusted R2 8.60% -2.29% -0.61% -0.55% -0.86% -1.30% 3.82%

Panel C: Regressions of Rt+1 on Dt/Yt or It/Kt, controlling for zt

Predictive Coefficient 1.37 -0.31 -0.60 -1.15 -0.76 -1.02 -0.45

s.e. [0.49] [0.90] [1.39] [1.50] [0.68] [1.08] [0.56]

Adjusted R2 6.34% -4.66% -2.20% -3.06% -2.59% -3.14% 2.12%

Panel D: Regressions of Rt+1 on E[RIt+1]

Predictive Coefficient 0.55 0.35 0.44 1.05 0.27 0.42 0.44

s.e. [0.20] [1.06] [1.49] [2.20] [0.26] [0.46] [0.31]

Adjusted R2 6.05% -2.21% -2.22% -1.63% -0.78% -1.12% 1.28%
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Table 3: Empirical and simulated moments: unlevered firm

This table reports empirical and simulated asset pricing moments. For each moment, it reports
its description, its notation, its empirical value, and its median and 1st and 99th percentile values
across 10,000 simulations of the model with an unlevered representative firm. Panel A reports
unconditional moments. Panel B reports the slope coefficient and the adjusted R2 of regressions
of firm returns on lagged payout yields. Panel C reports the slope coefficient and the adjusted R2

of regressions of firm returns on lagged payout ratios. Panel D reports the slope coefficients and
the adjusted R2 of regressions of firm returns on lagged payout ratios and lagged productivity. For
regression coefficients estimated in the data, we also provide statistical significance information,
with *, **, and *** reflecting statistical significance at the 10% level, 5% level, and 1% level,
respectively. We calculate Newey and West (1987) standard errors, with lag selection as in Newey
and West (1994).

Model

Description Notation Data Median Q(1%) Q(99%)

Panel A: Unconditional moments

Average Output Growth E[(Y ′ − Y )/Y ] 2.75% 2.39% -0.52% 5.63%

Volatility of Output Growth σ[(Y ′ − Y )/Y ] 5.95% 7.49% 5.60% 9.63%

Correlation of Return with Output Growth corr(R, (Y ′ − Y )/Y ) 0.02 0.01 -0.32 0.35

Correlation of Return with Productivity Shock corr(R, z − E[z]) 0.24 0.32 -0.04 0.60

Correlation of Return with Payout Shock corr(R, d− E[d]) -0.54 -0.85 -0.93 -0.71

Average Payout Yield E[D/P ] 1.59% 2.60% -0.45% 5.75%

Volatility of Payout Yield σ[D/P ] 2.47% 4.37% 2.89% 6.72%

Autocorrelation of Payout Yield AC[D/P ] 0.44 0.52 0.16 0.76

Average Return E[R] 7.86% 5.46% 3.94% 7.13%

Volatility of Return σ[R] 14.88% 12.78% 9.31% 17.61%

Reward-to-Risk E[R]/σ[R] 0.53 0.43 0.31 0.58

Autocorrelation of Return AC[R] -0.17 -0.20 -0.49 0.12

Volatility of E[R] σ[E[R]] – 5.79% 3.56% 10.10%

Panel B: Regressions of Rt+1 on Dt/Pt

Predictive Coefficient b 1.81*** 1.47 0.72 2.55

Adjusted R2 R2
adj 9.20% 23.66% 7.77% 45.96%

Panel C: Regressions of Rt+1 on Dt/Yt

Predictive Coefficient b 1.36*** 2.01 0.84 3.90

Adjusted R2 R2
adj 8.60% 21.84% 6.58% 42.29%

Panel D: Regressions of Rt+1 on Dt/Yt and Zt

Dt/Yt Predictive Coefficient bd 1.38*** 2.09 0.82 4.04

Zt Predictive Coefficient bz -0.02 -0.01 -0.23 0.21

Adjusted R2 R2
adj 6.38% 22.06% 5.56% 43.79%
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Table 4: Empirical and simulated moments: returns of levered firm

This table reports empirical and simulated asset pricing moments. For each moment, it shows its
description, its notation, its empirical value, and its median and 1st and 99th percentile values across
10,000 simulations of the model with a levered representative firm. Panel A reports unconditional
moments of firm returns. Panel B reports the slope coefficient and the adjusted R2 of regressions of
firm returns on lagged firm payout yields. Panel C reports the slope coefficient and the adjusted R2

of regressions of firm returns on lagged firm payout ratios. Panel D reports the slope coefficients and
the adjusted R2 of regressions of firm returns on lagged firm payout ratios and lagged productivity.
Panel E reports the slope coefficients and the adjusted R2 of regressions of firm returns on lagged
equity and debt payout ratios. For regression coefficients estimated in the data, we also provide
statistical significance information, with *, **, and *** reflecting statistical significance at the 10%
level, 5% level, and 1% level, respectively. We calculate Newey and West (1987) standard errors,
with lag selection as in Newey and West (1994).

Model

Description Notation Data Median Q(1%) Q(99%)

Panel A: Unconditional moments

Average Output Growth E[(Y ′ − Y )/Y ] 2.75% 2.38% -0.58% 5.54%

Volatility of Output Growth σ[(Y ′ − Y )/Y ] 5.95% 7.44% 5.62% 9.50%

Correlation of Firm Return with Output Growth corr(R, (Y ′ − Y )/Y ) 0.02 0.02 -0.32 0.35

Correlation of Firm Return with Productivity Shock corr(R, z − E[z]) 0.23 0.32 -0.04 0.61

Correlation of Firm Return with Payout Shock corr(R, d− E[d]) -0.54 -0.85 -0.93 -0.72

Average Firm Payout Yield E[D/P ] 1.59% 2.55% -0.35% 5.74%

Volatility of Firm Payout Yield σ[D/P ] 2.47% 4.34% 2.87% 6.72%

Autocorrelation of Firm Payout Yield AC[D/P ] 0.44 0.51 0.15 0.76

Average Firm Return E[R] 7.86% 5.42% 3.95% 7.06%

Volatility of Firm Return σ[R] 14.88% 12.68% 9.31% 17.25%

Reward-to-Risk E[R]/σ[R] 0.53 0.42 0.31 0.58

Autocorrelation of Firm Return AC[R] -0.17 -0.20 -0.49 0.12

Volatility of E[R] σ[E[R]] – 5.74% 3.55% 9.99%

Panel B: Regressions of Rt+1 on Dt/Pt

Predictive Coefficient b 1.81*** 1.48 0.73 2.57

Adjusted R2 R2
adj 9.20% 23.83% 8.11% 45.47%

Panel C: Regressions of Rt+1 on Dt/Yt

Predictive Coefficient b 1.36*** 2.00 0.84 3.76

Adjusted R2 R2
adj 8.60% 21.98% 6.63% 42.03%

Panel D: Regressions of Rt+1 on Dt/Yt and Zt

Dt/Yt Predictive Coefficient bd 1.38*** 2.07 0.82 3.91

Zt Predictive Coefficient bz -0.02 -0.01 -0.24 0.20

Adjusted R2 R2
adj 6.39% 22.26% 5.72% 43.54%

Panel E: Regressions of Rt+1 on De
t /Yt and Db

t/Yt

De
t /Yt Predictive Coefficient be 0.86** 2.02 0.65 4.06

Db
t/Yt Predictive Coefficient bb 2.29** 2.02 0.00 4.38

Adjusted R2 R2
adj 10.07% 22.03% 5.55% 43.37%
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Table 5: Empirical and simulated moments: equity returns of levered firm

This table reports empirical and simulated asset pricing moments. For each moment, it shows its
description, its notation, its empirical value, and its median and 1st and 99th percentile values across
10,000 simulations of the model with a levered representative firm. Panel A reports unconditional
moments of equity returns. Panel B reports the slope coefficient and the adjusted R2 of regressions
of equity returns on lagged equity payout yields. Panel C reports the slope coefficient and the
adjusted R2 of regressions of equity returns on lagged firm payout ratios. Panel D reports the
slope coefficients and the adjusted R2 of regressions of equity returns on lagged firm payout ratios
and lagged productivity. Panel E reports the slope coefficients and the adjusted R2 of regressions
of equity returns on lagged equity and debt payout ratios and lagged productivity. For regression
coefficients estimated in the data, we also provide statistical significance information, with *, **,
and *** reflecting statistical significance at the 10% level, 5% level, and 1% level, respectively. We
calculate Newey and West (1987) standard errors, with lag selection as in Newey and West (1994).

Model

Description Notation Data Median Q(1%) Q(99%)

Panel A: Unconditional moments

Correlation of Equity Return with Output Growth corr(Re, (Y ′ − Y )/Y ) 0.02 -0.02 -0.37 0.33

Correlation of Equity Return with Productivity Shock corr(Re, z − E[z]) 0.27 0.30 -0.08 0.60

Correlation of Equity Return with Equity Payout Shock corr(Re, de − E[de]) -0.27 -0.50 -0.72 -0.13

Correlation of Equity Return with Debt Payout Shock corr(Re, db − E[db]) -0.26 -0.45 -0.69 -0.08

Average Equity Payout Yield E[De/P e] 2.49% 6.20% 0.82% 16.47%

Volatility of Equity Payout Yield σ[De/P e] 2.54% 7.98% 3.80% 34.22%

Autocorrelation of Equity Payout Yield AC[De/P e] 0.54 0.48 0.05 0.74

Average Equity Return E[Re] 8.96% 10.23% 5.31% 21.53%

Volatility of Equity Return σ[Re] 17.76% 24.20% 13.05% 81.93%

Reward-to-Risk E[Re]/σ[Re] 0.50 0.42 0.26 0.56

Autocorrelation of Equity Return AC[Re] -0.17 -0.19 -0.48 0.16

Volatility of E[Re] σ[E[Re]] – 12.28% 5.32% 81.09%

Panel B: Regressions of Re
t+1 on De

t /P
e
t

Predictive Coefficient b 1.64* 1.49 0.61 2.98

Adjusted R2 R2
adj 4.40% 22.79% 2.58% 84.38%

Panel C: Regressions of Re
t+1 on Dt/Yt

Predictive Coefficient b 1.91*** 4.06 1.26 12.67

Adjusted R2 R2
adj 12.20% 24.90% 7.58% 45.83%

Panel D: Regressions of Re
t+1 on De

t /Yt and Db
t/Yt

De
t /Yt Predictive Coefficient be 1.25*** 4.11 1.05 12.46

Db
t/Yt Predictive Coefficient bb 3.13*** 4.00 -0.12 13.88

Adjusted R2 R2
adj 14.46% 24.98% 6.72% 46.65%

Panel E: Regressions of Re
t+1 on De

t /Yt, D
b
t/Yt, and Zt

De
t /Yt Predictive Coefficient be 1.21 4.23 1.04 12.81

Db
t/Yt Predictive Coefficient bb 3.14** 4.11 -0.15 14.19

Zt Predictive Coefficient bz 0.02 -0.03 -0.57 0.44

Adjusted R2 R2
adj 12.37% 25.14% 5.81% 47.67%
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Table 6: Empirical and simulated moments: debt returns of levered firm

This table reports empirical and simulated asset pricing moments. For each moment, it shows its
description, its notation, its empirical value, and its median and 1st and 99th percentile values across
10,000 simulations of the model with a levered representative firm. Panel A reports unconditional
moments of debt returns. Panel B reports the slope coefficient and the adjusted R2 of regressions of
debt returns on lagged debt payout yields. Panel C reports the slope coefficient and the adjusted R2

of regressions of debt returns on lagged firm payout ratios. Panel D reports the slope coefficients and
the adjusted R2 of regressions of debt returns on lagged firm payout ratios and lagged productivity.
Panel E reports the slope coefficients and the adjusted R2 of regressions of debt returns on lagged
equity and debt payout ratios and lagged productivity. For regression coefficients estimated in the
data, we also provide statistical significance information, with *, **, and *** reflecting statistical
significance at the 10% level, 5% level, and 1% level, respectively. We calculate Newey and West
(1987) standard errors, with lag selection as in Newey and West (1994).

