
Measuring Creative Destruction†

Abstract

We examine the link between a firm’s future performance and innovations made

by other firms using text-based measures of innovation displacement—how relevant

one firm’s innovations are to another’s operations. Our findings indicate that when

other major innovators’ recent innovations are similar to the focal firm’s technologies,

the focal firm’s profit growth over the next 7 years is expected to decline, with the

association exacerbating annually, especially for non-innovative firms. This displace-

ment effect persists across various firm types and model specifications. Moreover,

firms exposed to higher displacement have higher risk-adjusted stock returns in the

following year.

Keywords: Innovation, Displacement, Patents, Generative AI, Machine learning.
JEL Classification: C1, G10, G11, O3.

†This Draft: August 2024.



1 Introduction

Firms grow by successfully innovating, that is, by improving the quality or reducing the
cost, of the products and services that they offer to their consumers. However, innova-
tion often has some losers: firms that fail to innovate can be displaced by those that do.
This process of creative destruction has been the lynchpin of a growing agenda in both
macroeconomics and finance.1 In this paper we provide a new direct measure of firms’
exposure to innovation displacement.

We use a flexible underlying model: any innovation by any firm may have an associ-
ation with any other firm’s growth. The strength of the link between each pair of firms
depends on three factors. First, take two firms where A is innovating and B is displaced.
The size of the displacement depends on the relevance of A’s recent innovations to B’s
daily operations and research. For example, an innovation in semiconductors is likely
associated with a shock in the growth of a GPU manufacturer. However, this same in-
novation is less likely associated with changes in the performance of a restaurant chain.
Secondly, it depends on the current aggregate innovation value of firm A. For example,
innovations by a major innovator such as Apple may have a more widespread effect on
other firms. On the other hand, innovations by a lower-ranked innovator may struggle
to be recognized by consumers and other firms. Lastly, it depends on the characteristics
of firm B. Our main analysis focuses on one characteristic: whether or not a firm is an
active innovator. A firm that frequently produces innovations may be more tolerant of
innovation displacement exposure (IDE) because it can quickly adjust its own focus to
adopt new technologies after observing large displacements.

The first building block of our study is a measure of similarity between A’s recent in-
novations and the current tools that B uses in its operations and research. We consider
each issued patent as an innovation. For non-innovative firms, we define their assets in
the innovation economy by the technologies they utilize in their day-to-day operations.
For innovative firms, we include an additional aspect: their recent innovations, repre-
sented by the patents they have recently obtained. We construct two text-based measures
of similarities. First, given the recent innovations made by firm A, we define our main
displacement measure based on the similarity between these innovations and B’s tech-
nologies. In addition, for the set of innovative firms, we compute a secondary similarity
measure: the similarity between innovations of A and innovations of B.

To incorporate the second component of IDE – the current aggregate market value

1Aghion and Howitt (1992); Klette and Kortum (2004); Kogan et al. (2017); Kogan, Papanikolaou and
Stoffman (2020).
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of A’s innovations – into our measure, we weigh these similarity measures using the
aggregate firm-level innovation value in each year as computed by Kogan et al. (2017).
The final weighted measures are our main and secondary measures of IDE. The details of
these two measures are discussed in section 2 and 5.

The third factor that contributes to the size of the displacement exposure – hetero-
geneity across firm types– is not directly built into our measures. Instead, we conduct
subsample analyses for a variety of characteristics including innovation activity level,
firm size, profitability, intangible capital size, and time. For our main analysis in section
4, we focus on the difference in displacement exposure between innovative versus non-
innovative firms. In the robustness section 6, we explore the other dimensions and verify
that our main finding exists within different groups of firms.

Using these measures, we study the association between IDE and firms’ profit growth.
We have three main findings in our analysis: first, when we apply our main displacement
measure to all firms, we find that IDE is significantly negatively associated with firms’
profit growth, and this gap in profit growth is widening over time. In addition, we find
that this displacement measure is correlated with many traditional firm characteristics
such as employment and R&D expenditures. Nonetheless, a list of 9 innovation-related
firm characteristics and over 1000 fixed effects can only explain about 21% of the varia-
tion in our displacement measure (19% after R2 adjustment). Moreover, the residuals of
the IDE measure (after regressing on firm characteristics) are still significantly negatively
associated with profit growth. This shows that the main displacement measure captures
information that is associated with profit growth and cannot be fully explained by these
other characteristics.

Secondly, we show that the association between the main displacement measure and
profit growth is different between innovative and non-innovative firms. In particular,
we document that while both types of firms have a similar level of exposure to dis-
placement in the near future, the magnitudes increase at different rates: over a longer
horizon, the IDE-associated negative change in profit growth is lower among innovative
firms. Furthermore, we compare the purely patent-based secondary displacement mea-
sure with our main measure: we find that the two measures are highly correlated at an
inter-industry and inter-temporal level; however, once standardized within each year and
industry category, the two measures have significant but low correlation. In addition,
when we apply both measures in the subsample of innovative firms, we find that both
measures capture distinct displacement effects that are negatively significantly correlated
with profit growth.

To further validate this negative association between IDE and profit growth, we con-
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duct a set of subsample analyses and use an alternative model specification to test the
robustness of our main result. We divide the dataset by each firm’s intangible capital
level, size, and profitability and also by the time when the data was collected. Across all
subsamples, we find a significantly negative association between our main displacement
measure and firms’ profit growth. Moreover, we use a non-linear model coupled with the
debiased machine learning (DML) technique to rerun our analysis over the entire sam-
ple. This approach allows us to control for high-dimensional confounders. Using this
method, we also find that the displacement measure is significantly negatively associated
with profit growth and this association is increasing in magnitude over time.

In addition to developing our main displacement measure, we demonstrate two prac-
tical applications of the IDE measure. First, we construct an equal-weight long-short port-
folio based on this measure, revealing that the long side outperforms the S&P 500 index
by approximately 5% annually, while the short side underperforms by roughly the same
amount. More importantly, we benchmark our long-short portfolio against traditional
asset pricing models such as CAPM, Fama-French 3, Fama-French 5, and Fama-French 5
plus momentum. The results indicate that our portfolio achieves a significantly positive
alpha across all models, with unexplained returns ranging from 3% to over 6% annually.
This finding underscores that the displacement measure, in addition to being indicative
of firms’ future profit growth, can also enhance asset pricing exercises by providing ad-
ditional gains. Moreover, the long and short sides of the IDE-based portfolio show a high
correlation, largely driven by intertemporal variations in risk factors such as Fama-French
5 and momentum. We also find that the average firm characteristics at the portfolio level
are significantly associated with the current returns. Specifically, for firms on the short
side (low IDE values in the previous year), profitability and asset growth show signif-
icant associations: higher profitability correlates with higher monthly returns, whereas
higher asset growth corresponds to lower returns. For firms on the long side, R&D ex-
penses are significantly associated with current returns, with higher expenditures linked
to lower returns.

Finally, as a second application, we train and test over 20 machine learning models to
conduct out-of-sample forecasts of firm growth using IDE and traditional firm character-
istics. We use the data up to 2010 for training and validation, and data after 2010 as the
out-of-sample testing set to evaluate our models. We find that the best machine learning
models consistently significantly outperform the majority voting baseline in predicting
the direction of firms’ profit changes. In addition, our IDE measure significantly con-
tributes to this additional predictive power in longer horizons (3-year and 5-year profit
changes).
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Our paper contributes to multiple literature strands, particularly at the intersection of
innovation, firm performance, stock market outcomes, and machine learning. It aligns
closely with macroeconomic research on technological innovation displacement. Tradi-
tional methods for identifying technology shocks include measuring technological change
through Solow residuals and imposing long-run restrictions on vector auto-regressions
(VARs). These approaches, however, are indirect and sensitive to specific assumptions.
Our approach diverges by constructing direct measures of technological innovation and
displacement using unstructured text data.

Previous studies, such as Shea (1998), measured technological innovation through
patents and R&D spending but found weak links between these measures and total fac-
tor productivity (TFP). This weakness likely arises from assuming all patents have equal
value, a notion disproved by Kortum and Lerner (1998). Additionally, fluctuations in
patent counts often reflect regulatory changes rather than genuine innovation. R&D
spending is still indirect and subject to efficiency variations over time (Kortum, 1993).
Alexopoulos (2011) introduced an aggregate-level measure based on technology-related
books, but it lacks firm-level precision. In contrast, our work introduces a novel, text-
based measure of innovation displacement, assessing how innovations by other firms
impact a focal firm’s future performance. This firm-level approach allows for granular
analysis of reallocation and growth dynamics, revealing new insights into how external
innovations have displacement effects on other firms’ growth, especially firms that are
not active innovators.

Additionally, our work extends the literature on the broader effects of technological in-
novation, particularly in balancing knowledge spillovers and business stealing. We show
that similar innovations by major innovators can lead to significant displacement effects
of the focal firm’s current technologies, especially for firms less engaged in innovation
(Kogan, Papanikolaou and Stoffman, 2020).

Our research is rooted in the tradition of endogenous growth and creative destruction
(Acemoglu et al., 2018), emphasizing the role of technological displacement in shaping
firm dynamics and growth. We also contribute to the literature on intangible capital and
finance (e.g., Lev and Radhakrishnan (2005), Eisfeldt and Papanikolaou (2013), Peters
and Taylor (2017), Crouzet et al. (2022), Chen et al. (2023)) by using firm-level measures
of intangible capital and investment.

Finally, our paper makes an important methodological contribution to the economics
literature. A rapidly growing branch of the big data literature in economics and finance
uses natural language processing to quantify text (see e.g. Gentzkow, Kelly and Taddy
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(2019)).2 Our paper introduces a new method to estimate the similarities between finan-
cial texts based on recent advances in computer science, allowing the use of text embed-
dings to represent the contextual meaning of texts.

The remainder of the paper is organized as follows. Section 2 presents our main text-
based measure. In Section 3, we study the association between innovation-induced dis-
placement and firms’ profit growth. Section 4 considers innovative versus non-innovative
firms. In Section 5, we introduce an alternative text-based measure of displacement effect
that solely relies on patents. Section 6 considers the robustness of our results by looking
at different subsets of the data and different model specifications. Section 7 presents an
application of our measure in asset pricing. Section 8 presents evidence that our IDE mea-
sure can be used to make effective forecasts of firms’ profit growth in an out-of-sample
setting. Section 9 concludes.

2 Data processing

To measure a firm’s innovation displacement exposure, we construct a dataset of firm
technologies and innovations spanning each year from 1980 to 2015.3 We define a firm’s
innovations in year t by the patents it received from t − 4 to t, and we define its current
technologies as those employed by the firm over the past five years in its operations and
research. Specifically, we first obtain yearly technology summaries using GPT4o and then
aggregate the summaries from t − 4 to t to build a comprehensive technology stack for
the firm.

2.1 Constructing representations of firm innovations

First, we generate a numerical representation of each firm’s innovations in each year with
a 5-year lookback window. We start by producing an innovations summary for each firm
each year based on the patents issued to it in year t. The primary challenge arises from the
fact that some firms receive over a hundred patents annually, making it computationally
impractical to generate a numerical vector that captures all the information from each
patent. To address this issue, we employ a procedure designed to select a representa-

2A partial list of papers in this vein includes the work of Hansen, McMahon and Prat (2018), Chen, Wu
and Yang (2019), Gentzkow, Kelly and Taddy (2019), Athey and Imbens (2019), Kelly et al. (2021), Erel et al.
(2021), Fedyk et al. (2024).

3Our patent data begins in the year 1976; however, our displacement measure in each year is con-
structed with a look-back window of 5 years. Therefore, the earliest year we can compute displacement
measures for is 1980.
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tive sample of patents, while accounting for the variability in innovation capacity across
different firms.

• If a firm i has at most 10 patents in year t, we take the abstracts of all of its patents
issued in t.

• If a firm i has more than 10 patents but at most 100, we take a random subset of 10
patents issued in t.

• If a firm i has more than 100 patents, we take a random 10% subset of all of the
patents issued in t.

After selecting the set of patents, we use GPT4o to summarize firm i’s patents in year
t in at most 500 tokens following the prompt:

You are an economist studying firms’ innovations. Summarize the following patent
abstracts. First, give a summary of the common topics covered by many abstracts,
then focus on individual patents.

{Selected patent texts.}

Next, we generate innovation summaries for firm i in each year t ∈ {t − 4, · · · , t − 1}
and concatenate the summaries in these 5 years chronologically from the earliest to the
latest. Finally, we extract a numerical embedding based on each concatenated innovation
summary using a text embedding model.4

2.2 Constructing representations of firm technologies

The second key component of our measures involves creating firm-level numerical rep-
resentations of technologies. First, we generate a summary for each firm annually. For a
given firm i in year t, we apply the following prompt to obtain a summary of i’s technolo-
gies in t:

Instructions: You are an economist analyzing companies’ technologies. In three para-
graphs, describe the technological stack of name of i in the year t. Focus on technologies
that the company was using in its day-to-day operations and research. Be as specific
as possible and give a lot of details. For each technology, mention whether or not it
was considered legacy in the field in t and whether or not there were disruptive tech-
nologies that could replace it. If there was a risk of disruption, mention companies and

4We use text-embedding-3-large to generate 3072-dimensional embeddings.
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technologies that were threatening to the given technology. Do not use information
that became public after the year t.

Similar to constructing innovation embeddings, we obtain a 500-token summary for
firm i for each year from t − 4 through t, concatenate these summaries, and then utilize
the same text-embedding model to create the technology embedding for firm i in year t.

2.3 Merging different sources to construct the main dataset

Lastly, we combine data from different sources to form our main dataset. We acquire the
patent and aggregate innovation value data based on Kogan et al. (2017) and firm charac-
teristics from COMPUSTAT, including company profits, R&D expenses, capital expenses,
employment, etc. In addition, we merge stock return data from CRSP and risk factor data
from the Fama-French data repository. These datasets are merged based on a unique firm
identifier PERMNO and the year variable in each data set. Then, we merge this combined
firm data with innovation and technology embeddings by the same identifiers.

2.4 Computing the main displacement measure

We define Innovation Displacement Exposure (IDE) as the cumulative impact of innova-
tions from other firms on the focal firm, capturing the aggregated displacement effect of
external innovations. More specifically, we compute the value-weighted similarity be-
tween other firms’ innovations compared to i’s technologies used in daily operations and
research.

