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1. Introduction

How valuable are firms to society? Firms create value not only for shareholders but also

for consumers, employees, and other stakeholders. Importantly, a firm’s value to society

includes any externalities produced by the firm. These can be positive, such as technological

spillovers from R&D investment, or negative, such as environmental damage.

How big are corporate externalities? The magnitude of an externality can be helpful

information to many. Policymakers can use it to design more effective regulations, taxes, or

subsidies. Companies can use it in their sustainability efforts and risk management practices.

Knowing the scale of corporate externalities can also influence consumer behavior and help

investors make more informed investment decisions. From the academic perspective, the size

of corporate externalities speaks to the debate about the famous doctrine of Friedman (1970).

Friedman’s position that companies should essentially just maximize market value becomes

controversial in the presence of externalities (e.g., Hart and Zingales, 2017). Maximizing

market value can then conflict with maximizing the welfare of shareholders who also have

social and ethical concerns. This conflict is particularly strong when the externalities’ social

costs or benefits are large relative to a firm’s market value.

In this paper, we attempt to quantify one externality: damages from corporate emissions

of greenhouse gases. This “carbon externality” is clearly important given the severity of the

climate crisis. Key to measuring this externality is recognizing its future dimensions. First,

emissions in any given period have climate consequences for many years. Second, emissions

are expected to remain high for many years, and the future path of emissions will be crucial

in determining climate change. Our contribution is to quantify the carbon externality while

incorporating the impact of future emissions.

To measure the magnitude of the carbon externality, we propose a metric that we refer

to as the “carbon burden.” Consider an economic unit, such as a firm or a collection of

firms, that emits carbon. We define its carbon burden as the present value of the social

costs associated with its future greenhouse gas (GHG) emissions, which we refer to simply

as “carbon emissions” or just “emissions.” Key to the carbon burden is the social cost of

carbon (SCC), which is the dollar cost of societal damages resulting from the emission of

one additional ton of carbon into the atmosphere. For an additional ton emitted τ years

from now, let SCCτ denote the net present value, as of that emission year, of the resulting

damages in that year and all subsequent years. Let Cτ denote the economic unit’s expected
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carbon emissions τ years from now. We define the unit’s carbon burden as

Carbon burden =
T∑

τ=1

(1 + ρτ )
−τ × Cτ × SCCτ , (1)

where ρτ is a discount rate that potentially includes a risk premium. We set ρτ = ρ and

consider a range of values for ρ. For SCCτ , we use estimates recently released by the U.S.

Environmental Protection Agency (EPA). We use emission forecasts, Cτ , at the aggregate,

industry, and firm levels to compute carbon burdens at each of those levels. Our forecasts

of aggregate U.S. carbon emissions come from U.S. government agencies. Our firm-level

emission forecasts come from MSCI, a leading data provider, and we also aggregate those

forecasts to the industry level. All of these forecasts are undoubtedly imprecise, but they

come without confidence intervals, precluding us from quantifying the precision of the carbon

burden estimates. The estimates must therefore be interpreted with caution.

We focus primary attention on the carbon burden imposed by emissions in all future

years (i.e., T = ∞), but we consider finite horizons as well. With an infinite horizon, the

concept of carbon burden is similar in spirit to that of market value, in that both are present

values of infinite streams of estimated future dollar values. For example, the market value

of a firm’s equity is the present value of its future dividends, whereas a firm’s carbon burden

is the present value of the social costs from the firm’s future emissions. The two concepts

measure different dimensions of a firm’s value to society, with market value belonging to

shareholders and carbon burden representing a negative value borne by all. Both market

value and carbon burden are measured in dollars, and we compare them in our analysis.

To interpret the carbon burden as measuring an externality, future emissions cannot be

priced, such as by levying a carbon tax. There is no nationwide carbon tax in the U.S. as of

this writing, though there are some state and local taxes. If any carbon taxes are expected

in the future, their estimated present value must be subtracted from the carbon burden to

gauge the externality. We measure the externality gross of any carbon tax.

We equate aggregate corporate emissions with total U.S. emissions, because virtually all

emissions are related to the emissions of some company, directly or indirectly.1 Of course,

responsibility for corporate emissions does not rest solely with corporations. Households,

for example, surely share this responsibility, but quantifying the corporate externality in a

manner that accounts for responsibility seems infeasible.

At the aggregate level, we analyze the total U.S. carbon burden as of year-end 2023.

1For simplicity, we use “corporate emissions” to refer to the emissions of any company or business, not
just companies that are incorporated.
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Applying our baseline discount rate of ρ = 2% to emission forecasts for all future years,

we estimate the U.S. carbon burden to be $87 trillion, which is 131% of the total value

of U.S. corporate equity. The burden is large also when computed using other discount

rates and when compared to the total value of U.S. corporate equity and debt (93%) and

to U.S. national wealth (61%). To help interpret the burden’s magnitude, we present a

simple framework that links the carbon burden to the corporate profit margin and the cost

of capital.

After quantifying the aggregate U.S. carbon burden, we analyze its potential reductions

stemming from the 2015 Paris Agreement, under which the U.S. aimed to reduce its emissions

by at least 26% by 2025 and 50% by 2030, relative to the 2005 level. Again applying the

2% discount rate to all future years, we find that achieving the Paris goals would reduce the

U.S. carbon burden substantially, by either 21% or 32%, depending on the projected emission

path beyond 2030. We also show that achieving the Paris goals would require major emission

reductions by the largest emitters. However, we find that the largest emitters’ reported

emission targets are insufficient for the U.S. to meet its Paris goals, even if we take those

targets at face value. Moreover, when we replace firms’ targets by emission forecasts from

MSCI, the shortfall relative to Paris widens further.

At the industry level, carbon burdens differ greatly across sectors. The ratios of carbon

burden to market value are as high as 7 and 3 for the utilities and energy sectors, respectively,

and as low as 0.01 for the financial and business equipment sectors. These estimates are

based on direct (scope 1) emissions, which are emissions from sources owned by the firm.

The numbers change little when we add scope 2 emissions, indirect emissions from the

consumption of purchased energy, but adding scope 3 emissions, indirect emissions incurred

in the firm’s entire value chain, matters more.2 Based on total (scope 1+2+3) emissions, the

energy sector’s ratio of carbon burden to market value grows to 66, and the ratio exceeds 10

for four other sectors. One of these is financials, whose ratio of 17 for total emissions stands

in stark contrast to the 0.01 ratio for direct emissions.

We also divide each sector’s carbon burden from all future years’ emissions by the sector’s

burden from a single year’s emissions in 2023. This ratio ranges from 49 to 80 across sectors

for direct emissions, and the range for total emissions is even broader. Heterogeneity in

carbon burdens reflects not only last year’s emissions but also differences in forecasts of

emissions growth, which are substantial. Firms’ cumulative direct emission growth from

2023 to 2050 is −37% for utilities but −6% for financials, based on MSCI’s forecasts. The

2These scope definitions come from the Greenhouse Gas Protocol, https://ghgprotocol.org. Among the
three measures, scope 3 emissions are generally the hardest to quantify and least likely to be reported.
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corresponding growth rates based on firms’ own reported emission targets are much more

negative, ranging from −47% for nondurables to −92% for utilities. The former growth rates

are less negative because MSCI views firms’ own emission reduction targets as too optimistic.

Looking across sectors, MSCI views the 92% and 89% reductions targeted by utilities and

chemicals, respectively, as the least credible.

At the firm level, we find high cross-sectional dispersion in the ratios of carbon burden

to market value. For many firms, these ratios are small; for example, they are smaller than

0.05 for 55% of firms, based on direct emissions. However, for 13% of firms, these ratios are

greater than one. For these firms, which represent 9% of total market capitalization, their

carbon burdens exceed their market capitalization. Carbon burdens are even larger when

we add indirect emissions. Based on total emissions, 77% of firms, which represent 50% of

total market capitalization, have carbon burdens larger than their market capitalization.

We also examine the ratio of a firm’s carbon burden from all future years to its burden

from the most recent year only. We find the ratio’s distribution is quite dispersed across

firms, as a result of a large dispersion in MSCI’s forecasts of future emission growth rates,

which range from −100% to +33% on a cumulative basis between 2023 and 2050. Given

this wedge between past and future emissions, it is not sufficient to look at firms’ recent

emissions when judging which firms have larger carbon externalities. For example, suppose

two firms had the same emissions recently, but the first firm has a credible decarbonization

plan whereas the second firm does not. The first firm’s carbon externality is then lower. If

firms’ carbon burdens were widely reported, they could incentivize firms to develop emission

reduction strategies.

We find a negative cross-sectional relation between firms’ recent emissions and forecasted

future emission growth rates. For example, for the top 5% of emitters, their forecasted

cumulative growth rate of direct emissions from 2023 to 2050 is −14%, but for the bottom

5% of emitters, it is +25%. This negative relation is so strong that the 30 largest emitters

are expected to account for the entire drop in aggregate U.S. corporate emissions by year

2050. Between 2023 and 2050, aggregate emissions are expected to decline from 2.0 billion

to 1.5 billion metric tons. Over the same period, the emissions of the 30 largest emitters are

also expected to decline by 0.5 billion tons, whereas the emissions of the remaining 2,411

firms in our sample are expected to change little. Strikingly, all of the decarbonization of

the U.S. corporate sector is expected to come from only 30 firms.

Besides recent emissions, a few other firm characteristics, namely investment, climate

score, and the book-to-market ratio, help explain the cross section of forecasted emission
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growth rates. Emissions are expected to grow faster for firms that invest more, firms with

lower climate scores, and value firms, though these relations are not always significant.

As an alternative to firm-level emission forecasts from MSCI, we also consider forecasts

from an econometric model. Our vector autoregression (VAR) model uses data on histor-

ical emissions, which we take from MSCI and Trucost, to forecast individual firms’ future

emissions. Similar to the results based on MSCI forecasts, emissions are expected to grow

faster for firms that invest more and firms with lower climate scores. VAR-based results also

support our prior conclusion that all of U.S. decarbonization is expected to come from the 30

largest emitters. VAR-based estimates of carbon burdens tend to be even larger than their

counterparts based on MSCI’s emission forecasts, especially for low emitters. The VAR-

based carbon burdens are similar whether estimated from MSCI or Trucost data, though

the Trucost-based estimates tend to be somewhat larger. In investigating those differences,

we find pervasive and economically significant discrepancies between MSCI’s and Trucost’s

historical emissions data.

This paper contributes not only to the climate finance literature, but also to the broader

literature on corporate externalities, which is too large to summarize here.3 A related strand

of this literature focuses on environmental damages, such as the consequences of pollution

(e.g., Graff Zivin and Neidell, 2012, and Hanna and Oliva, 2015). The literature also ana-

lyzes the effects of environmental policies on technological innovation (e.g., Acemoglu et al.,

2016, and Aghion et al., 2016) as well as on the behavior of firms (e.g., Greenstone, 2002,

Fowlie et al., 2016, and Bartram, Hou, and Kim, 2022), consumers (Busse, Knittel, and

Zettelmeyer, 2013), and the workforce (Walker, 2013). Our contribution is to quantify the

carbon externality and compare it with quantities such as corporate market value.

The study closest to ours is Greenstone, Leuz, and Breuer (2023), who introduce the

concept of corporate carbon damages. For a given firm, they compute these damages as

the product of the firm’s direct emissions in 2019 and the SCC (also obtained from the

EPA), divided by the firm’s profit or sales in 2019. For the average U.S. firm, these damages

represent 18.5% of profit and 2% of revenue. The main difference between our studies is

that they study past emissions, whereas we study future emissions. As noted earlier, future

emissions are crucial to gauging the carbon externality. To give an extreme example, if

emissions were widely expected to drop to zero next year and remain zero forever, any

past ratio of emission damages to profits would presumably be of significantly less interest.

3For example, the literature examines effects of externalities resulting from corporate activities such as
R&D (e.g., Jaffe, 1986, Jaffe, Trajtenberg, and Henderson, 1993, Audretsch and Feldman, 1996, and Bloom,
Schankerman, and Van Reenen, 2013), foreign direct investment (e.g., Aitken and Harrison, 1999, Javorcik,
2004, and Blalock and Gertler, 2008), and bankruptcy (Bernstein et al., 2019).
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Unlike Greenstone et al., we describe patterns in forecasted future emissions, compute their

present value, and compare it to firms’ market values. In addition to the historical emissions

data they use, we also use emission forecasts, compare them to firms’ emission reduction

targets, and look at not only direct but also indirect emissions, which account for over half

of aggregate emissions. Finally, whereas our focus is on measuring the carbon externality,

theirs is on disclosure and the desirability of mandatory emissions reporting.

Our emission forecast data, which come from MSCI, are informed by firms’ emission

reduction targets. The usefulness of those targets is supported by the evidence of Bolton

and Kacperczyk (2023) and Ramadorai and Zeni (2024), who find that the firms that commit

to reducing their carbon emissions indeed tend to do so subsequently. These studies use data

from CDP, and the former study also uses data from the Science Based Targets initiative

(SBTi). Our data are richer, because when constructing its emission forecasts, MSCI uses

data not only from CDP and SBTi but also from firms’ annual reports, sustainability reports,

investor presentations, and regulatory filings.

Our finding of a big role for large emitters is a symptom of right skewness in the distri-

bution of emissions across firms (e.g., Hartzmark and Shue, 2023). This result is consistent

with the finding of Cohen, Gurun, and Nguyen (2024) that energy producers, which tend

to be large emitters, are key green innovators. The result also complements that of Berg,

Ma, and Streitz (2024), who find that large emitters have reduced their emissions faster than

other public firms, especially since 2015, and especially due to divestment of pollutive assets.

We contribute by studying the future, showing for example that just the top 30 emitters fully

account for the predicted decarbonization of U.S. corporations.

The literature that examines carbon emissions from the finance perspective also includes

studies on the relations between carbon emissions and the cross section of stock returns (e.g.,

Bolton and Kacperczyk, 2021, 2023, Aswani, Raghunandan, and Rajgopal, 2024, Zhang,

2024) and on the carbon exposures of institutional investors’ equity portfolios (e.g., Bolton

and Kacperczyk, 2021, Atta-Darkua, Glossner, Krueger, and Matos, 2023, and Bolton, Es-

kildsen, and Kacperczyk, 2024). Given their forward-looking nature, our carbon burden

measures could also be helpful to investors interested in constructing net-zero portfolios (e.g.,

Cenedese, Han, and Kacperczyk, 2023). A forward-looking perspective is also present in the

hypothetical emission futures contracts that van Binsbergen and Brogger (2022) propose as

a way of assessing the impact of firms’ environmental initiatives.

This paper is organized as follows. Section 2 explains how we compute the carbon burden.

Sections 3, 4, and 5 then compute carbon burdens at the aggregate, industry, and firm levels,
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respectively. Section 6 concludes.

2. Computing the carbon burden

This section explains our methodology for computing the carbon burden. Section 2.1 de-

scribes the SCC values we use. Section 2.2 discusses how we discount to the present. In

subsequent sections we combine these components with forecasts of carbon emissions to

compute corporate carbon burdens at the aggregate, industry, and firm levels.

2.1. Social costs of GHG emissions

As noted earlier, key inputs to the carbon burden in equation (1) are the values of SCCτ , the

dollar cost of societal damages per additional CO2-equivalent ton of GHG emitted in τ years.

Various SCC estimates exist, and their collection is evolving.4 Many such estimates pertain

just to emissions at the present time. We use the U.S. government’s latest SCC estimates as

of this writing (U.S. Environmental Protection Agency, 2023). The EPA provides estimates

of the social cost per ton of CO2 emitted in each future year through 2080.