Model

Description Notation Data Median Q(1%) Q(99%)

Panel A: Unconditional moments

Correlation of Debt Return with Output Growth corr(Rb, (Y ′ − Y )/Y ) -0.04 0.05 -0.37 0.45

Correlation of Debt Return with Productivity Shock corr(Rb, z − E[z]) -0.14 0.04 -0.32 0.38

Correlation of Debt Return with Equity Payout Shock corr(Rb, de − E[de]) -0.21 -0.15 -0.45 0.21

Correlation of Debt Return with Debt Payout Shock corr(Rb, db − E[db]) -0.15 0.09 -0.27 0.41

Average Debt Payout Yield E[Db/B] -1.69% -1.54% -4.21% 2.50%

Volatility of Debt Payout Yield σ[Db/B] 7.13% 6.21% 4.12% 22.88%

Autocorrelation of Debt Payout Yield AC[Db/B] 0.14 0.13 -0.25 0.47

Average Debt Return E[Rb] 4.84% 1.02% 0.29% 1.19%

Volatility of Debt Return σ[Rb] 7.47% 0.12% 0.03% 0.30%

Reward-to-Risk E[R]/σ[Rb] 0.65 7.90 1.47 36.23

Autocorrelation of Debt Return AC[Rb] -0.04 0.91 0.52 0.99

Volatility of E[Rb] σ[E[Rb]] – 0.13% 0.05% 0.31%

Panel B: Regressions of Rb
t+1 on Db

t/Bt+1

Predictive Coefficient b -0.01 0.00 -0.01 0.00

Adjusted R2 R2
adj -2.44% 4.72% -2.38% 38.57%

Panel C: Regressions of Rb
t+1 on Dt/Yt

Predictive Coefficient b -0.23 0.00 -0.04 0.03

Adjusted R2 R2
adj -1.26% 1.21% -2.38% 37.82%

Panel D: Regressions of Rb
t+1 on De

t /Yt and Db
t/Yt

De
t /Yt Predictive Coefficient be -0.46* 0.01 -0.03 0.04

Db
t/Yt Predictive Coefficient bb 0.19 -0.01 -0.05 0.02

Adjusted R2 R2
adj -0.93% 12.85% -3.75% 48.79%

Panel E: Regressions of Rb
t+1 on De

t /Yt, D
b
t/Yt, and Zt

De
t /Yt Predictive Coefficient be -0.35 0.01 -0.03 0.04

Db
t/Yt Predictive Coefficient bb 0.16 -0.01 -0.05 0.01

Zt Predictive Coefficient bz -0.07* 0.00 -0.01 0.01

Adjusted R2 R2
adj 1.02% 19.96% -3.87% 60.03%
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Internet Appendix

This Internet Appendix is organized as follows. Section A reports the derivations for the payout-

based asset pricing model with an unlevered representative firm. Section B provides the description

of, and the derivations for, the two-period model. Section C provides the derivations for the payout-

based asset pricing model with an levered representative firm. Section D describes our data sources

and discusses the construction of the empirical measures that we use in our quantitative analysis.

Finally, Section E provides the details for our implementation of the investment-based asset pricing

approach.

A Derivations for the Payout-Based Model

This section provides the derivations of the results for our dynamic payout-based asset pricing

model.

A.1 Payout supply

In what follows, in the interests of notational convenience, we drop the dependence on the condi-

tional distribution of current and future SDFs (which the firm takes as given) from the firm’s value

function and, thus, instead of writing V (Kt, Zt; {ft(Mt,t+h)}∞h=1), we write V (Kt, Zt).

The firm’s first order condition is

Et[Mt+1∂KV (Kt+1, Zt+1)] = 1 + (1− τ)∂IΦ(Kt, It). (IA.1)

We define qt ≡ Et[Mt+1∂KV (Kt+1, Zt+1)], so we can write

qt = 1 + (1− τ)∂IΦ(Kt, It). (IA.2)

That condition yields the firm’s investment function It = I(Kt, qt).

The envelope condition (with respect to Kt) is

∂KV (Kt, Zt) = (1− τ)(∂KΠ(Kt, Zt)− ∂KΦ(Kt, It)) + τδ + (1− δ)Et[Mt+1∂KV (Kt+1, Zt+1)],

(IA.3)

so, using the definition for qt, we can write

∂KV (Kt, Zt) = (1− τ)(∂KΠ(Kt, Zt)− ∂KΦ(Kt, It)) + τδ + (1− δ)qt. (IA.4)
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Finally, the investment return is

RIt+1 =
(1− τ)(∂KΠ(Kt+1, Zt+1)− ∂KΦ(Kt+1, It+1)) + τδ + (1− δ)qt+1

qt
, (IA.5)

so, using Equation IA.4, the equilibrium investment return satisfies

RIt+1 =
∂KV (Kt+1, Zt+1)

qt
. (IA.6)

Plugging in Equation IA.6 into IA.1, we get

Et[Mt+1R
I
t+1qt] = qt, (IA.7)

which yields Equation 17.

A.2 Equilibrium prices

Following Liu et al. (2009), we start by noting that functions Π(Z,K) = αZK and Φ(K, I) =
a
2

(
I
K

)2
K have the following properties:

Π(Z,K) = K · ∂KΠ(Z,K), (IA.8)

and

Φ(K, I) = K · ∂KΦ(K, I) + I · ∂IΦ(K, I), (IA.9)

respectively.

Using Equation IA.9, the firm’s investment optimality condition can be written as follows:

qt = 1 + ∂IΦ(Kt, It) = 1 + (1− τ)(Φ(Kt, It)−Kt∂KΦ(Kt, It))/It. (IA.10)

Recall that the firm payout is given by

Dt = (1− τ)(Π(Zt,Kt)− Φ(It,Kt))− It + τδKt, (IA.11)

so, using Equations IA.8 and IA.10, the firm’s optimal payout satisfies

Dt = (1− τ) (∂KΠ(Zt,Kt)− ∂KΦ(Kt, It)) ·Kt − qtIt + τδKt = ∂KDt ·Kt − qtIt. (IA.12)
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Equation IA.12 implies that

Et[Mt+1Dt+1] = Et[Mt+1(∂KDt+1 ·Kt+1 − qt+1It+1)]. (IA.13)

We can now use the optimality condition qt = Et [Mt+1 (∂KDt+1 + (1− δ)qt+1)] to rewrite Equation

IA.13 as follows:

Et[Mt+1Dt+1] = (qt − Et[Mt+1(1− δ)qt+1])Kt+1 − Et[Mt+1qt+1It+1] = qtKt+1 − Et[Mt+1qt+1Kt+2].

(IA.14)

Iterating and applying the law of iterated expectations, we get

Et[Mt+1Dt+1] = qtKt+1 − Et[Mt+2(Dt+2 + qt+2Kt+3)], (IA.15)

which yields

Et[Mt+1Dt+1] + Et[Mt+2Dt+2] = qtKt+1 − Et[Mt+2qt+2Kt+3]. (IA.16)

Finally, iterating forward and imposing the transversality condition limn→∞ Et[Mt+nqt+nKt+n+1] =

0, we get

qtKt+1 = Et

[ ∞∑
s=1

Mt+sDt+s

]
= Vt −Dt, (IA.17)

or, equivalently,

Vt = Dt + qtKt+1. (IA.18)

Finally, note that the firm’s average Tobin’s q, Qt = Vt−Dt
Kt+1

, is equal to the its marginal Tobin’s q:

Qt = qt. (IA.19)

It is important to note that we only use the firm’s optimality conditions, but not the market clearing

condition, for the above derivation. In other words, Equation IA.18 holds for any conditional SDF

distributions that the firm takes as given. Of course, different assumptions about the conditional

SDF distributions lead to a different q process (and, hence, a different firm value process), but the

message of Equation IA.18 is simple: due to the linear homogeneity conditions (Equations IA.8

and IA.9), the only information regarding conditional SDF distributions that is needed to price

the firm is q. All the market clearing condition (Equation 18) is needed for is to pin down the

equilibrium q, denoted by q∗. By pinning down q∗, the market clearing condition is providing all

the information regarding investor preferences that is needed in order to price the firm. Thus, in
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equilibrium we have

V ∗t = D∗t + q∗tK
∗
t+1, Q∗t = q∗t . (IA.20)

A.3 Equilibrium returns

We can now turn to equilibrium returns. The firm’s equilibrium return is

R∗t+1 =
V ∗t+1

V ∗t −D∗t
=
D∗t+1 + q∗t+1K

∗
t+2

q∗tK
∗
t+1

, (IA.21)

which yields

R∗t+1 =
dt+1Zt+1 + q∗t+1((1− δ) +

q∗t+1−1

a(1−τ) )

q∗t
. (IA.22)

The equilibrium investment return is

RI,∗t+1 =
(1− τ)

(
∂KΠ(K∗t+1, Zt+1)− ∂KΦ(K∗t+1, I

∗
t+1)

)
+ τδ + (1− δ)q∗t+1

q∗t
, (IA.23)

which yields

RI,∗t+1 =
α(1− τ)Zt+1 +

(q∗t+1−1)2

2a(1−τ) + τδ + (1− δ)q∗t+1

q∗t
. (IA.24)

We can rewrite the equilibrium investment return using the payout market clearing condition, which

implies that

(1− τ)αZt+1 −
(q∗t+1)2 − 1

2a(1− τ)
+ τδ = dt+1Zt+1, (IA.25)

or, equivalently,

(1− τ)αZt+1 = dt+1Zt+1 +
(q∗t+1)2 − 1

2a(1− τ)
− τδ. (IA.26)

Plugging the expression of IA.26 in Equation IA.24, we get, after some algebra,

RI,∗t+1 =
dt+1Zt+1 + (1− δ)q∗t+1 +

(q∗t+1−1)q∗t+1

a(1−τ)

q∗t
. (IA.27)

From Equations IA.22 and IA.27, it is obvious that the firm’s equilibrium return and the equilibrium
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investment return are equal state-by-state:

R∗t+1 = RI,∗t+1. (IA.28)

A.4 Payout ratio upper bound

We show that the upper bound specification for the demanded payout ratio d, given by Equation

10, leads to feasible equilibrium investment and payout processes for the firm.

At each period t, the firm needs to choose investment and payout policies that satisfy its budget

constraint, given Zt (which is exogenous) and Kt (which is predetermined). If the investors’ de-

manded payout is large enough, then the firm needs to disinvest in order to provide the demanded

payout. However, since the firm has limited resources and faces capital adjustment costs, there is

a maximal amount of payout that the firm is able to provide. Furthermore, since the firm’s capital

stock has to be always non-negative, the capital accumulation equation Kt+1 = (1 − δ)Kt + It

implies that firm investment needs to satisfy It ≥ −(1− δ)Kt for all t, which further constrains the

maximal firm payout.IA.2

In particular, the maximum payout that the firm is able to provide at period t, denoted by Dmax
t ,

is given by the solution of the following static problem:

Dmax
t = max

{It}
{(1− τ)

(
αZtKt −

a

2
(It/Kt)

2Kt

)
− It + τδKt}, (IA.29)

such that It ≥ −(1 − δ)Kt. It can be easily shown that the investment level that maximizes

resources is It = −ϕKt, where ϕ ≡ min{1/(a(1− τ)), 1− δ}, which yields a maximum payout level

of

Dmax
t = (1− τ)αZtKt − (1− τ)

a

2
ϕ2Kt + ϕKt + τδKt. (IA.30)

It follows that the maximum payout per unit of output is

Dmax
t

Yt
= (1− τ)α+ e−zt

[(
1− (1− τ)a

2
ϕ

)
ϕ+ τδ

]
, (IA.31)

which is identical to the expression for the conditional upper bound of the demanded payout ratio,

dmaxt , in our model (Equation 10).