IDEi,t =
∑

nt,Innov
j cos(Innovj,t, Techi,t) · A f

j,t

∑
nt,innov
j Mk Capj,t

, (1)

where nt,Innov is the number of innovative firms in year t, A f
j,t is the aggregate innova-

tion value of firm j in year t computed by Kogan et al. (2017), Innovj,t is the innovation
embedding of innovative firm j in year t, Techi,t is the technology embedding of firm i in
year t, and Mk Capj,t is the market capitalization of innovative firm j in year t. IDEi,t is
large if other major innovators make advancements that are close to technologies used by
the focal firm. We have a secondary measure of innovation displacement exposure that
only uses the text of patents. Since most of the paper focuses on the main measure, we
leave the details of the secondary measure in section 5.5

5Both sets of IDE values are standardized within each year and industry category.
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3 Displacement and profit growth

We first study the association between innovation-induced displacement and firms’ profit
growth. In particular, when other firms develop innovations similar to the technologies
used by the focal firm, the focal firm’s operations are likely displaced. It either loses its
competitive advantage or has to adopt these new technologies. In both cases, its future
profit will be hindered. Therefore, we conjecture that a firm with a higher IDE value
is expected to have lower profit growth. We test this hypothesis using the following 7
regressions (k ∈ {1, 2, 3, 4, 5, 6, 7}):

Π f ,t+k − Π f ,t = αk
1 IDE f ,t + αk

2 log(AG) f ,t + αk
3Pf ,t + βkZ f ,t + δk

f ,t + ϵk
f ,t, (2)

where Π f ,t+k and Π f ,t are firm f ’s log profits in year t + k and t, IDE f ,t is the text-based

displacement measure of firm f in year t, log(AG) f ,t = log
(

ATf ,t
ATf ,t−1

)
is the log of as-

set growth of the firm f at year t, Pf ,t is the profitability of firm f in year t defined by
sale f ,t−cogs f ,t

at f ,t
, Z f ,t are the log profit, employment, and capital stock in year t of firm f , and

δk
f ,t are the fixed effect (year, industry code, and industry category interacted with year).

All standard errors are clustered at the firm-year level. All independent variables are
standardized at the industry category and year level.

Insert table A1 here.

As shown in table A1, the coefficients on profitability are significantly negative which
shows a mean-reversal trend: firms that are currently highly profitable have lower future
profit growth. In addition, the positively significant coefficients on asset growth align
with Fama and French (2015)’s finding that asset growth captures future growth opportu-
nities. More importantly, IDE (the main displacement measure) is significantly negatively
associated with profit growth in all of the next 7 years. This means that firms that are ex-
posed to a higher level of innovation displacement are expected to have a lower level of
profit growth that sustains over at least the next 7 years. Moreover, as shown in figure 1,
the magnitude increases from 1.5% in the next year to 6.7% 7 years in the future.6 This
suggests that the displacement effect exacerbates each year.

To formally test this observation of worsening displacement effect over time, we con-
struct a dataset where we concatenate all profit growth in the next 1 through 7 years into
one column, concatenate all of the control variables used in equation 2, and include an
additional variable corresponds to the number of years across which the profit growth is

6Strictly speaking, the percent change is the change in log profit.
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measured. In particular, we run the regression:

Π f ,t+k − Π f ,t =α1 IDE f ,t + α2 log(AG) f ,t + α3Pf ,t

+ α4 IDE f ,tk + α5 log(AG) f ,tk + α6Pf ,tk

+ β1Z f ,t + β2Z f ,tk + β3k + δ f ,t,k + ϵ f ,t,k, (3)

where α1, α2, and α3 estimate the baseline association between displacement, asset growth,
and profitability and profit growth. α4, α5, and α6 estimate the change in magnitude of
these associations as the forward-looking window increases by 1 year. The fixed effects
include year, industry code, the interaction between industry category and year, as well
as the interactions between the window size indicators (1, 2, · · · , 7) and each of these
fixed effects. We standardize all independent variables and cluster standard errors at the
firm-year-window size level.
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Figure 1: This figure shows the percent change of profit associated with one standard
deviation decrease in displacement. Note that displacement is negatively associated with
profit growth. The blue line represents the widening of the gap estimated using equation
3.

Insert table A2 here.

As shown in table A2, each additional standard error increase of IDE is associated with
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a 0.9% additional decrease in profit growth each year. As a sanity check, the association
between IDE and profit growth in the first year is the baseline plus the additional asso-
ciation: 0.4% + 0.9% = 1.3% which is close to the results in table A1, and the magnitude
in the subsequent years also match in the two tables. This 0.9% additional association is
negatively significant. This confirms that the association between IDE and profit growth
is increasing in magnitude.

Insert table A3 here.

The natural question to test next is whether the new displacement measure is a com-
bination of traditional innovation-related firm characteristics and whether it captures ad-
ditional information indicative of firms’ profit dynamics. Moreover, once we remove the
portion of IDE explained by these variables, are the residuals still significantly negatively
associated with profit growth?

First, we analyze which firm characteristics are associated with our displacement mea-
sure using the following regression:

IDE f ,t = αIDEX f ,t + δIDE
f ,t + ϵIDE

f ,t , (4)

where X f ,t are vectors of firm characteristics including the firm’s log capital stock, log
employment, log profit, log asset growth, profitability, total asset, market cap, capital
expenditures, and R&D expenditures.7 δIDE

f ,t are the fixed effects corresponding to each
IDE value (year, industry code, and industry category interacted with year).

We find that firms with high IDE (exposed to large innovation displacements) tend to
have higher capital stocks, lower employment, lower profit, higher profitability, lower to-
tal assets, lower capital expenditure, and higher research and development expenditures.
Nonetheless, these variables and the fixed effects can only explain about 19% of the varia-
tion in the displacement measure. This shows that our measure captures information that
is not associated with traditional firm characteristics.

Insert table A4 here.

More importantly, when we reestimate the regression specified by equation 2 using
the residual of IDE in equation 4, we still see a significantly negative association between
the residuals and profit growth as shown in table A4. Each standard deviation increase
in the residual of IDE is associated with a 1.4% decrease in profit by year 1 and 5.1% by

7We apply an asinh transformation to R&D and capital expenditures to stabilize the variance in these
variables while allowing for negative values.
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year 7. This shows that the unexplained information captured by IDE is associated with
negative profit growth. In other words, our main displacement measure (IDE) captures
information indicative of firms’ profit growth that is not included in any of the traditional
innovation-related firm characteristics.

In the previous analysis, we have shown that IDE is significantly negatively associ-
ated with future profit growth even when only examining its residuals after regressing
on firm characteristics; therefore, IDE is of clear interest to firm managers and investors
prior to the realization of these displacement events. Hence, we study whether there
are characteristics that indicate certain firms may have higher IDE values in the future.
Since our IDE measure is computed based on innovation and technology descriptions
with a 5-year lookback window, we start examining firm characteristics 5 years before
the construction year of IDE and also consider longer horizons like 7 and 10 years ago.
More specifically, we consider the following variables: total assets, R&D expenditures,
profitability, and capital expenditures (standardized in each year and industry category).
One issue of this analysis is that characteristics such as capital expenditures and total as-
sets are strongly correlated. Thus, we take the following steps to remove the collinearity
of these variables: first, we run a Principal Component Analysis (PCA) on the 4 indepen-
dent variables; then we remove the common variations in these variables using the first
2 principal components; lastly, we standardize the residuals and run a regression where
the dependent variables are the IDE values T years in the future (T ∈ {5, 7, 10}) and the
independent variables are the residual total assets, R&D expenditures, profitability, and
capital expenditures.8

Insert table A5 here.

As shown in Table A5, the two variables that consistently predict variations in future
IDE are total assets and profitability. Firms with more assets are more likely to be exposed
to higher displacement, while firms that are more profitable tend to be exposed to less.
Intuitively, firms with more assets are at risk of a larger variety of displacements by dif-
ferent innovations; on the other hand, firms that exhibit high profitability relative to their
current assets are likely to possess unique assets that are difficult to replicate or have a
stronger ability to deter competition and avoid displacement.

8The first 2 principal components explain 81 − 82% of variation in the data.
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4 Innovative versus non-innovative firms

Given the main result – IDE is negatively associated with profit growth – we study whether
this association varies between two types of firms in the economy: innovative and non-
innovative firms. We define a firm’s innovation activity by counting the number of patents
received by the firm within our time range (1976 to 2015). A firm is considered innovative
if it receives at least 10 patents during this interval.

IDE is fundamentally caused by other firms’ innovations outcompeting legacy tech-
nologies used by the focal firm; therefore, we conjecture that this effect should be smaller
in magnitude when the focal firm is an active innovator. This result aligns with the find-
ing in Chen, Wu and Yang (2019) which focuses on the FinTech industry. One plausible
explanation is a firm that produces a large number of patents likely has the infrastructure
to pivot its research and development to either adopt new or invent other competitive
technologies. Take Apple as an example of an active innovator in the mobile phone in-
dustry. Its competitors like Samsung may release a new iteration of products that are
temporarily the most desirable phones in the market; however, Apple can quickly over-
come these challenges by incorporating these technologies and improving upon them in
its own next iteration.

Insert tables A6 and A7 here.

We begin our analysis by running the regressions specified in equation 2 on the two
subsamples separately: one for innovative firms and one for non-innovative firms. As
shown in tables A6 and A7, in both subsamples, displacement is significantly negatively
associated with firms’ profit growth in the next 7 years. This shows our main result is ro-
bust for both innovative and non-innovative firms. In addition, as shown in figure 2, the
difference in magnitude between the two subsamples is widening over time. In partic-
ular, one standard deviation increase in displacement corresponds to around 1.5% (1.3%
vs 1.7%) decrease in profit growth in the first year. However, 7 years in the future, the
same increase in displacement is associated with 4.1% decrease in profit growth among
innovative firms, while the magnitude for non-innovative firms is at a larger 7.7%.

We statistically show that this difference is significant in the longer horizon using a
permutation test. The null hypothesis is that in terms of the size of displacement effect,
the innovative firms are randomly drawn from the population of firms. The alternative
hypothesis is that this sample is purposely chosen to exhibit a larger coefficient on IDE
over time. More specifically, we first, randomly create 1000 samples within each we ran-
domly assign innovative or non-innovative labels to the firms (respecting the proportions
in the original sample). Then, we compute the coefficients on our IDE measure (displace-

12



2.5

5.0

7.5

1 2 3 4 5 6 7

Year

P
er

ce
nt

 o
f c

ha
ng

e 
(%

)

subsample innovative non−innovative

Percent change in profit over the next 7 years
 associated with 1 standard deviation decrease in IDE

Figure 2: This figure shows the difference between innovative and non-innovative firms
in terms of the percent change of profit associated with one standard deviation decrease
in displacement. Note that displacement is negatively associated with profit growth.

ment) interacted with the number of years across which the profit growth is computed
(analogous to equation 3) for both randomly assigned subsamples and compute the dif-
ferences between each pair of coefficients over the next 7 years – one for the innovative
subsample and another for the non-innovative subsample. Lastly, the p-value of this hy-
pothesis is computed as the probability that the true difference we observe based on the
true assignment is larger than the differences computed based on random assignments.
As shown in figure 3, we observe a larger difference based on the original assignment
of innovative versus non-innovative firms than over 90% of the randomly assigned sub-
samples in the permutation test. This shows that, in the true sample, there exists a sig-
nificant difference between innovative and non-innovative firms. More specifically, the
association between displacement and profit growth increases faster in magnitude among
non-innovative firms. Economically, non-innovative firms suffer increasingly more from
innovation displacement exposure.
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Figure 3: The distribution of the difference between the coefficients in the randomly as-
signed innovative and non-innovative subsamples. The coefficients of interest are the
ones on the interaction between the number of years forward and IDE. The red line rep-
resents the 90th percentile of the distribution, and the green line represents the difference
we compute based on the original assignment of innovative versus non-innovative firms.
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5 Patent-based displacement measure

In this section, we introduce an alternative text-based measure of displacement exposure
that solely relies on patents. One potential drawback of our main measure introduced in
section 2 is the existence of a look-ahead bias when constructing technology descriptions –
the generative model is trained on data after the specified year. By relying only on patent
texts, we can eliminate this concern. More importantly, this measure captures an addi-
tional form of innovation-induced asset displacement that innovative firms experience:
the displacement of their recent innovations. Specifically, when a major innovator intro-
duces a new innovation, the recent innovations of the focal firm, along with its current
technologies, may lose their competitive edge as they no longer represent the state-of-the-
art in their respective fields. Therefore, our main and alternative displacement measures
complement each other when studying the profit growth of innovative firms.

The alternative IDE measure is defined as

IDEi,t =
∑

nt,innov
j cos(Innovj,t, Innovi,t) · A f

j,t

∑
nt,innov
j Mk Capj,t

, (5)

where Innovj,t and Innovi,t are both innovation embeddings computed based on sum-
maries of firms’ recent patents.

We study the association between this secondary displacement measure and profit
growth among firms with at least 10 patents – innovative firms.9

First, we study the correlation between the two measures. We show that the alterna-
tive IDE measure is positively correlated with the original measure, but the correlation is
mostly due to heterogeneity across year and industry categories.

Insert table A8 here.

More specifically, we compare the two measures using two types of correlations: Pear-
son correlation computes the correlation of the two continuous measures, and Kendall-
Tau computes the correlation between the rank orderings. As shown in table A8, the
raw numbers of the main and alternative displacement measures are highly correlated
at over 0.8; however, the correlation drops to a lower 6 − 11% when these measures are
standardized within each year and industry category. This implies that within each in-
dustry category and year, the two measures are directionally aligned but capture different

9Since this alternatively measure defined by equation 5 only depends on patents, we focus on the sub-
sample of innovative firms.
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information.
Next, we run a modified version of the main regression in equation 2 over the sample

of innovative firms:

Π f ,t+k − Π f ,t = αk
1 IDEo

f ,t + αk
2 IDEa

f ,t + αk
3 log(AG) f ,t + αk

4Pf ,t + βkZ f ,t + δk
f ,t + ϵk

f ,t, (6)

where IDEo
f ,t is the standardized main displacement measure and IDEa

f ,t is the standard-
ized patent-based alternative measure.

Insert table A9 here.
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Figure 4: This figure shows the percent change of profit associated with one standard devi-
ation decrease in patent-based alternative displacement measure. Note that displacement
is negatively associated with profit growth.

As shown in Table A9, the alternative IDE measure identifies significant and distinct
displacement effects among innovative firms. Specifically, each standard deviation in-
crease in this patent-based displacement measure corresponds to an additional 0.9% de-
crease in profit growth in the following year. Consistent with the findings in Section 3, this
effect intensifies over time, reaching a 4.5% reduction by year 7 (see figure 4). Together,
these results demonstrate that innovation-induced displacement exposure is associated
with profit growth among innovative firms through two channels: the displacement of
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existing technologies and the displacement of recent innovations (patents).

6 Robustness

In this section, we check the robustness of our results by looking at different subsets of the
data and considering a different model specification. We start with subsample analyses:
first, we divide the data based on the fraction of intangible capital of each firm relative to
its book equity (Eisfeldt, Kim and Papanikolaou, 2020). Next, we divide the data based
on the firms’ market capitalization in each year and industry. Next, we divide the data
set along the time dimension – 20th century versus 21st century. Then, we separately
consider highly profitable firms and ones with lower profitability. Our last subsample
analysis looks at firms in the United States with at least one patent. We show that the
negative association between IDE and profit growth is significant in all subsamples, and
we provide some suggestive evidence that the magnitude of firms’ exposure to IDE varies
across different firm types: conditioning on the same IDE value, some types of firms’
(such as large firms’) profit growths are hindered more heavily.

In addition to the subsample analysis, we redo our main analysis in section 3 using
an alternative specification of confounding. In particular, we incorporate a nonlinear
model, XGBoost, with the debiased machine learning technique to control for the high
dimensional confounders. We find that our main result remains robust.

6.1 High versus low intangible capital

We divide the dataset into two based on each firm’s relative intangible asset in each year
within its industry category. Based on (Eisfeldt, Kim and Papanikolaou, 2020), we define
a firm’s relative intangible capital as this firm’s intangible capital divided by its book
equity in the year t:

G f ,t =
Int f ,t

BE f ,t
.