The EPA explains that the values of SCCτ are estimates of certainty-equivalent costs

produced by combining four modules, each with uncertainty considered, including the com-

pounding of uncertainty across modules (U.S. Environmental Protection Agency, 2024). The

modules rely on prominent and widely used approaches, including recommendations made by

the National Academies of Science, Engineering, and Medicine. The first module, addressing

socioeconomics and emissions, projects future population, income, and GHG emissions. The

second module, on climate, captures the relationships among GHG emissions, atmospheric

GHG concentrations, and global mean surface temperature. The outputs of the first two

modules are inputs to the third one, on damages, which estimates monetized future damages

from climate change by combining three damage functions (subnational, country-level, and

meta-analytical).

The fourth module addresses discounting. The EPA provides series of SCCτ for three

initial discount rates that could prevail in τ years: 1.5%, 2.0%, and 2.5% per year. The EPA’s

choice of discount rates is supported by expert views. Drupp et al. (2018) survey economists

who are experts on social discounting, having published at least one paper on this topic in

a leading economics journal between 2000 and 2014. The distribution of the risk-free social

4For a recent meta-analysis of the SCC estimates across 207 studies, see Tol (2023).
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discount rates across over 200 survey responses has a median of 2% and a mean of 2.3%.

There is “a surprising degree of consensus among experts,” with 77% of experts finding the

median discount rate of 2% acceptable, and 92% of them being comfortable with the discount

rate somewhere between 1% and 3%. The same median and mean, 2% and 2.3%, emerge

also from an independent survey of Howard and Sylvan (2020), who poll all authors who

had published at least one article related to climate change in a top-25 economics journal

or top-six environmental economics journal since 1994, obtaining 216 valid responses. The

EPA’s discount rates lie between the 1.4% used by Stern (2006) and the 2.6% found by

Giglio, Maggiori, and Stroebel (2015) as the long-run discount rate for real estate cash flows.

Giglio et al. (2021) argue that the 2.6% value provides an upper bound on the discount rates

for long-term cash flows from investments in climate change abatement. When computing

its SCC estimates, the EPA starts with the above three discount rates but then allows

them to comove with aggregate consumption growth, effectively using a consumption-based

stochastic discount factor that implicitly recognizes emissions are likely to be high when

consumption is high.

The values of SCCτ are increasing in τ and decreasing in the discount rate. For example,

when the discount rate is 2.5%, SCCτ increases from $128 in 2024 to $284 in 2080. When the

discount rate is 1.5%, the SCCτ values are much higher, equal to $356 in 2024 and increasing

to $601 in 2080. Figure 1 plots the SCCτ values through 2080, when the EPA series end. To

obtain values for subsequent years, we extend each series along a linear projection through

the values for 2060 and 2080. In the plots, the SCCτ values between those years grow

virtually linearly, so we simply extend those linear trends.

When computing an entity’s carbon burden, we set Cτ in equation (1) equal to a forecast

of the entity’s emissions τ years from now. The EPA defines SCCτ as a marginal cost,

thus technically applicable to a relatively small amount of emissions. Applying SCCτ with

Cτ equal to expected emissions for even the entire U.S. corporate sector seems reasonable,

however, because U.S. emissions of GHGs in any given year are small relative to the total

already in the Earth’s atmosphere. For example, in 2022, U.S. CO2 emissions were just 0.16%

of the CO2 then present in the atmosphere.5 This fraction is small because the amount of

carbon emitted globally in any given year is small relative to the amount already present in

the atmosphere, and also because our analysis is confined to the U.S., whose GHG emissions

5The National Oceanic and Atmospheric Administration (noaa.gov) reports that the deseasonalized De-
cember 2022 average CO2 in the atmosphere reached 419.74 parts per million (PPM). Using conversion
factors provided by NOAA, multiplying PPM by 2.12 converts to billions of tons of carbon, and then further
multiplying by 3.67 converts to tons of CO2, yielding a total of 3.288 trillion tons of atmospheric CO2. The
U.S. CO2 emissions of 5.1 billion tons (see Section 3.1) represent 0.16% of this total.
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account for only 17% of global carbon emissions, based on CO2 equivalents in 2022.6 Other

studies have also applied a social cost per ton to an aggregate of emissions, even at the

global level. For example, although they do not analyze future years, Greenstone, Leuz, and

Breuer (2023) multiply an EPA-estimated SCC by the sum of scope 1 emissions in 2019 for

nearly 15,000 firms across many countries. Of course, when Cτ equals expected emissions

for entities smaller than the total corporate sector, such as industries and individual firms,

the argument for applying SCCτ to those smaller values of Cτ is even stronger.

2.2. Discounting to the present

The quantities Cτ and SCCτ apply τ periods ahead. Computing the carbon burden in

equation (1) requires we discount Cτ ×SCCτ back to the present, using a discount rate ρτ .
7

What value for ρτ is appropriate? To consider this question, recall that Cτ denotes expected

emissions in τ periods. Define C̃τ as actual emissions, with Cτ = E(C̃τ ). If C̃τ is treated

as known, i.e., C̃τ = Cτ , then the EPA advises setting ρτ to the τ -period real riskless rate.

Doing so essentially treats SCCτ as known also, or at least having estimation risk that does

not command a risk premium. We follow the EPA’s treatment of SCCτ in this respect.

In general, C̃τ differs from the forecast, Cτ . How should we account for the risk in

C̃τ −Cτ when discounting Cτ ×SCCτ? Discounting at the corporate cost of capital would be

inappropriate because the risk profiles of corporate profits and emissions are quite different.

For example, consider the capital asset pricing model (CAPM) and three annual U.S. time

series: the excess stock market return (from Ken French’s website), log changes in total after-

tax corporate profits (from FRED), and log changes in total emissions (from Section 3.1),

over the period of 1990 (the first year that emissions data are available) through 2022 (the

last year that profit data are available). While log changes in profits exhibit a significant

34% correlation with the market return, log changes in emissions exhibit an insignificant

correlation very close to zero (−4.9%). So, the CAPM implies a lower discount rate for

emissions damages than for corporate profits. Also, log changes in emissions and profits are

barely correlated—when we regress one on the other, the slope is insignificant and the R-

6According to the Global Carbon Budget (globalcarbonbudget.org), global carbon emissions in 2022
totaled 10.14 billion tons, which is 37.15 billion equivalent tons of CO2 (the conversion factor is 3.664). The
U.S. GHG emissions of 6.40 billion tons (see Section 3.1) represent 17% of this global total.

7We are, of course, not the first to monetize environmental costs and discount them to the present. Pub-
lic economists have long advocated for computing similar present values in the context of natural capital
accounting, a systematic way of measuring the economic value of natural resources to society. The inter-
national standard for natural capital accounting is the United Nations’ System of Environmental-Economic
Accounting. This framework does not mandate a specific valuation method or discount rate. For a recent
corporate-finance textbook exposition, see Schoenmaker and Schramade (2023).
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squared only 0.07. Given their low correlation, emissions and profits can have very different

covariances with the stochastic discount factor, regardless of which factor one picks.

Given the current state of the climate finance literature, it is not clear what the best

approach to discounting future emissions damages is. States of the world with unexpectedly

high emissions could be good or bad, depending on what agents care about. On one hand,

emissions tend to be high in periods of strong economic growth, which are generally good

states of the world. (This is the mechanism behind the EPA’s discounting approach in

constructing SCCτ .) On the other hand, emissions can also be high in bad states of the

world, such as when technological innovation fails to make progress toward renewables, or

when unexpectedly high emissions cause climate-related economic disruptions. In Stroebel

and Wurgler (2021)’s survey of 861 finance academics and professionals, most respondents

believe that realizations of climate risk are uncorrelated with economic conditions. More

research is needed to figure out the appropriate way of discounting future emissions.8

Meanwhile, to make progress on the question at hand, we take a simple approach to

specifying ρτ . At the end of 2023, the date at which we compute carbon burdens, Treasury

par real yields range from 1.72% at 5 years to 1.90% at 30 years.9 Given this rather flat yield

curve at levels just below 2%, one specification we choose, especially since we wish to extend

τ well beyond 30, is to set ρτ = 2% for all τ . At that baseline value, ρτ includes virtually

no risk premium associated with C̃τ −Cτ . As discussed above, the sign of any risk premium

seems ambiguous, so we also entertain both positive and negative values for the premium:

0.5% and −0.5%. When added to the 2% baseline, those premia give alternative values of

ρτ = 1.5% and ρτ = 2.5%. We thus entertain three values for ρτ : 1.5%, 2.0%, and 2.5%.

Only a partial coincidence is that our three ρτ values coincide with the EPA’s initial

discount rates used in constructing their three SCCτ series. We could of course specify

other risk premia as deviations from a 2% riskless rate, but we avoid doing so to simplify the

analysis and give readers just three rates to digest. Still, with three SCCτ series and three

ρτ values, there are nine possible pairings of an SCCτ series with a ρτ value. To simplify

the presentation further, we report carbon burdens for just three of the pairings: (1.5%,

1.5%), (2.0%, 2.0%), and (2.5%, 2.5%). The middle combination is reasonably viewed as the

baseline case, while the first and third produce the highest and lowest values of the carbon

burden. Recall from Figure 1 that SCCτ is decreasing in the corresponding discount rate,

and of course the discount factor in equation (1) is decreasing in ρτ .

8Joint modeling of economic dynamics and the dynamics of climate change is beyond the scope of this
paper. See Giglio, Kelly, and Stroebel (2021) for a discussion of some of the challenges in figuring out the
risk premium associated with climate damages, including whether its sign is positive or negative.

9See the “Data” menu at https://home.treasury.gov/.
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3. The aggregate U.S. carbon burden

We use data on forecasts of U.S. GHG emissions (Section 3.1) to assess the carbon burden for

the U.S. corporate sector as a whole (Section 3.2). Recall that we equate corporate emissions

with total U.S. emissions, given that virtually all emissions are either direct (scope 1) or indi-

rect (scopes 2 and 3) emissions of some company. We also interpret the burden’s magnitude

(Section 3.3) and consider its potential reductions from the country’s past commitment to

the Paris Agreement (Section 3.4).

3.1. Forecasts of U.S. GHG emissions

To estimate carbon burdens as of year-end 2023, we first obtain forecasts of emissions in the

U.S. for 2024 and beyond. We construct aggregate GHG emissions by adding up three types

of emissions: energy-related CO2, non-energy-related CO2, and non-CO2 GHGs.

The first type, energy-related CO2, accounts for the largest fraction of GHG emissions,

by far. The U.S. Energy Information Administration (EIA) provides annual forecasts of U.S.

energy-related CO2 emissions through 2050. The forecasts come from the EIA’s National

Energy Modeling System, which takes a general equilibrium approach to modeling U.S.

energy markets and projecting production, imports, exports, conversion, consumption, and

energy prices (U.S. Energy Information Administration, 2023b). The system has 14 modules

devoted to separate sources of supply and demand, conversion, and various economic and

policy channels. We use the EIA’s reference-level forecasts for 2024 through 2050.10

The second type, non-energy-related CO2, is the smallest part of GHG emissions. Non-

energy-related emissions come from sources such as agriculture, industrial processes, and

waste. Lacking forecasts for this emission type, we approximate them based on historical CO2

emission breakdown data.11 Averaging across 1990 through 2022, non-energy-related CO2

emissions account for 3.6% of total CO2 emissions. Assuming this share remains unchanged

going forward, we apply it to the EIA’s forecasts of energy-related CO2 emissions to obtain

annual non-energy-related CO2 emission forecasts through 2050.

The third type of emissions includes non-CO2 gases such as methane and nitrous oxide.

10The data can be obtained via the EIA website (eia.gov), searching first for “Annual Energy Outlook
2023” and then selecting Table 18. The total CO2 values provided there are plotted and identified as the
“reference” case in the publication, U.S. Energy Information Administration (2023a).

11See U.S. Environmental Protection Agency (2024). These data, which track U.S. emissions by source
back to 1990, can be obtained via the EPA’s Greenhouse Gas Inventory Data Explorer website.
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The EPA provides forecasts of U.S. non-CO2 GHG emissions from all sources, both related

and unrelated to energy, through 2050. To construct its forecasts, the EPA combines histor-

ical emissions data and trends based on projected activity.12 We use linear interpolation to

convert the forecasts from their five-year frequency to an annual series.

We sum up the forecasts across the three emission types to compute aggregate U.S. GHG

emission forecasts through 2050. Beyond 2050, we project the same annual growth rate as

in the aggregate emission forecasts from 2023 to 2050, which is −0.458%. The solid line in

Figure 2 plots our resulting reference forecasts of U.S. aggregate GHG emissions.

3.2. The U.S. carbon burden

We compute the aggregate U.S. carbon burden by setting the values of Cτ in equation (1)

equal to the forecasted GHG emissions plotted in Figure 2. We report the carbon burdens

associated with three future periods, all beginning in 2024. The first period ends in 2050, the

second in 2080, and the third covers all future years. Recall that 2050 is when our emission

forecasts end, and 2080 is when our social cost estimates end, so the periods with those

ending dates avoid one or both of the approaches we take to extend the two series.

Panel A of Table 1 displays the U.S. carbon burden in dollar terms. The values cover a

wide range, from $17.4 trillion, for the shortest period and highest discount rate, to $178.8

trillion, for the entire future and the lowest discount rate. When pairing all future years

with the 2% discount rate, our baseline value, the U.S. carbon burden is $87.1 trillion.

To put these dollar amounts into perspective, we divide them by the total value of U.S.

corporate equity as of year-end 2023, which is equal to $66.4 trillion.13 Panel B of Table 1

shows that these ratios range from 26% to 269%. For the 2% discount rate, the U.S. carbon

burden for all future years is 131% of total U.S. corporate equity value. Even the burden for

just the shortest future period ending in 2050, which relies on neither of our series-extension

procedures, is 44% of equity value. In brief, the U.S. carbon burden is large.

12See U.S. Environmental Protection Agency (2019) for more detail on the EPA’s methodology. The data
can be obtained via the EPA’s Non-CO2 Greenhouse Gas Data Tool website.

13This amount equals the value of total issues net of holdings of foreign equities by U.S. residents. It
includes both publicly traded equity and closely held equity, where the latter includes both S and C corpo-
rations. See Table L.224 of Board of Governors of the Federal Reserve System (2024).
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3.3. Interpreting the burden’s magnitude

While the carbon burden is large, particularly when compared to the value of corporate

equity, readers should bear several points in mind when interpreting the numbers. First,

the carbon burdens we compute are most reasonably viewed as status-quo estimates that

exclude future changes in policy. Recall from Section 3.1 that our calculations are based on

emission forecasts from the EIA and EPA. The EPA’s “projections include the impact of

existing GHG reduction policies to the extent they are reflected in historical data but exclude

additional GHG reductions” (U.S. Environmental Protection Agency, 2019). Similarly, the

EIA’s forecasts incorporate “only current laws and regulations” as opposed to “targets asso-

ciated with yet-to-be developed policy” (U.S. Energy Information Administration, 2023a).

One potential future policy is a carbon tax. As noted earlier, the carbon burden measures

the corporate sector’s externality in the absence of such a tax. If a carbon tax is imposed,

future emissions could well be reduced below the reference forecasts.

Absent such reductions, our results show that if carbon is taxed at a rate equal to the

SCC, the present value of the future taxes (i.e., the carbon burden) would be a substantial

fraction of corporate equity. The tax would not reduce corporate equity value by the full

carbon burden, however, because some of the tax’s incidence would fall on consumers rather

than equityholders. In particular, consumers would likely bear much of the incidence of a

tax on GHGs emitted in producing goods having inelastic demand.