Next, we show that our specification for d ensures that the capital non-negativity constraint never

binds and, hence, the firm always optimally picks an interior solution for investment, given by the

firm’s first order condition: It = qt−1
a(1−τ)Kt.

Fix t and assume that Kt ≥ 0. The interior optimal investment satisfies the capital non-negativity

IA.2By assumption, the firm has initial capital stock K0 > 0, so the capital non-negativity constraint is trivially
satisfied at the initial period.
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constraint if (and only if) qt−1
a(1−τ)Kt ≥ −(1 − δ)Kt. This condition is trivially satisfied for Kt = 0.

For Kt > 0, the expression is equivalent to qt ≥ 1−a(1−τ)(1−δ). Since economic logic suggests that

the firm’s marginal q is always non-negative, ensuring that the firm’s interior optimality condition

satisfies the capital non-negativity constraint implies ensuring the following lower bound for the

firm’s marginal q: qt ≥ max{0, 1 − a(1 − τ)(1 − δ)}. If that lower bound is satisfied, then the

firm’s investment policy at t is given by its interior optimality condition and Kt+1 is non-negative.

Iterating from K0 > 0, it follows that we need to ensure that the model’s exogenous processes are

such that the firm’s marginal q satisfies qt ≥ max{0, 1− a(1− τ)(1− δ)} for all t.

All left to do is to confirm that our specification for the demanded payout ratio d, which imposes

a conditional upper bound on that process, leads to an equilibrium q process that satisfies the

condition above. First, consider the case that a ≥ 1
(1−τ)(1−δ) . Then, we need to show that our

d process leads to an equilibrium q process that satisfies qt ≥ 0 for all t. Indeed, for any dt ≤
dmaxt = (1 − τ)α + e−zt

[
1

2a(1−τ) + τδ
]
, Equation 20 yields a real-valued (and non-negative) q∗t .

Now, consider the case that a < 1
(1−τ)(1−δ) . We need to show that our d process leads to an

equilibrium q process that satisfies qt ≥ 1− a(1− τ)(1− δ) for all t. Indeed, for any dt ≤ dmaxt =

(1−τ)α+e−zt
[(

1− (1−τ)a
2 · (1− δ)

)
(1− δ) + τδ

]
, Equation 20 yields a real-valued q∗t that satisfies

q∗t ≥ 1− a(1− τ)(1− δ) > 0.

B The Two-Period General Equilibrium Model

This section contains the details and derivations for our two-period general equilibrium model.

B.1 The general equilibrium model

The economy has two periods (denoted by t and t + 1) and consists of a representative equity-

financed firm and a representative household. There is a single good that can be either consumed

or used as a capital input in the firm’s production, and all quantities are expressed in units of that

good. The optimizing behavior of the firm generates the payout supply function, while the payout

demand function arises from the household’s optimal consumption-saving decision.IA.3

IA.3In our simple economy, the only asset that exists is the equity of the firm, so the household’s equity payout
demand is equal to the household’s consumption demand: simply put, there is no other available source of income
for the household, so the entirety of its consumption has to be financed by the equity payout of the firm. However,
it is important to stress that in a richer model (that would include, for example, labor income, multiple assets, or a
government sector) the household’s payout demand for any particular asset would be determined by the solution to
the household’s optimization problem and would generally differ from its consumption demand. For example, in a
model where the household can invest only in a single firm’s equity, but earns labor income, its equity payout demand
would be equal to the difference between its consumption demand and its (optimally chosen) labor income. In such
a model, our payout-based asset pricing approach would entail specifying an exogenous process for the household’s
equity payout demand, rather than for the household’s consumption demand.
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B.2 The firm’s problem and the payout supply function

The representative firm is endowed with initial capital stock Kt > 0 and faces an exogenous

stochastic productivity process Z, to be specified later, with realizations Zt and Zt+1. The only

factor of production is capital, and the firm’s output Y (which is equal to its operating profit Π) is

given by function Yt = Πt = Π(Kt, Zt) = Zt ·Kt. The firm faces capital adjustment costs, with the

adjustment cost function being Φt = Φ(Kt, It) = a
2 · (It/Kt)

2 ·Kt. At period t, Zt is realized and

then the firm decides how much of the profit will be distributed to the shareholders and how much

will be invested in new capital. At period t + 1, Zt+1 is realized and then the firm is liquidated,

so the entirety of the firm’s profit, as well as the value of the remaining capital, is distributed as a

payout.

The firm chooses payout Dt and investment It to maximize the (cum-payout) market value of the

firm, Vt:

Vt = max
{Dt,It}

(Dt + Et [Mt+1Dt+1]) , (IA.32)

where Mt+1 is the stochastic discount factor (SDF) in the economy, subject to the capital accumu-

lation process Kt+1 = (1− δ) ·Kt + It, where δ is the one-period capital depreciation rate, and the

one-period budget constraints,

Dt = Π(Kt, Zt) − It − Φ(Kt, It), Dt+1 = Π(Kt+1, Zt+1) + (1− δ) ·Kt+1.

Note that, although the SDF is endogenous in our economy, it is taken as given by the firm when

optimizing.

Imposing the expression for capital accumulation and the budget constraints, the firm’s problem

simplifies to

max
{Dt}

(Dt + Et [Mt+1 (Π((1− δ)Kt + It, Zt+1) + (1− δ)((1− δ)Kt + It))]) , (IA.33)

so that the only choice variable for the firm is payout supply Dt. Investment It can be retrieved

from the period t budget constraint. Although most of the literature expresses the firm’s problem

as an optimal investment problem (in which case the firm’s payout is pinned down from the period

t budget constraint), the two approaches are equivalent and, for our purposes, it is more convenient

to focus on the firm’s payout problem. Assuming an interior solution, the firm’s payout optimality

condition is

1 = Et [Mt+1 · (−∂DIt) · (∂KΠ((1− δ)Kt + It, Zt+1) + (1− δ))] , (IA.34)

IA.7



so optimality is achieved when the marginal value of an extra unit of payout is equated with

the present discounted value of the marginal loss of future payout due to the decreased current

investment that it will entail. The firm’s period t budget constraint yields ∂DIt = − 1
1+∂IΦ(Kt,It)

,

so we can rewrite the firm’s optimality condition as

1 = Et
[
Mt+1 ·

∂KΠ((1− δ)Kt + It, Zt+1) + (1− δ)
1 + ∂IΦ(Kt, It)

]
. (IA.35)

The intuition is simple: taking Mt+1 as given, the firm adjusts its investment It (and, hence, its

payout Dt) so that its optimality condition is satisfied. As a result, the firm’s optimality condition

yields a payout supply function: conditional on state variables Kt and Zt, for any given Mt+1,

the firm chooses the particular investment (and, thus, payout) level that is consistent with its

optimization objective.IA.4

Before moving on, it is useful to introduce some notation regarding the return on the firm’s equity,

which is the only asset in our economy. We denote the ex-payout value of the firm by Pt, i.e.,

Vt = Dt + Pt. Thus, the gross return from investing in the firm from t to t+ 1 is given by

Rt+1 =
Dt+1

Pt
=

Dt+1

Et [Mt+1 ·Dt+1]
. (IA.36)

In what follows, we assume that the productivity process satisfies Zt+1 = Zφzt · eεz,t+1 , where

φz ∈ [0, 1] and εz,t+1 ∼ N(−σ2
z/2, σ

2
z), and that capital fully depreciates within one period (i.e.,

δ = 1). Substituting the expressions for Πt and Φt into the firm’s optimality condition (Equation

IA.35), we get

1 = Et
[
Mt+1 ·

Zt+1

1 + a(It/Kt)

]
= Et

[
Mt+1 ·

Dt+1 · I−1
t

1 + a(It/Kt)

]
=
I−1
t · Et [Mt+1 ·Dt+1]

1 + a(It/Kt)
. (IA.37)

Then, using the expression for the firm’s expected return, Et[Rt+1] = Et[Dt+1]
Pt

= Et[Dt+1]
Et[Mt+1·Dt+1] , and

the expression for the firm’s expected payout, Et[Dt+1] = Zφzt It, and rearranging terms yields the

following expression for the firm’s investment function:

It = I(Kt, Zt;Et([Rt+1]) =
1

a

[
Zφzt

Et[Rt+1]
− 1

]
Kt. (IA.38)

Substituting the investment function into the firm’s period t budget constraint yields the payout

IA.4It is worth noting that we can express the firm’s optimality condition in more familiar terms by considering the
investment return, RI , defined as the gross return of an extra unit of firm capital

RIt+1 =
∂KDt+1

1 + ∂IΦ(Kt, It)
=

∂KΠ((1− δ)Kt + It, Zt+1) + (1− δ)
1 + ∂IΦ(Kt, It)

,

so the firm’s optimality condition reduces to 1 = Et
[
Mt+1 ·RIt+1

]
, as in Cochrane (1991).
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supply function:

Dt = D(Kt, Zt;Et[Rt+1]) =

Zt − 1

2a

( Zφzt
Et[Rt+1]

)2

− 1

Kt. (IA.39)

Note that firm investment is decreasing in, and firm payout is increasing in, Et[Rt+1]: for any

{Kt, Zt}, the higher the hurdle rate, the less the firm invests and the more it pays out at time t.

Finally, the firm’s cum-payout value satisfies

Vt =

(
Zt − It/Kt −

a

2
· (It/Kt)

2 +
Zφzt · (It/Kt)

Et[Rt+1]

)
·Kt =

(
Zt +

1

2a
·

(
Zφzt

Et[Rt+1]
− 1

))
·Kt,

so firm’s payout yield is given by

Dt/Vt = (D/V )(Zt;Et[Rt+1]) =

Zt − 1
2a

[(
Zφzt

Et[Rt+1]

)2

− 1

]

Zt + 1
2a

(
Zφzt

Et[Rt+1] − 1

)2 . (IA.40)

Note that, due to the assumption of constant-returns-to-scale technology, the firm’s payout yield

does not directly depend on its stock of capital Kt.

Panel A of Figure IA.1 displays the family of the firm’sDt/Vt curves for different values of Zt, setting

a = 8 and φz = 1. For a given value of Zt, the payout yield is increasing in the expected return:

an increase in the cost of capital raises the hurdle rate for investment, reducing desired investment

and increasing the firm’s payout. When Zt changes, the curve Dt/Vt shifts: an increase (decrease)

in productivity Zt shifts the payout supply curve down (up), as higher current productivity implies

higher expected productivity (and, hence, profitability), due to the persistence of the productivity

process, inducing the firm to invest more and pay out less at time t.

B.3 The household’s problem and the payout demand function

We now turn to the representative household. It is endowed with initial wealth Wt > 0, which

(although taken as given in the household’s optimization problem) equals the cum-payout value of

the firm Vt. The household chooses consumption Ct and savings St to maximize its utility

max
{Ct,St}

(U(Ct, θt) + β · Et [U(Ct+1, θt+1)]) (IA.41)

where β is the subjective discount factor, and U(C, θ) = θt · C
1−γ
t

1−γ is the household’s utility function,

which has as its arguments household consumption C and the taste shifter θ, an exogenous stochas-
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tic process to be specified later. The household is able to shift resources over time by investing in

the firm’s equity, so the household optimizes subject to the following one-period budget constraints:

Ct = Wt − St, Ct+1 = St ·Rt+1.