Based on this definition, we divide the data into two: in each year and industry cate-
gory, we take firms with at or above median G f ,t as the set of firms with high intangible
capital; at the same time, we define the other firms as the low intangible capital set. We
run the regression defined by equation 2 separately for both subsamples.

Insert tables A10 and A11 here.
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As shown in tables A10 and A11, displacement is negatively associated with profit
growth in both subsamples. Among firms with high intangible capital stock, one standard
deviation increase in IDE corresponds to a 1.4% decrease in profit growth over the first
year and 5.3% over the next 7 years. Focusing on firms with low relative intangible capital,
one standard deviation increase in IDE corresponds to a 1.6% decrease in profit growth
over the first year and 7.8% over the next 7 years. As a more direct demonstration, figure
5 shows that firms with low intangible capital are more exposed to displacement and the
difference is widening: losing an additional 0.2% in profit growth by year 1 and 2.5% by
year 7.
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Figure 5: This figure illustrates the difference in percent change in profit growth between
firms with high and low relative intangible capital, corresponding to a one standard de-
viation decrease in displacement. Note that displacement is negatively associated with
profit growth.

6.2 Large versus small firms

Next, we split the dataset based on each firm’s market capitalization within its industry
category each year. Firms with market capitalization at or above the median in their
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respective year and industry category are considered large firms, while those below the
median are small firms. Following the approach outlined in the previous subsection, we
run the regression specified in equation 2 separately for each subsample.

Insert tables A12 and A13 here.

As shown in tables A12 and A13, displacement is negatively associated with profit
growth in both subsamples. Among small firms, one standard deviation increase in IDE
corresponds to a 1.1% decrease in profit growth over the first year and 5.6% over the next
7 years. Among larger firms, one standard deviation increase in IDE corresponds to a
1.7% decrease in profit growth over the first year and 7.3% over the next 7 years. Visually,
figure 6 directly demonstrates that larger firms are more exposed to displacement than
smaller firms and the difference is widening: losing an additional 0.6% in profit growth
by year 1 and 1.7% by year 7.
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Figure 6: This figure illustrates the difference in percent change in profit growth between
firms with high and low market capitalization, corresponding to a one standard deviation
decrease in displacement. Note that displacement is negatively associated with profit
growth.
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6.3 Pre-2000 versus since 2000

Furthermore, we divide the data into two samples based on whether the year is before or
after (including) 2000. Similar to the previous subsection, we run the regression defined
by equation 2 for both subsamples.

Insert tables A14 and A15 here.

As shown in Tables A14 and A15, displacement is negatively associated with profit
growth in both subsamples. In the 20th century data, a one standard deviation increase
in IDE is associated with a 1.4% decline in profit growth in the first year and a 6.2% decline
over the next 7 years. For the 21st century, the corresponding association is slightly larger,
with a 1.6% decrease in the first year and 7.0% over 7 years. Figure 7 illustrates that
firms in the 21st century face a greater decline in profit growth due to displacement, with
the gap widening: an additional 0.4% loss by year 1 and 0.8% by year 7. Notably, this
difference between recent and older data is the smallest observed among our subsample
comparisons, both in absolute and relative terms.

6.4 High profitability versus low profitability

In this subsection, we partition the data into two subsamples based on each firm’s prof-
itability within each year and industry category, measured as gross profit divided by total
assets:

sale f ,t−cogs f ,t
at f ,t

. Firms below the median profitability in their respective year and in-
dustry category form one subsample, while the remaining firms form the other. As in the
previous subsection, we apply the regression specified in equation 2 to both subsamples.

Insert Tables A16 and A17 here.

Tables A16 and A17 show that displacement is negatively associated with profit growth
in both groups. For firms with lower profitability, a one standard deviation increase in
IDE corresponds to a 1.3% reduction in profit growth in the first year and 6.2% over 7
years. Among highly profitable firms, the same increase in IDE is associated with a 0.8%
decrease in the first year and 4.8% over 7 years. Figure 8 further illustrates that less prof-
itable firms are more vulnerable to displacement, with the gap widening over time: an
additional 0.5% loss in profit growth by year 1 and 1.4% by year 7.
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Figure 7: This figure shows the difference between data in the 20th and 21st centuries in
terms of the percent change of profit associated with one standard deviation decrease in
displacement. Note that displacement is negatively associated with profit growth.

6.5 Firms in the United States

In this subsection, we examine the subsample of firms in the United States that have at
least one patent. First, we use a Welch t-test to compare the summary statistics between
the two samples: U.S. firms with at least one patent vs. the rest. All variables are standard-
ized each year before being split into two subsamples for interpretability. For example,
without standardization, the market capitalizations of two firms in different years are not
comparable. As shown by table A18, firms in the United States with at least one patent
tend to be large in terms of market capitalization, more profitable, have higher current
profits, and be exposed to more displacement as measured by our IDE measure defined
in equation 1.

Insert tables A18 and A19 here.

Nonetheless, as shown in table A19, the negative association between IDE and profit
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Figure 8: This figure shows the difference between high and low profitability firms in
terms of the percent change of profit associated with one standard deviation decrease in
displacement. Note that displacement is negatively associated with profit growth.

growth remains significant in the subsample of United States firms with at least one
patent. Each standard deviation increase in IDE is associated with a 1.5% decrease in
profit growth of U.S. firms in the first year, and this grows to 5.8% by the end of year 7.
The direction and magnitudes are all similar to the main result across all samples shown
in table A1.

Combining the results in subsections 6.1, 6.2, 6.3, 6.4, and 6.5, we see that the result
that displacement is significantly negatively associated with profit growth is robust in
a variety of subsamples. This shows that our results are generalizable. However, even
though we observe that displacement is associated with different rates of changes in profit
growth, the exact mechanisms driving these differences are still to be determined and left
for future studies.
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6.6 Non-linear confounders and debiased machine learning

Another potential concern for our results is that the estimates are based on a linear con-
founding specification, which may not accurately represent the underlying relationship
between displacement and profit growth, confounded by firm characteristics and year.
In this subsection, we analyze the entire sample using a non-linear model of the con-
founding relationship leveraging the debiased machine learning technique developed in
Chernozhukov et al. (2018). Debiased machine learning allows us to estimate the pa-
rameters of interest (association between IDE and profit growth) while controlling for
high-dimensional confounders.

D

D2

D1

Random 50%

Random 50%

Trained XGBoost mapping 
controls to IDE

Trained XGBoost mapping 
controls to profit growth

Trained XGBoost mapping 
controls to IDE

Trained XGBoost mapping 
controls to profit growth

Generate 
predictions in D2 

Generate 
predictions in D1 

Regressing 
residuals on 

residuals

Figure 9: The diagram of debiased machine learning applied to identify the effect of dis-
placement (IDE) on profit growth

As shown in figure 9, we utilize debiased machine learning in the following steps:

1. Randomly split the dataset into 2 equal-sized subsets D1 and D2.

2. Train an XGBoost model gD1
T using D1 including all of the control variables and fixed

effects in equation 2 to predict IDE (our main displacement measure).

3. Train another XGBoost model gD1
O using D1 including all of the control variables and

fixed effects in equation 2 to predict the profit growth (we do this 7 times because
we consider the profit growth over each of the next 7 years).

4. Generate predictions of IDE and profit growth in D2.

5. Repeat steps 2-4. Use D2 as the training data and generate predictions in D1. The
new models are gD2

T and gD2
O .

6. Combine all of the out-of-sample predictions to form a new dataset.
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7. Regress the residuals of IDE on the residuals of profit growth:

(
Π f ,t+k − Π f ,t+k

)
−

(
Π f ,t+k − Π f ,t

∧)
= αk + τ IDE

k (IDE f ,t − IDE f ,t

∧
) + ϵ f ,t+k, (7)

where τ IDE
k is the estimated effect of displacement on profit growth.

Insert tables A20 and A21 here.

As shown in table A20, when controlling for all of the confounders (including the
continuous variables and fixed effects in equation 2), the negative effect of displacement
on profit growth is significant over all of the next 7 years. In particular, as shown by figure
10, the difference is widening each year from 0.4% in the first year to 3.4% in the 7th year.
This increase in the effect size per year is a significant 0.5% as shown by table A21.10 This
demonstrates that our main results discussed in section 3 are unlikely a coincidence due
to model misspecification.

7 Application in asset pricing

In this section, we rank firms by their IDE values to construct an equal-weight long-short
portfolio. We begin by forming an equal-weight portfolio that goes long on the top 10% of
firms with the highest IDE values and shorts the bottom 10%. Next, we examine the extent
to which the correlation between the returns of the long and short sides of the portfolio
is driven by intertemporal variations in risk factors, such as Fama-French factors and
momentum. Finally, we investigate the firm characteristics associated with the current
returns of firms with high versus low IDE values.

7.1 IDE-based long-short portfolio

First, we analyze the equal-weight long-short portfolio based on the IDE measure. Since
the IDE measures are calculated annually, we create a portfolio at the end of each year af-
ter computing this year’s IDE values. We long the top 10% of firms with the highest IDE
values and short the bottom 10% (equal-weight). This portfolio is rebalanced monthly,
but the firms on the long and short sides are selected annually. Figure 11 shows the P&L
of this portfolio and the long and short sides separately. We observe that the long-short

10This growth is shown using the following regerssion analogous to equation 3:(
Π f ,t+k − Π f ,t+k

)
−

(
Π f ,t+k − Π f ,t

∧)
= α + β1k + β2(IDE f ,t − IDE f ,t

∧
) + τ IDEk(IDE f ,t − IDE f ,t

∧
) + ϵ f ,t,k

.
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Figure 10: This figure shows the percent change of profit associated with one standard
deviation decrease in displacement. Note that displacement is negatively associated with
profit growth. The grey line shows the exacerbating negative association between IDE
and profit growth estimated in table A21.

portfolio has large growth spurs from 2001 to 2003 (the dot.com bubble) and 2008 to 2009
(the Global Financial Crisis). This shows that the IDE-based portfolio gains profits dur-
ing recessions. More specifically, examining the long and short sides independently, this
profit is mostly due to the short side correctly picking heavily depreciating assets. This
demonstrates that firms with low IDE have very low returns during recessions. Econom-
ically, a firm whose main technologies are not close to major innovators devalues quickly
when the overall economy is weak.

Overall, as shown by figure 12. The short side of the IDE portfolio has an annualized
relative return of 1.76

36 = 4.9% (beyond the S&P 500 index). Similarly, the annualized
relative return of the long side is 1.71

36 = 4.8%. This shows that roughly an equal amount
of profit is made from the long and short sides of the portfolio.

Next, we compare the IDE portfolio return with well-studied factor models such as
CAPM, Fama-French 3, Fama-French 5, and Fama-French 5 with momentum. We com-
pare the monthly portfolio returns against these models.11 We compute the α of the IDE

11If we use annual factor data, we only have 36 data points in our regression. Therefore, we analyze
monthly data to have a meaningful number of observations.
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Figure 11: This figure shows the cumulative (monthly) return of the long and short sides
and the overall long-short IDE portfolio. The long-short portfolio is equal-weight and
rebalanced monthly.

portfolio using the following regression

rt − r ft = α + β · Xt + ϵt, (8)

where rt is the return of the IDE portfolio in month t, r ft is the monthly risk-free rate, and
Xt are the factors used in each model in month t.

Insert table A22 here.

As shown in Table A22, the monthly α values vary across different models: CAPM yields
a monthly α of 0.54% (annualized to 6.48%), FF3 yields 0.46% (annualized to 5.52%), FF5
yields 0.30% (annualized to 3.66%), and FF5 with momentum yields 0.26% (annualized
to 3.12%). This shows that the IDE-based long-short portfolio generates positively signif-
icant returns that cannot be explained by these asset pricing models.
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Figure 12: This figure shows the cumulative (monthly) return of the long and short sides
of the IDE equal-weight portfolio relative to the equal-weight S&P500 index (without
dividends). The long-short portfolios are rebalanced monthly.

7.2 Understanding the correlation between the long-side and short-side

Figure 11 shows a strong correlation between the long and short returns. In this subsec-
tion, we decompose this high correlation using traditional risk factors. To compute the
amount of correlation due to the inter-temporal variation of these factors, we first estab-
lish a baseline correlation between raw returns in the long and short sides at 0.94. Then,
for each set of factors, we compute their contribution to the baseline correlation in the
following way:

∆ρ = 0.94 − corr(radj
long, radj

short), (9)

where radj
long and radj

short are the residual of the IDE portfolio returns after regressing on the
set of factors similar to equation 8.

We compute ∆ρ for CAPM, FF3, FF5, and FF5 with momentum. CAPM (the expected
market return factor) contributes to roughly 0.11 in correlation. FF3 (small minus big
and value minus growth) explains another 0.15 in correlation. FF5 (robust minus weak
and conservative minus aggressive) explains 0.02 in correlation. Lastly, momentum con-
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tributes to another 0.08 in correlation.
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Figure 13: This figure shows the cumulative (monthly) return of the long and short sides
of the IDE portfolio when Fama-French 5 factors and momentum are removed. The long-
short portfolios are equal-weight and rebalanced monthly.

Overall, the biggest decrease in correlation happens when including the two factors:
small minus big and value minus growth, and expected market return and momentum
also contribute to large decreases in correlation. After all five Fama French factors and
momentum are removed from the long and short sides, the correlation drops from 0.94 to
0.58. Figure 13 shows the P&L of the long and short sides of the IDE-based portfolio after
Fama-French 5 and momentum are removed from the returns.

7.3 Firm characteristics and return in the IDE portfolio

In this section, we study how firm characteristics correlate with returns on the long and
short sides of the portfolio. In particular, we run the following regression for the long and
short-side portfolio returns separately:

rs
t = α + βFFt + γZs

t + ϵs
t , (10)
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where s ∈ {long, short}, rs
t is the return of the long (short) side of the portfolio in month t,

FFt are the Fama-French 5 factors in month t, and Zs
t are the average characteristics among

firms selected to be on the long (short) side in month t based on their IDE rankings.

Insert tables A23 and A24 here.

As shown in table A23, the two factors that have significant associations with the cur-
rent returns of firms with the lowest IDE values are profitability and asset growth. In
particular, in months when these firms are more profitable, the portfolio return of that
month is expected to be high. On the other hand, in months when the firms have high
asset growth, the corresponding portfolio returns are lower. In other words, the returns of
firms with low displacement are positively driven by current profit but negatively driven
by potential future growth opportunities. By definition, these low IDE firms are ones
whose technologies are different from recent high-value innovations. Thus, it is reason-
able to expect investors to value these firms based on their current ability to generate
profit and against their potential to capture future opportunities. In addition, as shown
in table A24, the firm characteristic significantly associated with the current return of the
highest IDE firms is R&D expense. A higher R&D expenditure corresponds to a lower
current return. Note that as shown in table A3, these firms with high IDE values tend
to have high R&D expenses. Therefore, one potential explanation is that an even higher
R&D expenditure indicates inefficiencies in the firms’ current research and development
infrastructure, making investors value these firms lower than more efficient firms. The
exact rationalization for this phenomenon is left for future research.