Also, measuring the U.S. carbon burden as a fraction of total corporate equity should not

be construed as assigning responsibility for the burden to the corporate sector. Responsibility

for the carbon burden is reasonably viewed as shared more broadly. Consider a country’s

choice between generating electricity using nuclear plants versus burning fossil fuels, which

has first-order implications for carbon emissions. Countries differ in this choice; for example,

nuclear power plants generated 68% of France’s electricity in 2021, whereas the U.S. fraction

is only 19%, and Germany no longer operates any nuclear reactors.14 It seems difficult to

say how much of the choice can be attributed to a country’s corporate sector, let alone its

electric utilities, as opposed to the country’s body politic. Similarly, it seems difficult to say

how much responsibility for the combustion of gasoline lies with the corporate sector, let

alone its automobile and oil companies, as opposed to the household sector. At the same

time, within the corporate sector, identifying large sources of emissions is potentially useful

information for a country seeking to reduce its carbon burden. Therefore, in subsequent

sections, we analyze carbon burdens at the industry and firm levels as well.

14See https://www.eia.gov/todayinenergy/detail.php?id=55259.
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In addition to comparing the carbon burden to the value of corporate equity, we also

compare it to the combined value of equity and debt. The value of U.S. corporate debt at

year-end 2023 is about $27.3 trillion, which includes $12.1 trillion of bonds and $15.2 trillion

of loans.15 Adding this value to the $66.4 trillion value of equity, total value of equity and

debt is about $93.7 trillion. Our baseline estimate of the U.S. carbon burden, $87.1 trillion,

thus represents 93% of total value of corporate equity and debt.

As responsibility for the carbon burden is shared, it also seems natural to compare the

burden to society’s aggregate wealth. The Federal Reserve computes total U.S. net wealth as

the value of tangible assets controlled by the household, nonprofit, business, and government

sectors of the U.S. economy, net of U.S. financial obligations to the rest of the world. At

year-end 2023, total U.S. wealth is about $143.6 trillion (see Table B.1 of Board of Governors

of the Federal Reserve System, 2024). The carbon burden of $87.1 trillion thus constitutes

61% of U.S. national wealth—a very substantial fraction.

In contrast, the social cost of U.S. emissions seems modest relative to U.S. output. In

2023, when its GDP was $27.4 trillion, the U.S. emitted 6.28 billion tons of carbon (i.e., GHG

in CO2-equivalent tons). Multiplying this amount by the EPA’s baseline SCC estimate of

$204 per ton, the social cost of 2023 U.S. emissions is $1.28 trillion, which is 4.7% of the 2023

U.S. GDP. How can we reconcile this modest ratio with the large ratio of carbon burden to

equity market value? A simple no-growth framework provides the basic intuition.

Suppose the corporate sector produces output whose value in period t is given by

Yt = Y + ϵt , (2)

where Y is expected output and ϵt is a zero-mean random component, which makes corporate

ownership risky. Producing output generates, as a by-product, a negative externality whose

value is the fraction f of expected output in each period:

Et = fY . (3)

Since there is no growth, the present value of all future externalities in perpetuity—the

carbon burden—is simply equal to

CB =
fY

r
, (4)

where r is the riskless rate. The corporate sector’s dividends, equal to net profit (consistent

with no growth), are given by a constant fraction of output:

Dt = hYt , (5)

15These amounts come from Tables L.213 and L.214 of Board of Governors of the Federal Reserve System
(2024). The bond value equals total liabilities net of holdings of foreign bonds by U.S. residents. The loan
value equals total liabilities minus those of households, governments, and foreign entities.
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where h denotes the profit margin. The market value of the corporate sector is the present

value of all expected future dividends, discounted at the cost of capital rS, which is equal to

r plus a risk premium that reflects the risk in ϵt:

M =
D

rS
, (6)

where D = hY is the expected dividend in each period. Combining equations (4) and (6),

the ratio of the carbon burden to market value is

CB

M
= f

1

h

rS
r
. (7)

This equation helps us understand how CB/M can be large even when f is small. There

are two reasons. First, the profit margin, h, is much smaller than one, making 1/h large.

For example, in 2023, the net profit margin of the U.S. corporate sector was about 10%,

resulting in 1/h = 10.16 Second, the corporate cost of capital exceeds the riskless rate due

to a risk premium, so that rS/r > 1. For example, suppose r = 2%, which is the baseline

value in our empirical analysis, and rS = 6%, whose reciprocal, 16.7, is close to the historical

average price-earnings ratio. We then obtain rS/r = 3. Plugging these values into equation

(7) along with f = 4.7%, which is based on the calculation in the first paragraph of this

subsection, we obtain CB/M = 1.41. That is, the carbon burden in this example is equal to

141% of equity value, which is not far off our baseline estimate of 131% in Table 1.

The purpose of this simple framework is to provide intuition, rather than to be fully

calibrated to match a variety of empirical results. In the Appendix, we provide a richer

framework that models production using the standard Cobb-Douglas production function,

endogenizing the corporate profit margin. The insights we obtain there are very similar to

those presented above.

3.4. Potential reductions under the Paris Agreement

The Paris Agreement is an international treaty adopted in 2015 that calls for substan-

tial reductions in global GHG emissions. Participation by the U.S. in the agreement was

withdrawn in 2017, reinstated in 2021, and withdrawn again in 2025. Despite the 2025

withdrawal, which was announced after we released the first draft of this paper, it seems

interesting to analyze the potential carbon burden reductions from the country’s most re-

cent commitments before the withdrawal. When it rejoined the agreement in 2021, the U.S.

16Aggregate U.S. after-tax corporate profits in 2023 are $2.673 trillion, according to Table 9 in the March
28, 2024 news release from the Bureau of Economic Analysis. Dividing this figure by U.S. GDP of $27.4
trillion yields 0.098, or approximately 10%.
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targeted reductions in its emissions, relative to the 2005 level, of at least 26% by 2025 and

50% by 2030. As noted earlier, our emission forecasts, which we plot in Figure 2 and use

as our reference levels, do not include changes in emission targets yet to be implemented.

In particular, those forecasts appear not to incorporate the cuts targeted under Paris: the

forecast for 2030 is only 25% below the 2005 level, compared to a reduction of at least 50%

targeted by Paris. We therefore interpret the difference between our forecasts and the levels

targeted by Paris as the reductions stemming from the agreement.

We consider two Paris scenarios for emission levels beyond 2030. Both scenarios have

emissions relative to the 2005 level be 26% lower in 2025 and 50% lower in 2030.17 The

2005 level is 7.4 billion CO2-equivalent tons, so a 50% reduction implies a 2030 level of 3.7

billion tons, which is 2/3 (67%) of the reference-level forecast of 5.5 billion tons in that year.

In the first scenario, this 2/3 ratio is maintained in all subsequent years, and the resulting

emission levels are plotted as “Paris scenario 1” in Figure 2. Our second Paris scenario, more

conservative, merely accelerates reductions that are forecast to occur later otherwise. That

is, emissions remain at 3.7 billion tons in the years following 2030 until that level exceeds

the reference level, at which point the scenario follows the same path as the reference level.

The resulting forecasts are plotted as “Paris scenario 2” in Figure 2.

Table 2 reports the estimated reductions in the U.S. carbon burden under the first Paris

scenario. Panel A reports the dollar amounts, Panel B divides those amounts by the value

of U.S. corporate equity, and Panel C divides the dollar amounts by the corresponding U.S.

carbon burdens reported in Panel A of Table 1. We see from Panel C that adherence to the

Paris Agreement would reduce the U.S. carbon burden by between 29% and 32% across the

three discount rates and three future periods.

Table 3 reports reductions under the second scenario. Panel B shows that the bulk of

reductions occur by year 2080, not surprisingly given that this scenario simply front-loads

reductions otherwise occurring later. Even in this more conservative scenario, Panel C shows

that the Paris Agreement reduces carbon burdens by 28% through both 2050 and 2080, for

all three discount rates. Using the 2% discount rate and all future years, the reduction is

21%. All of these reductions are substantial.

17We linearly interpolate from the current level to those points, consistent with the plot in the U.S.
submission to the United Nations registry of national contributions (unfccc.int/NDCREG).
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4. Carbon burdens across industries

This section analyzes carbon burdens across industry sectors. We aggregate predicted emis-

sions to the industry level by summing firm-level forecasts from MSCI, which we describe

in Section 4.1. We then analyze the carbon burdens associated with industries’ predicted

emissions in Section 4.2. For firms that have targets for future emissions, we compare those

targets to MSCI’s forecasts in Section 4.3.

4.1. MSCI firm-level emission forecast data

We downloaded the MSCI Climate Change Metrics data from the MSCI ESG Manager

in 2024, as soon as they were made available to the academic community by the newly

established MSCI Sustainability Institute through its Climate Data Knowledge Program.

Our primary interest is in the data containing MSCI’s forecasts of individual firms’ future

emissions, which we use not only in this section but also in Section 5.1. These forward-looking

data are unique and valuable for the computation of firm-level carbon burdens, which are

inherently forward-looking. From the same source, we also obtain MSCI’s historical emissions

data, which we use in Section 5.2.

MSCI provides firm-level forecasts of scope 1, 2, and 3 emissions for each year from

2023 through 2050. To construct its forecasts, MSCI collects firms’ decarbonization plans

and evaluates them, including their credibility. To collect data on firms’ future emission

targets, MSCI studies firms’ publicly available documents, such as annual reports, sustain-

ability reports, CDP reports, the Science Based Targets initiative, Forms 10-K and 20-F,

and investor presentations. MSCI allows firms to verify or amend their targets, and even

input new ones, through a dedicated platform. MSCI also uses natural language processing

software to identify new target announcements for its biweekly data updates.

Among the 2,851 U.S. firms in its sample, MSCI identifies 798 firms, including most

large emitters, as having emission targets. For the firms with targets, MSCI offers two

types of emission projections: target-based and credibility-adjusted. The former projections

take firms’ emission reduction targets at their face value. The latter projections make adjust-

ments after assessing the targets’ credibility. These credibility-adjusted projections represent

MSCI’s forecasts. If a firm has no future emissions target, MSCI assumes that its emissions

will grow at the business-as-usual rate of 1% per year.18

18To explain this choice, MSCI notes that 1% is the annual global emissions growth rate from 2009 to 2019,
adjusted for GDP, according to the 2020 United Nations Environment Programme Emissions Gap Report.
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To compute the target-based projections, MSCI assumes that firms will meet their future

targets exactly and uses interpolation. First, MSCI interpolates emissions linearly between

the firm’s most recent emissions and the first target emission value. If the firm has multiple

future targets, MSCI interpolates linearly between each pair of subsequent targets. After

the last target year, MSCI assumes zero growth in emissions until 2050.

To compute the credibility-adjusted projections, MSCI adjusts the target-based projec-

tions after performing a target credibility assessment. The purpose of this assessment is to

penalize stated decarbonization trajectories that lack credibility. For example, MSCI as-

signs low credibility to plans setting scope 3 net-zero targets in the distant future with no

interim targets. Faced with a target that it does not view as fully credible, MSCI projects

higher future emissions compared to target-based values. Specifically, MSCI computes its

credibility-adjusted emissions forecast for firm n in future year T as follows:

Forecastn,T = wn × Targetn,T + (1− wn) × Basen,T , (8)

where Targetn,T is the target-based forecast of firm n’s emissions in year T and Basen,T is

the forecast of the firm’s emissions assuming 1% annual emissions growth between today

and year T . MSCI chooses the firm’s “credibility weight” wn after evaluating the firm’s

decarbonization plan in terms of its ambition, comprehensiveness, and feasibility. Larger

wn’s are more likely to go to firms that have, for example, at least one short-term target, at

least one externally validated target, a track record of achieving past targets, and a current

trajectory to meet their targets.

MSCI’s emissions forecasts go out to year 2050, as do the aggregate forecasts used in

Section 3. To extend the firm-level forecasts beyond 2050, we follow the same procedure as

in Section 3, extrapolating the (negative) growth trend in the aggregate forecasts from 2023

to 2050 and then applying that trend to each firm.

4.2. Industry carbon burdens

Table 4 reports properties of carbon burdens for our 12 industries. Firm membership in

each industry follows the SIC-code classifications of Fama and French, which we obtain from

Kenneth French’s website. In Panel A, we compute carbon burdens for future years through

2050, while Panel B includes all future years. We use our baseline discount rate of 2%.

The first three columns of Table 4 express the carbon burden of an industry’s future

emissions as a fraction of the industry’s market capitalization. The first column considers

just scope 1 emissions, the second column adds scope 2, and the third column sums all three
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scopes. Note that the second and third columns inherently double-count emissions across

industries. For example, scope 2 emissions for non-utilities are part of scope 1 emissions

for utilities, and a given emission source (e.g., gasoline combustion) can be part of scope 3

emissions for multiple industries (e.g., durables and energy). At the same time, scopes 1, 2,

and 3 are mutually exclusive for a given firm. To the extent that double counting is more

prevalent across industries than across firms within an industry, the quantities reported in

the second and third columns are also meaningful on an industry-by-industry basis.

Table 4 shows that carbon burdens differ greatly across industries. For scope 1, utili-

ties have a carbon burden through 2050 that is 2.71 times the industry’s market cap, and

energy has the second-largest ratio at 1.06. In contrast, six industries have ratios of 0.05

or less. Adding the later years more than doubles the largest values, with utilities and en-

ergy increasing to 6.95 and 2.95, but there are still five industries at 0.05 or less. Adding

scope 2 changes the picture very little, unlike adding scope 3. Although scope 3 greatly

double-counts emissions, it captures more than half of aggregate emissions not captured by

firms’ scopes 1 and 2.19 The energy industry’s scope 3 emissions subsume much of aggregate

emissions, so its carbon burden then becomes the largest by far, 66 times that industry’s

market cap when including all future years. The carbon burdens of other industries also

become much larger when including scope 3. For example, four other industries have ratios

10 or higher in Panel B. One of them is financials, which has a ratio of just 0.01 for scope 1.

The direct emissions of financial firms are small, given the sector’s service-based nature.

The sector’s scope 3 emissions are large, however, because they include also the emissions

of companies and projects financed by financial institutions. For example, scope 3 emissions

are high for banks providing loans to fossil fuel companies and investment funds holding

shares in high-emitting industries. The GHG Protocol includes these “financed emissions”

as part of scope 3 (category 15). While financial firms have little control over their current

financed emissions, they have more control over future emissions, because they provide fi-

nancing to replace emitting real assets when those assets depreciate. An emitter’s inability

to externally finance investments in emitting assets could potentially restrict the emitter’s

future emissions.

19We can estimate those aggregate emissions captured by scope 3 by subtracting the corporate sector’s
scope 1 emissions from total U.S. GHG emissions, because virtually all of the latter are likely part of at
least one firm’s scope 3 emissions. For 2023, that calculation gives 6, 277 − 2, 814 = 3, 463 million tons, or
55% of total U.S. emissions. Our calculation does not subtract scope 2 (in addition to scope 1) from total
U.S. emissions, because total scope 2 is already counted in total scope 1 (scope 2 emissions are scope 1
emissions for utilities). The value of 2,814 is the sum of all 2023 scope 1 emissions across all firms in the
MSCI database. Summing firm-by-firm scope 3 emissions, even if they were accurately measured, would not
produce a meaningful aggregate quantity, because scope 3 inherently double counts emissions across firms,
unlike scope 1.
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The last three columns of Table 4 express an industry’s carbon burden over future years

as its ratio to the burden from a single year’s emissions in 2023. This future/present ratio

generally ranges in the mid-20s when including emissions through 2050, and it is roughly

three times larger when including all future years. In the latter case, the future/present ratio

is akin to a price/dividend ratio, which divides total discounted expected future dividends

(price) by last year’s dividend. Instead of dividends, here we have social costs, discounted at

a rate conceptually distinct from the cost of capital used to discount dividends. The discount

rate and the social costs per ton of future carbon are common across firms, so differences

across industries in the future/present ratios in Table 4 arise just from differences in forecasts

of emissions growth.