We can combine the household’s two one-period budget constraints into the intertemporal budget

constraint

Ct+1 = (Ct −Wt) ·Rt+1. (IA.42)

Imposing the intertemporal budget constraint simplifies the household’s problem to

max
{Ct}

(U(Ct) + β · Et [U((Wt − Ct) ·Rt+1)]) . (IA.43)

Therefore, the only choice variable for the household is consumption Ct, with optimal savings being

pinned down by the period t budget constraint. Notably, since the only source of income (and,

hence, consumption) for the household is the firm payout, the household’s equilibrium consumption

is equivalent to its payout demand. The household’s optimality condition is the familiar Euler

equation,

1 = Et
[
β
∂CU((Wt − Ct) ·Rt+1, θt+1)

∂CU(Ct, θt)
·Rt+1

]
. (IA.44)

Again, the intuition is straightforward: taking the properties of the firm return Rt+1 as given, the

household chooses consumption (and, hence, payout demand) Ct so that its optimality condition is

satisfied. Thus, the household optimality condition yields a payout demand function: conditional

on the state variable Wt, for any given Rt+1 process, the firm chooses the particular consumption

level (i.e., demands the particular payout level) that satisfies its optimization problem.

In what follows, we assume that process θ has law of motion θt+1 = θφθt e
εθ,t+1 , where φθ ∈ [0, 1]

and εθ,t+1 ∼ N(−σ2
θ/2, σ

2
θ). Furthermore, we assume that shocks εθ,t+1 and εz,t+1 are independent

IA.10



of each other. The household’s payout demand function (i.e., its consumption-wealth ratio) isIA.5

Ct/Wt = (C/W )(θt;Et[Rt+1]) =
1

1 + β1/γ · θ(φθ−1)/γ
t · Et[Rt+1]1/γ−1 · e(γ−1)σ2

z/2
. (IA.48)

Panel B of Figure IA.1 shows the family of the household’s Ct/Wt curves for different values of

θt, setting γ = 5, β = 0.9, φθ = 0.1, σz = 1. Since γ > 1, the household’s wealth-consumption

ratio is increasing in the firm’s expected return.IA.6 Furthermore, an increase (decrease) in the

current value of the taste shifter, θt, shifts the consumption-wealth curve up (down): due to the

mean reversion of the taste shifter, when the current value of the shifter is high, and thus the

utility benefit of current consumption is elevated, the household desires to bring consumption to

the present, in order to intertemporally maximize its utility.

B.4 Equilibrium

In equilibrium, both the goods market and the asset market clear. At period t, the goods market

clears when the firm’s output equals the sum of consumption demand from the household, invest-

ment demand from the firm, and capital adjustment costs: Π(Zt,Kt) = Ct + It + Φ(Kt, It). At

period t + 1, the only demand for the good is consumption demand, so the market clearing con-

dition is Π(Zt+1,Kt+1) = Ct+1. Using the firm’s and household’s budget constraints, it can easily

be shown that the two goods market clearing conditions above reduce to a single payout market

clearing condition: Ct = Dt. For the asset market to clear, period t asset supply (given by the

ex-payout value of the firm, Pt) needs to equate period t asset demand (given by household savings

IA.5In order to derive Equation IA.48, we work as follows. First, we note that our specification implies that

Et[D1−γ
t+1 ] = (Zφzt · It)

1−γ · eγ·(γ−1)·σ2
z/2 = Et[Dt+1]1−γ · eγ·(γ−1)·σ2

z/2. (IA.45)

We can use that result to get the following useful return property in our model:

Et[R1−γ
t+1 ] =

Et[D1−γ
t+1 ]

V 1−γ
t

=
Et[Dt+1]1−γ

V 1−γ
t

· eγ·(γ−1)·σ2
z/2 = Et[Rt+1]1−γ · eγ·(γ−1)·σ2

z/2. (IA.46)

The household’s optimality condition is

1 = Et

[
β · θt+1

θt
·
(
Wt − Ct
Ct

·Rt+1

)−γ
·Rt+1

]
= β · Et

[
θt+1

θt

]
·
(
Wt − Ct
Ct

)−γ
· Et

[
R1−γ
t+1

]
,

which can be rewritten as

Ct =
Wt

1 +
(
β · θ(φθ−1)

t

)1/γ

· Et[R1−γ
t+1 ]1/γ

. (IA.47)

Using Equation IA.46, we get Equation IA.48.
IA.6The consumption-wealth ratio is increasing (decreasing) in Et[Rt+1] if γ > 1 (γ < 1) and does not depend on the

expected return when γ = 1. Intuitively, when γ > 1 the income effect dominates, in which case a higher expected
return induces the household to increase its current consumption and, hence, demand a higher payout from the firm.
On the other hand, for γ < 1, the substitution effect dominates and the household prefers to defer consumption and
reduce its present demand for a payout.
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St), so the asset market clearing condition is Pt = St.

It is easy to show that the two market clearing conditions, one for the payout market and one

for the asset market, can be substituted by one. For our purposes, it is convenient to choose the

condition Dt
Dt+Pt

= Ct
Ct+St

, which can be more simply written as the equalization of the firm’s payout

yield and the household’s consumption-wealth ratio, DtVt = Ct
Wt

. Thus, the market clearing condition

is

(D/V )(Zt;Et[R∗t+1]) = (C/W )(θt;Et[R∗t+1]), (IA.49)

and yields the equilibrium expected return function R∗(Zt, θt) ≡ Et[R∗t+1]. Since the firm’s payout

yield does not directly depend on the firm’s capital stock Kt, the equilibrium expected return also

does not depend on Kt.

Figure IA.2 displays the equilibrium in the payout market and the dependence of the equilibrium

expected return on each of state variables Zt and θt. We set all parameter values as in Figure

IA.1. Panels A and B consider the impact of changes in productivity Zt. As seen in Panel A, an

increase in Zt shifts the payout supply (Dt/Vt) curve down, as the firm wants to increase current

investment and reduce current payout, in anticipation of higher future profitability. As a result,

payout market clearing requires an increase in the equilibrium expected return R∗. It follows that

R∗ is increasing in Zt (Panel B). Finally, Panels C and D present the impact of changes in the

household taste shifter θt. Panel C shows that an increase in θt shifts the payout demand (Ct/Wt)

curve up, as the household desires a higher level of current consumption. For the payout market to

clear, the firm needs to accommodate the higher payout demand by increasing its payout supply,

so the expected return increases. Thus, the equilibrium expected return is increasing in θt (Panel

D).

In what follows, we show that payout-based asset pricing is nothing more than the flipside of the

familiar consumption-based asset pricing framework: payout-based asset pricing retrieves equilib-

rium expected returns from firms’ payout supply functions, postulating exogenous payout demand,

whereas consumption-based asset pricing retrieves equilibrium expected returns from households’

payout demand functions, taking exogenous payout supply as given.

B.5 Consumption-based asset pricing

In the context of our simple economy, we assume that the household faces the same problem as in

the full model, but that payout supply is the exogenous process Ds, with realizations Ds
t and Ds

t+1.

Furthermore, we assume that the payout supply process satisfies Ds
t+1 = Et[Ds

t+1] · eεd,t+1 , where

εd,t+1 ∼ N(−σ2
d/2, σ

2
d). Crucially, to retain the correspondence with the full economy, process Ds

needs to be carefully chosen, so that it reflects the equilibrium path of the omitted state variables
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K and Z.IA.7

As in the full economy, the household’s payout demand is given by Equation IA.48, which is nothing

more than the household’s optimality condition. The market clearing condition is now Ct = Ds
t ,

which implies Ct
Wt

=
Dst

Dst+
Et[Dst+1]

Et[Rt+1]

, so plugging that condition in the household’s optimality condition

and solving for the expected return of the firm, we get

Et[R∗t+1] = R∗(θt,Et[Ds
t+1/D

s
t ]) =

(
Et[Ds

t+1/D
s
t ]
)γ

β · θφθ−1
t · eγ(γ−1)σ2

d/2
. (IA.50)

Note that the expected return is a function of two variables: the household’s taste shifter θ and

the expected growth rate of the payout supply. Effectively, the expected growth rate of the payout

supply replaces productivity Z, which is one of the determinants of the equilibrium expected return

in the full economy. As long as Et[Ds
t+1/D

s
t ] is equal to the equilibrium expected growth rate of

the firm’s payout in the full model, then the consumption-based model has the same asset pricing

implications as the full economy.

We can illustrate the asset pricing equivalence between the full model and the (correctly spec-

ified) consumption-based model with a graph. Panel A of Figure IA.3 presents the equilib-

rium in the consumption-based asset pricing model: the equilibrium expected return is pinned

down by the point of intersection of the household’s Ct/Wt curve with the “endowment curve”

Ds
t /Vt =

Dst

Dst+
Et[Dst+1]

Et[Rt+1]

, which replaces the full-model firm payout yield curve. If Ds
t and Et[Ds

t+1] are

chosen so as to match the corresponding full-model equilibrium values, then the Ct/Wt curve and

the “endowment curve” have exactly the same point of intersection as the Ct/Wt curve and the

full-model Dt/Vt curve, as is the case in Panel A of Figure IA.3.

B.6 Payout-based asset pricing

In our simple economy, we assume that the firm faces the same problem as in the full economy, but

that payout demand is an exogenous process Dd, with realizations Dd
t and Dd

t+1. Importantly, for

the payout-based model to map to the full economy, the process Dd needs to be chosen carefully

so that it maps to the equilibrium household consumption process in the full economy.IA.8

Payout supply arises from the firm’s optimization problem and is given by Equation IA.39. Plugging

IA.7In the full economy, Dt = ZtKt − I∗t − a
2

(I∗t /Kt)
2 Kt and Dt+1 = Zφzt I∗t e

εz,t+1 , where I∗t is the equilibrium
investment level and εz,t+1 ∼ N(−σ2

z/2, σ
2
z). Hence, the consumption-based asset pricing economy maps to the full

economy if Ds
t = ZtKt − I∗t − a

2
(I∗t /Kt)

2 Kt, Et[Ds
t+1] = Zφzt I∗t , and σd = σz.

IA.8To do so, a necessary (but not sufficient) condition is feasibility of market clearing: the exogenous process Dd

must be consistent with the firm’s intertemporal budget constraint. Inter alia, that requires that Dd
t and Et[Dd

t+1]

satisfy Dd
t = ZtKt −

Et[Ddt+1]

Z
φz
t

− a
2

(
Et[Ddt+1]

Z
φz
t

)2
1
Kt

.
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in the market clearing condition (Dt = Dd
t , which implies Dt

Vt
=

Ddt

Ddt+
Et[Ddt+1]

Et[Rt+1]

) yields the following

expression for the equilibrium expected return of the firm:

Et[R∗t+1] = R∗(Zt, Dd
t /Yt) =

Zφzt√
1 + 2a(1−Dd

t /Yt)Zt

, (IA.51)

Thus, in the payout-based asset pricing framework the equilibrium expected return is a function of

the firm’s productivity Z and the payout demand ratio Dd/Y . In effect, the payout demand ratio

replaces the taste shifter θ, which is one of the determinants of the equilibrium expected return in

the full economy. As long as Dd/Y reflects the equilibrium behavior of the household in the full

model, then the payout-based model yields the same asset pricing results as the full economy.

As seen in Panel B of Figure IA.3, in the payout-based asset pricing model the equilibrium expected

return is determined by the intersection between the firm’s Dt/Vt curve and the “payout demand

curve” Dd
t /Vt =

Ddt

Ddt+
Et[Ddt+1]

Et[Rt+1]

, which in effect replaces the full-model household consumption-wealth

curve. If Dd
t and Et[Dd

t+1] match their full-model equilibrium values, then the Dt/Vt curve and the

“payout demand curve” have the same point of intersection as the Dt/Vt and Ct/Wt curves in the

full model, as happens in Panel B of Figure IA.3.

