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ABSTRACT

Investors act as a liquidity back-stop in the corporate bond market. By pro-

viding liquidity, investors help ease dealers’ balance sheet constraints, especially

during market stress. During the March 2020 Dash-for-Cash, in bonds where in-

vestors stopped providing liquidity, transaction costs rose by 38%. We find the

composition of types of liquidity providers — rather than just their presence —

shapes trading costs. Dealers relying on flexible-mandate investors, such as hedge

funds, are more resilient to liquidity shocks. Dealers offer discounts to investors

for past liquidity services to maintain liquidity provider networks. These discounts

represent two-thirds of relationship discounts.
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“It is not hard to make a case that the corporate-bond market has become

more fragile. [...] Half of all investment-grade bonds have a credit rating of

BBB. In a recession a chunk of those bonds will be downgraded to junk. Many

mutual funds and ETFs can hold only investment-grade bonds. If a lot of bonds

have to change hands quickly, that could easily overwhelm the market’s limited

liquidity. Prices might fall a long way.” The Economist, Why everybody is

concerned about corporate-bond liquidity, June 11, 2019

I. Introduction

Concerns about declining bond market liquidity have occupied the media, industry partic-

ipants, policymakers, and academics for several years.1 Stricter regulatory requirements

following the financial crisis (e.g., Basel 2.5, Basel III and the Volcker Rule) have sig-

nificantly increased the balance sheet costs of market-making for banks, raising concerns

about their ability to provide liquidity in times of stress2. Events such as the 2020 “Dash-

for-Cash” episode have further highlighted how strains on dealers’ balance sheet capacity

could trigger large increases in illiquidity (Duffie et al., 2023).

Understanding how dealers can ease constraints on their balance sheet capacity is

therefore important. One option for dealers is to source liquidity directly from their

clients—investment funds, hedge funds, insurers, and other market participants. How

frequently do dealers use their clients as a liquidity backstop? Does this practice leave a

footprint on prices? And does it make dealers’ liquidity provision more robust? The goal

of this paper is to answer these questions.

To this end, we analyze granular transaction-level data from the UK corporate bond

market, obtained under MiFID II, which allows us to track the identities of trade coun-

terparties. This unique feature enables us to directly observe when investors provide

1See, for example, “People are worried about bond market liquidity,” by Matt Levine, Bloomberg,
June 4, 2015; The bond market trilemma”by Robin Wigglesworth, Financial Times, May 10, 2024; “Why
Market Liquidity has Deteriorated, Global Macro Research,” Top of Mind, Goldman Sachs, (Aug. 2,
2015); and “Examination of Liquidity of the Secondary Corporate Bond Markets,” IOSCO 2017.

2See CGFS (2014) and Adrian et al. (2017), who show that measures of dealers’ balance sheet
constraints (e.g., their leverage) become positively related to illiquidity of U.S corporate bonds after the
crisis.



liquidity to dealers and examine how the characteristics of liquidity suppliers impact

market outcomes.3 We define client sourced liquidity (CSL) trades as instances where a

dealer buys from one client and sells to another within the same day, without an interim

trade occurring in the interdealer market. We interpret the second trade as signalling a

dealer’s demand for liquidity from the second client.4

All our analysis focuses on trades between dealers and their clients (“DtC trades”).5

CSL trades comprise approximately 17% of total “DtC trades”, with a subset of fast

CSL trades (where the second leg occurs within 15 minutes) making up 5% of volume.

Importantly, fast CSL trades are distinct from Matched trades, where a dealer executes

a buy and a sell order from two different clients in the same bond at the same time.6

The latter account for 19% of trading volume and unlike CSL trades, entail no risk for

dealers. Remaining trades (“Deal”), which include trades that take more than one day

to unwind, account for the remaining 64% of trading volume. The ability to distinguish

between CSL and matched trades is a unique feature of our dataset offering additional

insights.

We find that the use of CSL trades increases with risk. Their share of trading volume

during the Dash-for-Cash period in March 2020, increased by three percentage points and

43% of CSL trades are in high-yield bonds, and 15% in block volume, compared to just

33% (30%) and 8% (6%) in Deal (Match) trades, respectively.7 As balance sheet costs are

larger for riskier bonds, the positive association between CSL share and risk is consistent

with dealers using client liquidity provision to reduce these costs.

3Unlike enhanced Trade Reporting and Compliance Engine (TRACE) data typically used in bond
market studies, our data includes customer names. This feature allows us to identify the types of clients
that provide liquidity to dealers, which is crucial for many of our tests.

4CSL trades are similar to “paired roundtrip trades” in Goldstein and Hotchkiss (2020). In contrast
to Goldstein and Hotchkiss (2020), we study how each leg of CSL trades are priced or how the network
of liquidity supplying clients in a bond affects trading costs for that bond.

5We use the prices of interdealer trades to measure clients’ trading costs; see below.
6Matched trades are pre-arranged trades in which a dealer acts as a matchmaker between two clients.

In such trades, the dealer does not commit capital nor take on any inventory risk. Bao et al. (2018) find,
using TRACE data, that the share of matched trades in U.S. corporate bonds has increased following
the financial crisis. Choi et al. (2024) show that matched trades are more frequent across dealers affected
by post-crisis regulation.

7Blocks are defined as trades over £2.5 million. Jacobsen and Venkataraman (2023) studies block
trades in the U.S corporate bond markets. They find that“receivers” in these trades pay smaller markups
than initiators, on average, which is consistent with our findings (see below). However, we find that CSL
trades exist across all trade sizes. Thus, they are not a phenomenon specific to block trading.
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To understand how the ability of dealers to obtain liquidity from their clients affects

liquidity, we consider an extension of Saar et al. (2022). In this model, dealers can act

either as market-makers or matchmakers. In the first case, they offer immediacy to their

clients but they bear a balance sheet cost.8 In the second case, dealers bear no balance

sheet cost but incur a cost to find a suitable counterparty for their client. In choosing

between these two possibilities, clients face a trade-off between waiting costs (which are

larger with matchmaking) and trading costs (which are larger with market-making).

In this model, we add the possibility for a dealer to rely on a pool of clients that she uses

as a liquidity backstop. More specifically, after executing a market making trade, a dealer

has the option to contact clients in this pool and make them offers to unwind the position

she took with the first client. If a client accepts the dealer’s offer, the dealer avoids the

balance sheet cost—freeing up capacity for another market-making trade. Therefore, in

equilibrium, there is room for the three types of DtC trades observed in our data: (i)

Matched trades, (ii) CSL trades and (iii) Deal trades.9.

We obtain three testable hypotheses. First, when a CSL trade occurs, the second

client receives a price improvement relative to the first. Second, a dealer’s clients receive

better prices when the dealer is more likely to obtain liquidity from other clients, either

because the size of her liquidity supply network is larger or because clients in this network

are more likely to be able to trade the bond. Third, the negative effect of an increase in

a dealer’s balance sheet cost on liquidity is dampened when the dealer is more likely to

obtain liquidity from other clients.

We test these predictions, measuring the trading costs for a given trade as the log of

the ratio of the transaction price to the closest interdealer price times the direction of the

trade (Hendershott and Madhavan, 2015). We find that the first client in a CSL trade is

executed at a markup relative to Deal trades, consistent with our conjecture that dealers

seek liquidity from their clients when their balance sheet cost is higher. Furthermore,

as predicted, we find that the second client in a CSL trade obtains price improvements

8This cost represents the cost of using the dealers’ balance sheet capacity, which increases the likeli-
hood that the dealer might have to raise capital to satisfy capital constraints, for instance.

9In the model these trades arise when the dealer does not try to source liquidity from other clients
or when she tries without success.
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relative to prices for the first client. This result holds after controlling for a range of fixed

effects (dealer-day, client-month, bond-day) and various possible determinants of bond

trading costs (in particular trade size and the trading venue), suggesting that this result

is due to the nature of the trade rather than specific characteristics of the bond or the

dealer. The price improvement for the second client is significant for fast CSL trades

(fCSL) but insignificant for slow CSL (sCSL) trades, maybe because fCSL trades better

identify trades in which dealers need liquidity.

Our second prediction is that a dealer’s trading costs in a given bond are inversely

related to the size of her network of liquidity suppliers. To test this prediction, we use

the Dash-for-Cash period to instrument the size of a dealer’s network. Intuitively, during

this period, some clients who usually could be liquidity suppliers need to liquidate their

assets (e.g., due to margin calls) and are therefore unavailable for liquidity provision.

Accordingly, for each bond and each day during the Dash-for-Cash period, we iden-

tify clients who are exclusively selling on these days and are therefore not available to

provide liquidity to dealers in any given bond (the Dash-for-Cash is characterized by

a massive sale of bonds). We measure the share of fCSL trades of these clients in the

six months preceding the Dash-for-Cash and use this share as a proxy for the drop in

available liquidity for dealers during the Dash-for-Cash period. As predicted, we find

that sell orders (those straining dealers’ inventory during the Dash-for-Cash period) are

significantly more expensive in bonds experiencing a larger drop in the pool of available

liquidity suppliers for dealers.

To test our third prediction, we study the evolution of trading costs around downgrades

for “fallen angels” (bonds that are downgraded from investment grade to high-yield).

These events are interesting because the downgrade of a bond raises balance sheet costs

for dealers active in this bond and results in a transient increase in liquidity demand

as some institutions (e.g., investment grade index funds) are forced to liquidate their

holdings of a bond.10

Consistent with the previous literature (e.g., Bao et al., 2018), we show that trading

10See Ellul et al. (2011) or Dick-Nielsen and Rossi (2018).
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costs for fallen angels increase significantly around downgrades and that part of the

increase reflects transient price pressure (due to a transient increase in dealers’ inventory

risk). More importantly, these effects vary across fallen angels, depending on the size and

composition of dealers’ network of liquidity suppliers before the fallen angels’ downgrade.

Indeed, bonds in which hedge funds account for a larger fraction of liquidity supply

to the dealer before their downgrade experience a significantly smaller increase in their

trading cost. In contrast, bonds in which dealers rely more on insurance companies

as a source of liquidity experience a significantly larger increase in their trading costs.

Intuitively, following the downgrade of a bond, dealers can still rely on their network of

liquidity suppliers in the first case while they cannot in the second case because insurance

companies cannot invest in high-yield bonds (in contrast to hedge funds). This finding

highlights the importance of the composition of the dealers’ network of liquidity suppliers

in a bond to their ability to withstand large demand shocks.

Given this finding, in the last part of our paper, we study which types of institutions

provide liquidity to dealers. The granularity of our data enables us to go further than

existing studies on this topic which have typically focused, due to data limitations, on

one type of institution in isolation (e.g., insurer, mutual fund, hedge fund). In contrast,

we have the entire cross-section of client types interacting with dealers in the UK bond

market. This rich data source enables us to assess the relative importance of each type

of client in liquidity provision.

We find that hedge funds are the most valuable source of client sourced liquidity.

They account for 17% of fCSL second leg trades, which is higher than their share of

first leg fCSL trades and overall trading volume, which are 13% and 10%, respectively.

They further increase their liquidity provision during periods of stress and when bonds

are downgraded. In contrast to findings in the previous literature, insurance companies

appear relatively less important as a source of client liquidity provision. Indeed, their

share of fCSL trades is lower than their overall share of trading activity, and it declines

further in fallen angel bonds. While asset managers account for the largest share of

overall trading activity, their contribution to second leg fCSL trades is lower than their
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contribution to first leg fCSL trades and their overall share of trading.