The future/present ratio exhibits notable variation across industries. For example, in

Panel B, the ratio for scope 1 ranges from 49 for telecom to 80 for retail (shops), a value 63%

higher. When including scopes 2 and 3, the ratio ranges from 61 for business equipment to

92 for energy, 51% higher. In short, computing carbon burdens of just last year’s emissions

tells an incomplete story. Not only are such carbon burdens much lower than when including

the future, but they also omit differences in forecasts of emissions growth.

Differences in emission-growth forecasts are apparent from the “forecast” columns in Ta-

ble 5, which report MSCI’s forecasts of cumulative growth rates in each industry’s emissions

through 2050. We compute these industry-level growth rates from MSCI’s firm-level fore-

casts. For scope 1, the two industries with especially large carbon burdens, utilities and

energy, have forecasted growth rates that differ substantially: −37% versus −24%. When

all three scopes are included, MSCI predicts that six of the industries will increase their

emissions through 2050, whereas the other six will reduce their emissions.

In the Appendix, we report each industry’s carbon burden as a fraction of the total burden

across industries. Based on direct emissions, utilities account for 37% of the total, and energy

accounts for 20%. Five other industries have shares below 1%: business equipment, durables,

health, money, and telecom. Based on total emissions, however, the utilities’ share is only

6%, and the largest shares, over 28%, belong to energy and money. Again, the carbon burden

of financials changes dramatically after including scope 3 emissions.

4.3. Emission targets versus forecasts

The “target” columns in Table 5 report the targeted emission growth rates for firms that

have emission targets according to MSCI, industry by industry. For the same firms within
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each industry, we compute their total 2050 targeted emissions and divide them by the 2050

emissions implied by MSCI forecasts. The resulting value appears in the “ratio” columns of

Table 5. In essence, the closer the ratio is to 1, the more credibility MSCI gives the targets

(i.e., the higher is the value of wn in equation (8)).

For scope 1, all of the ratios are well below 1, meaning that MSCI views targets as

too optimistic. All industries target substantial emission reductions, but the 92% and 89%

reductions targeted by utilities and chemicals are judged the least credible, with forecast-to-

target ratios of just 0.11 and 0.12, respectively. The non-durable sector’s targeted reduction

of 47% is the most modest, but it is also judged the most credible, with a ratio of 0.5. As

in Table 4, adding scope 2 makes little difference, but things change when adding scope

3. First, the targeted reductions become less ambitious. Second, the targets become more

credible, in that the forecast-to-target ratio increases for every industry. The most credible

industry, energy, has a ratio of 0.70, far above its scope 1 ratio of 0.16. One interpretation

is that firms set more realistic targets for emissions that they are less able to control.

5. Carbon burdens across firms

In this section, we analyze the cross section of carbon burdens for U.S. firms. We compute

carbon burdens in two ways: based on MSCI’s forecasts of firms’ future carbon emissions

(Section 5.1) and based on emission forecasts from an econometric model (Section 5.2).

Our emissions data come from MSCI and Trucost. We obtain MSCI data on both histor-

ical and forecasted emissions from the MSCI ESG Manager. The forecast data are described

in Section 4.1. The historical data start in 2008, when they become available in the ESG

Manager. We obtain historical Trucost data from WRDS. We use Trucost data from years

2016 to 2022 because data coverage before 2016 is low. Both MSCI and Trucost report

emissions by fiscal year. We assign fiscal years ending between January 1 and May 31 to

the previous calendar year. For example, when a firm’s fiscal year ends in February 2020,

we take the calendar year to be 2019, but when the fiscal year ends in November 2020, we

take the year to be 2020. We obtain several firm-level variables from CRSP and Compustat.

We begin with the set of U.S. firms in the intersection of the MSCI and CRSP/Compustat

databases, which we merge by CUSIP, and then we merge in Trucost by gvkey.

Moving beyond the industry-level analysis in Section 4 seems useful because firm-level

carbon burdens exhibit substantial intra-industry variation. To demonstrate this fact, we

show that the cross-sectional variation in firms’ carbon burdens is far from explained by
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industry fixed effects. Specifically, we run cross-sectional regressions of firm-level log car-

bon burdens on industry fixed effects, both with and without controlling for the firm’s log

market capitalization. We compute carbon burdens from MSCI emission forecasts as of the

end of 2023, covering all future years. We consider three dependent variables, all in logs:

unscaled carbon burden, carbon burden divided by the firm’s market capitalization, and

carbon burden divided by the burden from the firm’s emissions in year 2023 only.

Table 6 shows adjusted R-squareds from these regressions. Panel A (B) reports the

R-squareds for specifications in which industry fixed effects are computed based on the

Fama-French industry classification covering 49 (12) industries. All R-squareds in the table

are far below 1, peaking at 0.654. Most R-squareds are well below 0.5, especially when

carbon burdens are scaled. The relatively low R-squareds indicate substantial intra-industry

variation in firms’ carbon burdens. In addition, the R-squared values in Panel A are only

modestly larger than those in Panel B, indicating that 12 industries do a decent job in

capturing the industry-level variation in carbon burdens. This fact provides support for our

results in Section 4, in which we use only 12 industries, for ease of exposition.

5.1. Carbon burdens based on MSCI emission forecasts

We compute firms’ carbon burdens at the end of 2023 by substituting MSCI’s forecasts of

firms’ future carbon emissions into equation (1). As before, we use three different discount

rates and the EPA’s SCC estimates. We scale each firm’s carbon burden by the firm’s market

capitalization, denoting the resulting ratio by CB/M.

5.1.1. Magnitudes of firms’ carbon burdens

Figure 3 plots the distribution of CB/M across firms. There are four panels, as we consider

two emissions categories (scope 1 and scope 1+2+3) and two ways of computing the carbon

burden (based on all future years and only through 2050). Each panel plots the cumulative

distribution function of CB/M, weighting each firm equally. That is, for any given value of

CB/M, we plot the fraction of firms whose CB/M is smaller than that value.

Panel A of Figure 3 shows that the CB/M ratios vary greatly across firms. For most firms,

the carbon burden associated with their direct (scope 1) emissions represents only a small

fraction of the firm’s market capitalization. For example, 55% of firms have CB/M ratios

smaller than 0.05 under the baseline 2% discount rate. However, the distribution of CB/M

is heavily right-skewed, and some firms’ CB/M ratios are very large. For example, 13% of
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firms have CB/M ratios greater than 1. These firms’ carbon burdens exceeds their market

capitalizations; that is, the present value of their future carbon costs to society exceeds the

present value of their future dividends to shareholders. Of course, firms with large carbon

burdens are not necessarily undesirable from a social planner’s perspective, as such firms can

also provide society with large benefits.

Not surprisingly, carbon burdens are larger when the discount rate is smaller, and vice

versa. For example, when the discount rate is 2.5%, only 10% of firms have CB/M > 1, but

when the rate is 1.5%, we observe CB/M > 1 for 19% of firms. For all three discount rates,

there are many firms whose carbon burden exceeds their market capitalization.

Firms’ carbon burdens are clearly larger when we consider not only direct but also indirect

emissions. Panel C of Figure 3 plots the distribution of CB/M based on total (scope 1+2+3)

emissions. For the 2% discount rate, 77% of firms have CB/M ratios greater than 1. The

proportion is 66% for ρ = 2.5% and 87% for ρ = 1.5%. We thus see that, based on total

emissions, most firms’ carbon burdens exceed the firms’ market capitalizations. Of course,

these percentages must be interpreted with the understanding that a given ton of carbon

can appear in multiple firms’ total emissions, due to double counting across firms.

Figure 4 is a value-weighted counterpart of Figure 3. Whereas Figure 3 plots the fraction

of firms whose CB/M is below each x-axis value, Figure 4 plots the fraction of total market

capitalization belonging to firms whose CB/M is below each x-axis value. The fractions in

Figure 4 are larger than in Figure 3. This is not surprising, because the largest firms at the

end of 2023 are mostly technology firms, which are relatively light emitters. For example,

for scope 1 and the 2% discount rate, 75% of total market capitalization belongs to firms

with CB/M < 0.07. Nonetheless, the cross-sectional dispersion in CB/M is large, and 9% of

total market capitalization belongs to firms with CB/M > 1.

When we consider not only direct but also indirect emissions, the proportion of total

market capitalization belonging to firms with CB/M > 1 is quite a bit larger. For example,

based on total emissions and the 2% discount rate, half of total market capitalization belongs

to firms whose carbon burdens exceed their market capitalizations.

5.1.2. Future versus present emissions

Carbon emissions are persistent: high emitters today are likely to be high emitters tomorrow.

As a result, high emitters today tend to have high carbon burdens. When assessing a firm’s

carbon externality, is it necessary to consider the firm’s future emissions or could we simply
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look at its recent emissions? Put differently, do MSCI’s emission forecasts contain much

information that is not already contained in firms’ recent emissions?

To answer these questions, we compute each firm’s future/present ratio, as analyzed

previously at the industry level. The numerator of this ratio is the carbon burden computed

from future emission forecasts through 2050, and the denominator is the burden from the

firm’s emissions in year 2023 only. If the ratio turns out to be equal across firms, then

MSCI’s emission forecasts do not add information beyond recent emissions.

Figure 5 plots the distribution of the future/present ratio across firms. To avoid spikes in

the histograms, we exclude firms that either do not have an emission target or have a target

that MSCI deems uninformative; recall that for such firms, MSCI forecasts a 1% emissions

growth per year. In Panel A, which focuses on direct emissions, the sample includes 696

firms; in Panel B, which focuses on total emissions, it includes 353 firms. In both panels,

the future/present ratio is quite dispersed across firms, taking on values as low as 0.5 and as

high as 30. Therefore, while recent emissions contain significant information about a firm’s

carbon externality, they do not paint the full picture.

The future/present ratios are dispersed across firms because MSCI’s forecasts of future

emission growth are quite dispersed. Figure 6 plots the cross-sectional distribution of firms’

cumulative forecasted emissions growth rates, computed as the forecast of the firm’s emissions

in 2050 divided by the firm’s emissions in 2023, minus 1. As in Figure 5, we exclude firms for

which MSCI forecasts 1% emissions growth. The figure shows a wide distribution of growth

rates, ranging from -100% to +33%. For most firms, emissions are predicted to fall by 2050,

in some cases to zero. For some firms, they are predicted to rise. The wide distribution in

Figure 6 helps us understand the wide distribution in Figure 5.

5.1.3. Determinants of future emission growth

Do the forecasted emission growth rates differ between high and low emitters? To answer

this question, Figure 7 shows a binscatter plot of firms’ cumulative future emissions growth,

computed as in Figure 6, against the firms’ “current” emissions in 2023, measured in logs.

For both direct and total emissions, we observe a strong, negative relation between current

emissions and future emission growth rates. Higher emitters have lower forecasted emissions

growth rates. For direct emissions, this growth rate is −14% for the top 5% of emitters but

+25% for the bottom 5% of emitters. The latter growth rate is positive because Figure 7

includes all firms, including those for which MSCI forecasts 1% annual growth. If we exclude

those firms, the relation remains negative. In that smaller set of firms, the future growth
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rate of direct emissions is −47% for the top 5% of emitters but −17% for the bottom 5% of

emitters (see the Appendix). The negative cross-sectional relation between current emissions

and future emission growth rates is clearly economically significant.

The relation is also statistically significant. This is clear from Table 7, which reports

results from cross-sectional regressions of future emission growth rates on current emissions

and other firm characteristics. The dependent variable is the annualized growth rate of

a firm’s emissions from 2023 to 2050, computed from MSCI forecasts. The independent

variables include the log of current emissions, the book-to-market ratio, investment, climate

score, and revenue growth, whose definitions are in the caption of Table 7. We measure all

regressors at the end of 2023. We run these regressions for three emission scopes and both

with and without industry fixed effects. In all six specifications, current emissions enter with

a significantly negative slope, with t-statistics ranging from −5.14 to −12.54.

The other four regressors exhibit weaker relations to forecasted emission growth rates.

Book-to-market enters with a positive slope, indicating larger emission increases for value

firms, but the coefficients are only marginally significant. Investment enters with a positive

slope that is significant in three specifications, pointing to larger emission increases for firms

that invest more. Only the climate score enters consistently across all six specifications. Its

slope estimate is always negative, with t-statistics ranging from −2.83 to −4.51, indicating

larger emission declines for “greener” firms. This association could well be reverse-causal,

in that firms with more ambitious emission targets could be rewarded by MSCI with higher

climate scores. We do not analyze causality; we are simply trying to explain the variation

in MSCI’s forecasted emission growth rates. We explain relatively little of that variation:

adjusted R-squareds range from 6.9% to 12.2%.20 Clearly, MSCI’s approach to forecasting

emissions is much more sophisticated than a linear regression with five regressors.

Both Figure 7 and Table 7 show that future emissions are expected to decline markedly

for high-emitting firms. This result is so strong that a handful of the largest emitters are

responsible for the entire drop in emissions expected in the U.S. corporate sector, as we

show in Figure 8. This figure plots the time series of direct emissions aggregated within two

subsets of firms: the 30 largest emitters as of 2022 and the 2,411 remaining firms. We also

plot the total emissions of all 2,441 firms. In years through 2022, emissions are historical

values from MSCI; after 2022, emissions are from MSCI’s forecasts.

Figure 8 shows that aggregate corporate emissions have declined from 2.7 to 2.1 billion

20The sample behind Table 7 includes also firms for which MSCI forecasts 1% annual growth. If we exclude
those firms, the results look similar—both current emissions and the climate score retain significantly negative
slopes in all six specifications, and the other regressors are almost never significant. See the Appendix.
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metric tons between 2008 and 2022, and that they are expected to decline further to 1.5 billion

metric tons by 2050. This steady decline is not surprising, given the ongoing decarbonization

of the U.S. economy. What is more surprising is the outsized role of the top 30 emitters.

First, these emitters account for a substantially larger share of aggregate emissions than the

remaining 2,411 firms. Second, the top 30 emitters account for just about all of the expected

aggregate decline in emissions by 2050. Essentially no decline is expected for the other 2,411

firms. The disproportionate influence of the top 30 emitters is apparent also from pre-2022

historical emissions. In short, all of the decarbonization of the U.S. corporate sector by 2050

is expected to come from the 30 largest emitters.21

5.1.4. Paris redux

Emission reductions by the largest corporate emitters will be essential in achieving the U.S.

goals as of 2021 under the Paris Agreement discussed in Section 3.4. To see this, consider

the top 10% of emitting firms in each of four emission categories: scope 1, scope 2, scope

3, and their sum. Panel A of Table 8 shows that the top 10% account for a large fraction

of emissions by all firms, ranging from 79% for scope 2 to 96% for scope 1. Given their

dominance, the largest emitters are pivotal in the country’s efforts to cut emissions.

For the U.S. to meet its 2021 Paris goals, carbon emissions in 2030 must be 41% lower

than in 2023, declining from 6.3 to 3.7 billion tons. For the corporate sector to cut emissions

by 41%, the bulk of this cut must come from the top 10% of emitters; the remaining 90% of

firms are relatively unimportant. Panel B of Table 8 shows the required reductions for the top

10% under various scenarios for what the other 90% of firms do. If the latter firms’ emissions

stay constant at 2023 levels, the largest emitters need to cut their emissions by between 43%

and 52%, depending on the category. If the other 90% instead cut their emissions to zero by

2030, the top 10% still need to cut their emissions between 26% and 38%.

What reductions by the largest emitters can we anticipate? To answer this question, we

turn to the MSCI forecast data. Most firms in the top 10% have emission targets.22 Panel

C of Table 8 summarizes characteristics of these firms, which for each category account for

over three-fourths of the 2023 emissions from the entire top 10% of emitters. Panel D reports

properties of the firms’ targeted emission reductions from 2023 to 2030. The aggregate tar-

21The top 10 emitters as of 2022, based on scope 1 emissions, are Exxon Mobil, Vistra, Southern, Duke
Energy, Berkshire Hathaway, Chevron, American Electric Power, Nextera Energy, AES, and Entergy.