C Derivations for the Payout-Based Model with Firm Leverage

This section provides all derivations of the results related to our dynamic payout-based asset pricing

model with firm leverage.

C.1 Equilibrium prices

As in case of the unlevered firm, we price the firm by following the approach outlined in Liu et al.

(2009).

Since the operating profit function and the capital adjustment cost function are the same as in the

case of the unlevered firm, Equations IA.8 and IA.9 are still satisfied. Furthermore, the leverage

cost function G(B,K) = κ
2

(
B
K

)2
K satisfies

G(B,K) = K · ∂KG(B,K) +B · ∂BG(B,K). (IA.52)

Using Equations IA.8, IA.9, and IA.52 we can write the firm’s optimal equity payout as

De
t = Kt · ∂KDt − qtIt − (Rb,at + ∂BGt)Bt +Bt+1, (IA.53)
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so

Et[Mt,t+1D
e
t+1] = Et[Mt,t+1(Kt+1 · ∂KDt+1 − qt+1It+1 − (Rb,at+1 + ∂BGt+1)Bt+1 +Bt+2)]. (IA.54)

We use the firm’s investment and debt optimality conditions, qt = Et [Mt,t+1 (∂KDt+1 + (1− δ)qt+1)]

and 1 = Et
[
Mt,t+1(Rb,at+1 + ∂BGt+1)

]
, respectively, to rewrite Equation IA.54 as follows:

Et[Mt,t+1D
e
t+1] = (qt − Et[Mt,t+1(1− δ)qt+1])Kt+1 − Et[Mt,t+1qt+1It+1]−Bt+1 + Et[Mt,t+1Bt+2],

(IA.55)

which yields

Et[Mt,t+1D
e
t+1] = (qtKt+1 −Bt+1)− Et[Mt,t+1(qt+1Kt+2 −Bt+2)]. (IA.56)

Iterating, using the fact that Mt,t+2 = Mt,t+1Mt+1,t+2, and applying the law of iterated expecta-

tions, we get

Et[Mt,t+1D
e
t+1] = (qtKt+1 −Bt+1)− Et[Mt,t+2(De

t+2 + qt+2Kt+3 −Bt+3)], (IA.57)

which yields

Et[Mt,t+1D
e
t+1] + Et[Mt,t+2D

e
t+2] = (qtKt+1 −Bt+1)− Et[Mt,t+2(qt+2Kt+3 −Bt+3)]. (IA.58)

Finally, iterating forward and imposing the transversality condition limn→∞ Et[Mt,t+n(qt+nKt+n+1−
Bt+n+1)] = 0, we get

qtKt+1 −Bt+1 = Et

[ ∞∑
s=1

Mt,t+sD
e
t+s

]
= P et , (IA.59)

so the market value of (ex-payout) equity is given by

P et = qtKt+1 −Bt+1 = (qt − bt+1)Kt+1. (IA.60)

C.2 Equilibrium returns

The firm’s equilibrium equity return is

Re,∗t+1 =
De,∗
t+1 + P e,∗t+1

P e,∗t
=
det+1Zt+1K

∗
t+1 + (q∗t+1 − b∗t+2)K∗t+2

(q∗t − b∗t+1)K∗t+1

, (IA.61)
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which yields

Re,∗t+1 =
det+1Zt+1 + (q∗t+1 − b∗t+2)

(
(1− δ) +

q∗t+1−1

a(1−τ)

)
q∗t − b∗t+1

. (IA.62)

Note that Equation 35 implies that, in equilibrium,

b∗t+2 =
Rb,∗t+1b

∗
t+1 − dbt+1Zt+1

(1− δ) +
q∗t+1−1

a(1−τ)

, (IA.63)

so we can rewrite the expression above as

Re,∗t+1 =
dt+1Zt+1 + q∗t+1

(
(1− δ) +

q∗t+1−1

a(1−τ)

)
−Rb,∗t+1b

∗
t+1

q∗t − b∗t+1

. (IA.64)

Finally, using Equation 69, the expression above can be rewritten as

Re,∗t+1 =
dt+1Zt+1 + q∗t+1

(
(1− δ) +

q∗t+1−1

a(1−τ)

)
−
(
κ
τ b
∗
t+1 + 1

)
b∗t+1

q∗t − b∗t+1

. (IA.65)

C.3 Payout ratio upper bound

We show that the specification for the upper bound of the demanded payout ratio d, given by

Equation 43, generates feasible equilibrium investment and payout processes for the levered firm.

The logic of our derivation follows the logic of the corresponding derivation for the unlevered firm.

At each period t, the firm needs to choose policies that satisfy its budget constraint, given Zt

(which is exogenous) and Kt and Bt (which are predetermined). The choice of Bt+1 does not affect

the total resources that the firm has available to pay out to all claimholders, D, as any choice

of Bt+1 leads to offsetting changes in the firm’s debt and equity payout (see Equations 35 and

40, respectively). Hence, the maximum total payout that the firm is able to provide at period t,

denoted by Dmax
t , is given by the solution of the following static problem:

Dmax
t = max

{It}
{(1−τ)

(
αZtKt −

a

2
(It/Kt)

2Kt

)
−It+τδKt+τ(Rbt−1)Bt−

κ

2
(Bt/Kt)

2Kt}, (IA.66)

such that It ≥ −(1−δ)Kt. As in the case of the unlevered firm, the investment level that maximizes

resources is It = −ϕKt, where ϕ ≡ min{1/(a(1− τ)), 1− δ}, which yields a maximum total payout

level of

Dmax
t = (1− τ)αZtKt − (1− τ)

a

2
ϕ2Kt + ϕKt + τδKt + τ(Rbt − 1)Bt −

κ

2
(Bt/Kt)

2Kt. (IA.67)
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It follows that the firm’s maximum total payout per unit of output is

Dmax
t

Yt
= (1− τ)α+ e−zt

[(
1− (1− τ)a

2
ϕ

)
ϕ+ τδ + τ(Rbt − 1)bt −

κ

2
b2t

]
, (IA.68)

and, since the equilibrium risk-free rate satisfies Rbt = κ
τ bt + 1 (see Equation 69), the expression

above can be simplified to

Dmax
t

Yt
= (1− τ)α+ e−zt

[(
1− (1− τ)a

2
ϕ

)
ϕ+ τδ +

κ

2
b2t

]
, (IA.69)

which is identical to the expression for the conditional upper bound of the demanded total payout

ratio, dmaxt (Equation 43).

We now proceed to demonstrate that our specification for d ensures that the capital non-negativity

constraint never binds and, hence, the firm always optimally picks an interior solution for invest-

ment.

The interior investment condition of the levered firm, given by Equation 52, is identical to the

interior investment condition of the unlevered firm. Thus, following the same steps as for the

unlevered firm, we can show that we need to ensure that the model’s exogenous processes are such

that the firm’s marginal q satisfies qt ≥ max{0, 1− a(1− τ)(1− δ)} for all t.

We conclude by showing that our specification for the demanded payout ratio d leads to an equilib-

rium q process that satisfies the condition above. First, assume that a ≥ 1
(1−τ)(1−δ) . In that case,

we need to show that our d process leads to an equilibrium q process that satisfies qt ≥ 0 for all

t. We can easily see that, for any dt ≤ dmaxt = (1 − τ)α + e−zt
[

1
2a(1−τ) + τδ + κ

2 b
2
t

]
, Equation 59

yields a real-valued (and non-negative) q∗t . Now, assume that a < 1
(1−τ)(1−δ) . In that case, we need

to show that our d process generates an equilibrium q process that satisfies qt ≥ 1− a(1− τ)(1− δ)
for all t. Indeed, for any dt ≤ dmaxt = (1 − τ)α + e−zt

[(
1− (1−τ)a

2 · (1− δ)
)

(1− δ) + τδ + κ
2 b

2
t

]
,

Equation 59 yields a real-valued q∗t that satisfies q∗t ≥ 1− a(1− τ)(1− δ) > 0.

C.4 Collateral constraint

First, we need to ensure that the firm’s optimal interior leverage ratio, given by Equation 50, always

satisfies the firm’s collateral constraint (Equation 38) and, hence, the collateral constraint never

binds. We start by rewriting the collateral constraint as a quadratic inequality:

κ

2
b2t+1 +Rb,at+1bt+1 −

(
(1− δ) + (1− τ)αZmint+1 + τδ

)
≤ 0. (IA.70)

Due to its nature, the firm’s collateral constraint applies only when the firm borrows, i.e., when

bt+1 ≥ 0, whereas there is no constraint when the firm holds cash, i.e., when bt+1 < 0. It follows
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that the firm’s collateral constraint is satisfied if and only if

bt+1 ≤

√
(Rb,at+1)2 + 2κ[(1− δ) + (1− τ)αZmint+1 + τδ]−Rb,at+1

κ
. (IA.71)

Consider the firm’s optimal interior leverage ratio, given by bt+1 = τ
κ(Rbt+1 − 1). The interior

optimum satisfies the collateral constraint if

τ

κ
(Rbt+1 − 1) ≤

√
(Rb,at+1)2 + 2κ[(1− δ) + (1− τ)αZmint+1 + τδ]−Rb,at+1

κ
. (IA.72)

We can easily show that the condition above is satisfied for all Rbt+1 ≤ R̄bt+1, where R̄bt+1 is an upper

bound that depends on the value of Zmint+1 . For our derivations, we assume that Zmint+1 is always high

enough so that the firm’s collateral constraint never binds and the firm’s optimal leverage ratio is

always given by Equation 50.

Since Equation 50 (and, hence, Equation 69) always holds, we can derive an expression for the

upper bound of bt+1 as a function of exogenous variables. We start by using the expression for the

equilibrium pre-tax cost of debt (Equation 69), to derive the following expression for the equilibrium

after-tax cost of debt:

Rb,at+1 = Rbt+1 − τ(Rbt+1 − 1) = 1 +
κ

τ
bt+1 − κbt+1 = 1 +

(
1

τ
− 1

)
κbt+1. (IA.73)

Plugging the expression above into the firm’s collateral constraint (Equation 38), we get(
1 +

(
1

τ
− 1

)
κbt+1

)
bt+1 ≤ (1− δ) + (1− τ)αZmint+1 + τδ − κ

2
b2t+1, (IA.74)

which yields the following quadratic inequality:(
1

τ
− 1

2

)
κb2t+1 + bt+1 −

(
(1− δ) + (1− τ)αZmint+1 + τδ

)
≤ 0. (IA.75)

Since the firm’s collateral constraint applies only when the firm borrows (i.e., when bt+1 ≥ 0), it

follows that the firm’s collateral constraint is satisfied if and only if

bt+1 ≤

√
1 + 2κ

(
2
τ − 1

)
((1− δ) + (1− τ)αZmint+1 + τδ)− 1

κ
(

2
τ − 1

) . (IA.76)

D Data Sources and Empirical Measures

We map output Yt, and payout Dt to the corresponding measures for the aggregate public corporate

sector in the United States. To do so, we rely on annual data from CRSP and COMPUSTAT,
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obtained from WRDS, as well as the dataset in Davydiuk et al. (2023) – henceforth, the DRSY

dataset – obtained directly from the article’s Journal of Finance webpage. The sample period for

our analysis is determined by the DRSY dataset, which contains annual data from 1974 to 2017,

so we collect data only for those sample years from all sources.

We measure aggregate corporate payout as

Dt = Pt ·
(
P et
Pt
· D

e
t

P et
+
P bt
Pt
· D

b
t

P bt

)
(IA.77)

where P et and P bt are the aggregate market value of equity and debt, respectively, Pt = P et + P bt is

the aggregate market value of U.S. public corporations, De
t is their aggregate equity payout, and

Db
t is their aggregate debt payout.