Finally, we show that dealers reward their clients for providing liquidity. A client with

one percentage point higher share in liquidity provision receives an additional 0.1 bps dis-

count on all trades, including deal trades. This discount is economically and statistically

significant after controlling for the client’s share of the dealer’s trading volume. Thus, the

reward for liquidity provision is distinct from a relationship discount. Hedge funds are

particularly well rewarded, receiving a discount twice as large as the next closest client

type. In sum, our evidence suggests that dealers view client-sourced liquidity as an in-

surance policy. Although used relatively infrequently, it is valuable to dealers, especially

during periods of stress.

Our findings contribute to the literature on OTC market liquidity by identifying a

previously underexplored source of liquidity provision — investors supplying liquidity to

dealers.11 While prior studies (e.g., Bessembinder et al. (2018) or Adrian et al. (2017))

have examined dealer balance sheet constraints in shaping bond market liquidity, our

work provides novel evidence on the role of client liquidity provision in sustaining trading

activity, particularly in periods of stress.

We also contribute to research on financial intermediation by demonstrating how deal-

ers actively cultivate and maintain liquidity networks through pricing incentives. Our

results complement existing studies on bond market liquidity by highlighting the role of

trade networks and institutional investors (mutual funds, insurance companies and hedge

funds) in mitigating liquidity shortages (e.g., Anand et al. (2021), Giannetti et al. (2023),

O’Hara et al. (2023), Kruttli et al. (2023) and Choi et al. (2024)). Research on inter-

dealer markets has shown that dealers rely on trading relationships to manage liquidity

risk (e.g., Di Maggio et al. (2017); Hollifield et al. (2017); Li and Schurhoff (2019)) but

less attention has been given to the relationships between dealers and their clients. By

examining CSL trades, we provide new evidence that dealers strategically cultivate re-

lationships with liquidity-supplying investors to mitigate balance sheet constraints and

maintain market stability. The value of these networks goes beyond the relationship

11See Bessembinder et al. (2020) for a survey of the empirical literature on the liquidity of fixed income
markets.
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discounts documented by Jurkatis et al. (2023). And we show that trading costs are

impacted by the composition of the network, as well as its size.12

Beyond academic contributions, our results have important implications for policymak-

ers and market participants. The increasing reliance on client sourced liquidity suggests

that as traditional dealer intermediation declines, the stability of corporate bond markets

will depend more on the composition and diversity of dealers’ liquidity networks. Policies

affecting the participation of hedge funds and other non-traditional liquidity providers

could therefore have significant consequences for market resilience. Additionally, our find-

ings highlight the potential risks associated with market structures that rely too heavily

on constrained institutional investors, such as insurers, to provide liquidity in times of

stress.

II. Data

A. Transaction data

Our main data are transaction reports in corporate bonds submitted to regulatory author-

ities under the Markets in Financial Instruments Directive (MiFID) II, which took effect

on 3 January 2018. The same data are used in Jurkatis et al. (2023) and are described

in detail in Jurkatis (2024).

Investment firms and other trading institutions are mandated to submit reports for

their trades in debt instruments that are eligible to trade on a venue — which includes

Regulated Markets, such as the London Stock Exchange, Multilateral Trading Facilities,

such as request-for-quotes platforms (RFQ), and Organised Trading Facilities (OTF),

such as inter-dealer broker platforms. In addition, all trades in instruments that are

eligible to trade on a venue must be reported irrespective of whether or not they are

executed on a venue. This means that the data also capture trades executed on Systematic

Internalisers (SIs) and OTC.13

12Hendershott et al. (2020) show that the size of a client’s dealer network affects the price she receives
from dealers. Instead we focus on dealers’ liquidity networks

13An SI is an investment firm which executes client orders over-the-counter (OTC) on its own account
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The data are made available by the Financial Conduct Authority (FCA), the United

Kingdom (UK) financial markets regulator. The FCA receives reports for all transactions

in reportable financial instruments involving at least one UK investment firm or executed

on a UK trading venue.14 Each report includes information on the International Securities

Identification Number (ISIN) of the instrument traded, the time of the transaction (time-

stamped to at least the nearest second), the price and the quantity as well as other trade

characteristics such as details of how and where trades are executed.

One advantage of our data is that they identify all counterparties of a trade, the

buyer and the seller, irrespective of whether the counterparty is a dealer or client. Each

counterparty is identified via their Legal Entity Identifier (LEI) and name. This feature

sets the dataset apart from other transaction datasets for OTC markets, such as TRACE

for US corporate bonds, and allows us to analyse trader behavior at a more granular level

than otherwise possible and to better understand the roles of different types of traders in

this market.

B. Auxiliary data

To obtain more information on the characteristics of the traded bonds, such as maturity

and credit ratings, we complement our transaction data with data from S&P Capital

IQ, Refinitiv and the European Securities and Markets Authority’s (ESMA’s) Financial

Instruments Reference Database System (FIRDS). To obtain more information on trading

firms, we use the publicly available GLEIF Level 2 (Who Owns Whom) data on the

parent-child relationships between companies and the Bank of England’s (BoE) internal

mapping between a firm’s Legal Entity Identifier (LEI) and its sector assignment (dealer,

asset manager, pension fund etc.). The mapping is constructed from public data, such as

the ECB’s list of financial institutions, BoE lists of its regulated and supervised entities,

as well as tediously hand-mapped entities.

on a frequent, systematic and substantial basis, as defined in Article 4(1)(20) of Directive 2014/65/EU
(MiFID II).

14Prior to 1 January 2021, when the UK left the European Union (EU), the data include trades in
UK regulated bonds executed on EU venues. We retain these trades in our sample.
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C. Data filtering and cleaning

The data pre-processing and cleaning precisely follows Jurkatis (2024). The steps consist

of selecting corporate bond transactions, identifying duplicates, and subsequently correct-

ing price and quantity outliers and erroneous counterparty reports (i.e. a firm reporting

an incorrect LEI of the firm it traded with). We refer the reader to Jurkatis (2024) for

the details of each of these steps.

We supplement the cleaning approach by winsorizing reported quantities in terms of

their nominal values in their respective denominated currency. We use reports in bonds

denominated in United States dollars (USD), Euros (EUR) and Great British Pounds

(GBP), which account for around 60%, 30% and 10% respectively amongst the bonds in

those three currencies. All reported quantities are subsequently converted to GBP. We

also drop the 2% most extreme reports according to their transaction costs (i.e. the 1%

lowest and highest transaction costs), the computation of which we outline below. We also

drop trades executed on a weekend or English public holiday, trades with counterparties

that do not have an LEI (such as natural persons), trades involving governmental or

state-like entities such as central banks, and trades between dealers and clients that have

the same ultimate parent. Finally, while the BoE’s mapping contains over 130 dealers

due to their role in other markets such as the UK’s government market or the derivative

market, we filter out dealers less relevant for the corporate bond market by focusing on

dealers that account for at least 0.1% of total trading volume over the entire sample

period.

Table I shows the main descriptive statistics of our sample post cleaning and filtering.

The table shows that we have a rich cross-section in all three main dimensions of our

data: dealer, clients, and bonds. We have almost 18,000 clients, 40,000 bonds, 6.6 million

trades and 52 dealers in our data — the latter being comparable to the number of core

dealers in TRACE (see Bessembinder et al., 2018, 2020; Colliard et al., 2021). Panels B

to D of the table also show that we have a reasonable amount of heterogeneity in each

of these dimensions, with more and less active dealers/clients, and more and less liquid
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bonds.

The average dealer executes 127,000 trades. In 25% of the cases, a dealer executes

not more than seven trades per day or, at the other extreme, at least 150 trades. On

average, a dealer trades with 46 different clients and trades 70 different bonds on a given

day. Clients, on the other hand, trade 365 times on average over the entire sample

and, conditional on observing a client trading on a given day, it trades five times in four

different bonds with three different dealers per day. All of these statistics show significant

variation between different clients and days. Similarly, the average bond trades only 165

times over the entire sample and, conditional on being traded on a given day, is traded

twice by two different clients and dealers.

[Insert Table I about here]

III. Main Variables: Client-Sourced Liquidity (CSL)

Trades and Transaction Costs

A. Classifying Trades: CSL, Matched, and Deal Trades

In this section, we outline the procedure we use to identify client-sourced liquidity (CSL)

trades. We define such trades as those in which a dealer executes two trades in opposite

directions (e.g., a client’s buy followed by a client’s sell) in the same bond, with two

different clients within the same day.

[Insert Figure 1 about here]

Figure 1 provides a graphical illustration of the procedure we follow to identify CSL

trades in the data. At time t1, a client C1 buys or sells the bond to dealer D. Now

suppose that within the same day, this trade is followed by a trade in the same bond

at time t2 > t1 by the same dealer, with another client C2. If this second trade is (a)

in the opposite direction as the first trade and (b) there is no trade by the same dealer

(including inter-dealer trades) in the same bond, we classify the pair of trades occurring

10



at dates t1 and t2, a CSL trade. In this case, we refer to the trade at t1 as the first

leg, and the trade in t2 as the second leg. We allow both the first and the second leg

to include more than one client if the dealer happens to trade with more than one client

in the same direction at the same time (same millisecond or second depending on the

timestamp precision). Further, a particular trade cannot belong to more than one CSL

trade, that is, a second leg of one CSL trade cannot be the first leg of another CSL trade.

We also partition CSL trades into two subgroups: (i) fast CSL (fCSL) trades, that is,

those for which 0 < t2 − t1 ≤ 15 mins and (ii) slow CSL (sCSL) trades. As shown below,

the data suggest that fCSL trades are those in which dealers deliberately seek liquidity

from clients in the second leg (C2).

Importantly, trades involving two different clients trading the same bond in opposite

directions at the same time (t1 = t2) are not included in our set of CSL trades. Instead,

we refer to the former as riskless principal trades or simply as ‘matched‘ trades. Matched

trades are different from CSL trades because a dealer bears no inventory risk in the

former while she may in the latter. Moreover, in CSL trades, clients in the first leg

receive immediate execution while clients who initiate a matched trade do not. Indeed,

matched trades are usually prearranged, which means that the client at the origin of the

trade has to wait until the dealer finds a counterparty to take the other side of the trade.

Our ability to differentiate matched trades from fast CSL trades is due to the granularity

of our data. In contrast, due to data limitations, studies relying on TRACE have not

made this distinction (e.g., Choi et al., 2024; Kargar et al., 2021).15

We are confident that matched trades are different from other trades for several rea-

sons. First, MiFID regulation requires trades to be timestamped with the time of the

execution, not the time when an order was received (see Section 5.2 and 5.13 of the ESMA

MiFID II reporting guidelines).16 Second, MiFID II transaction reports contain a trade

15Dealers in U.S. corporate bonds can report trades with the potential for a 15-minute delay, which
means that agency trades cannot be clearly distinguished from fast CSL trades. In contrast, trades for
the bonds in our data must be reported with the timestamp of the execution, which allows us to separate
matched trades from fast CSL trades.

16Special attention must be given to trade reports where several client orders are filled with more than
one market side trade (see Section 5.23 of the ESMA guidelines). If these trades are not executed using
the dealer’s own account, the client trades receive the timestamp of the first market side transaction.
We capture these trades as well as matched trades using the so-called “internal account” flag which must
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capacity field in which reporting firms must indicate whether they executed a trade on

their own account (such trades are flagged as “DEAL”), in a riskless principal capacity

(“MTCH”), or in any other trading capacity (“AOTC”) (see Section 5.2 of the ESMA

reporting guidelines).

In Table A.II in the Appendix, we present how our trade classifications overlap with

dealers’ self-reported trade capacity flags. This table shows that 90% of trades are re-

ported as “DEAL” by dealers and that 96% of our “CSL” trades are reported as “DEAL”.