22Emission targets are much more prevalent among large emitters. Among the top 10% of emitters, 65%
to 74% have targets, depending on the emission category, whereas among the other 90% of emitters in any
category, fewer than 24% have targets.
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geted reductions for scopes 1 and 2, at 28% and 33% respectively, are moderately below the

Paris-mandated 41% reduction. However, targeted cuts for scope 3 are only 8%, and recall

that scope 3 captures over half of U.S. aggregate emissions not captured by firms’ scopes 1

and 2. To cut half of all emissions by only 8% would leave the U.S. well short of its 2021

Paris goals. Further tempering anticipated cuts by the largest emitters are MSCI’s forecasts

for the target-reporting firms, computed as in equation (8). The reductions from 2023 to

2030 implied by those forecasts are summarized in Panel E of Table 8. In all emission cate-

gories, MSCI is rather pessimistic about firms’ meeting their targeted reductions, predicting

reductions often two or three times smaller than targeted.

5.2. VAR-based emission forecasts

Our primary source of firm-level emission forecasts, used in both Sections 4 and 5.1, is MSCI.

In this section, we construct an alternative secondary source that does not use data on

future emissions. Instead, we build a simple econometric model that uses data on historical

emissions to forecast each firm’s future emissions into perpetuity.

5.2.1. VAR methodology

We use a vector autoregression (VAR) to forecast firms’ shares of aggregate emissions. Our

forecast of each firm’s future emissions is the product of the aggregate emissions forecast

(from Section 3.1) and the firm’s forecasted share (from our VAR model). We model firms’

shares of aggregate emissions to ensure that our forecasts of firm-level emissions add up to

a constant fraction of the aggregate forecasts, for consistency.

Let θn,t denote firm n’s emissions in year t as a fraction of aggregate emissions. Let Yn,t

denote the 1 ×K vector containing emission-relevant firm-level variables observable at the

end of year t, with K = 5. The first element of Yn,t is log(θn,t), the main variable of interest.

The remaining elements of Yn,t are the same four variables that we related to emission growth

forecasts in Table 7: book-to-market, investment, climate score, and revenue growth. We

estimate the following first-order VAR, pooled across firms and years:

Yn,t = c+ Yn,t−1A+ un,t , (9)

where A is a K × K matrix of coefficients and c is a 1 × K vector of constants. After

estimating A and c, we obtain the forecast of Yn,t+τ as of time t as

E[Yn,t+τ |Yn,t; c, A] = c

(
τ−1∑
s=0

As

)
+ Yn,tA

τ . (10)
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We then isolate the element of E[Yn,t+τ |Yn,t; c, A] corresponding to E[log(θn,t+τ )|Yn,t; c, A],

which is the firm’s forecasted log share in year t+τ . Let C̄t+τ denote the aggregate emissions

forecasted for year t+ τ . Then, the emissions forecast for firm n in year t+ τ is

E[Cn,t+τ |Yn,t; c, A] = C̄t+τ E[θn,t+τ |Yn,t; c, A] . (11)

We substitute these forecasts into equation (1), along with the EPA’s SCC forecasts, to

compute firms’ carbon burdens as of year-end 2022.23

One slight complication is that the VAR delivers a forecast of log(θn,t+τ ), not a forecast

of θn,t+τ , which we need in equation (11). To go from the former to the latter, we need to

make an adjustment for Jensen’s inequality. If the VAR’s error terms un,t from equation (9)

are normally distributed, then the properties of the lognormal distribution imply

E[θn,t+τ |Yn,t] = exp

(
E[log(θn,t+τ )|Yn,t] +

1

2
Var(log(θn,t+τ )|Yn,t)

)
. (12)

The term E[log(θn,t+τ )|Yn,t] is easily extracted from the VAR, as explained above. If the

error terms are i.i.d., then Var(log(θn,t+τ )|Yn,t) is a constant for each τ . Therefore, applying

the Jensen’s inequality adjustment amounts to adding a τ -specific constant to log shares, or,

equivalently, multiplying forecasted non-log shares by a τ -specific constant.

A simple solution to this complication emerges as a byproduct of another fix. We find it

desirable for firms’ forecasted aggregate emissions shares to be in line with their historical

values, but that feature need not obtain empirically without further adjustments. To deliver

this feature, we scale the sum of forecasted shares across firms so that it equals the sum

of historical shares. Specifically, let S(τ) denote the sum of E[θn,t+τ |Yn,t] across firms n.

For each τ , we replace E[θn,t+τ |Yn,t] with E[θn,t+τ |Yn,t]× S(0)/S(τ), which forces the sum of

forecasted shares to match its value in t = 2022, namely, S(0).24 This adjustment requires

multiplying shares by a τ -specific constant, similar to the adjustment for Jensen’s inequality.

Therefore, after rescaling shares in this way, we find the same forecasted shares whether or

not we apply the Jensen’s inequality adjustment in the previous step.

When estimating the VAR, we exclude observations in each year’s lowest quartile of

emissions, because those observations are the most likely to exhibit extreme, and likely

erroneous, year-to-year changes in emissions. However, we apply the estimated VAR model

to estimate carbon burdens for all firms, including those in the lowest quartile. We conduct

the VAR estimation for scope 1 emissions only, for simplicity.

23In previous sections, we compute carbon burdens as of year-end 2023. We switch to year-end 2022 when
using the VAR approach because our historical emissions data end in 2022. Carbon burdens from the VAR
approach include emissions forecasted from year 2023 into perpetuity.

24This value is about 0.4. As noted earlier, direct (scope 1) corporate emissions account for less than half
of total emissions.
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5.2.2. VAR-based carbon burden estimates

Table 9 reports the slope estimates for the VAR equation in which the dependent variable

is log(θn,t). All five independent variables are measured at the end of year t − 1. The four

columns correspond to four different samples: two using historical emissions data from MSCI

(columns 1 and 3) and two using data from Trucost (columns 2 and 4). Columns 1 and 2

use as much data as possible from each database (starting in 2008 for MSCI and 2016 for

Trucost). Columns 3 and 4 use observations present in both databases.

Table 9 shows that the strongest predictor of log(θn,t) is its own lag, log(θn,t−1), with

the slope of almost 1, indicating strong persistence in emissions. Investment also enters

consistently with a positive slope, perhaps because firms that invest more subsequently grow

more, thereby generating larger future emissions. This finding is present also in Table 7, to

a weaker degree. Also similar to Table 7 is the consistently negative slope on the climate

score. The estimated slopes on book-to-market and revenue growth are also negative but

not always significant. The R-squareds are close to one, especially due to the inclusion of

lagged emissions. The results are fairly similar across the four columns.

VAR-based carbon burden estimates differ greatly across firms, even more so than their

counterparts based on MSCI’s emission forecasts. This fact is apparent from the cross-

sectional distributions of carbon burdens scaled by market cap, which we plot in the Ap-

pendix, analogous to Figures 3 and 4. Moreover, the VAR-based estimates tend to be larger.

For example, using the 2% discount rate and MSCI data, 48% of firms have carbon burdens

exceeding their market caps. The fraction is even larger, 62%, when we estimate the VAR

based on Trucost data. In both datasets, the firms whose carbon burdens exceed their market

caps represent about 14.5% total market cap—somewhat higher than the 9% observed earlier

in Figure 4 based on MSCI forecasts. Even under the higher 2.5% discount rate, VAR-based

carbon burdens exceed the market cap for 28% of firms based on MSCI historical emissions

and for 39% of firms based on Trucost emissions, representing about 7.5% of total market

cap in both cases.

The previous paragraph suggests that the VAR-based carbon burdens estimated based

on Trucost data tend to be larger than those estimated based on MSCI data. In Panel

A of Figure 9, we conduct this comparison more closely by showing a scatterplot of firms’

Trucost-based VAR estimates of carbon burdens against MSCI-based VAR estimates. All

of these estimates are computed from emissions in all future years and scaled by the firm’s

market cap. The scatterplot confirms that for most firms, Trucost-based VAR estimates

are larger, but there are also many firms for which the opposite is true. The scatterplot is
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concentrated near the 45-degree line, indicating a fair amount of resemblance between the

carbon burdens computed based on the two different data sources.

Motivated by the deviations from the 45-degree line, we analyze the discrepancies be-

tween MSCI’s and Trucost’s historical emissions data for the same firm in the same year.

We conduct the analysis in the Appendix and summarize it here. We find high correlations

between the data from the two providers, especially for direct emissions, similar to Busch,

Johnson, and Pioch (2022). However, we show that these correlations mask large discrep-

ancies between the data providers. For example, based on scope 1 or scope 2 emissions,

10% of firms exhibit discrepancies 1.5 times larger than the emission level itself. For scope

3 emissions, the discrepancies are even larger—for 10% of firms, they are twice as large as

the emission level. The correlations are high in spite of these discrepancies because emis-

sion levels range widely across firms. The discrepancies are economically significant, as they

translate into meaningful differences in hypothetical carbon taxes. Consider, for example,

a tax on direct emissions equal to $200 per ton, the EPA’s current baseline SCC. Among

the largest emitters (top 5% of emitters based on direct emissions), 5% of them then have

discrepancies in carbon taxes that exceed 57% of their annual profits. We also find that the

discrepancies tend to be larger for smaller emitters and for firms that do not disclose their

emissions. Firms’ emissions are clearly difficult to measure. The substantial divergence be-

tween the emissions data from these two leading providers is reminiscent of the divergence of

ESG ratings documented by Berg, Koelbel, and Rigobon (2022). Given the growing interest

in firm-level emissions data, it seems important to understand the data’s limitations.

How do VAR-based carbon burdens compare to those computed based on MSCI forecasts

in Section 5.1? In Panel B of Figure 9, we produce a scatterplot analogous to that in Panel

A, except that on the y axis, we replace Trucost-based VAR estimates by estimates based

on MSCI forecasts. The plot shows a high degree of similarity between the two estimates for

the highest emitters, but a low degree of similarity for the lowest emitters. For most firms,

especially for low emitters, carbon burden estimates based on MSCI forecasts are lower than

VAR-based estimates. There are at least two reasons. First, MSCI’s forecasts reflect firms’

forward-looking decarbonization targets (see Section 4.1), which are often more ambitious

than the emission reductions that can be inferred from historical data. Second, our VAR

approach implies that in an infinitely distant future, all firms’ shares of aggregate carbon

emissions will be the same. This implication is not unreasonable, given the large amount

of long-run creative destruction in the economy. One corollary is that smaller emitters’

emission shares are forecasted to grow faster, boosting such emitters’ VAR-based carbon

burden estimates. As noted earlier, we prioritize emission forecasts from MSCI and use

VAR-based forecasts only for comparison.
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Recall from Figure 8 that based on MSCI emission forecasts, the top 30 emitters account

for essentially all of the expected aggregate decline in emissions by 2050. Figure 10 shows

that this result holds up, and is even stronger, based on VAR forecasts. According to our

VAR estimates based on MSCI data, aggregate corporate emissions are expected to decline

by 0.3 billion metric tons between 2022 and 2050. The emissions of the top 30 emitters are

expected to decline by 0.4 billion tons over the same period, whereas those of the remaining

firms are expected to increase by 0.1 billion tons. These results support the conclusion from

Figure 8 that all of the decarbonization of the U.S. corporate sector in the coming decades

is expected to come from the 30 largest emitters.

6. Conclusion

We estimate carbon burdens, novel measures of carbon externalities, for U.S. corporations.

We find these burdens to be large. Based on our year-end 2023 baseline estimates, the ag-

gregate U.S. carbon burden is $87 trillion, which equals 131% of the total value of corporate

equity. Carbon burdens vary greatly across industries, from 695% of market value for util-

ities to 1% for financials, based on direct emissions. When indirect emissions are added in,

the carbon burden of utilities more than doubles, but the financials’ carbon burden grows

more than thousandfold. For 13% of firms, which represent 9% of total market capitaliza-

tion, their direct carbon burdens exceed their market values. Adding in indirect emissions,

carbon burdens exceed market values for 77% of firms, which make up half of total market

capitalization. For these firms, the present value of their carbon costs to society exceeds

the present value of their dividends to shareholders. The large magnitudes of the estimated

carbon externalities suggest that a continued debate regarding the Friedman (1970) doctrine,

according to which firms should focus solely on maximizing profits, is warranted.

We estimate that if the U.S. stuck to its 2021 goals under the Paris Agreement, its carbon

burden would fall by 21% to 32%. Key to the achievement of those goals are the emission

reductions of the largest emitters. Promisingly, the largest emitters have the most negative

expected future emission growth rates, as the cross-sectional relation between current emis-

sions and future emission growth rates is strongly negative. (Besides current emissions, other

firm characteristics that help explain the cross section of emission growth forecasts include

investment, climate score, and the book-to-market ratio.) The relation is so strong that all

of the decarbonization of the U.S. corporate sector by 2050 is expected to come from the

30 largest emitters. Alas, the largest emitters’ emission reduction targets are insufficient for

the U.S. to meet its 2021 Paris goals, even if we take those targets at face value.
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Our carbon burden estimates come with a fair amount of imprecision that is hard to

quantify. All three building blocks of the carbon burden—emission forecasts, forecasts of

the SCC, and the discount rate—are imprecise, to an uncertain degree. We consider three

discount rates, but we are unable to compute standard errors because the forecasts we

obtain from the MSCI, EIA, and EPA come without confidence bands. We could compute

an alternative and potentially more precise measure of the carbon burden if there existed

emissions futures contracts similar to those proposed by van Binsbergen and Brogger (2022).

Imagine a contract paying SCCτ dollars for each ton of emissions that a firm emits τ years

from now, where SCCτ is an SCC forecast agreed upon today. If we had such contracts’

market prices for each future τ , we could sum those prices across τ = 1, ...,∞ to obtain the

market’s assessment of the firm’s carbon burden, conditional on the SCC forecasts. Until

such an imaginary world arrives, carbon burden estimates are likely to remain imprecise.

Nevertheless, in all scenarios we consider, the corporate sector’s carbon burden is large.

As argued earlier, it would be naive to assign full responsibility for the aggregate carbon

burden to the corporate sector, because how much carbon a country emits depends to a

large extent on household demand and politics (e.g., France and Germany have very different

attitudes toward nuclear energy). Similarly, it is unclear how to allocate responsibility across

firms, given their symbiotic relationships. For example, it would be simplistic to hold utilities

fully accountable for their direct emissions, since the demand for their power comes from

other sectors. Carbon burden is inherently shared, and assigning responsibility for it to

individual firms is somewhat arbitrary. Nonetheless, firms can surely be held responsible for

some of their emissions. Designing policies that reduce the aggregate carbon burden fairly,

efficiently, and significantly is an important task for scholars and policymakers alike.

Future work should also aim to improve emission measurement. We find substantial

discrepancies between the emissions data from two leading providers, MSCI and Trucost. The

discrepancies are larger for smaller emitters and firms that do not disclose their emissions.

Emission measurement is likely to become more precise if emission disclosures eventually

become mandatory in the U.S., as proposed by the SEC.

We also need more research into the risk profile of carbon emissions, to improve the way

we discount future emissions. Finally, moving beyond carbon, future research should try to

quantify other externalities, positive and negative, that corporations impose on society.

32



0

100

200

300

400

500

600

700

2020 2030 2040 2050 2060 2070 2080

So
ci

al
 c

os
t p

er
 C

O
2

eq
ui

va
le

nt
 to

n 
of

 G
H

G
 e

m
is

si
on

s 
(in

 d
ol

la
rs

)

Year

Discount rate = 1.5%

Discount rate = 2.0%

Discount rate = 2.5%

Figure 1. Social costs of GHG emissions. The figure plots EPA estimates of the social
cost per CO2-equivalent ton of GHGs emitted in a given future year. The EPA provides the
costs through 2080 that are associated with each of three discount rates: 1.5% (long dashes),
2.0% (solid line), and 2.5% (short dashes).