We use the DRSY dataset for data on the market value of equity (P et ) and debt (P bt ) aggregated

across all U.S. public companies and accounting for equity cross-holdings (i.e., excluding the fraction

of the aggregate market equity held by public corporations). We also rely on the DRSY dataset

for aggregate debt payout (Db
t ) data. Hence, in Equation IA.77, the measures for Pt, P

e
t /Pt, P

b
t /Pt

and Db
t/P

b
t are constructed using the DRSY dataset. However, we calculate De

t /P
e
t using data

from CRSP, which is the original data source for De
t /P

e
t in the DRSY dataset, as follows.IA.9 First,

we retrieve the subset of the CRSP dataset which includes public firms incorporated in the United

States (SHRCD = 10 or 11) trading on NYSE, Amex, or Nasdaq (EXCHCD = 1,2, or 3). Then,

we measure the market value of equity monthly for each PERMNO (as |PRCC|·SHROUT) and

carry it forward when there are missing observations. We measure net payout at the PERMNO

level as De
t = P et−1 · (1 +Ret )− P et (where Ret is based on the RET variable in CRSP) – recall that

P et refers to the market value of equity (rather than price per share), so De
t retrieves the entirety

of the firm’s net equity payout (dividends plus equity repurchases, minus equity issuances), rather

than just dividends. We assume that the first month of non-missing market equity is the firm’s

entry month in the public market portfolio so that P et−1 = 0 and De
t = −P et for the firm at that

month. Moreover, in the delisting month we set P et = 0 and De
t = P et−1 · (1 + Ret ), where Ret is

IA.9We do not use the De
t /P

e
t values from the DRSY dataset for two reasons. First, the average DRSY De

t /P
e
t ratio

is 1.7%, which implies a very high cash flow duration for the equity market. In contrast, our average De
t /P

e
t ratio

is 2.5%. Second, to account for equity cross-holdings, DRSY assume that the return that corporations get on their
equity portfolio is the same as the return that other investors get on their equity portfolio. While this assumption
is reasonable, it has the effect that their De

t measure partially reflects the market value of firms, mixing cash flows
with asset prices. Specifically, let De

t be the equity payout measured directly from CRSP, D̂e
t the payout from the

portfolio that accounts for equity cross-holdings, and γt the fraction of the equity market held by public firms. DRSY
assume (De

t + P et )/P et−1 = (D̂e
t + γt · P et )/(γt−1 · P et−1), which allows them to measure their equity payout as

D̂e
t = γt−1 ·De

t −∆γt · P et

so P et affects the DRSY De
t . Instead, our assumption is that the payout yield that public corporations get on their

equity portfolio is the same as the payout yield that other investors get on their equity portfolio. Using the notation
above, our assumption implies D̂e

t = (γt · P et ) · (De
t /P

e
t ) = γt · De

t , which does not include any asset pricing effect.
Nonetheless, the correlation between the DRSY D/P measure and our measure is above 0.90, so the two measures
have very similar dynamics, with the main difference being that our measure has a higher mean.
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measured from the actual return or the delisting return depending on availability (when the return

and delisting return are not available on the delisting month, we set Ret = −1 so that De
t = 0 over

that month). After measuring P et and De
t monthly at the PERMNO level, we aggregate over time

(from January to December) to obtain annual De
t for each PERMNO and then aggregate across

PERMNOs to obtain aggregate annual De
t values. Similarly, we aggregate P et across PERMNOs at

the end of each December to obtain the aggregate P et . Finally, we compute the aggregate De
t /P

e
t

and use it in Equation IA.77.

We measure annual output as Yt = P et · (Yt/P et ), with P et from the DRSY dataset and Yt/P
e
t

from COMPUSTAT. Specifically, we start by aggregating firm-level Yt (measured as REVT) and

P et (measured as CSHO·PRCC F) for all firms with Yt and P et available and fiscal year ending

in December in the annual COMPUSTAT dataset. We then aggregate firm-level Yt (measured as

REVTQ) and P et (measured as CSHOQ·PRCCQ) for all firms not included in our annual COM-

PUSTAT aggregation and with Yt and P et available as of December of each year in the quarterly

COMPUSTAT dataset. Finally, we measure Yt/P
e
t as the sum of the aggregate Yt from the annual

and quarterly COMPUSTAT datasets payout by the sum of the P et from the annual and quarterly

COMPUSTAT datasets.

Finally, we measure productivity Zt = Yt/Kt in a way that allows us to not take a stand on how to

measure investment or capital, which is advantageous given that measuring physical capital is prone

to non-trivial measurement errors (see, e.g., Bai et al. (2024)) and that firms can have different

sources of capital beyond physical capital (see for example Gonçalves et al. (2020) and Belo et al.

(2022)). Specifically, we start by taking our calibrated δ, τ , a, and α values as given, together with

the Yt and Dt series (and thus the dt series) described above. We, then, set the initial value for Zt

in 1974 (the first year in our sample) to its steady-state value and update the Zt series as follows

(consistent with our model)IA.10:

Zt = Yt/Kt, (IA.78)

qt =
√

1 + 2a(1− τ) (τδ + [α(1− τ)− dt]Zt), (IA.79)

it =
qt − 1

a(1− τ)
, (IA.80)

Kt+1 = (1− δ + it) ·Kt. (IA.81)

IA.10 It should be stressed that our methodology for backing out aggregate productivity Z does not impose our asset
pricing model into the data, but follows directly from the firm’s budget constraint and the capital accumulation
equation, similar in spirit to the methodology used in Cochrane (1991). To see that, note that Equations IA.79 and
IA.80 can be combined into one equation that reflects the firm’s budget constraint.
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In the expressions above, i denotes the investment-to-capital ratio. We follow an analogous proce-

dure for the model with firm leverage, except that we also use the expression for the evolution of

b (Equation 60), since q also depends on b.

We can now turn to returns. The firm return is given

Rt+1 =
Pt+1 +Dt+1

Pt
, (IA.82)

where Pt is measured as described previously and Dt is measured as in Equation IA.77. The

returns in the DRSY dataset differ from ours because we do not use their De
t measure (as discussed

in Footnote IA.9). However, the differences are not large: the correlation between the two firm

return measures is 0.995. Moreover, our return measure makes it somewhat harder for the model to

match the data, as the DRSY measure implies higher average and more volatile aggregate returns.

In particular, the DRSY measure implies E[R] = 7.0% and σ[R] = 14.2%, whereas our measure

implies E[R] = 7.9% and σ[R] = 14.9%. Similarly, the equity and debt returns are given by

Ret+1 =
P et+1 +De

t+1

P et
, (IA.83)

and

Rbt+1 =
P bt+1 +Db

t+1

P bt
, (IA.84)

respectively.

E Investment-Based Approach Implementation

This section provides the details for the measurement of aggregate investment and the selection of

model parameters for our implementations of the investment-based approach, and shows that the

disparity between our findings and the findings in Cochrane (1991) is mainly due to focusing on

different sample periods.

E.1 Investment measurement and parameter selection

The first three implementations of the investment-based approach use three different measures of

U.S. real aggregate domestic investment from the NIPA tables as a proxy for the model investment

process. The first implementation, denoted by “iNIPA”, uses total investment (“Gross Private

Domestic Investment”, line 4 in NIPA Table 5.2.6), the second implementation (“ipNIPA”) uses

aggregate physical investment (defined as the sum of the gross private domestic investment in

“Structures” and “Equipment”, i.e., lines 13 and 16, respectively, in NIPA Table 5.2.6), and the

third implementation (“ip&iNIPA”) uses the sum of aggregate physical and intangible investment
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(where the latter is defined as gross domestic private investment in “Intellectual property products”,

i.e., line 19 in NIPA Table 5.2.6). Note that the investment measure used in the first implementation

is almost identical to the measure used in the analysis of Cochrane (1991).IA.11

For the last three implementations (“ipCS”, “ip&iCS ”, and “ip,KCS ”), we measure U.S. aggregate in-

vestment using COMPUSTAT data: ipCS and ip,KCS use physical investment, whereas ip&iCS uses the

sum of physical and intangible investment. To calculate firm-level physical investment, we follow

Gonçalves et al. (2020): we use the law of motion It = Kt+1 −Kt + Deprt, and define firm-level

depreciation as variable DP and firm-level physical capital as variable PPENT (net property, plant,

and equipment). To calculate firm-level intangible investment, we follow the methodology of Pe-

ters and Taylor (2017). In particular, we set the missing values of XRD and XSGA (which reflect

R&D and SG&A) to zero when total assets is available. We also set to zero all missing values of

RDIP, which reflects the portion of R&D that does not enter the SG&A variable in COMPUSTAT.

Then, we calculate Pure SG&A as XSGA - (XRD-RDIP) and replace these values with XSGA if

either XRD > XSGA or if XRD < COGS. Intangible investment is, then, equal to 0.3*Pure SG&A

+ XRD. For each measure, aggregate investment is calculated by aggregating the corresponding

firm-level investment measure across firms. When we compute ratios of aggregate measures derived

from COMPUSTAT data, we make sure that we account for the fact that different firms may have

different types of missing information. In particular, analogously to our approach in Section D

of the Internet Appendix, each aggregate variable is divided by the fraction of aggregate market

equity that corresponds to the firms for which the variable of interest is not missing. Finally, in

order to align the timing of accounting data across firms, we calculate all firm measures for a given

year using December COMPUSTAT data. For the firms with fiscal years not ending in December

(for which we cannot use the annual COMPUSTAT database), we use quarterly COMPUSTAT

data (in which case flow variables reflect the sum of the corresponding quarterly variables within

the year).

In the first five implementations, the U.S. aggregate I/K ratio is calculated using the time series

of U.S. aggregate investment by applying the methodology in Cochrane (1991). After retrieving

the time series of the I/K ratio, we can back out the time series of U.S. aggregate capital K,

which allows us to back out the time series of U.S. aggregate productivity Z (since aggregate U.S.

output Y is observable).IA.12 In the last implementation, the U.S. aggregate I/K ratio is directly

calculated by dividing the physical investment measure by the physical capital measure (with both

measures calculated using COMPUSTAT data).

IA.11We provide detailed comparison of our results with the results in Cochrane (1991) in Tables IA.2 and IA.3, to
be discussed below.
IA.12In the case of investment measures constructed using NIPA data, output Y and capital K do not correspond
to the same sample of firms. In particular, Y reflects the aggregate output of COMPUSTAT firms, whereas K
corresponds to the aggregate capital of the all firms. To address that issue, we multiply the NIPA-implied capital
measure K (i.e., the measure implied from the I/K ratio calculated using NIPA investment data) by the average
of the ratio of the corresponding investment measure from COMPUSTAT relative to the given investment measure
from NIPA. This multiplication by a constant has no effect on our estimation of the profit margin parameter α.

IA.22



To check the robustness of our findings in Table 2 to alternative values of the firm’s technologi-

cal parameters, we repeat the exercise by considering model-specific estimated parameters, which

provide each model with its best chance to match firm returns. In particular, in both parts of

Table IA.1, parameters a and α are estimated by Non-Linear Least Squares (NLS) estimation. In

particular, the parameter values used in Part I are estimated by regressing realized firm returns on

model-implied realized investment returns, whereas the parameter values in Part II are estimated

by regressing realized firm returns on model-implied expected investment returns. Both realized

and expected investment returns are non-linear functions of parameters a and α. In all cases, all

other model parameters are fixed at the calibrated values reported in Table 1.