This shows that dealers view CSL trades as distinct from matched trades. Second, only

2% of all trades are flagged as “MTCH” by dealers and 5% of the trades that we classify

as “matched trades” are indeed reported as “MTCH” by dealers. Others are reported

either as “AOTC” (8%) or as “DEAL” (87%).1718 Therefore, some of our matched trades

may indeed belong to fCSL trades. However, the fact that both sides of matched trades

are executed contemporaneously means that they carry no economic risk for the dealer

(other than maybe the risk of failed settlement on either side of the trade). This is the

feature that matters for our analysis and interpretations.

[Insert Table II about here]

Moreover, we find striking differences between CSL and matched trades in terms of

their trade and bond characteristics. Table II reports the share of total trading volume

by trade type in different periods (normal vs crises period), and the distribution across

bond ratings, maturities and trade sizes for each trade type. For the crisis period we use

the “Dash-for-Cash” (DfC) of March 2020. The DfC period saw extreme selling pressure

that occurred as investors tried to liquidate positions during the onset of the COVID

pandemic. We define this period as 1 to 18 March.

CSL trades account for about 17% of total trading volume in normal times but their

share increase during DfC (20%). They are also used more frequently when bond default

risk increases or exposure to interest risk increases, which contrasts strongly with matched

be used in such cases.
17Dealers can use the flag AOTC for matched trades because they allow the dealers to report two

different prices for the two legs of a matched trade.
18For the remainder of the analysis, any trade flagged as MTCH but classified as ‘deal‘ by our method,

will be moved into our ‘match‘ category.
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trades. For instance, trades in high yields bonds account for 48% of fCSL (41% of sCSL)

trades compared to just 30% in matched trades, and trades in bonds with at least 15

years to maturity account for 22% of all CSL trades, compared to 20% for matched or

deal trades. Even more distinct is the distribution of trade sizes across the different trade

types. Around 15% of CSL trades are in the riskier block size (trades above £2.5m)

compared to only 6% among matched trades and 8% in deal trades. The smallest and

safer micro trades (trades of not more than £50,000) account for only around 9-12% of

CSL trades compared to 25% in matched trades and 14% in deals. Overall, Table II

shows that CSL trades, and especially fCSL trades, are more frequent when inventory

risk and therefore inventory holding costs are large. This fact suggests that they are used

as a tool for risk management for dealers.

[Insert Figure 2 about here]

Figure 2 shows that fCSL trades also have different dynamics compared to matched

and deal trades. Fast CSL trades account for only around 5% of total trading volume,

but regularly spike in stress episode such as the DfC-crisis, the invasion of Ukraine that

precipitated a commodity market crisis, the LDI-crisis which mainly affected UK gov-

ernment bonds but also saw a sell-off of corporate bonds by LDIs and pension funds

(Henning et al., 2023), and the banking crisis of March 2023 sparked by the failures of

Silicon Valley Bank and Credit Suisse. This again confirms that fCSL trades are more

frequent when balance sheet costs for dealers increase. In contrast, matched trades trend

upward between 2019 and 2020 and then remain relatively stable at around 20% of trad-

ing volume. The upward trend in matched trades is mirrored by a downward trend in

sCSL and deal trades, particularly pronounced around year end, when we see an increase

in the former and decrease in the latter. Importantly, the dynamics of sCSL trades and

matched trades are different from those fCSL trades during crises. None of the time-series

show the same steep increase during these stress times. If anything, the share of matched

trades seem to decrease in crises.

[Insert Figure 2 about here]

13



B. Transaction costs

We now turn to the measurement of our main dependent variable, namely transaction

costs faced by clients in their corporate bond transactions. We define transaction costs

following Hendershott and Madhavan (2015) and others as

tcτ := log(pτ /p∗
τ ) × Dτ × 10, 000 (1)

where pτ is the clean price in transaction τ between a dealer d and client c at time t in

bond b, p∗
τ is the benchmark price of the transaction which is the closest inter-dealer price

in the same bond prior to the transaction but not older than 24 hours, and Dτ is the trade

direction of the client (+1 for a client buy, -1 for a client sell). We multiply transaction

costs by 10,000 to measure them in basis points (bps). Table II and Figure 3 provide

some insights into overall transaction costs, split by trade type, and their dynamics.

Table II shows that average transaction costs are around 10 bps, cheapest typically

for matched trades (8.5 bps), followed by deal trades (9.5 bps), fCSL trades (10.9 bps)

and sCSL trades (14 bps). Transaction costs increase markedly during the DfC, as was

the case in the US corporate bond market (e.g. Kargar et al., 2021) and asymmetrically,

more pronounced for client sells than for client buys which is expected since the crisis is

characterized by large divestments by institutional investors. Average transaction costs

across all trades increased to 22 bps, however, only to 13 bps for a client-buy compared

to 29 bsp for client-sell. Slow CSL trades are the most expensive trades for both trade

directions. Across client-buys fCSL trades are the cheapest (12 bps), while matched

trades are the cheapest across client-sells (25 bps). Transaction costs also increase during

other stress episodes, particularly for sCSL trades, as can be seen from Figure 3.

[Insert Table II about here]

The bottom panel of Figure 3 depicts transaction costs for the first and second leg

of CSL trades separately. It shows that the first-leg trade is generally more expensive

than the second leg. This is consistent with our interpretation that the second leg trade
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is initiated by the dealer. That is, the client in the second leg provides liquidity to the

dealer acting in the first leg and the latter rewards the former for liquidity provision by

trading at a discount. We study this point in more detail in subsequent sections.

[Insert Figure 3 about here]

Of course, these comparisons of average transaction costs across dealers, bonds, and

clients do not account for the endogeneity of the various types of trades. For instance,

Table II already suggests that CSL trades are more likely to be observed in riskier bonds

and one naturally expects trading costs to be larger for such bonds (independent of the

trade-type). In subsequent analyses, we therefore control for bond, dealer, client and

time-fixed effects and other trade characteristics to measure the isolated effect of CSL

trades on transaction costs. We will show that the second leg CSL trades are analogous

to the exercise of an option for dealers. As Table II shows this option is used infrequently

(because it is costly) but the possibility to exercise helps the dealer to manage her balance

sheet cost more efficiently and therefore to reduce trading costs for all her clients.

IV. Hypotheses Development

We conjecture that CSL trades reflect dealers’ use of clients as a liquidity backstop.

Specifically, after executing trades that strain their balance sheet capacity — such as

those involving riskier bonds or large block trades — dealers actively seek to transfer risk

to other clients to restore balance sheet flexibility.”

To better understand this mechanism and develop testable implications, we consider

an extension of Saar et al. (2022). Saar et al. (2022) study how dealers’ balance sheet costs

affect the choice between riskless principal trades (“matchmaking”) and risky principal

trades (“market-making”) by a dealer and her clients. To develop our testable hypotheses,

we consider the possibility for dealers to source liquidity from other clients after a market-

making trade, an option that is not available to dealers in Saar et al. (2022).

In this section, we outline the main ingredients of the model. Details and derivations

are provided in Section A of the Appendix. Figure 4 offers a schematic overview of the
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model.

[Insert Figure 4 about here]

At time 1, a dealer is contacted by a client (C1), who can be a buyer or a seller (with

equal probabilities) of an asset with expected value v. If he executes his desired trade,

the client obtains a private benefit, u1, whose distribution is uniform over [0, ū1]. The

dealer offers two options for executing the client’s trade: (i) the matchmaking option at

price f or (ii) the market-making option at price S1.
19 If he chooses the first option, the

client pays f to the dealer and wait until the dealer finds a counterparty for his trade. In

this case, the client’s payoff is (δ × u1 − f), where δ < 1 and the dealer’s payoff is f − I.

Parameter δ represents the cost of delay (the time of finding a counterparty) for the client

while parameter I is the cost incurred by the dealer to find a suitable counterparty.20 If

instead the client chooses the market-making option, he pays a spread S1 to the dealer

and his order is immediately filled on the dealer’s account. In this case, the client’s payoff

is u1 − S1. Finally, if the client rejects the dealer’s offers, he obtains a payoff of zero.

When C1 opts for the market-making option, the dealer faces a balance sheet cost

B, unless she can offload her position quickly. To achieve this, the dealer depends on

a network of clients, referred to as her liquidity supplier network.21 This network has

N clients, each with a probability π < 1 of being able to trade the bond.22 Thus, the

likelihood that the dealer finds at least one client who can trade the bond is α(π, N) =

1 − (1 − π)N . This likelihood increases with (i) the size (N) of the dealer’s network and

(ii) the likelihood (π) that a given client in this network is able to trade the bond.

The dealer contacts clients sequentially and stops canvassing her liquidity supply net-

work at the first client (denoted C2) who expresses interest. Then, the dealer offers C2

the opportunity to buy the asset at price (v + S2) (if C1 was a seller) or to sell the asset

19Prices f and S1 cannot be contingent on u1 because the client’s private benefit is unobserved.
20In contrast to Saar et al. (2022), we assume that the client pays the fee when he contacts the dealer,

not when he is matched. This simplifies the exposition without qualitatively affecting the results.
21For instance, Goldstein and Hotchkiss (2020) notes that dealers routinely signal their interest in

unwinding positions by broadcasting bids and offers on a list of bonds in their inventory (called “runs”).
See also Hendershott et al. (2024).

22In reality π < 1 because, for instance, clients are not allowed to trade some type of bond or because
clients do not want to trade bonds on which they have no prior information (e.g., the bond is not already
in their portfolios).
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at price (v − S2) (if C1 was a buyer). If C2 accepts the offer, his payoff is (u2 − S2), where

u2 is C2’s private benefit.
23 In this case, the dealer avoids the balance sheet cost triggered

by the initial trade and earns a total profit (across both transactions) of (S1 + S2). If C2

rejects the offer, his payoff is zero, and the dealer’s total profit is (S1 −B). That is, we as-

sume the dealer does not attempt to contact another client in her network if negotiations

fail with the first interested party.24 If no client in the dealer’s liquidity supply network

expresses an interest for trading the asset (which happens with probability (1−α(π, N)),

the dealer’s total profit is (S1 − B) as well.25

We assume that C2’s private benefit, u2, is uniformly distributed over [−ū2, ū2], with

ū2 < Min{ū1,
ū1
2 + I

2δ
}. This condition is sufficient (see Appendix A) for C2 to be worse

off trading at date 1 (at the equilibrium values for f and S1). In this sense, C2 is a client

who does not have a strong interest in the bond in the first place. However, he may be

willing to trade opportunistically if the dealer offers a sufficiently attractive price (low

S2).

The dealer’s choice variables are the matchmaking fee (f), the spread (S1) charged to

C1, and the spread (S2) offered to C2. The dealer chooses these prices to maximize her

expected profit and each client behaves optimally given these prices.26 We solve for the

dealer’s equilibrium prices (f ∗, S∗
1 , S∗

2)) in Appendix A.

We show that the dealer offers a price improvement to C2 relative to C1 (S∗
2 < S∗

1).

Moreover, this improvement increases with the dealer’s balance sheet cost. This reflects

the fact that the dealer is willing to offer an even more attractive price to C2 when her

balance sheet cost increases (
∂S∗

2
∂B

< 0), to avoid this cost while, in contrast, her cost of

market making for C1 increase (
∂S∗

1
∂B

> 0). These effects combined with the condition

ū2 < ū1 imply that S∗
2 < S∗

1 for all values of B.27

Our first testable hypothesis is therefore:

23For instance, if C2 buys the asset, he pays v + S2 for an asset that he values at v + u2. Thus, C2’s
payoff is (v + u2) − (v + S2) = u2 − S2.