33



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150

G
H

G
 e

m
is

si
on

s (
m

ill
io

ns
 o

f C
O

2
eq

ui
va

le
nt

 to
ns

)

Year

Reference forecast

Paris scenario 1

Paris scenario 2

Figure 2. Forecasts of U.S. GHG emissions. The figure plots the reference forecasts
(solid line) as well as forecasts under two scenarios for the Paris agreement. In the first Paris
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agreement’s 2030 level in all later years. In the second Paris scenario (long dashes), no additional
reductions relative to the reference level occur after 2030. The plot truncates the forecast time
horizon, which technically extends to infinity.
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Figure 4. Value-weighted version of previous figure. Whereas the previous figure plots
the fraction of firms below each x-axis value, this figure plots the fraction of aggregate market
cap belonging to firms below each x-axis value.
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Figure 5. Firms’ carbon burdens: Future years vs. current year. We compute each
firm’s ratio of carbon burden through 2050 to carbon burden from 2023. The figure plots
this ratio’s distribution across firms. Carbon burdens are computed using MSCI’s emissions
forecasts, with ρ = 2%. Panel A (B) excludes firms with scope 1 (1, 2, or 3) growth rate equal
to 1%; these excluded firms either do not have a target or have a target that MSCI deems
uninformative. Panel A (B) includes 696 (353) firms in total.
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Figure 6. Firms’ forecasted emissions growth. This figure plots the distribution of firms’
cumulative forecasted emissions growth rates, computed as the fraction change in emissions
from 2023 to 2050. Emissions forecasts are from MSCI. Panel A (B) excludes firms with scope
1 (1, 2, or 3) growth rate equal to 1%; these excluded firms either do not have a target or have
a target that MSCI deems uninformative. Panel A (B) includes 696 (353) firms in total.
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Figure 7. Current emissions and forecasted emissions growth. This figure shows the
binscatter plots of firms’ cumulative forecasted emissions growth rates, computed as the firm’s
fraction change in emissions from 2023 to 2050, against the log emissions in 2023. Emissions
forecasts are from MSCI. Panel A (B) includes 2,543 (2,574) firms in total.
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Figure 8. Past and future emissions. This figure shows past and future scope 1 emissions,
using MSCI data on historical emissions and forecasts. The sample includes firms that have
non-missing emission scope 1 forecasts for 2023 and historical emissions for 2022. We rank
firms based on their emissions in 2022. The figure shows the sum of emissions, in billions of
metric tons, each year within groups of firms ranked by their emissions in 2022. For example,
“Top 30 Firms” includes the 30 firms with the highest scope 1 emissions in 2022. In years after
2022, emissions are from MSCI forecasts. In years ≤ 2022, emissions are the actual historical
emissions. In years t < 2022, historical emissions are divided by an annual factor equal to (1)
the year-2022 emissions aggregated across subsample firms with non-missing year-t emissions
divided by (2) the year-2022 emissions aggregated across all subsample firms. For example,
suppose 25 of the top 30 firms were operating in 2020, and these 25 firms accounted for 90% of
the 30 top firms’ emissions in 2022. To adjust the 2020 emissions, we divide the total emissions
of these 25 firms by a factor of 0.9, which increases their year-2020 emissions by 1.111. The
purpose of this adjustment is to correct for an upward trend in data coverage before 2022.
Without this adjustment, we would impute zeros for missing firms’ emissions, which would bias
the historical emissions downward.
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Figure 9. Comparing carbon-burden estimates. This figure shows scatter plots of firms’
ratios of carbon burden to market cap, comparing estimates from one method to another. In
Panel A, both dimensions use VAR-based forecasts, but the y-axis is based on historical Trucost
data and the x-axis is based on historical MSCI data. Panel A uses the overlapping sample
of MSCI and Trucost data. In Panel B, the y-axis uses MSCI forecasts, and the x-axis uses
VAR-based forecasts based on historical MSCI data. We use carbon burdens from all future
years, with ρ = 2%. All variables are in logs.
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Figure 10. Past and future emissions from VAR forecasts. This figure is the same as
Figure 8, except future emissions are from VAR-based forecasts. Historical scope 1 emissions
are from MSCI, and the VAR is estimated using historical MSCI scope 1 data. The sample
includes firms for which we can forecast emissions after 2022 using the VAR model.
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Table 1

Total U.S. carbon burden

Panel A shows the estimated total social costs of U.S. GHG emissions over various future periods
beginning in 2024. Results are based on the reference forecasts of U.S. GHG emissions and are
shown for three values of the discount rate. Panel B shows each amount in Panel A as a fraction
of the total value of U.S. corporate equity at year-end 2023.

Discount rate
Future period 2.5% 2.0% 1.5%

Panel A. Trillions of dollars

Through 2050 17.35 28.98 50.64
Through 2080 30.87 53.21 95.81
All future years 45.61 87.09 178.84

Panel B. Fraction of U.S. corporate equity value

Through 2050 0.261 0.436 0.763
Through 2080 0.465 0.801 1.443
All future years 0.687 1.312 2.693
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Table 2

U.S. carbon burden reductions under the Paris Agreement

(Scenario 1)

Panel A shows the estimated reductions in social costs of U.S. GHG emissions under the first
scenario for the Paris Agreement. In this scenario, the fraction of reference-level emissions in later
years is maintained at the agreement’s 2030 level. Reductions are relative to the reference forecasts
of U.S. GHG emissions and are shown for three values of the discount rate and over various future
periods beginning in 2024. Panel B shows each amount in Panel A as a fraction of the total value
of U.S. corporate equity at year-end 2023. Panel C shows each amount in Panel A as a fraction of
the corresponding U.S. carbon burden reported in Panel A of Table 1.

Discount rate
Future period 2.5% 2.0% 1.5%

Panel A. Trillions of dollars

Through 2050 4.95 8.29 14.52
Through 2080 9.40 16.27 29.39
All future years 14.25 27.42 56.72

Panel B. Fraction of U.S. corporate equity value

Through 2050 0.075 0.125 0.219
Through 2080 0.142 0.245 0.443
All future years 0.215 0.413 0.854

Panel C. Fraction of U.S. carbon burden

Through 2050 0.285 0.286 0.287
Through 2080 0.305 0.306 0.307
All future years 0.312 0.315 0.317
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Table 3

U.S. carbon burden reductions under the Paris Agreement

(Scenario 2)

Panel A shows the estimated reductions in social costs of U.S. GHG emissions under the second
scenario for the Paris Agreement. In this scenario, no additional reductions relative to the reference
level occur after achieving the agreement’s 2030 level. Reductions are relative to the reference
forecasts of U.S. GHG emissions and are shown for three values of the discount rate and over
various future periods beginning in 2024. Panel B shows each amount in Panel A as a fraction of
the total value of U.S. corporate equity at year-end 2023. Panel C shows each amount in Panel A
as a fraction of the corresponding U.S. carbon burden reported in Panel A of Table 1.

Discount rate
Future period 2.5% 2.0% 1.5%

Panel A. Trillions of dollars

Through 2050 4.87 8.15 14.27
Through 2080 8.75 15.10 27.19
All future years 10.34 18.31 33.88

Panel B. Fraction of U.S. corporate equity value

Through 2050 0.073 0.123 0.215
Through 2080 0.132 0.227 0.410
All future years 0.156 0.276 0.510

Panel C. Fraction of U.S. carbon burden

Through 2050 0.280 0.281 0.282
Through 2080 0.284 0.284 0.284
All future years 0.227 0.210 0.189
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Table 4

Carbon burden across industries

This table shows each industry’s ratio of carbon burden to market cap and ratio of future to present
carbon burden. Carbon burden is computed using MSCI forecasts through 2050 in Panel A and in
all future years in Panel B, with ρ = 2%. “Carbon Burden: Future / Present” equals the ratio of
the industry’s carbon burden from future years to its burden from 2023 emissions only. We use the
Fama-French 12 industry classification. Industry “Other” includes Mines, Construction, Building
Materials, Transportation, Hotels, Business Services, and Entertainment.

Carbon Burden / Market Cap Carbon Burden: Future / Present

Industry Scope 1 Scope 1+2 Scope 1+2+3 Scope 1 Scope 1+2 Scope 1+2+3

Panel A. Through 2050

NoDur 0.12 0.18 2.10 22.74 22.28 22.87
Durbl 0.02 0.05 3.52 19.84 19.32 24.68
Manuf 0.26 0.38 5.60 22.33 22.41 26.22
Enrgy 1.06 1.19 20.48 22.05 22.12 28.47
Chems 0.45 0.60 3.00 22.41 22.08 25.52
BusEq 0.00 0.01 0.25 19.19 18.76 20.16
Telcm 0.01 0.07 0.67 16.54 16.26 21.40
Utils 2.71 2.81 5.54 20.35 20.46 23.61
Shops 0.05 0.08 1.88 25.27 24.29 27.79
Hlth 0.01 0.02 0.46 21.88 22.46 23.43
Money 0.00 0.01 5.28 23.51 20.51 26.63
Other 0.41 0.45 1.87 22.24 22.33 24.00

Panel B: All future years
NoDur 0.36 0.53 6.23 68.48 66.47 67.81
Durbl 0.05 0.15 10.98 57.83 55.75 77.31
Manuf 0.74 1.09 17.53 64.09 64.89 82.33
Enrgy 2.95 3.33 65.90 61.34 61.84 92.19
Chems 1.23 1.63 9.17 60.96 59.91 78.25
BusEq 0.01 0.04 0.75 52.50 53.91 60.80
Telcm 0.04 0.21 2.10 48.96 47.56 66.46
Utils 6.95 7.25 15.92 52.95 53.59 68.66
Shops 0.14 0.26 6.06 80.01 76.12 89.53
Hlth 0.03 0.07 1.41 66.66 68.79 71.15
Money 0.01 0.04 16.61 72.01 61.97 83.82
Other 1.21 1.33 5.56 65.21 65.57 71.69
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Table 5

Targets vs. forecasts

This table shows the cumulative growth rate in each industry’s aggregate emissions. Cumulative
growth rate is the fraction change between the industry’s aggregate 2023 and 2050 emissions.
Column “Forecast” uses MSCI forecasts. Column “Target” uses firms’ targets. Targets are available
for fewer firms than forecasts are. “Ratio” is the industry’s sum of 2050 emissions targets divided
by the industry’s sum of 2050 emissions forecasts, using only firms for which both targets and
forecasts are available.

Scope 1 Scope 1+2 Scope 1+2+3

Industry Forecast Target Ratio Forecast Target Ratio Forecast Target Ratio

NoDur -0.11 -0.47 0.50 -0.14 -0.51 0.47 -0.12 -0.45 0.54
Durbl -0.26 -0.64 0.35 -0.29 -0.63 0.40 0.02 -0.19 0.66
Manuf -0.19 -0.55 0.47 -0.17 -0.52 0.49 0.09 -0.17 0.60
Enrgy -0.24 -0.83 0.16 -0.23 -0.82 0.17 0.24 0.15 0.70
Chems -0.25 -0.89 0.12 -0.26 -0.87 0.14 0.03 -0.35 0.53
BusEq -0.35 -0.80 0.28 -0.32 -0.78 0.28 -0.21 -0.51 0.55
Telcm -0.37 -0.80 0.29 -0.39 -0.74 0.38 -0.12 -0.37 0.61
Utils -0.37 -0.92 0.11 -0.36 -0.91 0.11 -0.13 -0.58 0.38
Shops 0.07 -0.76 0.12 0.01 -0.73 0.15 0.20 -0.15 0.39
Hlth -0.13 -0.61 0.28 -0.10 -0.68 0.20 -0.07 -0.31 0.57
Money -0.06 -0.60 0.24 -0.19 -0.74 0.22 0.11 -0.21 0.51
Other -0.17 -0.80 0.16 -0.16 -0.79 0.16 -0.07 -0.66 0.25
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Table 6

Explaining variation in firms’ carbon metrics

This table reports adjusted R-squared values from cross-sectional regressions of carbon-burden
metrics (denoted in column headers) on industry fixed effects and/or log of market cap. “CB”
represents the carbon burden from all future years. “Future / Present” refers to carbon burden
from all future years divided by the burden from 2023 emissions only. Carbon burdens are computed
from MSCI emissions forecasts as of the end of 2023, with ρ = 2%. Firms are classified into Fama-
French 49 (12) industries in Panel A (B).

Dependent Variable (log)

Scope CB CB/Mktcap Future/Present

Panel A: Using the Fama-French 49 industries
Scope 1 0.521 0.642 0.521 0.580 0.063 0.242
Scope 1+2 0.432 0.590 0.415 0.506 0.061 0.241
Scope 1+2+3 0.367 0.654 0.392 0.461 0.051 0.154

Panel B: Using the Fama-French 12 industries
Scope 1 0.412 0.548 0.418 0.468 0.035 0.216
Scope 1+2 0.330 0.505 0.320 0.401 0.035 0.217
Scope 1+2+3 0.272 0.586 0.294 0.352 0.028 0.131

Industry FEs Y Y Y Y Y Y
Log(MktCap) Y Y Y

48



Table 7

Firm characteristics and forecasted emissions growth

This table shows estimates from cross-sectional regressions with dependent variable equal to
the annualized emission growth rate of a firm’s emissions from 2023 to 2050, based on MSCI
forecast data. We set the growth rate to zero for firms with 2023 and 2050 emissions equal to
zero. For other firms with 2050 emissions equal to zero, we set 2050 emissions to 1% of the 2023
emissions level so that we can compute an annualized growth rate. All regressors are measured
at the end of 2023. BE/ME is the book-to-market ratio. Investment is the one-year fraction
change in book assets. Climate Score is computed from MSCI’s ESG ratings and is defined
as −(10 − Climate scorei,t−1) × Climate weighti,t−1/100, similar to Pástor, Stambaugh, and
Taylor (2022). Climate score is “Climate Change Theme Score,” a number between zero and 10
measuring a company’s resilience to long-term risks related to climate change. Climate weight is
“Climate Change Theme Weight,” a number between zero and 100 measuring the importance of
climate change relative to other ESG issues in the company’s industry. Revenue Growth is the
one-year fraction change in revenue. BE/ME, Investment, and Revenue Growth are winsorized at
the 1st and 99th percentiles. The bottom rows specify the emissions scope considered and whether
we include fixed effects for Fama-French 12 industries. In parentheses, we report t-statistics
clustered by industry. We multiply slope coefficients by 1,000.

(1) (2) (3) (4) (5) (6)
Log(Emissions) -2.344 -2.960 -2.279 -2.688 -3.212 -2.460

(-9.53) (-12.34) (-5.43) (-8.88) (-12.54) (-5.14)

BE/ME 1.203 1.280 0.875 1.182 1.194 0.608
(1.74) (1.85) (1.51) (1.71) (1.83) (1.08)

Investment 2.065 2.756 2.838 2.290 2.909 2.669
(1.27) (1.79) (1.99) (1.59) (2.09) (2.10)

Climate Score -7.340 -7.063 -5.614 -9.203 -8.860 -4.200
(-3.39) (-3.30) (-4.51) (-3.40) (-3.26) (-2.83)

Revenue Growth -0.552 -1.012 -1.092 -1.014 -1.377 -1.184
(-1.30) (-1.86) (-1.94) (-2.33) (-2.49) (-2.07)

Constant 0.020 0.029 0.034 0.017 0.025 0.028
(7.37) (11.09) (6.98) (4.90) (8.35) (4.11)

Observations 2191 2213 2213 2191 2213 2213
Adjusted R2 0.100 0.107 0.069 0.118 0.122 0.085
Scopes 1 1+2 1+2+3 1 1+2 1+2+3
Industry FE Y Y Y
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Table 8

Firms in the top 10% of emissions

Panel A reports numbers of firms and total 2023 emissions for the firms whose emissions in a given
emission category are in the top 10% of U.S. firms. For the top 10%, Panel B reports percentage
emission reductions from 2023 to 2030 implied by the Paris Agreement under alternative scenarios
for the remaining 90% of firms. For firms within the top 10% that also have emission targets for
2023 and 2030, as identified by MSCI, Panel C reports the number of firms and their total 2023
emissions. For the same firms, Panel D reports properties of their targeted emission reductions
from 2023 to 2030, and Panel E reports properties of MSCI’s forecasted emission reductions over
the same period.