8 IDE for out-of-sample prediction

In the previous sections, we have shown that IDE is significantly associated with firms’
profit growth, and this significance is robust to subsetting by firm types and changing the
underlying model specification. Now, we show that IDE has a significant out-of-sample
predictive power of firms’ profit growth. More specifically, the question we address in
this section is whether our IDE measure can significantly improve the performance of
predictive machine learning models.

To assess this, we partition our dataset based on a timestamp. Specifically, we train
and validate more than 20 predictive machine learning models using data up to 2010,
while testing their performance on data in years after. The objective of these models
is to predict whether a firm’s profit will increase or decrease in the next T years. Our
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modeling approach includes a diverse set of algorithm classes: K-nearest neighbors, tree-
based methods, boosting, neural networks, and weighted ensembles of these models.

The K-nearest neighbors (KNN) model predicts outcomes in the test set by identifying
the labels of the K closest points in the training set. In our analysis, the task is to predict
the direction of profit growth—whether a firm’s profit will increase or decrease over the
next several years. Since this is a binary classification problem, the KNN model predicts
the majority class among the K nearest neighbors for each test observation. Essentially,
we use the training set to find the firms that have characteristics that are closest to a given
firm in the test set, and we compute the label of this new data point via majority voting
of the observed labels of the firms that are similar to it.

Tree-based methods construct individual decision trees as weak learners and aggre-
gate them to form the final prediction. If we think of each weak learner as a human
labeler, this tree-based approach is similar to recruiting multiple independent labelers
and using the wisdom of the crowd to make the final predictions. Gradient boosting also
uses multiple learners, but these learners are built sequentially to gradually improve the
performance. This process is analogous to using multiple human labelers but the next
labeler observes the mistakes made by the previous ones and can try to address them.
For a discussion on gradient boosting techniques, see Appendix F.

Neural networks address this problem more directly by using only one model that
predicts labels based on firm characteristics. These models fit nonlinear functions using
the training sample, freeze the parameters, and apply the same functions in the test set
to make predictions. For details on neural networks and their application, please refer to
Appendix D.

The weighted ensemble approach combines predictions from multiple models (e.g.,
boosting, neural networks) using a stacking technique across N levels. This method in-
volves training a meta-model that uses both the predictions from the base models and
the raw input features to produce a final prediction. The stacking process is iteratively
applied for N levels. For example, when N = 1, let Xn,d be the n × d matrix of raw inputs
and Yn,M be the n × M matrix of predictions from the ensemble’s M base models. The en-
semble then maps the concatenated matrix of Xn,d and Yn,M to a set of n final predictions.

We predict the direction of profit growth over the next 1, 3, and 5 years to examine
the predictive power of IDE on short- and long-term profit growth. In particular, given a
forward-looking interval T, and a model m, we optimize the following objective function
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(summed over all firms and years):

L(1
(
Π f ,t+T > Π f ,t

)
, gT

m(X f ,t)) =− 1
(
Π f ,t+T > Π f ,t

)
log(gT

m(X f ,t))

− (1 − 1
(
Π f ,t+T > Π f ,t

)
) log(1 − gT

m(X f ,t)), (11)

where gT
m is the predictive model (that outputs a number between 0 and 1, inclusive)

and X f ,t are the IDE values, capital stock, employment, current profit, profitability, as-
set growth, and the fixed effects year, industry code, industry category, and firm ID
(PERMNO) (we treat these fixed effects as categorical inputs). All continuous indepen-
dent variables are standardized within the year and industry category.12

Insert tables A25 and A26 and A27 here.

Tables A25, A26, and A27 show that unsurprisingly weighted-ensemble with three
levels of stacking performs the best in the validation set because the learned weights are
multiplied to the predictions of individual models, so it is always expected to perfor-
mance at least similar to the best individual model in the validation set (without time-
based splitting). In addition, we observe that the performances on the validation set and
test set are positively correlated. This shows that our models are likely not overfitted. A
common baseline to evaluate the performance of these models is majority voting: predict-
ing that all data points in the test set are in the majority class. In our study, the majority
class is always “increasing” because firm profits naturally tend to increase over time. Our
models significantly outperform the majority voting strategies in all three cases.13 This
shows our best models have learned nuanced information beyond a naive guess.

The important question is to examine how much our IDE measure contributes to this
learning and whether this increment is statistically significant. We measure the impor-
tance of each variable in the best out-of-sample (test set) predictor of each forecasting
horizon – neural network with bagging and fast AI implementation (1 level of stacking)
for 1-year predictions, ExtraTrees with bagging based on entropy splitting rule (2 levels
of stacking) for 3-year forecasting, and ExtraTrees with bagging based on Gini impurity

12The tree-based models based on Gini impurity use a splitting rule that minimizes the Gini Impurity of
the subsamples defined by

Gini = 2p1(1 − p1) = 2p0 p1

where p0 is the proportion of samples in the subsample of the training set in class 0 (decreasing future
profit) and p1 is the proportion of samples in class 1 (increasing future profit).

13In the sample of firms with recorded 1-year future profits, the majority class makes up 59% of the test
data, and they make up 61% among firms with recorded 3-year (5-year) future profits.
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splitting rule (2 levels of stacking) for 5-year forecasting. The importance of each variable
is measured using a permutation-based ablation test. In particular, we take a 5000-data
point random sample from the testing data, and for each independent variable, we ran-
domly shuffle the order of its values in this subset. Then, we compute the drop in the
prediction accuracy when the perturbed data is fed into the trained model. We repeat
this process 5 times with different subsamples. We compute the accuracies of these 5
subsamples and compute the means and standard errors of these perturbed accuracies.
The mean drop in accuracy compared to the original data is used as the raw importance
values. We then scale them so they sum up to 1, which are the values shown in figure
14. Then, we perform a t-test on the means and standard errors of the full test data and
the perturbed samples to compute the statistical significance of including each variable in
the best predictive model. Intuitively, this method allows us to measure the performance
loss when one variable is lost (completely noisy) and evaluate the statistical significance
using the accuracies before and after random shuffling.

As shown in figure 14, asset growth is the strongest predictor of profit changes in the
next year. This may be due to profits continuing the asset growth momentum from the
previous year. In addition, Fama and French (2015) documents asset growth as an indi-
cator of potential growth opportunities. Having more growth opportunities in the near
future may also facilitate profit growth. In 3- and 5-year predictions, firm ID and cur-
rent profit are consistently the most important variables since the profit growth of firms
likely depends on their identities and their current profit level. Moreover, we observe
that our IDE measure is significantly important in longer-term predictions (3 and 5 years)
and is ranked in the middle of all variables. This shows that displacement events caused
by other firms’ innovations have a significant role in the long-term growth of the focal
firm.14

In addition, similar to section 6, we repeat this fully predictive exercise on a few sub-
samples. We confirm that this result – IDE is statistically significantly predictive of profit
growth – is robust to sample selection. In particular, we run this analysis on large firms,
firms with low profitability, and firms with below median intangible asset ratio in each
year and industry category. The importance values are shown in figures F1, F2, and F3 in
Appendix G. In sum, we find that IDE is predictive of profit growth in an out-of-sample
setting and for a variety of firm types.

14It is expected that the year variable is not important in forecasting profit growth because the years in
the testing sample (2011 to 2015) never appeared in the training set. Therefore, the trained models cannot
use a categorical variable that takes unseen values to make predictions.
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Figure 14: These figures show the importance of different variables in the best predictive
model of profit direction changes over the next 1, 3, and 5 years. The importance values
are scaled to sum to 1, and the ones colored blue are significant at the 5% level while the
ones in red are not.

9 Conclusion

We develop two types of text-based measures of Innovation Displacement Exposure (IDE).
Our main measure is based on patents and GPT4o-generated technology descriptions
and can be applied to all firms. Our secondary displacement measure is purely based on
patents; therefore, this measure can only be computed for innovative firms with many
patents. We use these measures to study how IDE is associated with firms’ profit growth.
We find that the focal firm’s IDE is significantly negatively associated with its profit
growth in the next 7 years. This negative association exacerbates each year, and it is partic-
ularly severe among non-innovative firms. Moreover, we demonstrate that this negative
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innovation displacement effect (the negative association between IDE and profit growth)
is prevalent among different types of firms and under different types of model specifi-
cations. In addition, we apply our main measure in two practical extensions. First, we
investigate the potential of our main displacement measure in stock trading and find that
stocks exposed to higher displacement are expected to have higher returns in the next
year, after adjusting for exposures to factor models. This is consistent with Kogan, Pa-
panikolaou and Stoffman (2020). Finally, we build over 20 fully predictive forecasting
models that take current firm characteristics including IDE, and predict the direction of
each firm’s profit growth in the future. We find that IDE can significantly improve the per-
formance of the best predictive models and is ranked around the middle of all variables
in terms of predictive importance.

Our study relies on a few assumptions. First, we assume that text embedding models
can effectively extract meaningful numerical representations from the information em-
bedded within patent texts and technology descriptions. The high significance of our
results indicates that the embedding model used (OpenAI’s text-embedding-3-large) suc-
cessfully captures information that reflects both the similarities and differences between
various technologies and innovations. Moreover, as the frontier of Large Language Mod-
els advances, we believe these embeddings will become increasingly more powerful. An-
other limitation of our method is the potential of look-ahead biases that exist in GPT4o-
generated technology descriptions. We use four approaches to alleviate this concern.
First, we develop an alternative definition of innovation-based displacement that only
uses patents instead of relying on the knowledge of the generative model. Our main re-
sults hold using this alternative measure. Secondly, we use SEC 10K files to show that
GPT4o is aware of the temporal ordering of technologies used by these firms. In addition,
we use the technology descriptions generated by GPT4o to show that it is aware of the
ordering of technologies that are mentioned in its own descriptions. Lastly, we define al-
ternative technology descriptions based on firms’ 10K filings and patents. We show that
the resulting IDE measure is highly positively correlated with our main IDE measure,
both with and without industry-year standardization. We believe similar approaches can
be used to evaluate the extent of look-ahead bias in other applications where Large Lan-
guage Models are used to generate augmentative information based on their knowledge.

Our study begins an agenda to investigate firms’ displacement exposures due to other
firms’ innovations. One potential direction is to examine the source of heterogeneity in
the magnitude of the association between innovation displacement exposure and profit
growth. In addition, further research can aim to develop an ex-ante measure that predicts
future displacement events each firm will experience. Moreover, more efforts are needed
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to elicit the asset pricing implications of the IDE measure such as using it to construct
a risk factor. Furthermore, even though we provide some guidelines on evaluating the
look-ahead bias in LLM-based information augmentation, further research is needed to
expand this analysis to different applications and develop other systematic evaluation
methods.
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Online Appendix

1. Appendix A includes all of the tables used in this paper.

2. Appendix B includes details about validity checks against look-ahead bias in GPT4o.

3. Appendix C introduces a modified IDE measure where similarities scale nonlinearly
with respect to cosine.

4. Appendix D discusses the basic architecture of neural networks and the GPT family
of models.

5. Appendix E discusses the details of debiased machine learning.

6. Appendix F introduces gradient boosting and the XGBoost model.

A Tables
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.015∗∗∗ -0.027∗∗∗ -0.039∗∗∗ -0.047∗∗∗ -0.056∗∗∗ -0.063∗∗∗ -0.067∗∗∗

(0.002) (0.003) (0.004) (0.005) (0.006) (0.007) (0.008)

profitability t -0.012∗∗∗ -0.028∗∗∗ -0.040∗∗∗ -0.049∗∗∗ -0.058∗∗∗ -0.060∗∗∗ -0.066∗∗∗

(0.003) (0.005) (0.006) (0.007) (0.007) (0.008) (0.009)

log asset growth 0.074∗∗∗ 0.087∗∗∗ 0.097∗∗∗ 0.098∗∗∗ 0.101∗∗∗ 0.104∗∗∗ 0.104∗∗∗

(0.003) (0.005) (0.006) (0.007) (0.008) (0.008) (0.008)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 118,467 108,556 99,765 91,965 85,075 78,950 73,406
R2 0.063 0.065 0.069 0.069 0.073 0.077 0.080

Adjusted R2 0.053 0.054 0.057 0.057 0.060 0.062 0.064

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A1: This table shows the association between IDE and profit growth. We control for the
log asset growth and profitability among other variables. The data spans from 1980 to 2015. All
independent variables are standardized within each industry category and year, and all standard
errors are clustered at the firm-year level.
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Dependent variable:

Baseline Additional percent change in profit per year

(1) (2)

IDE -0.004 -0.009∗∗∗

(0.002) (0.001)

Year ✓
Ind Code ✓

Year×IndCategory ✓

Observations 656,184
R2 0.132

Adjusted R2 0.119

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
TABLE A2: This table shows the association between IDE and profit growth over time (stacking
the data from years 1 to 7). We control for the log asset growth and profitability among other
variables. The data spans from 1980 to 2015. All independent variables are standardized within
each industry category and year, and all standard errors are clustered at the firm-year level.
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Variable Estimate Cluster s.e. t value Pr(>|t|)

Log capital stock 0.6024 0.0351 17.141 < 2e-16 ***

Log employment -0.0809 0.0283 -2.855 0.00728 ***

Log profit -0.1118 0.0299 -3.733 0.00069 ***

Profitability 0.0578 0.0111 5.189 9.77e-06 ***

Log asset growth -0.0105 0.0074 -1.421 0.16445

Total asset -0.0363 0.0133 -2.721 0.01019 **

Capital Expenditures -0.3966 0.0259 -15.291 < 2e-16 ***

Research and development expenditures 0.0626 0.0177 3.537 0.00119 **

Market Cap 0.0144 0.0114 1.254 0.21824

Year ✓
Ind Code ✓

Year×IndCategory ✓
Observations 74,397

R2 0.205
Adjusted R2 0.191

TABLE A3: This table shows the association between firm characteristics and our displacement
measure. The data spans from 1980 to 2015. All independent variables are standardized within
each industry category and year, and all standard errors are clustered at the firm-year level. An
asinh transformation is applied to capital and R&D expenditures to stable the variance and allow
for non-positive values.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.014∗∗∗ -0.022∗∗∗ -0.027∗∗∗ -0.030∗∗∗ -0.036∗∗∗ -0.046∗∗∗ -0.051∗∗∗

(0.002) (0.003) (0.005) (0.006) (0.008) (0.008) (0.009)

profitability t -0.012∗∗∗ -0.029∗∗∗ -0.042∗∗∗ -0.050∗∗∗ -0.058∗∗∗ -0.058∗∗∗ -0.065∗∗∗

(0.004) (0.005) (0.007) (0.008) (0.009) (0.010) (0.012)

log asset growth 0.071∗∗∗ 0.086∗∗∗ 0.099∗∗∗ 0.101∗∗∗ 0.107∗∗∗ 0.112∗∗∗ 0.113∗∗∗

(0.004) (0.006) (0.007) (0.007) (0.008) (0.008) (0.009)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 68,628 63,110 58,210 53,836 49,921 46,454 43,346
R2 0.102 0.118 0.126 0.129 0.138 0.142 0.145

Adjusted R2 0.086 0.100 0.107 0.109 0.116 0.119 0.121

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A4: This table shows the association between IDE and profit growth after we remove
the part of IDE that can be explained by traditional firm characteristics. We control for the log
asset growth and profitability among other variables. The data spans from 1980 to 2015. All
independent variables are standardized within each industry category and year, and all standard
errors are clustered at the firm-year level.
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Dependent variable:

IDE

t + 5 t + 7 t + 10

capital expenditure -0.043 -0.050 -0.070∗

(0.029) (0.030) (0.036)
R&D expenditure -0.163∗∗ -0.107∗ -0.085

(0.064) (0.055) (0.051)
Asset total 0.147∗∗∗ 0.193∗∗∗ 0.259∗∗

(0.049) (0.066) (0.104)
Profitability -0.337∗∗∗ -0.335∗∗∗ -0.389∗∗∗

(0.091) (0.100) (0.130)

Year ✓ ✓ ✓
Ind Code ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓

Observations 50,325 40,980 30,086
R2 0.257 0.267 0.281

Adjusted R2 0.240 0.248 0.258

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
TABLE A5: This table shows the association between future IDE and firm characteristics after
we remove the first two principal components from the firm characteristics. We control for the
log asset growth and profitability among other variables. The data spans from 1980 to 2015. All
independent variables are standardized within each industry category and year, and all standard
errors are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.020∗∗∗ -0.033∗∗∗ -0.043∗∗∗ -0.048∗∗∗ -0.051∗∗∗ -0.054∗∗∗ -0.050∗∗∗

(0.005) (0.008) (0.010) (0.011) (0.012) (0.014) (0.015)

profitability t -0.007 -0.027∗∗∗ -0.035∗∗∗ -0.033∗∗∗ -0.037∗∗ -0.041∗∗ -0.049∗∗∗

(0.008) (0.009) (0.010) (0.012) (0.014) (0.015) (0.017)

log asset growth 0.066∗∗∗ 0.072∗∗∗ 0.092∗∗∗ 0.098∗∗∗ 0.103∗∗∗ 0.105∗∗∗ 0.107∗∗∗

(0.007) (0.009) (0.010) (0.011) (0.011) (0.012) (0.013)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 20,127 20,127 20,127 20,127 20,127 20,127 20,127
R2 0.151 0.170 0.181 0.185 0.189 0.189 0.185

Adjusted R2 0.102 0.122 0.134 0.138 0.142 0.141 0.137

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A6: This table shows the association between IDE and profit growth among innovative
firms (those who received at least 10 patents over our time interval). We control for the log asset
growth and profitability among other variables. The data spans from 1980 to 2015. All indepen-
dent variables are standardized within each industry category and year, and all standard errors
are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.017∗∗∗ -0.030∗∗∗ -0.044∗∗∗ -0.054∗∗∗ -0.064∗∗∗ -0.071∗∗∗ -0.077∗∗∗

(0.002) (0.003) (0.004) (0.005) (0.006) (0.007) (0.008)

profitability t -0.012∗∗∗ -0.028∗∗∗ -0.041∗∗∗ -0.053∗∗∗ -0.063∗∗∗ -0.066∗∗∗ -0.072∗∗∗

(0.003) (0.005) (0.006) (0.008) (0.009) (0.010) (0.011)

log asset growth 0.075∗∗∗ 0.088∗∗∗ 0.097∗∗∗ 0.096∗∗∗ 0.098∗∗∗ 0.102∗∗∗ 0.101∗∗∗

(0.003) (0.005) (0.006) (0.007) (0.009) (0.009) (0.009)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 98,340 88,429 79,638 71,838 64,948 58,823 53,279
R2 0.103 0.123 0.134 0.141 0.152 0.158 0.165

Adjusted R2 0.092 0.111 0.121 0.126 0.136 0.140 0.145

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A7: This table shows the association between IDE and profit growth among non-
innovative firms (those who received fewer than 10 patents over our time interval). We control for
the log asset growth and profitability among other variables. The data spans from 1980 to 2015.
All independent variables are standardized within each industry category and year, and all stan-
dard errors are clustered at the firm-year level.
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raw measures standardized measures

Pearson Correlation 0.96∗∗∗ 0.11∗∗∗

Kendall-Tau correlation 0.83∗∗∗ 0.06∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
TABLE A8: This table shows the correlation between the two measures: one based on patents
and technologies, and an alternative purely based on patents. The left column shows the Pearson
and Kendall-Tau correlation between the two measures as their raw values, and the right column
shows the correlation between the two measures once standardized in each year and industry
category. The sample is for innovative firms where the alternative patent-based measure is well-
defined.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

Original IDE -0.017∗∗∗ -0.029∗∗∗ -0.038∗∗∗ -0.042∗∗∗ -0.045∗∗∗ -0.047∗∗∗ -0.043∗∗∗

(0.004) (0.007) (0.009) (0.010) (0.011) (0.013) (0.014)

Alternative IDE -0.009∗∗ -0.020∗∗∗ -0.027∗∗∗ -0.031∗∗∗ -0.033∗∗∗ -0.039∗∗∗ -0.045∗∗∗

(0.003) (0.005) (0.006) (0.008) (0.009) (0.011) (0.012)

profitability t -0.010 -0.030∗∗∗ -0.039∗∗∗ -0.040∗∗∗ -0.044∗∗∗ -0.047∗∗∗ -0.054∗∗∗

(0.007) (0.008) (0.009) (0.011) (0.013) (0.014) (0.016)

log asset growth 0.065∗∗∗ 0.072∗∗∗ 0.091∗∗∗ 0.099∗∗∗ 0.106∗∗∗ 0.108∗∗∗ 0.110∗∗∗

(0.006) (0.008) (0.009) (0.010) (0.011) (0.012) (0.013)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 25,529 25,529 25,529 25,529 25,529 25,529 25,529
R2 0.156 0.175 0.186 0.191 0.194 0.191 0.185

Adjusted R2 0.116 0.136 0.148 0.153 0.156 0.153 0.146

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A9: This table shows the association between the original and alternative IDE measures
and profit growth. We control for the log asset growth and profitability among other variables.
The data spans from 1980 to 2015, and the set only covers innovative firms. All independent
variables are standardized within each industry category and year, and all standard errors are
clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.014∗∗∗ -0.022∗∗∗ -0.032∗∗∗ -0.039∗∗∗ -0.044∗∗∗ -0.047∗∗∗ -0.053∗∗∗

(0.002) (0.005) (0.006) (0.006) (0.008) (0.009) (0.011)

profitability t -0.004 -0.017∗∗∗ -0.029∗∗∗ -0.036∗∗∗ -0.045∗∗∗ -0.045∗∗∗ -0.048∗∗∗

(0.003) (0.005) (0.007) (0.008) (0.010) (0.011) (0.013)

log asset growth 0.072∗∗∗ 0.084∗∗∗ 0.094∗∗∗ 0.091∗∗∗ 0.099∗∗∗ 0.105∗∗∗ 0.110∗∗∗

(0.003) (0.006) (0.006) (0.007) (0.008) (0.009) (0.010)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 52,490 47,427 43,039 39,240 35,938 33,080 30,541
R2 0.104 0.119 0.132 0.141 0.156 0.163 0.176

Adjusted R2 0.083 0.096 0.107 0.113 0.126 0.131 0.142

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A10: This table shows the association between IDE and profit growth among firms with
high intangible capital. We control for the log asset growth and profitability among other vari-
ables. The data spans from 1980 to 2015. All independent variables are standardized within each
industry category and year, and all standard errors are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.016∗∗∗ -0.031∗∗∗ -0.043∗∗∗ -0.052∗∗∗ -0.064∗∗∗ -0.075∗∗∗ -0.078∗∗∗

(0.003) (0.004) (0.005) (0.007) (0.008) (0.009) (0.010)

profitability t -0.017∗∗∗ -0.035∗∗∗ -0.044∗∗∗ -0.046∗∗∗ -0.053∗∗∗ -0.057∗∗∗ -0.062∗∗∗

(0.006) (0.008) (0.011) (0.012) (0.014) (0.015) (0.017)

log asset growth 0.074∗∗∗ 0.081∗∗∗ 0.089∗∗∗ 0.090∗∗∗ 0.087∗∗∗ 0.089∗∗∗ 0.087∗∗∗

(0.004) (0.007) (0.007) (0.010) (0.010) (0.010) (0.011)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 52,445 48,630 45,140 41,951 39,090 36,491 34,115
R2 0.121 0.145 0.160 0.168 0.180 0.187 0.189

Adjusted R2 0.100 0.123 0.136 0.143 0.153 0.159 0.159

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A11: This table shows the association between IDE and profit growth among firms with
low intangible capital. We control for the log asset growth and profitability among other variables.
The data spans from 1980 to 2015. All independent variables are standardized within each indus-
try category and year, and all standard errors are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.011∗∗∗ -0.018∗∗∗ -0.032∗∗∗ -0.040∗∗∗ -0.048∗∗∗ -0.051∗∗∗ -0.056∗∗∗

(0.003) (0.004) (0.005) (0.007) (0.009) (0.011) (0.012)

profitability t -0.001 -0.016∗∗∗ -0.033∗∗∗ -0.044∗∗∗ -0.053∗∗∗ -0.056∗∗∗ -0.065∗∗∗

(0.004) (0.006) (0.007) (0.008) (0.009) (0.011) (0.013)

log asset growth 0.063∗∗∗ 0.068∗∗∗ 0.072∗∗∗ 0.063∗∗∗ 0.062∗∗∗ 0.064∗∗∗ 0.064∗∗∗

(0.004) (0.007) (0.008) (0.009) (0.010) (0.009) (0.010)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 55,923 49,629 44,263 39,675 35,730 32,375 29,412
R2 0.111 0.131 0.146 0.154 0.167 0.175 0.184

Adjusted R2 0.091 0.109 0.122 0.127 0.137 0.143 0.149

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A12: This table shows the association between IDE and profit growth among firms with
below median market capitalization. We control for the log asset growth and profitability among
other variables. The data spans from 1980 to 2015. All independent variables are standardized
within each industry category and year, and all standard errors are clustered at the firm-year
level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.017∗∗∗ -0.032∗∗∗ -0.041∗∗∗ -0.049∗∗∗ -0.060∗∗∗ -0.069∗∗∗ -0.073∗∗∗

(0.003) (0.004) (0.005) (0.006) (0.007) (0.007) (0.008)

profitability t -0.005 -0.013∗∗ -0.019∗∗ -0.024∗∗∗ -0.030∗∗∗ -0.032∗∗∗ -0.036∗∗∗

(0.004) (0.006) (0.007) (0.008) (0.008) (0.009) (0.011)

log asset growth 0.073∗∗∗ 0.086∗∗∗ 0.100∗∗∗ 0.108∗∗∗ 0.110∗∗∗ 0.112∗∗∗ 0.110∗∗∗

(0.004) (0.005) (0.006) (0.008) (0.008) (0.009) (0.010)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 61,416 57,857 54,501 51,367 48,503 45,811 43,297
R2 0.151 0.181 0.191 0.195 0.204 0.206 0.207

Adjusted R2 0.134 0.163 0.172 0.175 0.183 0.184 0.184

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A13: This table shows the association between IDE and profit growth among firms with
at or above median market capitalization. We control for the log asset growth and profitability
among other variables. The data spans from 1980 to 2015. All independent variables are standard-
ized within each industry category and year, and all standard errors are clustered at the firm-year
level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.014∗∗∗ -0.025∗∗∗ -0.037∗∗∗ -0.044∗∗∗ -0.050∗∗∗ -0.058∗∗∗ -0.062∗∗∗

(0.002) (0.004) (0.005) (0.006) (0.008) (0.009) (0.010)

profitability t -0.006 -0.022∗∗∗ -0.033∗∗∗ -0.041∗∗∗ -0.051∗∗∗ -0.054∗∗∗ -0.059∗∗∗

(0.004) (0.006) (0.008) (0.009) (0.010) (0.011) (0.013)

log asset growth 0.079∗∗∗ 0.091∗∗∗ 0.102∗∗∗ 0.099∗∗∗ 0.103∗∗∗ 0.102∗∗∗ 0.099∗∗∗

(0.005) (0.007) (0.008) (0.010) (0.012) (0.012) (0.012)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 67,972 61,997 56,674 51,969 47,869 44,220 40,956
R2 0.095 0.115 0.131 0.140 0.152 0.159 0.167

Adjusted R2 0.084 0.103 0.119 0.127 0.137 0.144 0.150

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A14: This table shows the association between IDE and profit growth using data in the
20th century. We control for the log asset growth and profitability among other variables. The
data spans from 1980 to 1999. All independent variables are standardized within each industry
category and year, and all standard errors are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.016∗∗∗ -0.028∗∗∗ -0.038∗∗∗ -0.049∗∗∗ -0.061∗∗∗ -0.065∗∗∗ -0.070∗∗∗

(0.003) (0.004) (0.006) (0.007) (0.008) (0.010) (0.011)

profitability t -0.017∗∗∗ -0.030∗∗∗ -0.042∗∗∗ -0.051∗∗∗ -0.057∗∗∗ -0.059∗∗∗ -0.064∗∗∗

(0.005) (0.006) (0.008) (0.009) (0.010) (0.012) (0.013)

log asset growth 0.067∗∗∗ 0.080∗∗∗ 0.090∗∗∗ 0.094∗∗∗ 0.095∗∗∗ 0.102∗∗∗ 0.104∗∗∗

(0.004) (0.006) (0.008) (0.009) (0.009) (0.010) (0.011)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 50,495 46,559 43,091 39,996 37,206 34,730 32,450
R2 0.118 0.136 0.140 0.141 0.148 0.148 0.150

Adjusted R2 0.106 0.123 0.126 0.126 0.133 0.131 0.132

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A15: This table shows the association between IDE and profit growth using data in the
21st century. We control for the log asset growth and profitability among other variables. The
data spans from 2000 to 2015. All independent variables are standardized within each industry
category and year, and all standard errors are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.013∗∗∗ -0.022∗∗∗ -0.034∗∗∗ -0.041∗∗∗ -0.049∗∗∗ -0.057∗∗∗ -0.062∗∗∗

(0.003) (0.004) (0.006) (0.008) (0.009) (0.010) (0.011)

profitability t -0.140∗∗∗ -0.216∗∗∗ -0.289∗∗∗ -0.330∗∗∗ -0.361∗∗∗ -0.390∗∗∗ -0.405∗∗∗

(0.012) (0.014) (0.018) (0.021) (0.022) (0.027) (0.031)

log asset growth 0.063∗∗∗ 0.070∗∗∗ 0.078∗∗∗ 0.083∗∗∗ 0.078∗∗∗ 0.076∗∗∗ 0.078∗∗∗

0.076∗∗∗

(0.004) (0.006) (0.007) (0.008) (0.008) (0.009) (0.009)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 57,406 52,290 47,901 43,946 40,484 37,526 34,835
R2 0.129 0.163 0.181 0.189 0.200 0.212 0.220

Adjusted R2 0.110 0.142 0.159 0.166 0.175 0.185 0.191

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A16: This table shows the association between IDE and profit growth among firms with
below median profitability. We control for the log asset growth and profitability among other
variables. The data spans from 1980 to 2015. All independent variables are standardized within
each industry category and year, and all standard errors are clustered at the firm-year level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.008∗∗∗ -0.017∗∗∗ -0.025∗∗∗ -0.033∗∗∗ -0.040∗∗∗ -0.044∗∗∗ -0.048∗∗∗