24This assumption is not key. It just simplifies the exposition. What is important is that the dealer’s
offer might be rejected so that the dealer is not able to avoid the balance sheet cost with certainty.

25When α = 0, the model is identical to Saar et al. (2022).
26In particular, C1 optimally chooses between market making or matchmaking.
27The condition ū2 < ū1 is sufficient to guarantee S∗

2 < S∗
1 for all values of B, including B = 0.

However as B increases, one can relax the condition.
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HYPOTHESIS 1 (H1). The first leg of a CSL trade is more expensive than the second

leg: S∗
2 < S∗

1 .

The second implication of the model is that a drop in α leads to an increase in trading

costs for C1 (S∗
1) and an increase in average transaction costs across all clients for the

dealer. This yields our second testable hypothesis.

HYPOTHESIS 2 (H2). When the size (N) of a dealer’s liquidity supplier network de-

creases or when clients in the dealer’s network becomes less able to trade a bond (π

decreases), the trading costs for the dealers’ clients increase.

Third, we show that when a dealer’s balance sheet cost increases, she offers larger

discounts on second leg trades and charges larger spreads on first leg trades. The net

effect on average transaction costs for the dealer’s clients is always positive but it is

dampened when α is larger. This leads to our third testable hypothesis.

HYPOTHESIS 3 (H3). The positive effect of an increase in dealer’s balance sheet costs

on trading costs for her clients is smaller when the size (N) of a dealer’s liquidity supply

network is larger or when clients in the dealer’s network are more able to trade a bond

(π increases).

We test these implications in the next section.

V. Empirical Findings

A. Liquidity Discounts

Based on Hypothesis H1 we expect the first leg of CSL trades to be more expensive than

the second leg since the dealer has to price in the risk of not being able to unwind the

first leg trade despite her intention and effort to do so. We expect the second leg to trade

at a discount relative to deal trades (trades that the dealer intends to keep on her book).

Indeed, this discount reflects the price concession that the dealer pays to obtain liquidity

from the second leg client.
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To test this hypothesis, we regress transaction costs on the first and second leg of CSL

trades controlling for other trade characteristics:

tcτ =
∑

j=1,2
γj CSL(j)

τ + x′
τ β + 1′µ + ετ , (2)

where tcτ are the transaction costs in transaction τ , and CSL(j)
τ is a dummy capturing

if the transaction is the 1st (j = 1) or second (j = 2) leg of a CSL trade. Controls

xτ include the trade size (in log), a dummy capturing if the client is selling, a dummy

for matched trades, and a dummy for trades that are algorithmically executed. Each

transaction is executed at a given time (t) between a dealer (d) and client (c) in a given

bond (b) on a given venue, such as an MTF, OTF or RM, or bilaterally with an SI or over-

the-counter.28 We use these dimensions of a trade to include dealer-day, client-month,

bond-day and venue-type (incl. OTC) fixed effects (µ). We have already established that

CSL trades are related to risk management being more frequent in riskier trades. As such

the inclusion of dealer-time, client-time, bond-time and venue-type fixed effects ensures

that any premium or discount relative to deal and matched trades are not driven by CSL

trades being related to dealer, client, bond, time or execution venue specific risk concerns

or other such characteristics that would simultaneously affect transaction costs. Standard

errors are double clustered by dealer and bond.

[Insert Table III about here]

Table III presents the results. The first column is similar to the specification in Choi

et al. (2024). The difference here is that we separate matched trades, where the dealer

matches clients instantaneously acting only on a riskless principal basis, from those trades

where the dealer provides immediacy to one counterparty to then unwind the trade with

another counterparty, using its own balance sheet throughout the process. In columns

(1), we find that the second leg in CSL trades receives a discount of three bps relative to

the average of deal and first leg trades which form the baseline of this regression. The

discount is similar to that of matched trades.

28In the following, for ease of exposition, we will include SIs and OTC trades in the venue terminology.
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In column (2) we include the first leg of CSL trades as a separate dummy — which

leaves deal trades as the baseline category. We find that the first leg trades at a premium

of four bps relative to the transaction costs of a deal trade. This is in line with CSL

trades being trades that the dealer is more reluctant to execute in the first place. The

dealer therefore charges a higher spread to compensate for the risk of having to book the

trade on her own account. Interestingly, the discount on the second leg becomes small

and insignificant, which is explained by the next column.

In column (3) we split CSL trades by the time between the first and second leg: fCSL

trades where the second leg follows within 15 minutes of the first leg, CSL(15,30] where

the second leg follows within 15 to 30 minutes, CSL(30,60] where the second leg follows

within 30 to 60 minutes, and CSL(60,∞) where the second leg follows within the same day

but not earlier than 60 minutes after the first leg.

We find that discounts in the second leg are reserved exclusively for fCSL trades.

This indicates that the second leg in sCSL trades (which follow more than 15 minutes of

their first leg) are trades with clients that arrive randomly and, by chance, want to trade

in the opposite direction of the previous client, rather than being trades in which dealers

intentionally seek client liquidity. Interestingly, the first leg of CSL trades are generally

more expensive than regular deal trades and increase in the time-distance to their second

leg. This may again be related to the previous finding in that sCSL may be executed

by the dealer in the expectation of not being able find an offsetting trade (or only with

greater difficulty).

Finally, column (4) groups CSL trades into fast and slow ones. This specification

provides the baseline for our remaining analyses.

In sum, the negative (positive) estimates for the second (first) leg of CSL trades justify

our interpretation that second leg clients receive compensation for providing liquidity to

dealers in circumstances where the dealer had provided immediacy to a different client in

the previous trade, but where she is reluctant to keep the inventory on her books. The

dealer pays the second client compensation to allow her to unwind the position quickly.

The discount on the second leg then raises the question of why the dealer does not trade
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in the inter-dealer market instead? The answer is that despite the discount, the average

transaction costs for second-leg trades are still positive (see Figure 3). To the extent that

our benchmark price to measure transaction costs reflects the price a dealer would obtain

in the inter-dealer market, the fact that second-leg transaction costs are positive imply

that the dealer fares better trading with a client than with another dealer.

B. Losing Liquidity Providers

Table II shows fast CSL trades account for only 5% of overall trading volume. However,

the model in Appendix A suggests that this does not undermine the importance of liq-

uidity provision by dealers’ clients. Indeed, the dealer prices in the option to contact

liquidity providers, even if this option is not exercised. As shown by our hypothesis H2,

this option results in lower average transaction costs for the dealer’s client than when

the option is not present (the average transaction costs are maximal when α = 0 in the

model since they decline with α). One implication is that dealers with a larger network

of liquidity providers should charge lower transaction costs, all else equal (H2). In this

section, we test this hypothesis.

We examine situations when the usual liquidity suppliers are unwilling or unable to

provide that service. We do so by focusing on the DfC stress episode which saw a global

sell-off of corporate and government bonds that eventually led to world-wide central

bank and government interventions to stabilize markets. Asset managers faced historical

outflows, UK pension funds faced margin calls on their US dollar (USD) hedges and

hedge funds on their basis trades (Czech et al., 2021, 2022; Ma et al., 2022). During this

episode, some clients, who would usually be liquidity suppliers, liquidated their assets

which reduced the potential pool of liquidity supplying clients.

First, for each day during the DfC we identify clients that are not available for liquidity

provision as they are exclusively selling on that day.29 Second, for each bond we measure

its share of fCSL trades in total trading volume over the 180 days prior to the DfC,

LPshareb. Finally, we measure the share of client-sourced liquidity that is unavailable or

29Given that DfC was marked by significant selling pressure (as opposed to buying), we assume that
dealers demanded liquidity from clients that were able to buy.
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‘blocked’ on a given bond day, BlockedLPbt, by the share in fCSL(2) volume over those

180 days accounted for by clients that are not available for liquidity provision.

We interpret BlockedLPbt as a negative shock to the potential network of client liquid-

ity support for a bond (α). We measure the impact of that shock on average transaction

costs by regressing

tcτ = γ0 LPshareτ + γ1 BlockedLPτ + γ2 BlockedLPτ × clientsellτ + γ3clientsellτ

+ x′
τ β + 1′µ + ετ (3)

where, as previously, tcτ is the transaction cost of a given trade τ (between dealer d and

client c at time t on a given venue) and xτ includes the previous variables iCSL(j) for

i = f, s and j = 1, 2, ‘match’, ‘algo’, and ‘logQ’, and µ are fixed effects (refer to Table A.I

in the Appendix for the variable definitions). Since trades in which clients want to sell are

generally more expensive than trades in which clients want to buy during the crisis, we

test the asymmetric impact of a reduction in the potential client-liquidity network for a

bond on the ability to buy or sell the bond by interacting BlockedLP with the clientsell

dummy.

Including the overall share of fCSL trades for a bond before the DfC period (LPshare)

in the regression is not strictly necessary as our main focus is on the effect of unavailable

liquidity supply (BlockedLP ). However, it may be interesting to see if a bond’s share

of liquidity provision prior to the crisis relates to transaction costs during the crisis. To

include LPshare, however, we cannot include bond fixed effects. At the same time,

bond risk characteristics simultaneously influence the share of client-sourced liquidity

and transaction costs (as in high-yield bonds). Similarly, such characteristics may be

simultaneously associated with a higher share of blocked liquidity supply and higher

transaction costs. Therefore, to ensure that our results are not confounded by bond

riskiness in the absence of bond-fixed effects, we include time-to-maturity (in years) and

rating fixed effects to account for a bond’s duration and credit risk in the regression.

We also include dealer and client fixed effects to ensure that the results are not driven

22



by dealers or clients that are simultaneously associated with trading bonds that have

a higher share of blocked liquidity supply and higher transaction costs. For example,

including dealer fixed effects means that we are utilizing within dealer variation of bonds

with more and less blocked liquidity support. As before, we also include venue-type fixed

effects to account for cases where different bonds are systematically traded on different

platform types that face different transaction costs during the crisis.

Finally, we have to avoid that our BlockedLP variable simply captures selling pres-

sure which would be the case if the clients identified as not being available for liquidity

provision are selling the same bonds in which they used to provide liquidity. To avoid

these concerns we exclude such bonds from the sample. Table IV presents the results.

[Insert Table IV about here]

Column (1) of Table IV shows that transaction costs in bonds whose entire network of

liquidity supplying clients is unavailable (BlockedLP = 1) increases by 11 bps for a client

sell (γ2 − γ1) compared to a bond whose network of liquidity support is not impacted

(BlockedLP = 0). This constitutes an increase of 38% relative to the 29 bps transaction

costs of an average sell during DfC (see Table II). Put differently, the 11 bps surcharge

for a client sell during the crisis doubles in bonds with entirely blocked liquidity supply.

At the same time, a client buy is 11 bps cheaper in bonds with blocked liquidity supply.

We also find that the discount on liquidity providing trades doubles from four bps

over the entire sample (see Table III) to around eight bps during the crisis. We do not

find evidence that a premium is charged on the liquidity-demanding first legs. This is

explained by the correlation of the trade direction of the first leg with client sells during

the crisis. There is no additional premium that is not already captured by the client sell

dummy.

The results are remarkably robust to including more granular fixed effects, notably the

inclusion of bond and dealer-day fixed effects in columns (3)-(4). In column (5) we even

include bond-day fixed effects, which eliminates the possibility of including BlockedLPbt

which is measured at the bond-day level. As such, the interaction of BlockedLP with the

23



client-sell dummy captures the additional premium on a client sell compared to a client

buy for an increase in the share of unavailable client liquidity support.