Emission categories
Scope 1 Scope 2 Scope 3 All

Panel A. Top 10% of emitting firms

Number of firms 285 285 285 285
Total emissions (mil. tons) 2,696 359 19,224 21,509
Percent of total emissions for all firms 96 79 85 83

Panel B. Percentage reductions for the top 10% implied by the Paris Agreement

if other firms reduce emissions at the same rate 41 41 41 41
if other firms hold their emissions constant 43 52 48 49
if other firms reduce their emissions by 100% 38 26 31 29
if other firms increase their emissions by 100% 47 78 65 69

Panel C. Firms in the top 10% that also have emission targets

Number of firms with emission targets 184 211 190 200
Total emissions of firms with targets (mil. tons) 2,056 284 14,635 16,539
Percent of total emissions for the top 10% 76 79 76 77

Panel D. The above firms’ targeted percentage reductions

Median targeted reduction 26 31 3 11
Average targeted reduction 31 36 16 18
Aggregate targeted reduction 28 33 8 10

Panel E. MSCI’s forecasted percentage reductions for the same firms

Median forecasted reduction 11 19 -1 3
Average forecasted reduction 16 21 8 9
Aggregate forecasted reduction 14 20 2 3
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Table 9

Forecasting firms’ emissions in historical data

This table shows estimates from panel regressions with dependent variable equal to the firm’s log
scope 1 emissions share in year t. All regressors are measured at the end of year t − 1. The first
two columns use as much data as possible from each database (starting in 2008 for MSCI and
2016 for Trucost). Columns 3 and 4 use observations present in both databases. All regressions
exclude observations in the first quartile of emissions. Specifically, column 1 excludes observations
in the first quartile of MSCI emissions; column 2 excludes observations in the first quartile of
Trucost emissions; and columns 3 and 4 exclude observations in the first quartile of either MSCI
or Trucost. In parentheses we show t-statistics double-clustered by firm and year.

All Observations Overlapping Observations

MSCI Trucost MSCI Trucost
Log(Emissions Share) 0.990 0.987 0.988 0.983

(342.10) (849.62) (292.86) (426.81)

BE/ME -0.029 -0.021 -0.037 -0.026
(-3.98) (-1.56) (-3.63) (-1.78)

Investment 0.154 0.144 0.132 0.153
(4.58) (5.46) (3.76) (3.80)

Climate Score -0.027 -0.077 -0.043 -0.084
(-2.10) (-5.12) (-2.63) (-4.85)

Revenue Growth -0.049 -0.102 -0.072 -0.138
(-1.11) (-2.54) (-1.10) (-2.03)

Constant -0.099 -0.165 -0.119 -0.195
(-2.82) (-7.52) (-3.66) (-5.44)

Observations 12150 9820 7291 7291
Adjusted R2 0.970 0.944 0.971 0.950
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Appendix

A.1. Model

In Section 3.3, we present a simple framework that explains why the ratio of the aggregate

carbon burden to total equity market value is high even though damages from emissions are

only a small fraction of GDP. In that framework, production is not modeled explicitly and the

corporate profit margin is specified exogenously. In this section, we present a somewhat richer

framework that models production in a traditional way and endogenizes the profit margin.

The model remains very simple, with no growth, no frictions, and a single consumption good.

As in Section 3.3, total output is given by

Yt = Y + ϵt , (A.1)

but here we model expected output Y explicitly as

Y = KαL1−α , (A.2)

where K is capital, L is labor, and 0 < α < 1. Denoting the marginal products of capital and

labor by rK and w, respectively, we have Y = rKK+wL. The share of capital is rKK/Y = α

and the labor share is wL/Y = 1 − α. A by-product of production is an externality that

reduces the utility value of consumption by fraction f of expected output in each period:

Et = fY . (A.3)

Denoting the real riskless rate by r and recognizing that there is no growth, the present

value of all future externalities in perpetuity—the carbon burden—is simply equal to

CB =
fY

r
. (A.4)

Capital evolves as Kt+1 = (1 − δ)Kt + It, where δ is a positive depreciation rate and It
is investment. We assume It = δKt, so that Kt = K and It = I for all t (no growth).

The investment is made by the corporate sector from its gross capital revenue, rKK + ϵt.

Therefore, the owners of capital receive dividends Dt equal to rKK − I + ϵt, so that

Dt = (rK − δ)K + ϵt . (A.5)

The expected dividend in each period is D = (rK − δ)K. The market value of the corporate

sector is the present value of all expected future dividends:

M =
D

rS
=

rK − δ

rS
K , (A.6)

where rS is the cost of capital, which differs from r by a risk premium reflecting the risk

embeded in ϵt. In a frictionless economy, a unit of capital can be costlessly transformed into
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a unit of the consumption good. Capital stock adjusts so that Tobin’s Q is equal to 1 and

M = K. This condition and equation (A.6) pin down the marginal product of capital:

rK = δ + rS . (A.7)

Given equations (A.4), (A.6), and (A.7), the ratio of the carbon burden to market value is

CB

M
=

fY

rK
=

Y

rKK

rK
r

f =
1

α

δ + rS
r

f . (A.8)

This equation helps us understand how CB/M can be large even when f is small. The first

term on the right-hand side of equation (A.8) is the inverse of the capital share of GDP, so

its value is close to 3. The second term, (δ + rS)/r, is also always greater than 1, because

δ > 0 (positive depreciation) and rS > r (positive risk premium). Using the same values of

rS = 6% and r = 2% as in Section 3.3 and choosing a round value of δ = 10%, the value

of the second term is 8, and equation (A.8) then implies CB/M = 24f . When f = 4.7%,

as in Section 3.3, we have CB/M = 113%. If we increase δ slightly to 12%, we obtain

CB/M = 127%, which is close to our baseline estimated value of 131%.

Even though this model is richer than the model in Section 3.3, it remains too simple for

full calibration. A proper calibration would require adding realistic features such as economic

growth, gradual decarbonization, debt financing, and frictions. In a model with all these

features, the intuition would be far less transparent. In contrast, our equation (A.8) makes

it clear that CB/M is much larger than f , for three reasons.

First, the capital share of GDP, α, is smaller than 1 (historically about one third). M is

the market value of capital, whereas the externality underlying the CB is proportional to all

of GDP, including the labor component. The lower the capital share, the larger the CB/M

ratio, holding f constant.

Second, δ > 0. Maintaining the level of output requires investment to offset the depreci-

ation of capital. Investment is financed by capital owners from gross capital revenue, which

reduces dividends (see equation (A.5)), which in turn reduces the dividends’ present value,

M . In other words, keeping the expected level of output (and externality) constant requires

ongoing dividend reductions, which reduce M relative to CB. The larger the depreciation

rate, the larger the CB/M ratio, holding f constant.

Third, the corporate cost of capital exceeds the riskless rate due to a risk premium, so

that rS/r > 1. The larger this ratio, the larger the CB/M value, holding f constant.

Overall, the insights we obtain here are similar to those presented in Section 3.3. The

first two reasons presented above are related to the corporate profit margin, whose expected

value we endogenize here as D/Y = rSK/Y = αrS/(δ + rS).
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A.2. Filters applied to carbon emissions data

We analyze emissions at three levels: scope 1, 2, and 3. In some cases, we also sum across

scopes, computing scope 1+2 and scope 1+2+3. We recognize that emissions are double-

counted when we sum scope 1+2 or 1+2+3 emissions across firms.

There are some extreme outliers in firms’ fraction changes in emissions. Some of these

appear to be data mistakes. To deal with these outliers, we apply a few filters to both the

historical MSCI and Trucost data, for all three emission scopes (scope 1, 1+2, 1+2+3):

1. If the level of emissions and emissions/revenue both increase (decrease) by more than

9x over the previous year and then both decrease (increase) by more than 9x over the

following year, then set the year’s emissions (and all variables depending on it) to miss-

ing. This filter catches large spikes or troughs in emissions that are not accompanied

by a spike or trough in revenues. We suspect these are data mistakes. The number 9

is chosen to catch decimal-place mistakes, which would change emissions by a factor

of 10. In the MSCI data, this filter sets 15 (6) [24] observations to missing for scope

1 (1+2) [1+2+3]. In the Trucost data, this filter sets 7 (7) [7] observations to missing

for scope 1 (1+2) [1+2+3].

2. If the level of emissions is more than 100x larger (smaller) than in the previous year, and

if revenues are less than 10x larger (smaller) than the previous year, then set emissions

in this year (and all variables depending on it) to missing. This filter catches large,

non-reverting changes in emissions that are not accompanied by a similar change in

revenues. In the MSCI data, this filter sets 53 (13) [25] observations to missing for scope

1 (1+2) [1+2+3]. In the Trucost data, this filter sets 41 (6) [26] observations to missing

for scope 1 (1+2) [1+2+3]. One reason why the numbers of missing observations are

higher for MSCI than Trucost is that we use more years of data from MSCI than

Trucost.25

25We correct one other data mistake in Trucost. We replace the Trucost 2016 Scope 1 emissions for Exxon
with the corresponding value from MSCI. In Trucost, scope 1 emissions of Exxon spike roughly threefold in
2016. When asked about this spike, S&P Global, the owners of Trucost data, said they plan to rectify it
future versions of their data.
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A.3. Emission data discrepancies: MSCI vs. Trucost

In this section, we compare the historical emissions data from the two sources that we use in

our firm-level analysis, MSCI and Trucost. If firms’ emissions were directly observable, the

data from the two sources would presumably be identical. However, emissions are not easy

to measure. Some firms disclose their emissions, and both MSCI and Trucost collect such

data from publicly available sources such as firms’ annual reports, sustainability reports, and

regulatory filings. However, many firms do not disclose their emissions, in part because such

disclosure is not mandatory as of this writing.26 Scope 3 emissions are particularly rarely

disclosed. Moreover, even emissions that are disclosed are not always credible. Both MSCI

and Trucost engage with firms to clarify disclosure-related information. Both also use their

own proprietary models to estimate the emissions that are not disclosed as well as emissions

that they do not view as credible. The various differences in the data collection processes

translate into differences in the emissions data from the two sources.

Panel A of Figure 9, discussed in Section 5.2.2, reveals some differences between MSCI-

based and Trucost-based VAR estimates of carbon burdens. Nontrivial differences emerge

also between the MSCI- and Trucost-based VAR estimates in columns 3 and 4 of Table 9,

which use the same firm-year samples. In this section, we go deeper, focusing more directly

on the differences between the emissions data from MSCI and Trucost, which we refer to as

“discrepancies.” We summarize the basic properties of these discrepancies, relate them to

the levels of emissions and disclosure, and quantify their economic significance. Our bottom

line is that these discrepancies are substantial.

We first compute simple correlations between the emission levels from MSCI and Trucost,

using firm-by-year panel data from 2016 to 2022. Panel A of Table A.1 shows that these

correlations are high, ranging from 81% for scope 3 emissions to 98.2% for scope 1 emissions.

While these high correlations might seem reassuring, they obscure some large discrepancies

given the enormous variation in emissions across firms. In a cross section in which emissions

differ by several orders of magnitude, the correlation between MSCI’s and Trucost’s numbers

can be high even if these numbers differ by a factor of, say, three.

Let Cn,t,s,MSCI and Cn,t,s,T rucost denote scope s carbon emissions of firm n in year t from

the two data sources. We measure the MSCI-Trucost discrepancy in levels by computing

Ln,t,s =
| Cn,t,s,MSCI − Cn,t,s,T rucost |

(Cn,t,s,MSCI + Cn,t,s,T rucost) /2
(A.9)

for each firm, year, and scope. Panel B of Table A.1 shows the cross-sectional percentiles of

Ln,t,s, for t = 2022 and s ∈ {1, 2, 3}. These percentiles show large heterogeneity across firms.

26Emission disclosure may become mandatory soon. On March 6, 2024, the Securities and Exchange
Commission (SEC) enacted a rule that for the first time will require company disclosures of material scope
1 and 2 GHG emissions, starting in 2026, conditional on overcoming legal challenges. Currently, emission
disclosure is mandatory only at the facility level through the EPA’s Greenhouse Gas Reporting Program,
and only for sufficiently large emitters.
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First, consider scope 1 and 2 emissions. The 25th percentiles of Ln,2022,1 and Ln,2022,2 are

both smaller than 0.005, indicating that for more than a quarter of firms, the discrepancies

are negligible. These are mostly firms that disclose their emissions and whose disclosures

are accepted at face value by both MSCI and Trucost. The medians of Ln,2022,1 and Ln,2022,2

indicate that, for a typical firm, the difference between MSCI’s and Trucost’s assessments

of the firm’s emissions is about one third as large as the firm’s average emission level. The

90th percentiles of Ln,2022,1 and Ln,2022,2 are both about 1.5, indicating that for about 10%

of firms, the discrepancy is 1.5 times larger than the emission level itself. The discrepancies

thus range from tiny to huge.

For scope 3 emissions, the discrepancies are larger. For example, the 90th percentile

of Ln,2022,3, 1.963, implies that for 10% of firms, the MSCI-Trucost discrepancy is almost

twice as large as the emission level itself. This is not surprising, as scope 3 emissions are

notoriously difficult to measure. They are rarely disclosed, so both MSCI and Trucost rely

on their own internal models to estimate firms’ scope 3 emissions. Our results show that

those models produce meaningfully different estimates.

A natural question is whether the MSCI-Trucost discrepancies have shrunk over time as a

result of the growing amount of emission disclosure and its rising quality. In the Appendix,

we plot the time series of the cross-sectional distributions of Ln,t,s for all three emission

scopes. The plots reveal clear but modest reductions in the level of the discrepancies over

time. Even at the end of our sample, the discrepancies remain substantial.

Having examined discrepancies in the levels of emissions, we turn to discrepancies in the

growth rates. We measure the MSCI-Trucost discrepancy in growth rates by computing

Gn,t,s =

∣∣∣∣ Cn,t,s,MSCI − Cn,t−1,s,MSCI

Cn,t−1,s,MSCI

− Cn,t,s,T rucost − Cn,t−1,s,T rucost

Cn,t−1,s,T rucost

∣∣∣∣ (A.10)

for each firm, year, and scope. Panel C of Table A.1 shows the cross-sectional percentiles of

Gn,t,s, for t = 2022 and s ∈ {1, 2, 3}. The patterns are similar to those in Panel B, but the

magnitudes are mostly smaller, due to persistence in the levels of the discrepancies.

The 10th percentiles of Gn,2022,1 and Gn,2022,2 both round to 0.000, indicating no dis-

crepancies in scope 1 or 2 emission growth rates for at least 10% of firms. The medians of

Gn,2022,1 and Gn,2022,2 are 0.11 and 0.21, respectively, pointing to nontrivial discrepancies for

a typical firm. The 90th percentiles are almost 1, indicating discrepancies exceeding 100%

for almost 10% of firms. These are large discrepancies; for example, MSCI might be saying

that a given firm’s emissions grew by 50% between 2021 and 2022, whereas Trucost is saying

that the same firm’s emissions fell by 50%. Just like in the levels, discrepancies in the growth

rates range from tiny to huge, and they are even larger for scope 3 emissions.