(0.001) (0.003) (0.004) (0.005) (0.007) (0.008) (0.009)

profitability t -0.007∗∗ -0.012∗∗∗ -0.014∗∗ -0.018∗∗ -0.020∗∗ -0.017 -0.021∗

(0.003) (0.004) (0.006) (0.008) (0.010) (0.010) (0.011)

log asset growth 0.072∗∗∗ 0.088∗∗∗ 0.104∗∗∗ 0.112∗∗∗ 0.119∗∗∗ 0.121∗∗∗ 0.125∗∗∗

(0.003) (0.005) (0.006) (0.006) (0.009) (0.009) (0.010)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 61,061 56,266 51,864 48,019 44,591 41,424 38,571
R2 0.117 0.115 0.121 0.128 0.140 0.139 0.145

Adjusted R2 0.099 0.095 0.100 0.105 0.116 0.113 0.117

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A17: This table shows the association between IDE and profit growth among firms with
at or above median profitability. We control for the log asset growth and profitability among other
variables. The data spans from 1980 to 2015. All independent variables are standardized within
each industry category and year, and all standard errors are clustered at the firm-year level.
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Variable Mean (the rest) Mean (U.S.) t value Pr(>|t|)

Market cap -0.17 0.15 -76.40 < 2e-16 ***

Profitability -0.06 0.05 -24.63 < 2e-16 ***

Current profit (log) -0.27 0.24 -114.96 < 2e-16 ***

IDE -0.24 0.21 -89.35 < 2e-16 ***

TABLE A18: This table shows the summary statistics of the two subsamples: one is consisted of
firms in the United States with at least 1 patent, and the other one contains the rest of the data. All
values are standardized each year in the t-test.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.015∗∗∗ -0.024∗∗∗ -0.034∗∗∗ -0.041∗∗∗ -0.046∗∗∗ -0.054∗∗∗ -0.058∗∗∗

(0.002) (0.004) (0.006) (0.007) (0.008) (0.009) (0.009)

profitability t -0.011∗∗ -0.027∗∗∗ -0.037∗∗∗ -0.046∗∗∗ -0.055∗∗∗ -0.055∗∗∗ -0.062∗∗∗

(0.005) (0.006) (0.007) (0.009) (0.009) (0.010) (0.011)

log asset growth 0.067∗∗∗ 0.079∗∗∗ 0.092∗∗∗ 0.094∗∗∗ 0.096∗∗∗ 0.096∗∗∗ 0.099∗∗∗

(0.003) (0.005) (0.006) (0.007) (0.008) (0.009) (0.010)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 69,338 65,126 61,158 57,435 54,007 50,858 47,923
R2 0.107 0.126 0.136 0.143 0.149 0.153 0.160

Adjusted R2 0.091 0.109 0.118 0.124 0.130 0.132 0.138

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A19: This table shows the association between IDE and profit growth among firms in the
United States with at least 1 patent. We control for the log asset growth and profitability among
other variables. The data spans from 1980 to 2015. All independent variables are standardized
within each industry category and year, and all standard errors are clustered at the firm-year
level.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.004∗∗ -0.013∗∗∗ -0.021∗∗∗ -0.024∗∗∗ -0.032∗∗∗ -0.037∗∗∗ -0.034∗∗∗

(0.002) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 73,406 73,406 73,406 73,406 73,406 73,406 73,406
R2 0.0001 0.0003 0.001 0.001 0.001 0.001 0.001

Adjusted R2 0.0001 0.0003 0.001 0.001 0.001 0.001 0.001

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE A20: This table shows the effect of IDE on profit growth identified by an XGBoost-based
debiased machine learning algorithm. The data spans from 1980 to 2015. All independent vari-
ables are standardized within each industry category and year. All fixed effects are included in
the XGBoost model.
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Dependent variable:

Baseline Additional percent change in profit per year

(1) (2)

IDE -0.003 -0.005∗∗∗

(0.003) (0.001)

Observations 513,842
R2 0.001

Adjusted R2 0.001

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
TABLE A21: This table shows the growth of the effect of IDE on profit growth over time using
the debiased machine learning approach and XGBoost. We control for the log asset growth and
profitability among other variables. The data spans from 1980 to 2015. All independent variables
are standardized within each industry category and year, and all standard errors are clustered at
the firm-year level.
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Variable Estimate s.e. t value Pr(>|t|)

CAPM 0.5396 0.111 4.862 < 2e-16 ***

Fama-French 3 0.4597 0.110 4.179 < 2e-16 ***

Fama-French 5 0.3049 0.111 2.755 0.006 ***

Fama-French 5 and momentum 0.2629 0.111 2.372 0.018***

number of observations 432

TABLE A22: This table shows the alpha of the IDE long-short portfolio after controlling for tradi-
tional asset pricing factors. The return data is from 1981 to 2016.
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Variable Estimate s.e. t value Pr(>|t|)

capital stock (log) 4.8148 6.196 0.777 0.438

current employment (log) 0.2260 5.327 0.042 0.966

current profit (log) -7.0916 8.941 -0.793 0.428

profitability 10.7642 3.785 2.844 0.005 ***

asset growth (log) -3.3637 1.478 -2.276 0.023 **

total asset 7.4112 8.277 0.895 0.371

capital expenditures (asinh) -3.0508 4.400 -0.693 0.488

R&D expenditures (asinh) 3.1984 3.290 0.972 0.332

market capitalization 0.9682 6.126 0.158 0.875

number of observations 420

TABLE A23: This table shows the association of average firm characteristics and the current
return of the short side of the IDE-based portfolio. The return data is from 1981 to 2015.
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Variable Estimate s.e. t value Pr(>|t|)

capital stock (log) -1.0194 7.937 -0.128 0.898

current employment (log) -4.3701 6.134 -0.712 0.477

current profit (log) 6.3656 9.445 0.674 0.501

profitability 1.1867 4.113 0.289 0.773

asset growth (log) -0.0996 2.653 -0.038 0.970

total asset -5.8590 4.529 -1.294 0.196

capital expenditures (asinh) 1.1003 4.309 0.255 0.799

R&D expenditures (asinh) -4.9746 2.687 -1.851 0.065*

market capitalization 4.3129 4.446 0.970 0.333

number of observations 420

TABLE A24: This table shows the association of average firm characteristics and the current
return of the long side of the IDE-based portfolio. The return data is from 1981 to 2015.
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Model T = 1 Score Test Score Val
NeuralNetFastAI_BAG_L1 0.622330 0.668022
NeuralNetTorch_BAG_L1 0.616111 0.668098
XGBoost_BAG_L1 0.613623 0.665359
LightGBMLarge_BAG_L1 0.612452 0.664844
LightGBMXT_BAG_L1 0.610770 0.671361
LightGBM_BAG_L1 0.609453 0.661991
ExtraTreesEntr_BAG_L2 0.607916 0.688947
ExtraTreesGini_BAG_L2 0.603234 0.688776
CatBoost_BAG_L1 0.598844 0.690646
WeightedEnsemble_L2 0.598844 0.690646
LightGBM_BAG_L2 0.594601 0.688012
ExtraTreesEntr_BAG_L1 0.594527 0.652459
ExtraTreesGini_BAG_L1 0.591528 0.654701
CatBoost_BAG_L2 0.591381 0.702335
WeightedEnsemble_L3 0.591381 0.702335
RandomForestEntr_BAG_L2 0.587211 0.690045
RandomForestGini_BAG_L2 0.586992 0.690875
XGBoost_BAG_L2 0.580187 0.692592
LightGBMLarge_BAG_L2 0.578870 0.688384
LightGBMXT_BAG_L2 0.575285 0.691142
KNeighborsDist_BAG_L1 0.567457 0.582172
KNeighborsUnif_BAG_L1 0.567457 0.581256
NeuralNetFastAI_BAG_L2 0.567237 0.690999
RandomForestEntr_BAG_L1 0.554946 0.655407
NeuralNetTorch_BAG_L2 0.552678 0.691419
RandomForestGini_BAG_L1 0.550995 0.652936

TABLE A25: This table shows the predictive performance of all machine learning models we con-
sider in a binary classification task where we predict whether the profit of each firm will increase
in the next 1 year. The models are ranked from best to worst based on their test accuracy.
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Model T = 3 Score Test Score Val
ExtraTreesEntr_BAG_L2 0.633051 0.785706
ExtraTreesGini_BAG_L2 0.632967 0.786139
WeightedEnsemble_L2 0.632127 0.777522
ExtraTreesEntr_BAG_L1 0.627257 0.713099
ExtraTreesGini_BAG_L1 0.626165 0.716035
LightGBMLarge_BAG_L1 0.626081 0.747826
CatBoost_BAG_L2 0.625829 0.795040
WeightedEnsemble_L3 0.625829 0.795040
RandomForestEntr_BAG_L2 0.625745 0.788870
LightGBM_BAG_L2 0.623814 0.786628
LightGBMXT_BAG_L2 0.623226 0.789132
XGBoost_BAG_L2 0.622890 0.789519
LightGBMLarge_BAG_L2 0.622806 0.787823
LightGBM_BAG_L1 0.622302 0.741031
RandomForestGini_BAG_L2 0.621799 0.786992
LightGBMXT_BAG_L1 0.620455 0.700123
CatBoost_BAG_L1 0.620119 0.762077
RandomForestEntr_BAG_L1 0.619783 0.715056
RandomForestGini_BAG_L1 0.617852 0.715159
XGBoost_BAG_L1 0.617096 0.685349
NeuralNetTorch_BAG_L2 0.613738 0.788688
NeuralNetTorch_BAG_L1 0.613654 0.678997
NeuralNetFastAI_BAG_L2 0.612562 0.770909
NeuralNetFastAI_BAG_L1 0.609455 0.740667
KNeighborsUnif_BAG_L1 0.571417 0.609520
KNeighborsDist_BAG_L1 0.570829 0.611649

TABLE A26: This table shows the predictive performance of all machine learning models we con-
sider in a binary classification task where we predict whether the profit of each firm will increase
in the next 3 years. The models are ranked from best to worst based on their test accuracy.
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Model T = 5 Score Test Score Val
ExtraTreesGini_BAG_L2 0.643922 0.838938
ExtraTreesEntr_BAG_L2 0.643253 0.839541
NeuralNetFastAI_BAG_L2 0.643157 0.830936
RandomForestGini_BAG_L2 0.639430 0.840801
NeuralNetTorch_BAG_L2 0.639048 0.840332
LightGBMXT_BAG_L2 0.638284 0.839957
WeightedEnsemble_L2 0.637806 0.834448
CatBoost_BAG_L2 0.637041 0.851818
WeightedEnsemble_L3 0.637041 0.851818
RandomForestEntr_BAG_L2 0.636755 0.840466
LightGBMLarge_BAG_L2 0.635990 0.839876
XGBoost_BAG_L2 0.635799 0.841779
LightGBM_BAG_L2 0.635321 0.838791
LightGBMLarge_BAG_L1 0.632263 0.797979
ExtraTreesEntr_BAG_L1 0.627867 0.757743
ExtraTreesGini_BAG_L1 0.624904 0.760759
NeuralNetFastAI_BAG_L1 0.624618 0.814907
LightGBM_BAG_L1 0.624427 0.794266
CatBoost_BAG_L1 0.624235 0.807187
RandomForestEntr_BAG_L1 0.623089 0.747356
RandomForestGini_BAG_L1 0.621464 0.747236
XGBoost_BAG_L1 0.620413 0.708783
LightGBMXT_BAG_L1 0.616399 0.736621
NeuralNetTorch_BAG_L1 0.606843 0.693544
KNeighborsUnif_BAG_L1 0.582378 0.634303
KNeighborsDist_BAG_L1 0.582187 0.636917

TABLE A27: This table shows the predictive performance of all machine learning models we con-
sider in a binary classification task where we predict whether the profit of each firm will increase
in the next 5 years. The models are ranked from best to worst based on their test accuracy.
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B Validity checks against the potential look-ahead bias of

GPT4o

One of the components of our first displacement measure is a set of descriptions of the
technologies used by each firm each year. These technologies are generated by GPT4o
following a prompt that specifies the firm and year (the exact prompt is shown in section
2). A potential concern of this approach is the look-ahead bias in the GPT4o-generated
summaries. In our main analysis, we developed a purely patent-based alternative IDE
measure to alleviate this concern, as this measure does not ask GPT4o to retrieve hid-
den information from its knowledge base. In this subsection, we first present two other
approaches we take that show GPT4o is aware of the temporal ordering of technologies.
Then, we develop another set of technology descriptions based on 10K filings and patents
and show that the resulting IDE values are highly correlated with the IDE values com-
puted using GPT4o-generated technology descriptions.

B.1 10K-based ordering of technologies

We use the SEC 10K filings as a data source of technology descriptions with a definitive
time stamp. We first randomly select 500 firm-year pairs in our dataset. Then, we extract
the 10K filing for each firm in the corresponding year. Some firms are foreign issuers and
do not file for 10K. Therefore, after removing these firms, we have a set of 304 firm-year
pairs. For each pair, we also download the 10K filing of the firm from 3 years ago. Then,
we pass each 10K file to GPT4o and ask it to summarize the technologies based on each
document:

This file is a 10K form summarizing the performance of a firm in a year. Please read
this website and summarize the technologies used by this firm this year in its day
to day operations and research. Use no more than 500 tokens. Do not include any
information about the year. Be as specific as possible and give a lot of details. For
each technology, mention whether or not it was considered legacy in the field in t and
whether or not there were disruptive technologies that could replace it. If there was a
risk of disruption, mention companies and technologies that were threatening to the
given technology: [Downloaded file]

Then, each pair of summaries from the same firm 3 years apart is passed to GPT4o,
and we ask GPT4o to determine which one is from an earlier year. The order of the two
documents is randomized: half of the time, the summary of the earlier document appears
first in the prompt, and the other times, the later one appears first. We use the prompt:
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Given these two summaries above, tell me which one is from an earlier year: [newline]
First summary: [first summary] [newline] Second summary: [second summary].

Lastly, we compare the GPT4o ordering and the correct ordering.
As an example, take the firm Apple and the year 2010, we first download the 10K

filings of Apple in 2010 and 2007. Then, we ask GPT4o to create a short summary for
each 10K document focusing on the technologies described in the corresponding filing.
Next, we pass these two summaries to GPT4o in a randomized order. For example, if we
randomly pick the summary based on the 2010 filing as the first one in the prompt. Our
query to GPT4o would be

Given these two summaries above, tell me which one is from an earlier year: [new-
line] First summary: [Apple 2010 technology summary] [newline] Second summary:
[Apple 2007 technology summary].

Then, we check if the response is that the second summary is from an earlier year.
We apply this process to the entire sample of firm-year pairs, and we observe that

GPT4o gives the correct time ordering of the two technology summaries over 90% of the
time. More specifically, the accuracy is balanced regardless of whether or not the earlier
summary appears first in the prompt. When the earlier document appears first, GPT4o’s
accuracy is 91%, and when the later one appears first, GPT4o’s accuracy is 92%. The two
numbers are not statistically different.

B.2 GPT4o description-based ordering of technologies

Next, we test whether GPT4o can correctly order technologies based on the summaries
we use to construct our displacement measure (discussed in section 2).