Taken together the results imply that dealers charge higher transaction costs for sells

in bonds where the dealer expects it to be more difficult to find a client for an offsetting

trade while providing discounts for client buys to manage the inventory against increased

selling pressure during the crisis in the absence of the usual clients’ liquidity support.

The results also imply search frictions on the part of the dealers since clients that have

previously supplied liquidity do not seem to be easily replaceable.

C. Liquidity-Providing Trades Dampen Shocks to Dealers’ Balance Sheet

Costs

Our third testable hypothesis (H3) implies that following an increase in the balance sheet

cost of holding a bond (e.g., because the bond is downgraded), dealers should charge

larger trading costs on average. However, the increase in trading costs should be smaller

for bonds traded by dealers with a larger network of liquidity suppliers. In this section,

we test this prediction.

C.1. Price impact and client-sourced liquidity around bond downgrades

To test the relevance of client liquidity support when dealers experience an increase in

their balance sheet costs for specific bonds, we focus our analysis on fallen angels— bonds

that are downgraded from investment grade (IG) to high-yield (HY). The downgrade

represents a direct increase in the cost of holding that bond on a dealer’s balance sheet

due to the increase in capital requirements associated with holding an HY bond rather

than an IG bond. Previous studies (e.g., Ellul et al. (2011)) have shown that downgrade

events are associated with increased selling pressure driven by investors such as certain

investment funds (e.g. investment-grade index tracking funds) whose mandates generally

do not allow them to own HY bonds. This selling pressure has been shown to exert

temporary price pressure, driving prices below their fundamentals around the downgrade

event. This means that fallen angels present an ideal environment to test our model
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implication as the downgrade represents a sufficiently large increase in the cost of holding

that bond on the balance sheet to test the dealers’ balance sheet capacities.

We start our analysis by corroborating previous findings that downgrade events exert

temporary price pressure. The left Panel of Figure 5 shows a moving average of daily

transaction costs across fallen angels tracked relative to the date of the downgrade. It

shows that in the period 300 to 100 days before the downgrade, the cost of trading fallen

angel bonds falls between those for IG and HY bonds. At around 100 days prior to the

downgrade, transaction costs start to increase above the overall HY average, peaking just

after the day of the downgrade.30 Transaction costs then converge back towards the HY

average at around 300 days following the downgrade.

The right Panel of Figure 5 provides preliminary evidence of the use of client-sourced

liquidity to alleviate the balance sheet pressure resulting from the downgrade event. It

shows that the average daily share of trading volume in fCSL trades around the downgrade

event follows closely the trajectory of transaction costs — increasing from around 2.3%

100 days prior to the downgrade to 4% just after the downgrade, before falling back to

the previous level between 100 and 200 days after the downgrade. This observation is

consistent with the model. When the balance sheet cost of holding a bond increases, a

dealer offers larger discounts to liquidity suppliers and as a result, other things equal, a

liquidity supplier is more likely to accept a dealer’s offer. Thus, the likelihood of observing

CSL trades increases when the balance sheet cost of holidng a bond increases.

C.2. The impact of client liquidity supply on the price impact of fallen angels

Next, we turn our analysis to the impact on transaction costs of fallen angels depending on

client liquidity support, using a differences-in-differences (diff-in-diff) regression design.

For each fallen angel we define two periods: a downgrade window and a post-downgrade

window. Informed by our previous analysis on the price impact around the downgrade

event, we define the downgrade window of a fallen angel to start 100 days before the

downgrade and to end 300 days after the downgrade. The post-downgrade period is

30The increase in transaction costs in advance of the actual downgrade event is consistent with previous
studies showing that downgrades are anticipated events.
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defined as the period starting 301 days after the downgrade. For each day over those

two periods, we subtract from the transaction costs of a given trade in a fallen angel the

average transaction costs across all HY bonds traded on the same day:

∆HY tcτ := tcτ −
∑

s∈T HY,¬F A
t

tcs/|T HY,¬F A
t |, (4)

where T HY,¬F A
t are all transactions in HY bonds on day t not including the set of fallen

angels. The time windows and the transaction costs measured against average transaction

costs of the HY peer group provide the two dimensions for the diff-in-diff design.

To analyse the importance of client sourced liquidity, for each fallen angel we compute

the amount of client liquidity provision before the downgrade.31 We do so by measuring

the share of fCSL trades in total trading volume over the 100 days before the start of the

downgrade window, LPshareb. We then regress:

∆HY tcτ = γ0 LPshareτ + γ1 Dτ + γ2 LPshareτ × Dτ (5)

+ x′
τ β + 1′µ + ετ ,

where Dτ takes the value 1 if the transaction falls into the downgrade window for the

given bond and 0 otherwise. The idea is that LPshareτ is a measure of the size of the

network of liquidity suppliers, prior to the downgrade, for dealers active in bond b. A

positive value for γ1 means that fallen angels trade further away from their HY peers

around the downgrade event than post-downgrade, which is expected given Figure 5.

To be able to attribute the price impact to the downgrade itself and not to changes

in trading characteristics between the two periods that also affect transactions costs we

include in xτ the previous variables iCSL(j) for i = f, s and j = 1, 2, ‘clientsell’, ‘match’,

‘algo’, and ‘logQ’ (refer to Table A.I in the Appendix for the variable definitions). For µ

we include dealer, client, ratings and venue-type fixed effects which ensure that the results

are not driven by, for example, dealers (or clients) that charge (or are being charged) larger

31Using contemporaneous client liquidity supply would raise concerns about liquidity supply reacting
endogenously to the size of the price impact.
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transaction costs in general and trade fallen angels more frequently during the downgrade

window than post-downgrade.

The inclusion of these fixed effects is also important for the interpretation of the

estimate on the interaction term, γ2. Our hypothesis H3 implies that we should observe a

negative estimate for γ2, that is, the price impact triggered by the downgrade is alleviated

by dealers’ access to client liquidity. However, if a higher share of liquidity provision is

associated with riskier (and therefore less liquid) bonds and if such bonds experience

larger price impacts, we will underestimate the benefit of accessing client liquidity if

we do not control for ratings fixed effects. The same problem arises if a higher share

of client liquidity provision is associated with dealers that are more constrained going

into the downgrade period. The inclusion of dealer fixed effects addresses this concern.

Regarding client fixed effects, on the other hand, if a higher LPshare is associated with

the absence of clients that typically exert selling pressure due to not having the mandate

to hold HY bonds, not including client fixed effects will overestimate the beneficial impact

of client liquidity support.

[Insert Table V about here]

Table Table V presents the results.32 Column (1) shows that fallen angels trade at a

4 bps premium during the downgrade window compared to the post-downgrade period.

This confirms our price impact analysis in the previous section. Column (2) shows that

the increase in fallen angels trading costs is not associated with the extent to which

dealers relied on liquidity suppliers before the downgrade (γ2 is not significantly different

from zero).

At first glance, this result seems to reject our hypothesis H3. However, it can stem

from the fact the nature of liquidity suppliers for a given bond matters. Indeed, suppose

that these liquidity suppliers for a given bond b are mostly insurance companies. As

insurance companies cannot hold high-yield bonds, the downgrade is effectively reducing

the network of liquidity suppliers for this bond. This effect will amplify the positive effect

32Note that the sample is restricted to days of the downgrade and the post-downgrade window ex-
cluding days that fall within the period of DfC or the LDI-crisis period.
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of the downgrade on transaction costs for the bond according to the model (this is both

an increase in B and a decrease in α). If instead, the liquidity suppliers for a given bond

b are mostly hedge funds, the downgrade will not reduce their ability to provide liquidity

to dealers as their mandate does not prevent them from holding high-yield bonds. In

this case, we expect the positive effect of a downgrade on clients’ transaction costs to be

dampened for bonds with a larger network of liquidity suppliers, as predicted by H2. In

sum, for a network of client liquidity support to be useful during a bond downgrade it

needs to consist of clients with the corresponding risk appetite and investment mandate

to seize the opportunity provided by the temporary price pressure.

To better test our hypothesis H3, we exploit our ability to identify the type of clients in

the data. More specifically, we can classify clients into seven sectors: (i) hedge funds (HF),

(ii) asset manager (AM), (iii) non-dealer banks (Bank), (iv) insurers (Insurer), (v) pension

and LDI funds (PFLDI), (vi) principal trading firms (PTF) and (vii) trading services

firms such as brokers (Broker). Clients who do not belong to any of these categories are

classified as “others”.

We then measure the share in total liquidity provision in the 100 days prior to the

downgrade window accounted for by a given client sector,

Lrels
b :=

∑
τ∈T s

b
(fb−200,fb−100) fCSL(2)

τ Qτ∑
s

∑
τ∈T s

b
(fb−200,fb−100) fCSL

(2)
τ Qτ

, (6)

where T s
b (fb − 200, fb − 100) are all transactions in bond b by sector s in the 200 to 100

days prior to the day of the downgrade, fb.

Using the sector-specific share of liquidity provision, we augment our previous regres-

sion setup in eq. (5) as follows:

∆HY tcτ = γ0 LPshareτ + γ1 Dτ + γ2 LPshareτ × Dτ (7)

+ γ3 Lrels
τ + γ4 Lrels

τ × Dτ

+ x′
τ β + 1′µ + ετ .

The results are presented in columns (3) to (9) in Table V and confirm our conjectures.
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Column (6) shows that a reliance on insurance companies for liquidity supply increases

the price impact of fallen angels. For a given level of liquidity provision, if all of the liq-

uidity provided depends on insurance companies, the price impact during the downgrade

increases by another 18 bps. Given that insurers are restricted in their ability to hold

HY bonds, an outsized reliance on them can be seen as a shock to the potential network

of client liquidity support for a given bond during its downgrade window.

In contrast, and consistent with our hypothesis, an increase in HFs’ share of fast

liquidity providing trades dampens the effect of a downgrade on the transaction costs

in a bond. Specifically, we find that if the entire network of liquidity providing clients

consist of HFs the overall price impact of fallen angels is reduced by 5 bps, effectively

eliminating the fallen angel price pressure.

In sum, the results presented in this section highlight the importance of the compo-

sition of the network of liquidity providing clients for a given bond/dealer to be able

to source liquidity at all times. A small and under-diversified portfolio of client types

in the network of liquidity-providing clients poses liquidity risk for a dealer. Not every

client may be able to act as a liquidity provider at all times. This is particularly true for

insurers who are constrained in trading HY bonds but also holds more generally when

clients are constrained by tight funding or other restrictions.

VI. Who provides liquidity in CSL trades?

Given our previous finding on the importance of the number and mix of liquidity providing

clients, the question arises whether certain client types take a special role as liquidity

providers. Previous studies have highlighted the role of HFs and insurers as buyers of

last resort during the DfC in the US corporate bond market (Kruttli et al., 2023; O’Hara

et al., 2023), and the role of contrarian style mutual funds providing relief to dealers’

balance sheet (Anand et al., 2021) over the inventory cycle.

In this section we study which client sectors act in the second leg of CSL trades, thereby

providing more direct evidence on the engagement of certain sectors in liquidity provision.
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Moreover, we examine whether dealers reward certain clients more for their past liquidity

provision services than others, allowing us to evaluate the importance dealers themselves

attach to one client sector over another.

A. Client sector participation in CSL trades

Table VI shows the share of trading volume by sector in overall trading and within the

various trade types for both normal times and the stress episodes of DfC and fallen angels.

The table highlights clearly the unique role of HFs in client liquidity provision. They are

the only sector which accounts for a higher share in second leg fCSL trades (17% in

normal times) as opposed to first leg trades (13%) and whose participation in second leg

trades is also disproportionate to their overall activity (10%). This is not just true during

normal times but is particularly pronounced in stress times, such as DfC and during fallen

angels where hedge funds account for 19% of second leg fCSL trading volume.