Which firms exhibit the largest MSCI-Trucost discrepancies? We consider two firm char-

acteristics on a priori grounds. First, we hypothesize that the discrepancies could be larger

for firms with smaller emissions. Small emitters are less likely to disclose their emissions as

A-5



well as less likely to be scrutinized by activists or data providers, because whether a firm

emits little or very little does not make much difference to society. Second, it would make

sense for the discrepancies to be larger for firms that do not disclose emissions, regardless of

the emission level. For such firms, MSCI and Trucost estimate emissions based on their own

in-house models, which could differ in meaningful ways.

Figure A.1 examines the cross-sectional relations between both characteristics and Ln,t,s,

our discrepancy measure from equation (A.9). Each panel shows a binscatter plot of Ln,t,s

against the log of firm n’s emissions, which we take to be (Cn,t,s,MSCI + Cn,t,s,T rucost)/2, at

the end of our sample (t = 2022). There are six panels; the three rows correspond to three

different scopes, s ∈ {1, 2, 3}, and the two columns represent different sets of firms, either all

firms or the subset that disclose their own emissions. To classify a firm as disclosing or not,

we follow Aswani, Raghunandan, and Rajogopal (2024). If the Trucost variable “Scope s

disclosure” contains the string “estimate” (not case sensitive), then we assume the emissions

are estimated by Trucost; otherwise we view them as disclosed by the firm.27

Figure A.1 shows clear relations between Ln,t,s and both characteristics. First, the es-

timated slope is negative in all six panels, indicating that the discrepancies are larger for

smaller emitters. This effect is strong; for example, in Panel A, the average value of Ln,t,s

for the largest 5% of emitters is less than 0.1, but for more than two thirds of emitters,

the average Ln,t,s exceeds 0.5. Second, for scope 1 and 2 emissions, the levels of Ln,t,s are

substantially larger in the first column of panels, indicating that the discrepancies are larger

for firms that do not disclose their emissions. We do not observe the latter result for scope

3 emissions, perhaps because those emissions are disclosed by very few firms (only 68, com-

pared to more than 1,000 for scope 1 and 2). For all scopes, these are still surprisingly

large discrepancies even among firms that do disclose. Overall, Figure A.1 shows that the

discrepancies are larger for firms that emit little and firms that do not disclose emissions.

Finally, we analyze the economic significance of the emissions-reporting discrepancies

between MSCI and Trucost. We consider a hypothetical carbon tax and translate the dis-

crepancies into differences in carbon taxes. We use data from year 2022. We assume the

carbon tax rate of $200 per ton, which equals the EPA’s SCC in 2022 with a 2% discount

rate.28 First, we calculate how much each firm would pay in carbon tax if its emissions were

assessed by MSCI; we denote this dollar figure by CTMSCI . Note that CTMSCI is simply

equal to $200 times the firm’s 2022 MSCI emissions in tons. We then calculate an analogous

figure based on Trucost emissions, CTTrucost, and report the absolute difference scaled by

the firm’s 2022 operating profit: |CTMSCI − CTTrucost|/Profit. Table A.2 reports selected

properties of the cross-sectional distribution of this ratio within four different groups of firms,

which we form by ranking firms on their MSCI emission levels.

27We are able to replicate summary statistics from Aswani et al. (2024) for this variable fairly closely. Our
scope 1 (3) data represent Trucost estimates in 71% (93%) of firm-year observations.

28To see the results under a different carbon tax rate, the reader can simply scale our results linearly. For
example, for a tax rate of $100 per ton, all numbers in Table A.2 should be multiplied by half (= 100/200).
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Panel A of Table A.2 reports the ratios for scope 1 emissions. The MSCI-Trucost discrep-

ancy is negligible for the median firm, but it is substantial for some firms. For example, for

the top 5% of emitters, the 95th percentile of the ratio is 56.75%. This value indicates that

5% of the largest emitters have discrepancies larger than 56.75% of profits. The discrepancies

therefore matter a lot for firms that would be paying the most in carbon tax.

Panels B and C of Table A.2 report the ratios for scope 1+2 and scope 1+2+3 emissions,

respectively. The differences between Panels A and B are relatively small because scope 2

emissions are small relative to scope 1 emissions for most firms. However, Panel C reports

much larger values compared to Panels A and B. For example, based on the means, the ratio

of the MSCI-Trucost discrepancies to profits ranges from 52.87% to 165.68% across the four

groups of firms. The ratio’s 95th percentiles are all in excess of 174% of profits.

To summarize, we find that the MSCI-Trucost discrepancies in measured scope 1 and

scope 1+2 emissions are modest for most firms, but they are substantial at the high end,

especially for large emitters. The discrepancies in scope 1+2+3 emissions are large for most

firms. For all scopes, the discrepancies are smaller for firms that disclose their emissions,

but they are substantial even for such firms.

Finally, note that the measurement problem is even bigger than our results suggest. Even

if MSCI and Trucost completely agree on the magnitude of a given firm’s emissions, that

magnitude need not perfectly match reality. Agreement between MSCI and Trucost often

occurs when the firm discloses emissions and those disclosed values are simply accepted by

both data providers. However, this acceptance masks the difficulties that the firm itself faces

in estimating its own emissions. The fact that neither MSCI nor Trucost challenge the firm’s

own emission estimates does not necessarily mean that those estimates are precise.

A.4. Additional tables and figures
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Table A.1: Measurement discrepancies in levels and growth rates

Panel A shows the correlation between MSCI and Trucost emissions levels, using panel data from
2016 to 2022. Panel B shows the cross-sectional percentiles of firms’ ratios of (i) the absolute
difference between MSCI and Trucost emissions to (ii) the average of MSCI and Trucost emissions,
using 2022 data only. Panel C shows the cross-sectional percentiles of the absolute difference
between MSCI and Trucost emissions growth rates. Growth rates are computed as the fraction
change in emissions from 2021 to 2022. We compute Trucost scope 3 emissions as the sum of scope
3 upstream and scope 3 downstream.

Scope 1 Scope 2 Scope 3

Panel A: Correlations
0.982 0.916 0.809

Panel B: Percentiles of discrepancies in levels
10th 0.000 0.000 0.070
25th 0.004 0.001 0.235
50th 0.317 0.337 0.710
75th 1.019 0.890 1.611
90th 1.544 1.488 1.963

Panel C: Percentiles of discrepancies in growth rates
10th 0.000 0.000 0.038
25th 0.013 0.022 0.136
50th 0.110 0.206 0.369
75th 0.379 0.496 1.127
90th 0.858 0.998 6.749
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Table A.2: Implications of measurement discrepancies for carbon taxes

This table considers a hypothetical carbon tax and shows how emissions-reporting discrepancies
between MSCI and Trucost would translate to discrepancies in firms’ carbon taxes. We use data
from 2022 only. We consider a carbon tax rate of $200 per ton, which equals the EPA’s social
cost of carbon in 2022 with a 2% discount rate. We compute the tax discrepancy as the assumed
$200 carbon tax rate (in dollars per ton) times the absolute value of the difference in emissions
(in tons) between MSCI and Trucost. We then compute each firm’s ratio of the tax discrepancy
to operating profit (i.e., revenues minus the sum of COGS, SG&A, and interest expense). The
table shows means and percentiles of this ratio, expressed as a percent, across firms within four
different groups. The groups, noted in the column headers, are formed by ranking firms based on
their MSCI emissions levels. The analysis uses data on 1836 firms for scope 1 and scope 1+2, 635
firms for scope 1+2+3.

Emissions Level

Bottom Next Next Top
50% 25% 20% 5%

Panel A: Scope 1
Mean 1.00 2.81 9.35 7.26
50th pctile 0.06 0.18 0.04 0.06
75th pctile 0.93 1.40 1.40 0.56
95th pctile 4.20 13.77 28.59 56.75

Panel B: Scope 1+2
Mean 2.26 4.68 9.60 12.18
50th pctile 0.30 0.37 0.15 0.07
75th pctile 1.97 3.00 2.19 0.80
95th pctile 8.77 16.61 31.76 36.24

Panel C: Scope 1+2+3
Mean 165.68 52.87 78.18 54.90
50th pctile 11.06 17.52 25.34 34.15
75th pctile 39.57 44.41 85.90 92.60
95th pctile 463.90 233.20 314.48 174.30
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Table A.3: Share of current emissions and carbon burden by industry

We work with firms at the end of 2023 for which we can measure carbon burden from MSCI

forecast data, and which can be assigned to a Fama-French-12 industry. In the “Present”

column, we sum year-2023 emissions (measured in tons, taken from MSCI forecasts) within

each Fama-French-12 industry and express that industry’s sum as a fraction of the sum

across all industries. In the “Future” column, we report analogous fractions after replacing

current emissions with carbon burdens, computed using MSCI forecasts for all future years.

Scope 1 Scope 1+2 Scope 1+2+3
Industry Present Future Present Future Present Future
1 Nondurables 0.019 0.022 0.024 0.027 0.029 0.024
2 Durables 0.002 0.002 0.006 0.006 0.033 0.031
3 Manufacturing 0.066 0.072 0.082 0.088 0.106 0.107
4 Energy 0.196 0.202 0.185 0.190 0.254 0.285
5 Chemicals 0.054 0.055 0.061 0.061 0.027 0.026
6 Business Equipment 0.006 0.005 0.019 0.017 0.038 0.028
7 Telecom 0.002 0.001 0.008 0.007 0.006 0.005
8 Utilities 0.414 0.369 0.362 0.323 0.067 0.056
9 Shops 0.032 0.043 0.045 0.057 0.073 0.079
10 Health 0.004 0.004 0.009 0.010 0.017 0.015
11 Money 0.002 0.003 0.010 0.010 0.277 0.282
12 Other 0.202 0.222 0.188 0.204 0.073 0.063
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Table A.4: Fraction of firms whose carbon burden exceeds their market cap

Corresponding to Figure 3, this table shows the fraction of companies whose ratio of carbon

burden to market cap is greater than 1.

Scope 1 Scope 1+2+3

All future years Through 2050 All future years Through 2050
Discount Rate (Panel A) (Panel B) (Panel C) (Panel D)

2.5% 0.104 0.062 0.656 0.445
2.0% 0.133 0.079 0.770 0.559
1.5% 0.185 0.107 0.873 0.665
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Table A.5: Fraction of aggregate market cap belonging to firms whose

carbon burden exceeds their market cap

Corresponding to Figure 4, this table shows the fraction of aggregate market cap that belongs

to companies whose ratio of carbon burden to market cap is greater than 1.

Scope 1 Scope 1+2+3

All future years Through 2050 All future years Through 2050
Discount Rate (Panel A) (Panel B) (Panel C) (Panel D)

2.5% 0.065 0.029 0.365 0.249
2.0% 0.087 0.044 0.500 0.311
1.5% 0.102 0.073 0.632 0.390
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Table A.6: Version of Table 7 dropping observations with 1% growth rate

The sample for scope 1 (1+2) (1+2+3) includes firms for which the MSCI scope 1 (1 or

2) (1, 2, or 3) forecasted growth rate is not equal to 0.0100, after rounding.

(1) (2) (3) (4) (5) (6)
Log(Emissions) -1.367 -1.810 -1.597 -1.523 -2.070 -2.497

(-3.93) (-4.72) (-2.07) (-2.73) (-4.09) (-2.82)

BE/ME 1.666 1.736 0.254 1.876 1.663 -1.730
(0.76) (0.98) (0.09) (0.78) (0.82) (-0.47)

Investment 11.171 10.520 11.568 11.237 10.355 10.266
(1.47) (1.47) (0.81) (1.55) (1.54) (0.71)

Climate Score -16.770 -16.869 -25.999 -18.279 -18.131 -25.124
(-5.11) (-5.15) (-5.07) (-5.38) (-5.06) (-4.44)

Revenue Growth 5.396 8.050 12.759 4.168 6.687 16.054
(2.37) (1.05) (1.06) (1.62) (0.80) (1.09)

Constant -0.010 -0.004 -0.003 -0.019 -0.011 0.005
(-2.08) (-0.72) (-0.23) (-2.83) (-1.71) (0.35)

Observations 612 597 318 612 597 318
Adjusted R2 0.024 0.022 0.014 0.029 0.028 0.005
Scopes 1 1+2 1+2+3 1 1+2 1+2+3
Industry FE Y Y Y
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Panel D: Scope 2, disclosing firms
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Panel E: Scope 3, all firms
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Figure A.1. Discrepancies between Trucost and MSCI. In these binscatter plots,
the x-axis denotes the log of the firm’s emissions (equal to the average of MSCI and Trucost
emissions), and the y-axis denotes the firm’s ratio of (i) the absolute difference between MSCI
and Trucost emissions to (ii) the average of MSCI and Trucost emissions. Mechanically, that
ratio cannot exceed 2. Data are from 2022. A firm is considered to be disclosing if the Trucost
variable “Scope X disclosure,” for X = 1, 2, or 3, does not contain the string “estimate.” Each
panel shows the number of firms with non-missing data in both MSCI and Trucost.
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Panel B: Scope 2
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Panel C: Scope 3

Figure A.2. MSCI-Trucost discrepancies: The time series. This figure plots
cross-sectional percentiles each year of the fraction discrepancy between Trucost and
MSCI for each scope. From bottom to top, the lines represent the 10th, 25th, 50th,
75th, and 90th percentiles of the fraction discrepancy. For a given firm-year ob-
servation, the fraction discrepancy equals the absolute difference between Trucost
emissions and MSCI emissions, divided by the average of Trucost and MSCI emis-
sions. Mechanically, the fraction discrepancy cannot exceed 2.
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Figure A.3. Version of Figure 7 dropping observations with 1% growth
rate. The sample for scope 1 (1+2+3) includes firms for which the MSCI scope 1 (1,
2, or 3) forecasted growth rate is not equal to 0.0100, after rounding. Panel A (B)
includes 696 (353) firms in total.
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Figure A.4. Distribution of carbon burden / market cap from VAR ap-
proach. This figure shows CDFs of carbon burden / market cap, computed from
the VAR approach with historical scope 1 emissions data from MSCI. Carbon burden
and market cap are both measured as of the end of 2022. The CDFs weight each firm
equally.

The table below shows the fraction of companies with a Carbon Burden to Market Cap

ratio greater than 1.

All years Through 2050
Discount Rate (Panel A) (Panel B)

2.5% 0.283 0.070
2.0% 0.483 0.097
1.5% 0.739 0.129
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Figure A.5. Distribution of carbon burden / market cap from the VAR
approach with Trucost data. This figure is the same as Figure A.4 but shows
results based on historical Trucost emissions data.

The table below shows the fraction of companies with a Carbon Burden to Market Cap

ratio greater than 1.

All years Through 2050
Discount Rate (Panel A) (Panel B)

2.5% 0.391 0.080
2.0% 0.624 0.114
1.5% 0.813 0.155
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Figure A.6. Value-weighted distribution of carbon burden / market cap
from the VAR approach. This figure shows cumulative distribution functions
(CDFs) of H = carbon burden / market cap, computed in the cross section of firms
in 2022. We use carbon burden computed using the VAR approach. The VAR model
is estimated using all years’ historical emissions from each database. The CDFs
weight each dollar of market cap equally by plotting the fraction of aggregate market
cap belonging to firms with H below the x-axis value.

The table below shows the fraction of companies with a Carbon Burden to Market Cap

ratio greater than 1.

All future years Through 2050
MSCI Trucost MSCI Trucost

Discount Rate (Panel A) (Panel B) (Panel C) (Panel D)
2.5% 0.074 0.075 0.033 0.036
2.0% 0.144 0.146 0.056 0.050
1.5% 0.219 0.241 0.089 0.080
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