As we see in Part I of Table IA.1, all models are able to generate empirically plausible average

returns, but they severely undershoot return volatility. The best-performing model is the payout-

based one, which manages to generate unconditional return volatility of 8.08%, which is about

half the magnitude of the observed firm return volatility (14.88%). The six investment-based

model implementations do much worse, with unconditional return volatility ranging from 1.45%

to 3.85%. As regards the unconditional correlation between observed firm returns and model-

implied investment returns, our payout-based approach does much better than all the investment-

based model implementations: our model generates an unconditional correlation coefficient of 0.57,

compared with coefficients ranging from -0.12 to 0.11 for the investment-based models. Shifting the

timing of the firm returns somewhat improves the performance of the investment-based model, but

the maximum attained unconditional correlation is still quite low (0.20). Importantly, the payout-

based model clearly overperforms all the investment-based model implementations regarding the

connection between firm returns and expected investment returns. When we regress realized firm

returns on our model-implied expected investment returns, we get a statistically significant slope

coefficient and a regression adjusted R2 of 5.80%. In contrast, all the implementations of the

investment-based approach generate slope coefficients that are statistically indistinguishable from

zero and negative regression adjusted R2s.

When we consider parameters estimated using expected investment returns (Part II of Table IA.1),

our findings do not change much. The payout-based model is still able to generate investment

returns that are highly correlated with observed firm returns, and model-implied expected invest-

ment returns have forecasting power for realized firm returns. In contrast, all six implementations

of the investment-based model continue to perform poorly on both those metrics.

E.2 Sample period comparison

As mentioned above, the first implementation of the investment-based approach (“iNIPA”) uses

almost the same investment measure as Cochrane (1991). Yet, some of our empirical findings for

that implementation, reported in Table 2, differ from the corresponding results reported in Cochrane
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(1991). In particular, Cochrane (1991) reports a correlation of 0.39 between aggregate investment

returns and (shifted) aggregate stock returns, as well as strong predictability of aggregate stock

returns and aggregate investment returns (but not their difference) by aggregate I/K ratios. In

contrast, as we report in Table 2, we find that the correlation between aggregate investment returns

and (shifted) aggregate firm returns is 0.21, and that aggregate firm returns are not forecastable

by aggregate I/K ratios.

Our analysis differs from that of Cochrane (1991) in several respects. First, our sample period is

1974-2017, whereas Cochrane (1991) focuses on the 1947-1987 sample period. Second, our model

features a somewhat different specification than Cochrane (1991) as regards the representative

firm’s capital accumulation expression (which includes the impact of capital adjustment costs) and

the taxability of firm profits (we set the firm tax rate to τ = 0.35, whereas Cochrane (1991) assumes

τ = 0). Third, the values of key parameters differ. Fourth, in Cochrane (1991) annual investment

returns are calculated by compounding quarterly investment returns (which are, in turn, calculated

using quarterly I/K ratios), whereas we directly calculate annual returns using annual I/K ratios.

Fifth, we consider aggregate firm returns (which are a weighted average of stock and debt returns),

whereas Cochrane (1991) focuses on aggregate stock returns. Finally, the analysis in Cochrane

(1991) assumes constant firm productivity, whereas we use a stochastic productivity process for

our analysis. Since our results do not materially change when we assume that firm productivity is

constant, in what follows we assume that firm productivity is constant at level Z̄. Furthermore, to

match the analysis in Cochrane (1991), we consider aggregate stock returns (from CRSP) instead of

aggregate firm returns. Hence, in order to explain why our results deviate from those in Cochrane

(1991), we focus on the first four differences. In all exercises, we use the NIPA seasonally adjusted

real gross private domestic investment series as our aggregate investment measure. In contrast, the

analysis in Cochrane (1991) uses the seasonally adjusted real gross private domestic investment

series from Citibase (series GIF82), a difference that accounts for some of the disparity between

our results and the findings in Cochrane (1991).

Table IA.2 reports our findings for the 1947-1987 period, exactly matching the sample period in

Cochrane (1991). Each column corresponds to a different implementation of the investment-based

approach, with the first three columns focusing on implementations that use the Cochrane (1991)

specification and the last four columns reporting the results of implementations that use our (“GS”)

specification. The details of each implementation are provided when discussing each column. For

each implementation, Panel A reports the value of the depreciation parameter δ, of the marginal

product of capital αZ̄, and of the capital adjustment cost parameter a. Panel B reports the mean

and volatility of aggregate stock and investment returns, as well as the correlation between aggregate

investment returns and aggregate stock returns (with the latter calculated both using the standard

timing and the six-month timing shift). Panel C (Panel D) reports the output of a forecasting

regression of annual aggregate stock returns on the lagged quarterly (annual) aggregate I/K ratio.
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For those regressions, both aggregate stock returns and aggregate investment returns for year t+ 1

are calculated using the standard timing convention (i.e., from the end of December of year t to the

end of December of year t+ 1) and lagged I/K ratios are either quarterly (in Panel C) or annual

(in Panel D) I/K ratios measured at the end of December of year t. Panel E (Panel F) reports the

output of a forecasting regression of annual aggregate stock returns on the lagged quarterly (annual)

aggregate I/K ratio, as before, with the difference being that the timing of aggregate stock returns

is shifted, consistent with Cochrane (1991): for those regressions, aggregate investment returns are

calculated using the standard timing convention, but aggregate stock returns are shifted, with the

magnitude of the shift depending on whether, in a given implementation, annual investment returns

are calculated by compounding quarterly returns, or are directly calculated from annual investment

data. In particular, for implementations that compound quarterly investment returns to calculate

annual investment returns, aggregate annual stock returns for year t + 1 are shifted back by two

months, i.e. they are calculated from the end of October of year t to the end of October of year t+1,

and the forecasting variable (quarterly or annual I/K ratio) is measured at the end of September of

year t−1, whereas for implementations that directly calculate annual investment returns, aggregate

annual stock returns for year t+1 are shifted six months back, i.e., they are calculated from the end

of June of year t to the end of June of year t+ 1, and the forecasting variable (annual I/K ratio)

is measured at the end of December of year t− 1. In Table IA.2, shifted stock returns are denoted

by Rs, to distinguish them from the standard (non-shifted) stock returns, denoted by R. Finally,

Panel E (Panel F) reports the output of a forecasting regression of the difference between annual

aggregate shifted stock returns and annual aggregate investment returns on the lagged quarterly

(annual) aggregate I/K ratio. In all cases, we report Newey-West standard errors, with 8 lags in

the case of compounded quarterly investment returns (as in Cochrane (1991)) and with 2 lags in

the case of directly measured annual investment returns.

We start with the first three implementations, which adopt the specification in Cochrane (1991).

For the results reported in the first column (implementation [1]), we use both the specification and

parameter calibration in Cochrane (1991) and we calculate annual investment returns by compound-

ing quarterly investment returns. We find that the mean of average investment returns matches

the mean of average stock returns almost perfectly. However, investment returns are substantially

more volatile than stock returns, in contrast to the findings in Cochrane (1991). The correlation

between investment and stock returns is 0.20 when the standard timing convention is used, rising

to 0.26 when the timing of stock returns is shifted. As seen in Panels C and D, when the standard

return timing is used, quarterly I/K ratios forecast subsequent annual stock returns, but annual

I/K ratios do not. Furthermore, those results continue to hold when we consider shifted stock

returns (Panels E and F). Finally, as seen in Panels G and H, both quarterly and annual I/K

ratios forecast the differences between annual stock returns and annual investment returns, at odds

with the lack of predictability that Cochrane (1991) finds.
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Since our aggregate investment measure differs from that in Cochrane (1991), the discrepancies

may be due to the fact that the parameter values are not properly calibrated. To address that

issue, in implementation [2] we continue to adopt the Cochrane (1991) specification and to com-

pound quarterly investment returns, but we set the value of key parameters to estimates that

match the same moments as in Cochrane (1991): the value of the marginal product of capital αZ̄

does not change much (it is now 0.145, compared to 0.150 before), but the value of the capital

adjustment cost parameter a is now significantly lower (8.552, compared to 13.040 before). Under

that parametrization, we are able to replicate the main findings of Cochrane (1991): aggregate

investment returns are smoother than aggregate stock returns, and quarterly I/K ratios forecast

subsequent annual stock returns, but not the differences between annual stock returns and an-

nual investment returns. In addition, we find that annual I/K ratios have no forecasting ability

either for stock returns or for the difference between stock and investment returns. Finally, the

third implementation corresponds to a model that adopts the Cochrane (1991) specification, but in

which annual investment returns are directly calculated using annual investment data, the values

of parameters αZ̄ and a are set to match the same moments as in Cochrane (1991), and annual

depreciation is set to δ = 0.15, as in Table 1. Aggregate investment returns are still too smooth

compared to stock returns and the unconditional correlation between the two series (when we shift

the timing of stock returns) remains at 0.29. For this implementation, the only forecasting signal

consistent with the model is the annual I/K ratio, but (as before) annual I/K ratios have no

forecasting power either for stock returns or stock and investment return differentials.

The last four implementations use our specification, rather than the one in Cochrane (1991), al-

lowing us to check the robustness of the findings in Cochrane (1991) to a somewhat different

characterization of investment returns. In particular, the fourth and fifth columns (implementa-

tions [4] and [5], respectively) report results that mirror to the analysis in the second and third

columns, respectively, but using our specification. Interestingly, changing the specification does

not meaningfully change the crux of our findings: investment returns are smoother than stock

returns and highly correlated with them (when the latter are shifted), and quarterly I/K ratios

predict subsequent annual stock returns (but not their differences with investment returns), with

annual I/K ratios exhibiting no forecasting power. Finally, the sixth and seventh columns (imple-

mentations [6] and [7], respectively) repeat the analysis in the fourth and fifth columns, but using

parameter values estimated using a Non-Linear Least Squares estimation procedure (as in Part I

of Table IA.1). Despite the change in the parameter values, our findings do not materially change.

In sum, when we use either the Cochrane (1991) specification or our specification, we are able to

replicate the key findings of Cochrane (1991) as regards the properties of aggregate investment

returns in the 1947-1987 sample period, but we find that annual I/K ratios have no forecasting

ability for aggregate stock returns.

To check the robustness of the Cochrane (1991) findings, Table IA.3 repeats the analysis in Table
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IA.2 for the 1974-2017 period, which is the focus of the main text of our paper. Across implementa-

tions, the unconditional moments of aggregate stock and investment returns are not very different

from the corresponding moments in the 1947-1987 sample period. However, the conditional return

properties differ substantially between the two sample periods. In particular, as seen in Panels

C–F, neither quarterly nor annual I/K ratios are able to forecast aggregate stock returns, a finding

that is robust across implementations. On the other hand, Panels G and H report that quarterly

(and, in some cases, annual) I/K ratios have predictive power for differences between stock and

investment returns, implying that the conditional means of investment returns differ from those

of stock returns. The lack of predictability of stock returns and the predictability of investment

and stock return differences stands in sharp constant to the findings in Cochrane (1991), with both

findings suggesting that the investment-based approach does not generate conditional aggregate

returns that match the properties of the observed aggregate stock returns.
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Fig. IA.1: Payout yield and consumption-wealth ratio in the two-period model

This figure presents the payout yield of the representative firm (Panel A) and the consumption-
wealth ratio of the representative household (Panel B) in the two-period model. Panel A presents
the firm’s payout yield curve as a function of the firm’s expected return for different values of the
firm’s productivity Z. Panel B presents the households’s consumption-wealth curve as a function
of the firm’s expected return for different values of the taste shifter θ.
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Fig. IA.2: Payout market equilibrium in the two-period model

Panels A and C this figure illustrate the payout market equilibrium by plotting the payout yield of
the representative firm and the consumption-wealth ratio of the representative household, respec-
tively, in the two-period model as functions of the firm’s expected return. In particular, Panel A
shows the impact of a shift of the firm’s payout yield curve when the firm’s productivity Z increases,
and Panel C shows the impact of a shift of the household’s consumption-wealth ratio curve when
the taste shifter θ increases. Panels B and D of this figure plot the equilibrium expected return
as a function of firm productivity Z and the taste shifter θ, respectively, keeping everything else
constant.
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Fig. IA.3: Consumption-based and payout-based asset pricing in the two period
model

Panels A and B of this figure illustrate the payout market equilibrium in the consumption-based
model and payout-based model, respectively, that corresponds to our full two-period model. Panel
A plots the consumption-wealth curve of the representative household, as well as the “endowment
curve” (denoted by Ds/V ) that reflects the exogenous payout supply. Panel B plots the payout
yield curve of the representative firm, as well as the “payout curve” (denoted by Dd/V ) that reflects
the exogenous payout demand.
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Table IA.1: Payout-based vs. investment-based returns: estimated parameters

This table reports the properties of model-implied realized and expected investment returns for seven different
models. Part I uses parameters estimated by regressing realized firm returns on model-implied realized
investment returns, whereas Part II uses parameters estimated by regressing realized firm returns on model-
implied expected investment returns. In each part, Panel A reports parameter values, Panel B reports
unconditional moments of realized and expected investment returns, and Panel C reports the output of
regressions of observed firm returns on expected investment returns. The seven models are, in order, the
payout-based model and six implementations of the investment-based model. We report Newey and West
(1987) standard errors, with lag selection as in Newey and West (1994).