[Insert Table VI about here]

Brokers also tend to be more active in the second leg of fCSL trades. However, they

participate in these trades relatively less frequently than they do in overall trading. In

fact, brokers typically have a more important role in second leg trades of sCSL trades.

However, our previous results show that these trades seem to be less related to liquidity

provision.

The table also helps us to obtain a view on the role of insurance companies, which

is more nuanced than the evidence from previous studies. They are the second smallest

sector after PTFs measured by their overall trading activity (only 3.5% in normal times),

and their proportion in second leg fCSL trades is generally smaller (expect during fallen

angels). In fact, during DfC their share in second leg trades was lower than their share

in first leg trades. Insurers, however, seem to take a special role in matched trades,

accounting for over 6% in these trades in both normal times and during DfC. However,

given the contemporaneous execution of both legs in matched trades, it is difficult to

assess whether insurers take the of role liquidity providers in these trades without any

further information.
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Insurers participation in matched trades (and overall) during fallen angels is signifi-

cantly muted, which seems natural given their restrictions on trading HY bonds. Inter-

estingly, the share of HFs in matched trades is unusually high over the same period: 12%

compared to only 8% and 6% in normal times and DfC, respectively.

Non-dealer banks show a similar pattern to insurers in terms of their participation in

matched trades compared to their overall trading activity. However, their tendency to be

relatively more active in the first leg of CSL trades may suggest that they also take the

liquidity seeking side in matched trades more often than the liquidity providing side.

Finally, asset managers are by far the largest sector and therefore quite naturally take

the largest stake in all of the trading types, including the second leg of fCSL trades.

However, they participate relatively less frequently in the second leg of fCSL trades than

in first leg trades and their activity in these trades is also relatively low compared to their

overall trading activity. Their role as liquidity providers, therefore, seems less clear cut,

at least at the sector level.

B. Rewards for liquidity provision

Next we test whether certain sectors are more rewarded than others for their past liquidity

provision services. This would provide direct evidence on who dealers themselves value

most as liquidity providing clients.

To that aim, we measure a client’s share in liquidity provision for a specific dealer at

a given point as

Lreldct =
∑

τ∈Tdc(t−90,t−1) fCSL(2)
τ Qτ∑

c

∑
τ∈Tdc(t−90,t−1) fCSL

(2)
τ Qτ

, (8)

where Tdc(t − 90, t − 1) are all transactions between dealer d and client c in the 90 days

prior to t, fCSL(2)
τ takes the value one if the transaction is the second leg of a fast CSL

trade and zero otherwise, and Qτ is the nominal size of the transaction measured in GBP.
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To test whether past liquidity provision is rewarded we regress

tcτ = γLrel Lrelτ + x′
τ β + 1′µ + ετ (9)

where tcτ is the transaction cost of trade τ (between dealer d and client c in bond b on

day t on a given venue v) and xτ includes the previous variables iCSL(j) for i = f, s and

j = 1, 2, ‘clientsell’, ‘match’, ‘algo’, and ‘logQ’, and µ are dealer-day, bond-day, client-

month and venue-type fixed effects (refer to Table A.I in the Appendix for the variable

definitions).

[Insert Table VII about here]

The first column of Table VII shows that client liquidity provision services are strongly

rewarded by dealers. A client that accounts for a 1 percentage point higher share in

liquidity provision for a given dealer receives a 0.13 bps additional discount on his trades,

including on deal trades.

Previous studies have linked client liquidity provision with dealer-client relationships.

In particular, Jurkatis et al. (2023) show that client liquidity provision is a strong moti-

vation for dealers to nurture their relationships with clients by providing transaction cost

discounts. Part of our liquidity services discount may therefore be driven by relationship

discounts. To account for that possibility we follow previous studies (e.g. Di Maggio et al.,

2017; Jurkatis et al., 2023) and measure dealer-client relationships based on past trading

volume,

Qreldct =
∑

τ∈Tdc(t−90,t−1) Qτ∑
c

∑
τ∈Tdc(t−90,t−1) Qτ

, (10)

and include the relationship metric in our regression.

The second column of Table VII presents the results. Our estimate on dealer-client

relationships is in line with previous studies and shows that clients receive better prices

if they account for a larger share of a dealer’s trading volume. Importantly, while the

inclusion of the relationship metric dampens somewhat the size of the liquidity services
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discount, it remains statistically and economically significant, representing two-thirds of

the size of the relationship discount. This shows that even in the absence of a general

relationship, clients are rewarded the more a dealer relies on that client for liquidity

provision.

Finally, to test whether certain sectors are particularly sought after types, we interact

our liquidity services metric with sector dummies. Our findings from the previous sections

showed that HFs are overproportionately active in liquidity providing trades and that

they provide relief from price pressure of fallen angels. We did not find the same for asset

managers and insurers which are other sectors linked to liquidity provision in previous

studies.

Our regression results shown in column (3) of Table VII confirm the importance of HFs,

which receive more than twice the liquidity service discount than the next sector, which

are pension funds and LDIs. Given HFs’ less regulated nature and their accompanying

agility to react quickly to market conditions, they seem to be a sought after client type

to have amongst ones liquidity providing clients. Asset managers and insurers, on the

other hand, do not receive discounts for their past liquidity provision.

While HFs are clearly the sector most strongly rewarded for past liquidity provision,

other sectors receive discounts as well. Banks, PTFs and pendsion funds and LDIs all

receive discounts on for their trades the more they account for past liquidity provision

for a given dealer. This finding is inline with dealers trying to diversify their network of

liquidity providing clients to be able source client liquidity across potential states of the

world in which any given client type alone may not be able to provide its services.

In sum, bringing our findings together, it seems that dealers regard client liquidity

provision akin to an insurance policy. Our findings on the importance of the size and

composition of a dealer’s network of liquidity providing clients suggest that clients, if

unavailable for liquidity provision, cannot be easily substituted by other, new clients.

Dealers, therefore, provide discounts (or pay a premium) to liquidity providing clients, not

just in their liquidity providing trades — which is simply the nature of such trades — but

also in their liquidity demanding trades in order to maintain their liquidity client network.
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And while dealers use their liquidity insurance, i.e. CSL trades, only infrequently (about

5% of trading volume), the ability to cash in on the policy when it matters most (such

as during stress times) impacts trading outcomes more broadly.

VII. Conclusion

We show that client-sourced liquidity (CSL) is an important tool for dealers to manage

balance sheet costs and mitigate liquidity challenges in corporate bond markets. Using

transaction-level data we find that dealers’ networks of liquidity providing clients play

a significant role in determining trading costs, particularly during periods of stress and

in more risky bonds. Our findings suggest that CSL trades provide a way for dealers

to access liquidity without incurring additional balance sheet costs, as reflected in price

discounts offered to clients supplying liquidity.

Our study also demonstrates the contributions of different types of clients to bond mar-

ket liquidity. Hedge funds tend to provide liquidity reliably during market downturns,

while insurance companies and some asset managers are more likely to be constrained,

especially after bond downgrades. These differences show that the composition of a

dealer’s network affects trading outcomes, with bonds supported by less constrained liq-

uidity providers being better able to withstand liquidity shocks. Our research adds to our

understanding of trading costs in OTC markets by showing that dealers’ ability to secure

liquidity through their client networks helps manage costs and market disruptions. The

discounts offered to liquidity providers are not just relationship-based but instead func-

tion as compensation for being available during periods of higher demand for liquidity.

These results highlight the importance of client relationships and network composition

for market stability and trading costs, which are key considerations for policy makers and

market participants as bond markets evolve.

Our findings raise important questions for future research. To what extent do dealers

actively manage their liquidity networks over time? How does the ability of investors to

provide liquidity vary across different market regimes? Understanding these dynamics
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could provide deeper insights into the evolving nature of corporate bond market liquidity

and inform policies aimed at enhancing market resilience.
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Figure 1: Identifying CSL trades

Notes: Example of a client-sourced liquidity trade. Dealer D trades (buying or selling) with client C1 at

time t1 and subsequently trades with client C2 ̸= C1 the same bond in the opposite direction at t2 > t1.

The pair of trades is labelled a CSL trade and the trade at t1 is referred to as the 1st leg, the trade at

t2 as the second leg. There are no other trades by dealer D in the same bond between (t1, t2), and there

maybe more than on client in either leg. A transaction cannot be the 1st and second leg of two CSL

trades.
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Figure 2: Time-series of the share of volume by trade type

Notes: This figure shows the moving average (weighted using a Gaussian kernel) of the daily share of

different trade types. The top panel shows the share of ‘deal’ trades, i.e. all trades that are not paired,

instantly or consecutively within the same day, between counterparties trading in opposite directions. The

bottom panel shows paired trades, i.e. trades that are matched instantly between opposing counterparties

(‘match’), trades that are matched within 15 minutes (fCSL), and trades that are matched within the

same day but within more than 15 minutes (sCSL). The grey-shaded areas mark various stress episodes:

Dash-for-Cash (1 to 18 March), the invasion of Ukraine and the following commodity crisis (24 Feb to

31 March 2022), the LDI-crisis (23 Sept to 14 Oct) and the failures of Silicon Valley Bank and Credit

Suisse (1 to 31 March 2023).
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Figure 3: Time-series of average transaction costs

Notes: This figure shows the moving average (weighted using a Gaussian kernel) of the daily average

transaction costs of different trade types: ‘deal’ trades (all trades that are not paired with counterparties

trading in opposite directions), ‘match’ trades (riskless principal trades that are matched instantly by

a dealer between counterparties trading in opposite directions), fCSL trades (trades that are paired

successively within 15 minutes between opposing coutnerparties), and sCSL trades (trades that are

paired within the same day but within more than 15 minutes). The grey-shaded areas mark various

stress episodes: Dash-for-Cash (1 to 18 March), the invasion of Ukraine and the following commodity

crisis (24 Feb to 31 March 2022), the LDI-crisis (23 Sept to 14 Oct) and the failures of Silicon Valley

Bank and Credit Suisse (1 to 31 March 2023). The bottom Panel plot average transaction costs for CSL

trades split by the first and second leg in these paired trades.
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Figure 4: Model: Actions and Payoffs

Figure 5: Transaction costs and client liquidity supply in fallen angels

Notes: This figure shows the moving average (weighted using a Gaussian kernel) of daily average trans-

action costs (left Panel) and the daily share of fCSL trades for bonds being downgraded from investment-

grade to high-yield (i.e. fallen angels). Days shown on the x-axis are displayed relative to the downgrade

date. The dotted red lines in the left Panel show overall sample average transaction costs for investment-

grade and high-yield bonds respectively. Days falling into the crisis periods of Dash-for-Cash (1 to 18

March) or the LDI-crisis (23 Sept to 14 Oct) are excluded.
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Table I: Descriptive statistics

Panel A: Overall
Per day statistics

Sample total mean std 25% 50% 75%

#Dealers 52 44.08 4.67 41 43 48
#Clients 18,158 799.88 221.57 657 798 941
#Bonds 40,257 1,786.74 552.41 1404 1837 2191
#Trades (in k) 6,627.45 4.38 1.64 3.31 4.30 5.43
Volume (in £ bn) 5,495.32 3.63 1.48 2.59 3.61 4.63

Panel B: Dealer averages
Per dealer-day statistics

Sample total mean std 25% 50% 75%

#Clients 1,337.96 46.07 54.82 4 20 73
#Bonds 8,869.87 70.07 90.32 6 29 106
#Trades 127,450.88 99.38 131.28 7 38 150
Volume (in £ bn) 105.68 0.08 0.12 0.01 0.02 0.12

Panel C: Client averages
Per client-day statistics

Sample total mean std 25% 50% 75%

#Dealers 3.83 2.54 3.00 1 1 3
#Bonds 94.45 4.44 11.41 1 2 4
#Trades 364.99 5.48 14.85 1 2 4
Volume (in £ m) 302.64 4.54 12.78 0.31 1.18 3.99

Panel D: Bond averages
Per bond-day statistics

Sample total mean std 25% 50% 75%

#Dealers 11.46 1.73 1.25 1 1 2
#Clients 42.60 1.99 2.03 1 1 2
#Trades 164.63 2.45 3.15 1 2 3
Volume (in £ m) 136.51 2.03 4.62 0.16 0.52 1.95

Notes: This table presents descriptive statistics for our sample of transaction reports in corporate bonds

spanning 3 Jan 2018 (the start of MiFID II reporting regime) to 31 Dec 2023. Panel A presents overall

statistics, while Panels B to D present the statistics per dealer, client, and bond, respectively. The first

column shows totals over the entire sample, while column 2 to 6 show the mean, standard deviation

and selected percentiles of the corresponding per-day statistics. These statistics are conditional on their

being a trade in the given category (e.g. the number of trades per dealer, conditional on that dealer

trading). The sample excludes trades involving a natural person (i.e. no Legal Entity Identifier).