We conduct this test at two levels of varying difficulty. First, we select technology
summaries from the same firm 5 years apart. Then, to increase the difficulty, we choose
summaries that are 3 years apart. In each test, we randomly select 500 firm-year pairs first
and then find the corresponding earlier documents. We drop the ones that do not have a
match (the firms were not included 5 or 3 years ago).

In particular, given two summaries, we use the following prompt:

You are an economist reading descriptions of technologies used by firm in daily oper-
ations and research. You will read two summaries and tell me which one is from an
earlier year. Respond with 1 if the earlier one is the first summary and 0 if the earlier
one is the second summary. Do not include any words or symbols, just use an integer:
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[newline] First summary: <summary 1>

[newline] Second summary:<summary 2>

Similar to the exercise we did with 10K files, the order of the first and second summaries
is randomized: half of the time, the earlier summaries appear first, and in the other cases,
the later summaries appear first. Overall, we observe that when the 2 documents are 5
years apart, GPT4o correctly orders them 77% of the time. In particular, when the earlier
summary appears first, GPT4o correctly identifies it as the earlier one 99% of the time.
When the separation is only 3 years, GPT4o achieves a 67% accuracy and 95% when the
earlier summary appears first. Note that in both the 5-year and 3-year tests, the technol-
ogy summaries are similar, so this task is challenging even for humans.

These exercises show that GPT4o understands the time ordering of technologies at a
high accuracy.

B.3 Technology descriptions based on 10K filings and patents

In this section, we generate technology descriptions by combining summaries of 10K fil-
ings and patents. First, we take a random 20% of all firms and extract their 10K filings
from the SEC Edgar website. Then, for this subset of data, we concatenate the patent sum-
maries with the 10K summaries (tailored toward daily technologies) to form technology
descriptions. Given a 10K filing in year t, we use the following prompt to ask GPT4o to
summarize the document:

You are an economist studying firms’ innovation. Summarize the following 10-K file
focusing on technologies used by this firm in its day-to-day operations and research.
First, give an overview and then discuss each technology. Describe whether or not each
technology is legacy in year t. If it is describe which technologies in that year could be
disruptive of this technology. The summary should be no more than 2 paragraphs or
500 tokens. The 10k file is the following: +[10K]

Then, similar to the main IDE measure discussed in section 2, we concatenate technol-
ogy summaries in years t, t − 1, · · · , t − 4 to for the firm’s technology description in year
t and compute its embedding.
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raw measures standardized measures

Pearson Correlation 0.89∗∗∗ 0.42∗∗∗

Kendall-Tau correlation 0.75∗∗∗ 0.29∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
TABLE B28: This table shows the correlation between the two measures: one based on patents
and technologies, and an alternative based on 10Ks and patents. The left column shows the Pear-
son and Kendall-Tau correlation between the two measures as their raw values, and the right
column shows the correlation between the two measures once standardized in each year and in-
dustry category.

Similar to section 5, we compute the Pearson and Kendall-Tau correlations between
this alternative IDE and our main measure. As shown in table B28. These two mea-
sures are highly positively correlated both in their raw form or when standardized each
year and industry category. The raw values have a Pearson correlation of over 0.8 and
a Kendall-Tau (rank) correlation of over 0.7. These correlations remain high when we
standardize the two versions of IDE in each year and industry. The Pearson correlation
becomes 0.4 and Kendall-Tau is around 0.3.

C Nonlinear IDE

Our definition of IDE in equation 1 assumes that the magnitude of exposure scales lin-
early with the cosine similarity between firm j’s innovations and firm i’s technologies. In
this section, we relax this assumption and develop a measure where the cosine similar-
ity enters the function nonlinearly. While potentially less economically interpretable, this
measure is more strongly predictive of profit growth. To construct this measure, we eval-
uate over 20 machine learning models and select the one with the best performance on
testing data. These models use modified IDE values with varying degrees of nonlinearity
as inputs, and predict the next year’s profit growth as targets.15 The resulting predictions
form our new IDE measure, which scales nonlinearly with respect to the similarities.

15These modified IDEs mostly follow the definition in equation 1 except the cosine similarity term is
replaced with cos, cos2, cos3, cos

1
3 , and cos

1
5 .
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We randomly split 80% of the data for training and validation, and the other 20% is
used for testing. As shown by table C29, the neural network implementation using FastAI
achieves the highest testing performance in terms of mean-squared-error. Therefore, we
use the predictions of this model as our nonlinear IDE measure.16

We evaluate the informativeness of this measure using the 20% testing data. More
specifically, we run the regression in our main study specified by equation 2 where the
negative of the nonlinear IDEs (model predictions) are used to replace the original IDEs
in the regression. We use the negative of the predictions because these model predictions
are meant to be positively correlated with profit growth; however, our IDE measure is
intended to have a negative association with profit growth. As a sanity check, we observe
that our main IDE measure is significantly negatively associated with the model predic-
tions. Comparing the results with the new nonlinear measure shown in table C30 and the
original main result in table A1, we observe that the nonlinear measure is significantly
negatively associated with profit growth similar to our main measure: each standard de-
viation increase in the nonlinear IDE measure is associated with a 1.1% decrease in profit
growth in year 1 and 5.1% by year 7.

16Similar to section 8, we compute the importance of each input in this best model. We see that all ver-
sions of IDE (cosine, squared cosine, cubic cosine, cubic root of cosine, fifth root of cosine) are significantly
important, and cubic of cosine is the most important one.
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Model Score Test Score Val
NeuralNetFastAI_BAG_L2 -0.477185 -0.488348
CatBoost_BAG_L2 -0.477199 -0.488263
NeuralNetTorch_BAG_L1 -0.477202 -0.488219
WeightedEnsemble_L2 -0.477208 -0.488205
WeightedEnsemble_L3 -0.477225 -0.487909
NeuralNetFastAI_BAG_L1 -0.477226 -0.488225
NeuralNetTorch_BAG_L2 -0.477230 -0.488194
LightGBMXT_BAG_L2 -0.477232 -0.488264
CatBoost_BAG_L1 -0.477256 -0.488300
LightGBMXT_BAG_L1 -0.477265 -0.488280
LightGBM_BAG_L2 -0.477283 -0.488369
LightGBM_BAG_L1 -0.477285 -0.488415
XGBoost_BAG_L1 -0.477291 -0.488462
XGBoost_BAG_L2 -0.477354 -0.488425
LightGBMLarge_BAG_L1 -0.477371 -0.488535
LightGBMLarge_BAG_L2 -0.477409 -0.488465
ExtraTreesMSE_BAG_L2 -0.480714 -0.497547
RandomForestMSE_BAG_L2 -0.480758 -0.495065
ExtraTreesMSE_BAG_L1 -0.495232 -0.505290
RandomForestMSE_BAG_L1 -0.498903 -0.509182
KNeighborsUnif_BAG_L1 -0.525793 -0.534826
KNeighborsDist_BAG_L1 -0.532000 -0.539883

TABLE C29: This table shows the performance of all machine learning models when we use non-
linear similarities to construct an alternative IDE measure that predicts next year’s profit growth.
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D Neural Networks and GPT

D.1 Introduction to Neural Networks

We begin by exploring a basic neural network: a linear neural network with a single
hidden layer. This network is characterized by three dimensions: input dimension dimin,
hidden dimension dimh, and output dimension dimout.

This one-hidden-layer network involves two mappings. The first mapping translates
the input space into the hidden space. Formally, if the input data is denoted as X, then
the hidden space H is given by

H = f1(X) = XW1 + B1,

where W1 and B1 are trainable matrices of parameters.
The second mapping converts the hidden space H into the output space Y:

Y = f2(H) = f2( f1(X)) = (XW1 + B1)W2 + B2,

= XW1W2 + B1W2 + B2,

where W2 and B2 are also trainable matrices of parameters.

X11 X13X12

H11 H12

Y11

Input

First Linear Mapping

Nonlinear Activation

Second Linear Mapping

Output

Figure C1: Diagram of a one-hidden-layer neural network with a nonlinear activation
function. The top green circles represent the inputs, which are three-dimensional vectors
in this figure. The turquoise circles in the middle represent the nodes in the hidden layer,
and the blue circle at the bottom represents the output.

As illustrated in Figure C1, this simple linear network can be extended by introducing
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a nonlinear activation function g(·). When the activation function is applied to the first
mapping, the output of the first mapping (the hidden space) becomes

H = g( f1(X)) = g(XW1 + B1).

In a similar manner, applying a nonlinear activation function after any mapping adds
nonlinearity to the linear transformation, enabling neural networks to more effectively
model complex relationships between the input X and output Y.

D.2 Introduction to GPT-4

In this section, we delve into the key components of GPT-4. We begin by discussing the
decoder architecture, which forms the foundation of models such as those in the GPT
family. Following this, we explain the self-attention mechanism that empowers GPT-4 to
consider the context when generating new text. We then explore the pre-training process
for GPT-4’s base model, and conclude by highlighting the advancements that GPT-4 (and
3.5) brings over its predecessors.

D.2.1 Decoder

The original Transformer architecture was conceived for tasks like machine translation,
utilizing both an encoder and a decoder. In a typical transformer-based translation model,
the encoder generates a numerical representation of the input up to token t + 1, where
the (t + 1)th token is the next to be translated. The decoder then uses this encoder output
along with a numerical representation of the t translated words to predict the translation
of the (t + 1)th word. However, GPT employs a modified version of the Transformer
architecture that includes only the decoder component. This design centers exclusively
on generating a numerical representation of the already generated text and predicting the
next token, which is ideal for tasks such as text completion and generation.

The decoder in GPT models comprises four essential components: positional encod-
ing, self-attention layers, position-wise feedforward networks, and layer normalization
with residual connections. We will briefly discuss each of these components before focus-
ing on the self-attention layer, which is the core mechanism driving the model’s capabili-
ties.

In the Generative Pre-trained Transformer (GPT) model architecture, positional en-
coding is vital for providing information about the sequence position of tokens. The
Transformer architecture does not inherently account for the order of tokens, so posi-
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tional encoding ensures that the model can distinguish tokens based on their positions
within a sequence.

Positional encoding involves adding fixed-length vectors to the input token embed-
dings before feeding them into the model. These positional embeddings encode posi-
tional information relative to other tokens in the sequence. GPT uses sinusoidal functions
to generate these embeddings:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
PE(pos,2i+1) = cos

( pos
100002i/dmodel

)
,

where PE(pos,2i) are the positional embeddings for tokens at even positions, PE(pos,2i+1) are
the positional embeddings for tokens at odd positions, and dmodel is the dimensionality
of the embeddings (1,536 dimensions for GPT-4).

These positional encoding vectors are combined with the input embeddings of to-
kens, injecting positional information into the model’s representation of the input. By
incorporating positional encoding, GPT ensures that the model can effectively capture
the sequence structure and relationships between tokens based on their positions.

Additionally, the decoder is composed of multiple layers of self-attention mechanisms.
Each layer processes the input sequence independently and captures dependencies within
the sequence. The self-attention mechanism allows the model to assign different impor-
tance to each token based on its relevance to other tokens in the sequence, enabling the
model to understand context and generate coherent and contextually appropriate text.

After the self-attention layers, each position in the sequence passes through a position-
wise feedforward neural network. This network consists of fully connected layers with
non-linear activation functions, enabling the model to capture complex patterns and in-
teractions in the data. The position-wise feedforward networks refine the token represen-
tations, incorporating both local and global context information.

To further stabilize training and improve the flow of gradients, GPT incorporates layer
normalization and residual connections after each self-attention layer and position-wise
feedforward network. Layer normalization normalizes the activations within each layer,
reducing internal covariate shifts and enhancing training stability. Residual connections
allow gradients to bypass certain layers, mitigating the vanishing or exploding gradient
problem that can arise in deep neural networks.
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D.2.2 Self-attention

The purpose of the self-attention mechanism is to generate a numerical embedding for
each piece of text while accounting for the contextual relationships among all tokens in
the text. Specifically, the raw input to the attention mechanism is a piece of text T. This
text is divided into sub-word tokens through a process called tokenization. The tokeniza-
tion process relies on a predefined set of tokens that can be combined to represent a vast
number of unique words. For example, the prefix "un" is a token in many models because
it negates the meaning of many other sub-word tokens, such as “happy.” Other tokens
may represent short and common words like “and.”

After tokenization, each token is assigned an initial embedding that combines the to-
ken’s semantic meaning and its position within the text. This results in a set of initial
embeddings:

EMB0 = [[BOS], t1, . . . , tN, [EOS]],

where ti represents the embedding for a token i, “[BOS]” (beginning of sentence) denotes
the start of the sentence, and “[EOS]” (end of sentence) signifies the sentence’s conclusion.

Head 1 Head 2

Key

Query

Value

New embedding

Figure C2: Diagram of a multi-head attention layer

As shown in Figure C2, a multi-head self-attention layer processes an embedding as
input and produces a refined embedding as output. The input embedding is passed
through three parallel linear mappings to form three matrices: the key matrix, the query
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matrix, and the value matrix.

Q = EMB0WQ,

K = EMB0WK,

V = EMB0WV ,

where Q, K, and V are trainable parameter matrices. For each query, a cosine similarity
score is calculated between the query and all keys, including the query itself. The value
of the token is then represented as a weighted combination of all the token values in the
text, with the weights determined by the cosine similarities between queries and keys.
Mathematically, this is represented as:

Attention(EMB0) = softmax(QKT)V.

In the GPT model, the attention mechanism is typically computed as:

Attention(EMB0) = softmax
(

QKT
√

dk

)
V,

where dk is a scaling factor equal to the number of columns in K. To enhance the model’s
capacity to capture various aspects of the input, the embeddings EMB0 are often divided
into multiple sub-vectors of equal size. Attention is computed for each sub-vector in-
dependently, and the results are concatenated to produce a multi-head attention output
for the input embedding. This attention mechanism is typically repeated multiple times,
with the output of the (i − 1)th attention layer being normalized and combined with its
input to serve as the input for the ith attention layer. In GPT-4, each embedding has 1,536
dimensions.

D.2.3 Pre-training

GPT is trained using the autoregressive language modeling task, which involves predict-
ing the next token in a sequence based on its preceding context. This task is mathemati-
cally formulated as maximizing the log-likelihood of observing the next token xi+1 given
the preceding tokens x1, x2, . . . , xi and the model parameters θ. The objective can be ex-
pressed as:

Lpretrain(θ) =
n−1

∑
i=1

log P(xi+1|x1, x2, . . . , xi; θ),
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where Lpretrain(θ) represents the training objective, and θ denotes the model’s parameters.
The goal of this pre-training task is to enable the model to learn the intricate patterns

and dependencies present in natural language. By predicting the next token based on its
context, GPT captures both syntactic and semantic structures, allowing it to generate text
that adheres to grammatical rules and maintains coherence. The autoregressive nature of
the training process further encourages the model to understand long-range dependen-
cies, enabling it to consider information across a wide span of tokens.

Through backpropagation and gradient descent, the model gradually adjusts its pa-
rameters to minimize the negative log-likelihood of the next token, improving its ability
to capture nuanced linguistic patterns and generate coherent, contextually appropriate
text. The following list includes some of the data sources used to pretrain the base model
of GPT-4:

1. Common Crawl: A vast dataset consisting of web pages collected from across the
Internet, offering a broad variety of text data.