Model d iNIPA ipNIPA ip&i
NIPA ipCS ip&i

CS ip,KCS

Part I: Estimated parameters using realized investment returns

Panel A: Parameter values

Profit Margin α 0.107 0.301 0.150 0.224 0.141 0.222 0.142

Adjustment Cost Parameter a 1.859 2.629 1.021 0.998 0.114 0.347 0.439

Panel B: Unconditional moments

Average Investment Return 6.01% 7.56% 7.55% 7.56% 7.81% 7.85% 8.69%

Volatility of Investment Return 8.08% 3.85% 2.40% 2.69% 1.66% 1.45% 2.35%

Volatility of E[RI ] 4.03% 2.52% 1.42% 2.01% 1.03% 0.56% 1.11%

Corr(RI ,R) 0.57 -0.03 -0.12 -0.04 0.08 0.11 -0.10

Corr(RI , Rshifted) 0.28 0.20 0.03 0.07 0.12 0.15 -0.06

Panel C: Regressions of Rt+1 on E[RIt+1]

Predictive Coefficient 0.98 0.20 -1.27 -0.25 0.05 0.73 -2.71

s.e. [0.49] [0.76] [0.70] [0.66] [1.73] [2.83] [1.32]

Adjusted R2 5.80% -2.30% -0.56% -2.29% -2.44% -2.35% 2.51%

Part II: Estimated parameters using expected investment returns

Panel A: Parameter values

Profit Margin α 0.090 0.338 0.341 0.721 0.173 0.283 0.181

Adjustment Cost Parameter a 1.445 3.578 14.665 25.162 1.937 2.660 3.698

Panel B: Unconditional moments

Average Investment Return 7.06% 8.40% 8.66% 8.57% 8.86% 8.86% 8.68%

Volatility of Investment Return 9.07% 4.37% 6.08% 6.16% 4.89% 4.09% 7.89%

Volatility of E[RI ] 5.01% 2.67% 2.05% 2.39% 1.83% 1.53% 2.89%

Corr(RI ,R) 0.54 -0.03 -0.09 -0.07 0.17 0.19 0.11

Corr(RI , Rshifted) 0.26 0.20 0.08 0.09 0.09 0.10 0.05

Panel C: Regressions of Rt+1 on E[RIt+1]

Predictive Coefficient 0.77 0.20 0.15 0.37 1.10 1.12 0.81

s.e. [0.42] [0.73] [1.01] [1.00] [0.99] [1.15] [0.63]

Adjusted R2 4.84% -2.28% -2.38% -2.00% -0.15% -0.77% 0.76%
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Table IA.2: Investment return comparison: 1947-1987

This table reports the properties of model-implied realized and expected investment returns for seven dif-
ferent implementations of the investment-based model. Panel A reports parameter values, Panel B reports
unconditional moments of realized and expected investment returns, and Panels C–H report the output of
regressions of observed firm returns (calculated either using the standard timing convention and denoted
by R, or using a shifted timing convention and denoted by Rs) on lagged investment-to-capital ratios. The
sample period is 1947-1987. We report Newey and West (1987) standard errors, with lag selection as in
Newey and West (1994).

Implementation [1] [2] [3] [4] [5] [6] [7]

Specification Cochrane Cochrane Cochrane GS GS GS GS

Investment return calculation Quarterly Quarterly Annual Quarterly Annual Quarterly Annual

Calibration Original GMM GMM GMM GMM NLS NLS

Panel A: Parameter values

Depreciation Parameter δ 0.100 0.100 0.150 0.100 0.150 0.100 0.150

Marginal Product of Capital αZ̄ 0.150 0.145 0.323 0.266 0.755 0.188 0.477

Adjustment Cost Parameter a 13.040 8.552 2.672 19.527 16.672 8.298 6.505

Panel B: Unconditional moments

Average Stock Return 8.58% 8.58% 9.43% 8.58% 9.43% 8.58% 9.43%

Volatility of Stock Return 16.57% 16.57% 19.20% 16.57% 19.20% 16.57% 19.20%

Average Investment Return 8.85% 8.15% 9.43% 8.10% 9.43% 8.07% 9.43%

Volatility of Investment Return 27.04% 9.88% 9.67% 9.03% 9.34% 5.72% 6.20%

Corr(RI ,R) 0.20 0.21 -0.11 0.26 -0.12 0.25 -0.12

Corr(RI , Rs) 0.26 0.29 0.29 0.34 0.32 0.33 0.32

Panel C: Regressions of annual Rt+1 on quarterly It/Kt

Predictive Coefficient -3.81 -4.13 – -5.08 – -5.08 –

s.e. [1.49] [1.59] – [1.91] – [1.91] –

Adjusted R2 8.00% 8.05% – 8.16% – 8.16% –

Panel D: Regressions of annual Rt+1 on annual It/Kt

Predictive Coefficient -0.39 -0.41 -0.94 -0.49 -1.27 -0.49 -1.27

s.e. [0.43] [0.47] [1.02] [0.57] [1.33] [0.57] [1.33]

Adjusted R2 0.58% 0.55% -0.78% 0.54% -0.62% 0.54% -0.62%

Panel E: Regressions of annual Rst+1 on quarterly It/Kt

Predictive Coefficient -2.95 -3.17 – -3.89 – -3.89 –

s.e. [1.38] [1.48] – [1.79] – [1.79] –

Adjusted R2 5.40% 5.37% – 5.39% – 5.39% –

Panel F: Regressions of annual Rst+1 on annual It/Kt

Predictive Coefficient -0.30 -0.31 0.67 -0.37 0.88 -0.37 0.88

s.e. [0.40] [0.43] [0.74] [0.53] [0.97] [0.53] [0.97]

Adjusted R2 0.22% 0.17% -1.91% 0.13% -1.88% 0.13% -1.88%

Panel G: Regressions of annual Rt+1 −RIt+1 on quarterly It/Kt

Predictive Coefficient 7.02 1.58 – 1.90 – -0.21 –

s.e. [2.17] [1.60] – [1.81] – [1.78] –

Adjusted R2 17.14% 0.95% – 1.00% – -0.62% –

Panel H: Regressions of annual Rt+1 −RIt+1 on annual It/Kt

Predictive Coefficient 1.21 0.40 1.13 0.48 1.63 0.17 1.39

s.e. [0.40] [0.40] [0.83] [0.49] [1.07] [0.50] [0.93]

Adjusted R2 7.31% 0.84% -0.28% 0.90% 0.41% -0.45% -0.40%
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Table IA.3: Investment return comparison: 1974-2017

This table reports the properties of model-implied realized and expected investment returns for seven dif-
ferent implementations of the investment-based model. Panel A reports parameter values, Panel B reports
unconditional moments of realized and expected investment returns, and Panels C–H report the output of
regressions of observed firm returns (calculated either using the standard timing convention and denoted
by R, or using a shifted timing convention and denoted by Rs) on lagged investment-to-capital ratios. The
sample period is 1974-2017. We report Newey and West (1987) standard errors, with lag selection as in
Newey and West (1994).

Implementation [1] [2] [3] [4] [5] [6] [7]

Specification Cochrane Cochrane Cochrane GS GS GS GS

Investment return calculation Quarterly Quarterly Annual Quarterly Annual Quarterly Annual

Calibration Original GMM GMM GMM GMM NLS NLS

Panel A: Parameter values

Depreciation Parameter δ 0.100 0.100 0.150 0.100 0.150 0.100 0.150

Marginal Product of Capital αZ̄ 0.150 0.152 0.322 0.822 1.437 0.225 0.505

Adjustment Cost Parameter a 13.040 12.063 3.480 100.000 45.571 13.724 8.743

Panel B: Unconditional moments

Average Stock Return 8.97% 8.97% 8.44% 8.97% 8.44% 8.97% 8.44%

Volatility of Stock Return 14.93% 14.93% 16.32% 14.93% 16.32% 14.93% 16.32%

Average Investment Return 7.23% 8.19% 8.44% 8.16% 8.44% 8.06% 8.44%

Volatility of Investment Return 10.10% 8.59% 8.42% 8.11% 8.43% 4.41% 5.01%

Corr(RI ,R) 0.13 0.13 -0.01 0.17 -0.05 0.17 -0.04

Corr(RI , Rs) 0.24 0.25 0.26 0.29 0.31 0.29 0.31

Panel C: Regressions of annual Rt+1 on quarterly It/Kt

Predictive Coefficient -0.83 -0.80 – -0.79 – -0.79 –

s.e. [1.41] [1.44] – [1.88] – [1.88] –

Adjusted R2 -0.15% -0.19% – -0.38% – -0.38% –

Panel D: Regressions of annual Rt+1 on annual It/Kt

Predictive Coefficient -0.04 -0.02 -0.57 0.10 -0.53 0.10 -0.53

s.e. [0.36] [0.37] [0.78] [0.46] [1.03] [0.46] [1.03]

Adjusted R2 -0.58% -0.59% -1.44% -0.54% -1.96% -0.54% -1.96%

Panel E: Regressions of annual Rst+1 on quarterly It/Kt

Predictive Coefficient -0.44 -0.40 – -0.20 – -0.20 –

s.e. [1.41] [1.44] – [1.89] – [1.89] –

Adjusted R2 -0.44% -0.48% – -0.58% – -0.58% –

Panel F: Regressions of annual Rst+1 on annual It/Kt

Predictive Coefficient -0.04 -0.02 -0.64 0.11 -0.61 0.11 -0.61

s.e. [0.37] [0.37] [0.90] [0.47] [1.25] [0.47] [1.25]

Adjusted R2 -0.58% -0.60% -1.29% -0.52% -1.90% -0.52% -1.90%

Panel G: Regressions of annual Rst+1 −RIt+1 on quarterly It/Kt

Predictive Coefficient 4.05 3.60 – 5.34 – 2.75 –

s.e. [1.65] [1.58] – [1.69] – [1.76] –

Adjusted R2 10.11% 8.15% – 11.35% – 2.77% –

Panel H: Regressions of annual Rst+1 −RIt+1 on annual It/Kt

Predictive Coefficient 1.02 0.91 0.81 1.28 1.33 0.74 0.54

s.e. [0.43] [0.41] [0.99] [0.46] [1.31] [0.45] [1.27]

Adjusted R2 11.11% 9.10% -0.52% 11.74% 0.57% 3.77% -1.97%
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