40



Table II: Trade type summary statistics

Panel A: Trade volume across trade types (in %)

Volume share Maturity distribution

Normal DfC < 1 [1, 3) (3, 7] [7, 15) ≥ 15
deal 63.72 60.01 4.83 15.29 38.21 21.49 20.19
match 18.82 20.12 6.66 17.26 34.27 21.82 19.98
fCSL 5.08 6.63 5.46 15.12 37.84 19.86 21.72
sCSL 12.38 13.24 4.58 13.66 37.05 22.18 22.54

Rating distribution Tradesize distribution

AAA-A BBB HY micro odd round block

deal 29.61 37.56 32.83 13.53 50.18 28.27 8.01
match 35.10 34.63 30.27 24.57 46.45 22.65 6.33
fCSL 20.43 31.64 47.93 11.46 40.16 32.63 15.75
sCSL 22.67 36.17 41.16 9.35 38.80 36.54 15.31

Panel B: Average transaction costs across trade types (in bps)

Normal times DfC

All Buy Sell All Buy Sell

all 9.67 9.83 9.49 21.79 13.68 28.70
deal 9.49 9.57 9.39 22.02 13.14 29.24
match 8.53 8.84 8.14 19.73 13.54 25.17
fCSL 10.89 11.72 10.09 20.58 11.88 29.23
sCSL 13.99 14.55 13.44 26.53 18.13 34.83

Notes: This table shows descriptive statistics for different trades types across our dealer-to-client sample

spanning the period 3 Jan 2018 to 31 Dec 2023. Trades types include ‘deal’ (all trades where the dealer

does not match counterparties trading in opposite directions), ‘matched’ (trades where a dealer matches

instantly counterparties trading in opposite directions), ‘fCSL’ (trades where the dealer matches opposing

couterparties successively within 15 minutes), and ‘sCSL’ (trades where the dealer matches counterparties

within the same day but within more than 15 minutes). Panel A shows various distributions of trade

volume across or within trade types. The tow top-left columns show the trade volume across trade types

for normal and crisis times, with the latter being defined as the Dash-for-Cash episode from 1 to 18

March 2020. The top-right columns show the share of trade volume across maturity buckets (measured

in years) conditional on the trade type (rows sum to 100). The tables in the middle show the share

of trading volume conditional on the trade type by bond rating and trade sizes (again, rows sum to

100). Trade sizes are split into four categories: micro (trades below and including £50,000), odd (trades

between £50,000 and £500,000), round (trades between £500,000 and £2,500,000) and block (trades

above £2,500,000). Panel B shows average transaction costs across trade types during normal and crisis

times, split by the trade direction of the client (buy or sell) and in aggregate (‘All’).
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Table III: Transaction costs and paired trades

Dependent Variable: transaction costs
Model: (1) (2) (3) (4)

CSL(2) −2.869∗∗ −1.491
(1.159) (0.983)

CSL(2) 4.027∗∗∗

(0.465)
fCSL(2) −3.785∗∗∗ −3.788∗∗∗

(1.303) (1.306)
CSL

(2)
(15,30] −0.547

(0.387)
CSL

(2)
(30,60] 0.041

(0.522)
CSL

(2)
(60,∞) −0.859

(1.057)
sCSL(2) −0.664

(0.839)
fCSL(1) 2.414∗∗∗ 2.412∗∗∗

(0.805) (0.803)
CSL

(1)
(15,30] 4.193∗∗∗

(0.386)
CSL

(1)
(30,60] 4.604∗∗∗

(0.360)
CSL

(1)
(60,∞) 4.683∗∗∗

(0.805)
sCSL(1) 4.604∗∗∗

(0.556)
clientsell 0.149 0.093 0.093 0.092

(0.418) (0.421) (0.421) (0.421)
match −2.987∗∗∗ −2.626∗∗∗ −2.667∗∗∗ −2.667∗∗∗

(1.005) (0.960) (0.975) (0.976)
algo 2.529∗∗∗ 2.479∗∗∗ 2.551∗∗∗ 2.552∗∗∗

(0.419) (0.439) (0.420) (0.418)
logQ 0.850∗∗∗ 0.793∗∗∗ 0.797∗∗∗ 0.797∗∗∗

(0.092) (0.088) (0.088) (0.088)
Fixed-effects

Yes Yes Yes Yes

Fit statistics
Observations 5,112,462 5,112,462 5,112,462 5,112,462
R2 0.36178 0.36202 0.36206 0.36206
Within R2 0.00087 0.00125 0.00132 0.00132

Notes: This table shows the results of panel fixed-effects regressions of the type

tcτ =
2∑

j=1
γjCSL(j) + x′

τ β + 1′µ + ετ

where tcτ are transaction costs (in bps) of transaction τ in a trade between dealer d and client c in bond

b at time t on given platform or over-the-counter, CSL(j) are dummy variables for the first and second

leg of client-sourced liquidity trades, xτ include additional controls, and µ are dealer-day, client-month,

bond-day and venue-type fixed effects (refer to Table Table A.I for the variable definitions). In columns

(3) and (4) CSL trades split by the time between the first and second leg trades. Standard errors (shown

in parenthesis) are clustered by dealer and bond. (Signif. Codes: ***: 0.01, **: 0.05, *: 0.1).
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Table IV: Transaction costs during Dash-for-Cash and unavailable liquidity clients

Dependent Variable: tc
Model: (1) (2) (3) (4) (5)

LPshare 0.08 2.96
(4.91) (4.96)

BlockedLP −10.81∗∗∗ −14.84∗∗∗ −10.44∗∗ −15.39∗∗∗

(3.84) (3.91) (4.34) (4.45)
clientsell 10.90∗∗∗ 9.26∗∗∗ 12.13∗∗∗ 10.85∗∗∗ 9.44∗∗∗

(1.88) (1.69) (1.77) (1.64) (1.77)
BlockedLP × clientsell 22.47∗∗∗ 23.01∗∗∗ 24.66∗∗∗ 24.65∗∗∗ 19.78∗∗

(6.15) (6.06) (6.46) (6.53) (7.43)
fCSL2 −8.19∗ −8.53∗∗ −7.88∗∗ −8.45∗∗ −7.53∗∗

(4.31) (4.21) (3.29) (3.32) (3.63)
fCSL1 −3.17 −3.46 −2.55 −2.94 −1.93

(2.51) (2.44) (2.28) (2.19) (2.12)
sCSL2 −1.15 −1.86 −0.75 −1.13 −1.16

(2.45) (2.43) (2.18) (2.18) (2.22)
sCSL1 3.65 3.18 3.24 2.91 2.19

(2.23) (2.20) (2.01) (1.88) (1.97)
match −5.55∗∗∗ −5.47∗∗∗ −4.71∗∗ −4.67∗∗ −4.36∗∗

(1.70) (1.69) (2.10) (1.94) (1.92)
algo 1.54 1.34 1.08 0.97 2.94

(3.84) (4.12) (3.32) (3.59) (2.74)
logQ 0.76 0.30 0.92∗∗∗ 0.68∗∗∗ 0.96∗∗

(0.47) (0.32) (0.29) (0.25) (0.36)
t2m 0.15∗∗∗ 0.18∗∗∗

(0.04) (0.04)

Fixed-effects
dealer Yes Yes
client Yes Yes Yes Yes Yes
rating Yes
venue-type Yes Yes Yes Yes Yes
dealer-day Yes Yes Yes
rating-day Yes
bond Yes Yes
bond-day Yes

Fit statistics
Observations 79,314 79,281 89,136 89,117 78,625
R2 0.07680 0.10421 0.14979 0.17115 0.33451
Within R2 0.00595 0.00493 0.00652 0.00550 0.00437

Notes: This table shows the results of panel fixed-effects regressions of the type

tcτ = γ0 LPshareτ + γ1 BlockedLPτ + γ2 BlockedLPτ × clientsellτ

+ x′
τ β + 1′µ + ετ

where tcτ is the transaction cost of trade τ (executed between a given dealer d and client c, at a certain

time t on a given platform or over-the-counter), LPshareτ is a bonds’ share of fCSL trades over a window

of 180 days prior to 1 March 2020, BlockedLPτ is the share in fCSL(j) trade volume in a given bond

over the same window accounted for by clients that are sellers only on day t, xτ include the controls

iCSL(j) for i = f, s and j = 1, 2, ‘clientsell’, ‘match’, ‘algo’, ‘logQ’, and ‘t2m’, and µ are fixed effects

(refer to Table A.I for the variable definitions). Standard errors (shown in parenthesis) are clustered by

dealer and bond. (Signif. Codes: ***: 0.01, **: 0.05, *: 0.1). The sample only considers transactions

during the Dash-for-Cash (1 to 18 March 2020), excluding bonds sold by clients who were sellers only on

that day and who supplied liquidity in the 180 day prior to Dash-for-Cash in that same bond.
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Table V: Transaction costs of fallen angels and client liquidity supply

Dependent Variable: ∆HY tc Liquidity supply share by sector s

HF AM Bank Insurer PFLDI PTF Broker
Model: (1) (2) (3) (4) (5) (6) (7) (8) (9)

D 3.87∗∗∗ 3.57∗∗∗ 3.78∗∗∗ 3.55∗∗∗ 3.35∗∗∗ 3.67∗∗∗ 3.64∗∗∗ 3.57∗∗∗ 3.54∗∗∗

(0.75) (0.72) (0.74) (0.75) (0.73) (0.71) (0.72) (0.73) (0.75)
LPshare −9.27 −10.72 0.42 −9.32 −5.58 −12.55 −9.54 −8.05

(10.90) (10.49) (12.83) (10.89) (14.29) (10.42) (10.93) (11.40)
D × LPshare 17.21 22.21 18.51 17.13 9.03 21.32 17.01 16.96

(17.46) (16.98) (17.49) (17.56) (20.66) (17.56) (17.51) (17.55)
Lrels 1.23 −4.15∗∗∗ −0.64 −4.07 6.84∗∗∗ −2.36∗∗ −1.86

(1.68) (1.06) (0.82) (4.33) (1.40) (1.12) (1.95)
D × Lrels −4.52∗∗ 0.47 1.33 17.79∗∗ −8.26 0.59 0.73