2. Wikipedia: Articles from Wikipedia in various languages and domains, providing
structured and comprehensive information on a wide range of topics.

3. BooksCorpus: A collection of books spanning different genres and authors, allow-
ing the model to learn from literary works and fictional narratives.

D.2.4 Reinforcement Learning with Human Feedback (RLHF)

GPT-4 significantly enhances its text generation capabilities through a process known as
reinforcement learning with human feedback (RLHF). This method involves training the
model not only through traditional supervised learning but also by incorporating direct
feedback from human evaluators to fine-tune its behavior.

In the RLHF framework, GPT-4 generates text samples based on its current model, and
these samples are then evaluated by human judges or annotators. The human feedback
provided acts as a reward signal, guiding the model towards generating higher-quality
text over time.

Formally, consider a set S representing all possible text samples that GPT-4 can gener-
ate. The model produces text samples according to its current policy πθ, which is param-
eterized by θ. Each generated sample s ∈ S is then evaluated by human judges, resulting
in a feedback signal r(s). This feedback signal r(s) reflects the quality and desirability of
the generated text, as determined by human evaluators.
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The objective of GPT-4 in this framework is to learn an optimal policy πθ that maxi-
mizes the expected cumulative reward across the distribution of text samples. Mathemat-
ically, this can be represented as the following optimization problem:

max
θ

Es∼πθ
[r(s)],

where Es∼πθ
[r(s)] denotes the expected reward across the distribution of text samples

generated by the model.
To achieve this, GPT-4 employs policy gradient methods, a class of algorithms in re-

inforcement learning that adjust the model’s parameters θ based on the gradient of the
expected reward. The model iteratively updates its policy to increase the likelihood of
generating text that receives positive feedback from human judges.

The RLHF process involves multiple iterations of text generation, evaluation, and
feedback, which gradually refine the model’s behavior. By directly incorporating human
judgments into the training loop, GPT-4 learns to align its text generation more closely
with human preferences, producing text that is not only syntactically correct but also
contextually relevant, coherent, and aligned with desired outcomes.

Moreover, RLHF enables GPT-4 to address complex generation tasks where the quality
of output cannot be easily quantified by automated metrics alone. By leveraging human
expertise, the model can better understand and adapt to nuanced requirements, leading
to more effective and reliable text generation.

E Debiased machine learning

In this section, we discuss the debiased machine learning in more detail. First, we ex-
plain the overview and then we discuss more details about the cross-fitting technique
and Neymann orthogonality condition.

E.1 Overview

The debiased machine learning method proposed in Chernozhukov et al. (2018) is de-
signed to address the challenges posed by high-dimensional nuisance parameters in the
estimation of low-dimensional parameters of interest. In our study, we control for con-
tinuous confounders such as current profit and current employment and we also control
for over 1000 discrete variables covering inter-industrial and inter-temporal variations in
the data. Traditional approaches often suffer from biases introduced by regularization
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techniques necessary to handle high-dimensional data, leading to inconsistent estimates.
To mitigate this issue, the method leverages cross-fitting. Cross-fitting is a technique that
further reduces bias by splitting the data into multiple folds. The nuisance parameters are
estimated in one part of the data and then used to estimate the parameter of interest in
another part. This process is repeated across different folds, and the results are averaged
to obtain the final estimate. In our study, we do cross-fitting in two folds as discussed in
section 6.6.

In our application, we aim to estimate the association between IDE and profit growth
values over each of the next 7 years while controlling for a large set of confounders X
(including profit, employment, year, industry, etc). In this debiased machine learning ap-
proach, we model IDE and profit growth as non-parametric functions of the confounders.

IDE f ,t =gT(x f ,t) + ϵT
f ,t (12)

Π f ,t+1 − Π f ,t =g1
O(x f ,t) + ϵ1,O

f ,t (13)
...

Π f ,t+7 − Π f ,t =g7
O(x f ,t) + ϵ7,O

f ,t (14)

There are 7 parameters of interest denoted by τIDE
k :

ϵ1,O
f ,t =τIDE

1 ϵT
f ,t + ϵ1, f ,t (15)

...

ϵ7,O
f ,t =τIDE

7 ϵT
f ,t + ϵ7, f ,t (16)

where ϵk,O
f ,t and ϵT

f ,t are the residuals estimated in system 12, and ϵk, f ,t are the unexplained
variations in 15. The intuition of this debiased machine learning method can be explained
in two steps. First, we remove any information in the treatment and outcome variables
that are associated with the set of high-dimensional confounders. Then, the residuals cap-
ture variations in treatment and outcome that do not depend on any of the confounders.
Therefore, in the second stage, when we run a regression of the residuals of the outcome
variables on the residuals of the treatment, the resulting coefficient only captures changes
in the outcome that are associated with changes in the treatment variable.
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E.2 Implementing cross-fitting

Cross-fitting is a technique employed in debiased machine learning to reduce bias in the
estimation of parameters. The core idea is that when we use machine learning models
(gT and gk

O in system 12) to fit the entire sample, these highly complex models may lead
to overfitting of the data instead of estimating the true underlying relationships.

1. Data Splitting: The dataset is randomly divided into two disjoint subsets: Training
Set 1 and Training Set 2. Each subset is used for different purposes in the estimation
process to avoid overfitting and to mitigate the influence of bias introduced by the
machine learning methods used to estimate the nuisance parameters.

2. Nuisance Parameter Estimation:

• Training Set 1: The nuisance parameters, denoted by η, are estimated using the
observations in Training Set 1. These nuisance parameter estimates, η̂1, are then
applied to the observations in Training Set 2.

• Training Set 2: Similarly, the nuisance parameters are estimated using Training
Set 2, resulting in η̂2, which are then applied to the observations in Training Set
1.

• Treatment parameter Estimation: Pool together the predictions on the two
sets. Compute the residuals like the system of equations specified in 12, and
run another set of regressions with the residuals like system 15.

E.3 Neymann Orthogonality

The Neymann orthogonality condition ensures that the moment conditions used for es-
timating the parameter of interest are locally insensitive to the estimation errors of the
nuisance parameters. Let θ0 be the low-dimensional parameter of interest and η0 rep-
resent the high-dimensional nuisance parameters. The orthogonality condition requires
that the score function ψ(W; θ, η) satisfies:

E[ψ(W; θ0, η0)] = 0,

∂ηE[ψ(W; θ0, η0)] = 0,

where W denotes the observed data, and ∂η is the derivative with respect to η. This
condition implies that small deviations in the estimation of the nuisance parameter η do
not affect the score function’s expectation, making the estimator robust to errors in η.
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In the context of debiased machine learning (DML), the orthogonality condition is
used to construct a score function that reduces sensitivity to the regularization bias from
machine learning methods. Suppose the moment equation is defined as:

ψ(W; θ, η) = (Y − Dθ − g(X))(D − m(X)),

where g(X) = E[Y|X] and m(X) = E[D|X] are functions estimated using machine learn-
ing techniques. The DML estimator leverages the orthogonality condition by approxi-
mately removing the effect of regularization bias from the nuisance parameters, ensuring
that:

E[(D − m(X))(g(X)− ĝ(X))] ≈ 0,

where ĝ(X) is an estimator of g(X).
As shown in Chernozhukov et al. (2018), the bias term in this score function can be

written as

E
(

V2
)−1 1

n ∑
i∈I

(m̂0(Xi)− m0(Xi))(ĝ0(Xi)− g0(Xi))

where V = D − m̂0(X), n is the number of testing samples, and I is the set of testing
samples.

Therefore, we need the machine learning estimators to have unbiased errors which
can be satisfied by many machine learning models.17

F Intoduction of Gradient Boosting

F.1 Gradient Boosted trees

Gradient Boosted Trees (GBT) is an ensemble learning technique that combines the pre-
dictions of multiple weak learners, decision trees, to form a strong predictive model. The
idea behind GBT is to iteratively add trees to the ensemble, each tree correcting the errors
made by the previous ones. The model starts with an initial tree, and subsequent trees
are trained on the residual errors (the difference between the actual target values and the

17Near orthogonality is satisfied in our application: the estimation errors in m and g are weakly cor-
related (always lower than 4%), and the estimation errors are all insignificant from 0 except for the profit
growth over the next year. Nonetheless, the average error for next year’s profit growth is small in magni-
tude at 0.4%.
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current model predictions). This process is known as gradient descent in function space
because each tree is added in a direction that minimizes the loss function, typically a mean
squared error for regression tasks or a log-loss for classification tasks.

Mathematically, we can express the model’s prediction after m trees as:

ŷ(m)
i = ŷ(m−1)

i + η fm(xi) (17)

where ŷ(m)
i is the prediction for instance i after m trees, ŷ(m−1)

i is the prediction after m − 1
trees, η is the learning rate, and fm(xi) is the prediction of the m-th tree. The objective is to
minimize the loss function L(yi, ŷ(m)

i ), which can be approximated by using a first-order
Taylor expansion around the current prediction:

L(yi, ŷ(m)
i ) ≈ L(yi, ŷ(m−1)

i ) +
∂L(yi, ŷ(m−1)

i )

∂ŷ(m−1)
i

· fm(xi) (18)

Here, ∂L(yi,ŷ
(m−1)
i )

∂ŷ(m−1)
i

represents the gradient of the loss function with respect to the previous

prediction, guiding the new tree to correct the errors of the ensemble model.

F.2 XGBoost: Advanced Gradient Boosted Trees

F.2.1 Intuition of XGBoost

XGBoost (eXtreme Gradient Boosting) is a highly efficient and scalable implementation
of Gradient Boosted Trees, widely used in machine learning competitions and industry
applications due to its performance and speed. XGBoost builds upon the fundamental
concept of Gradient Boosted Trees (GBT), where multiple decision trees are sequentially
added to correct the residual errors of previous models. However, XGBoost introduces
various optimizations and enhancements, making it faster and more effective than stan-
dard GBT.

Similar to a standard Gradient Boosted Tree, the intuition behind XGBoost is that each
new tree added to the ensemble helps to correct the mistakes of the existing trees by
focusing on the most challenging instances. XGBoost incorporates both first-order and
second-order (Hessian) information, which allows it to perform more precise updates
in minimizing the loss function. This approach enables XGBoost to converge faster and
achieve better performance with fewer trees.
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F.2.2 Mathematical Formulation

As discussed in equation 17, the model’s prediction after adding the m-th tree can be
mathematically expressed as:

ŷ(m)
i = ŷ(m−1)

i + η fm(xi)

XGBoost optimizes an objective function that includes a loss term L(yi, ŷ(m)
i ) and a

regularization term Ω( fm), which controls the complexity of the model to prevent over-
fitting:

Objective =
n

∑
i=1

L(yi, ŷ(m)
i ) +

M

∑
m=1

Ω( fm) (19)

The loss function can be approximated using a second-order Taylor expansion around
the current predictions:

L(yi, ŷ(m)
i ) ≈ L(yi, ŷ(m−1)

i ) + gi fm(xi) +
1
2

hi fm(xi)
2 (20)

where:

• gi =
∂L(yi,ŷ

(m−1)
i )

∂ŷ(m−1)
i

is the gradient of the loss function.

• hi =
∂2L(yi,ŷ

(m−1)
i )

∂ŷ(m−1)
i

2
is the Hessian (second derivative), which provides information on

the curvature of the loss function.18

F.2.3 Controlling Overfitting with Early Stopping

We use a technique known as early stopping to prevent overfitting when training the XG-
Boost models, especially when training models with a large number of trees. Overfitting
occurs when the model learns noise and patterns specific to the training data rather than
general trends, resulting in poor performance on unseen data.

Early stopping monitors the model’s performance on a validation set during train-
ing and stops the training process if the performance does not improve for a specified

18For a more detailed discussion for the implementation of these models see Erickson et al. (2020).
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number of consecutive iterations (trees). This is done by specifying a patience parameter,
commonly referred to as ‘early_stopping_rounds‘. If the evaluation metric does not im-
prove after the given number of rounds, training halts, and the model reverts to the best
iteration observed. In our analysis, we set this hyperparameter as 5 rounds.

Mathematically, let M(t) be the evaluation metric on the validation set at iteration t.
Early stopping stops training at iteration t∗ if:

M(t) ≥ M(t∗) for all t∗ ≤ t < t∗ + early_stopping_rounds (21)

where t∗ is the best iteration so far. This process helps to prevent adding unnecessary
complexity to the model and ensures that the training process stops when the validation
performance starts to degrade, effectively controlling overfitting.

By using early stopping, XGBoost finds the optimal number of boosting rounds auto-
matically, enhancing generalization and improving model performance on new data.
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G Variable importance figures of subsample cuts
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Figure F1: These figures show the importance of different variables in the best predictive
model of profit direction changes over the next 1,3, and 5 years among firms with above
median market capitalization in each year and industry category. The importance values
are scaled to sum to 1, and the ones colored blue are significant at the 5% level while the
ones in red are not. When the variables are not significant, it is possible that some of them
may have negative importance values by chance (statistical zeros); in these cases, as long
as the negative values are not significant, we treat the importance as 0.
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Figure F2: These figures show the importance of different variables in the best predictive
model of profit direction changes over the next 1,3, and 5 years among firms with below
median profitability in each year and industry category. The importance values are scaled
to sum to 1, and the ones colored blue are significant at the 5% level while the ones in red
are not.
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Figure F3: These figures show the importance of different variables in the best predictive
model of profit direction changes over the next 1,3, and 5 years among firms with below
median intangible asset ratio (defined in the description of equation 2) in each year and
industry category. The importance values are scaled to sum to 1, and the ones colored
blue are significant at the 5% level while the ones in red are not.
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Dependent variable:

Πt+1 − Πt Πt+2 − Πt Πt+3 − Πt Πt+4 − Πt Πt+5 − Πt Πt+6 − Πt Πt+7 − Πt

(1) (2) (3) (4) (5) (6) (7)

IDE -0.011∗∗∗ -0.018∗∗∗ -0.030∗∗∗ -0.035∗∗∗ -0.040∗∗∗ -0.046∗∗∗ -0.051∗∗∗

(0.004) (0.004) (0.006) (0.008) (0.009) (0.010) (0.009)

profitability t -0.007 -0.021∗∗ -0.034∗∗∗ -0.042∗∗∗ -0.058∗∗∗ -0.058∗∗∗ -0.066∗∗∗

(0.006) (0.008) (0.009) (0.010) (0.011) (0.012) (0.013)

log asset growth 0.076∗∗∗ 0.092∗∗∗ 0.096∗∗∗ 0.100∗∗∗ 0.099∗∗∗ 0.099∗∗∗ 0.102∗∗∗

(0.006) (0.008) (0.010) (0.011) (0.013) (0.014) (0.012)

Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ind Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Year×IndCategory ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 23,702 21,695 19,984 18,354 16,976 15,750 14,658
R2 0.128 0.153 0.160 0.169 0.180 0.185 0.192

Adjusted R2 0.082 0.104 0.107 0.112 0.118 0.118 0.121

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE C30: This table shows the association between nonlinear IDE and profit growth. We
control for the log asset growth and profitability among other variables. The data is the 20%
testing data from 1980 to 2015. All independent variables are standardized within each industry
category and year, and all standard errors are clustered at the firm-year level.
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