(2.23) (1.75) (1.17) (8.84) (5.26) (1.88) (2.85)
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 235,094 235,094 235,094 235,094 235,094 235,094 235,094 235,094 235,094
R2 0.06940 0.06942 0.06947 0.06958 0.06943 0.06945 0.06947 0.06943 0.06943
Within R2 0.00336 0.00337 0.00343 0.00355 0.00338 0.00340 0.00342 0.00339 0.00338

Notes: This table shows the results of panel fixed-effects regressions of the type

∆HY tcτ = γ0 LPshareτ + γ1 Dτ + γ2 LPshareτ × Dτ + γ3 Lrels
τ + γ4 Lrels

τ × Dτ + x′
τ β + 1′µ + ετ ,

where ∆HY tcτ is the transaction cost of a trade between dealer d and client c in bond b (a fallen angel) at time t and a given venue v minus the average transaction

costs of high-yield bonds on the same date (excluding fallen angels), Dτ is a dummy indicating that the trade took place in a window from 100 days prior to

300 days after the downgrade, LPshareτ is the share of fCSL trades in total trading volume in a given bond over a window of 200 to 100 days prior to the

downgrade and Lshares
τ is the share in fCSL(2) trading volume in a given bond over the same period accounted for by sector s, xτ include the controls iCSL(j)

for i = f, s and j = 1, 2, ‘clientsell’, ‘match’, ‘algo’ and ‘logQ’, and µ are dealer, client, rating and venue-type fixed effects (refer to Table A.I for the variable

definitions). Standard errors (shown in parenthesis) are clustered by dealer and bond. (Signif. Codes: ***: 0.01, **: 0.05, *: 0.1). The sample only considers

transactions in bonds that were downgraded from investment-grade to high-yield not earlier than 200 days prior to the start of the sample and no later than 300

prior to the end of the sample. Moreover the sample is restricted to days from 100 days prior to the downgrade excluding days that fall within the period of

Dash-for-Cash (1 to 18 March 2020) or the LDI-crisis (23 Sept to 14 Oct 2022).
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Table VI: Volume share by trade type and client sector

Trade type

sector all deal fCSL(1) fCSL(2) match sCSL(1) sCSL(2)

Panel A: Normal times
AM 40.51 41.10 43.39 38.74 35.22 46.74 42.46
Bank 16.98 15.76 18.70 15.10 24.04 14.38 12.43
Broker 15.05 16.82 9.02 12.73 11.19 9.65 16.16
HF 10.05 9.80 12.60 16.95 8.35 11.74 12.25
Insurer 3.46 2.86 2.32 2.66 6.25 3.59 2.50
PFLDI 6.76 6.89 6.84 6.14 5.83 7.83 7.23
PTF 1.23 1.36 1.56 1.36 0.90 0.92 0.76
Other 5.96 5.41 5.55 6.30 8.23 5.14 6.22

Panel B: Dash for Cash (1-18 March 2020)
AM 39.60 40.78 42.91 36.71 35.35 39.17 41.14
Bank 22.18 20.33 21.43 17.49 31.66 20.52 15.94
Broker 9.35 10.52 5.18 7.74 5.86 8.20 12.67
HF 9.64 9.72 12.21 18.65 6.10 11.39 11.86
Insurer 4.43 3.90 3.06 2.73 6.49 5.10 4.09
PFLDI 6.82 6.92 8.18 9.43 5.24 8.46 6.85
PTF 1.77 2.08 2.34 1.53 0.87 1.48 1.62
Other 6.22 5.74 4.69 5.72 8.44 5.67 5.84

Panel C: Fallen Angels window
AM 45.76 43.96 55.36 49.42 44.31 51.48 49.77
Bank 14.86 14.57 11.20 7.83 23.85 10.38 8.26
Broker 10.64 12.91 6.93 7.25 5.96 7.30 10.42
HF 14.95 15.21 12.08 18.80 11.84 16.15 17.60
Insurer 2.39 1.81 2.17 2.63 4.17 2.74 2.56
Other 4.52 4.54 4.50 5.84 4.51 3.95 4.29
PFLDI 5.94 5.92 6.48 7.59 4.65 7.04 6.55
PTF 0.95 1.07 1.29 0.65 0.71 0.96 0.55
Other 4.52 4.54 4.50 5.84 4.51 3.95 4.29

Notes: This table shows the share of trading volume by client sector across different trade types. Column

‘all’ shows the share of trading volume across all trade types, columns fCSL(j) (sCSL(j)) for j = 1, 2
across all first (j = 1) and second (j = 2) legs of fast (slow) CSL trades, ‘match’ across all trades that

are riskless principal trades where the dealer matches clients instantaneously, and ‘deal’ across all trades

that are not paired trades (i.e. neither CSL nor matched trades). The shares are shown for different

periods. Panel A presents the results for normal times spanning 3 Jan 2018 to 31 Dec 2023, excluding

Dash-for-Cash (1 to 18 March 2020) shown Panel B, and fallen angel windows running from 100 days

prior to 300 days after a bonds downgrade from IG to HY, shown in Panel C. The sectors are: AM -

asset managers; Bank - non-dealer banks; Broker - brokers and other trading services firms; HF - hedge

funds; Insurer - insurance companies; PFLDI - pension funds and liability driven investment funds; PTF

- principal trading firms; Other - unclassified, non-financial or other-financial companies.
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Table VII: Transaction costs and clients’ share in liquidity provision

Dependent Variable: transaction costs
Model: (1) (2) (3)

Lrel −12.642∗∗∗ −9.592∗∗∗ −0.521
(3.652) (3.581) (3.461)

Qrel −16.742∗∗∗ −16.082∗∗∗

(3.411) (3.492)
Lrel × HF −61.814∗∗∗

(17.648)
Lrel × PFLDI −26.594∗

(13.318)
Lrel × Bank −12.619∗∗

(5.428)
Lrel × PTF −4.668

(3.999)
Lrel × Broker −0.543

(4.230)
Lrel × AM 0.596

(3.968)
Lrel × Ins 55.620∗∗

(25.416)
Controls Yes Yes Yes
Fixed-effects Yes Yes Yes

Fit statistics
Observations 4,917,535 4,917,535 4,917,535
R2 0.36284 0.36288 0.36300
Within R2 0.00143 0.00149 0.00169

Notes: This table shows the results of panel fixed-effects regressions of the type

tcτ = γLrel Lrelτ + γQrel Qrelτ +
∑

s

γs Lrelτ × 1{sectorτ =s} + x′
τ β + 1′µ + ετ

where tcτ are transaction costs (in bps) in a trade between dealer d and client c in bond b at time t on
venue v, Qrelτ (Lrelτ ) is the client’s share in a dealers total (fCSL(j)) trading volume over the 90 days
prior to the transaction day, 1{sectorτ =s} is a dummy taking the value 1 if the transacting client belongs

to sector s, xτ include the controls iCSL(j) for i = f, s and j = 1, 2, ‘clientsell’, ‘match’, ‘algo’ and
‘logQ’, and µ are dealer, client, rating and venue-type fixed effects (refer to Table A.I for the variable
definitions). Standard errors (shown in parenthesis) are clustered by dealer and bond. (Signif. Codes:
***: 0.01, **: 0.05, *: 0.1).
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VIII. Appendix

A. Hypotheses Development

In this section, we use the model sketched in Section IV to derive our testable hypotheses.

We first derive the equilibrium prices (f ∗, S∗
1 , S∗

2). We proceed backward and first consider

the choice of S2 by the dealer.

C2 rejects the dealer’s offer if and only if u2 ≤ S2. Thus, she rejects the offer with

probability G2(S2) = S2+ū2
2ū2

and accepts it with probability (1 − G(S2)). The dealer

chooses her take-or-leave it offer to minimize her expected cost following the first trade,

that is, S2 solves:

MinS2∈[−ū2,ū2] Cmm(S2, B) = G2(S2)B − (1 − G2(S2))S2. (11)

Straightforward calculations show that the optimal offer for the dealer is

S∗
2 = ū2 − B

2 if B < 3ū2,

S∗
2 = −ū2 if B ≥ 3ū2.

(12)

Now consider the dealer’s problem at date 1. The client prefers a market-making trade

(immediate execution) to a riskless principal trade (delayed execution) if the former is

less costly. That is, if

δu1 − f ≤ u1 − S1, (13)

or

u1 ≥ u∗
1(S1, f) = S1 − f

1 − δ
. (14)

If u1 ≤ u∗
1, the client chooses a riskless principal trade if u1 ≥ f

δ
and does not trade

otherwise. In sum, (i) the client does not trade if u1 < f
δ
, (ii) chooses a matchmaking

trade if f
δ

≤ u1 ≤ u∗
1(S1, f) and (iii) a market making trade otherwise.

For given f and S1, clients with a sufficiently large private benefit (larger than u∗
1)

choose to get immediate execution from the dealer while those with small private benefits
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choose either not to trade or matchmaking. The reason is that clients’ waiting costs

((1 − δ)u1), the difference between their private benefit if they get immediate execution

and their realized benefit if they need to wait) increases with their private benefit.

This feature leads to a natural sorting of clients between the two trading options offered

by the dealer. In turn, this enables the dealer to optimally charge different fees (S∗
1 , f ∗)

for each option as this choice reflects different private benefit from trading (see below).

This is similar to price discrimination in models of vertical differentiation (see Mussa and

Rosen (1979)).

A necessary condition for matchmaking trades to occur is that u∗
1 > f

δ
, that is, f < S1.

This is intuitive. If S1 < f , market making is a cheaper option than matchmaking for all

clients since (i) the trading cost charged by the dealer is smaller and (ii) it does not entail

a waiting cost. In the rest of the analysis, we choose parameter values (see below) such

that the condition 0 < f∗

δ
< u∗

1(S∗
1 , f ∗) < ū1 is satisfied, so that, in equilibrium, there are

both market making and matchmaking trades (as we observe in the data).

In this case, at date 1, the dealer’s optimal offers f and S1 solve:

Max{f,S1} (G1(u∗
1) − G1(

f

δ
))(f − I) + (1 − G1(u∗

1))Πmm(S1, S∗
2), (15)

where G1(x) = x
ū1

is the cumulative probability distribution of the first client’s private

valuation and Πmm(S1, S∗
2) = S1 − (1−α)B −αCmm(S∗

2 , B) is the dealer’s expected profit

if C1 chooses market-making. Solving for this problem, we obtain that the dealer charges

the following prices at date 1:

f ∗ = δū1 + I

2 , (16)

and

S∗
1 = ū1 + (1 − α)B + αCmm(S∗

2 , B)
2 . (17)

The condition 0 < f∗

δ
< u∗

1(S∗
1 , f ∗) < ū1 is therefore satisfied iff I

δ
≤ (1 − α)B +

αCmm(S∗
2 , B) ≤ (1 − δ)ū1. The first inequality is satisfied by choosing ū1 large enough

while the second is satisfied by choosing I low enough. Moreover, ū2 < f ∗ if and only if

ū2 ≤ δū1+I
2 . As explained, it is natural to assume that this condition is satisfied as oth-
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erwise C2 would have traded with the dealer either via matchmaking or market making

in the first place.

Eq.(17) shows that S∗
1 increases with the expected cost of the trade, (1 − α)B +

αCmm(S∗
2 , B), for the dealer. Thus, S∗

1 reflects the dealer’s cost of obtaining liquidity

from clients in her liquidity network (Cmm(S∗
2 , B)). Calculations show that Cmm(S∗

2 , B)

increases with B. Hence, S∗
1 increases with B while S∗

2 decreases with B (eq.(12)).

Moreover, for B = 0, S∗
1 = ū1

2 and S∗
2 = ū2

2 . Thus, as ū2 < ū1, we deduce that S∗
1 > S∗

2

for all values of B, which is our first testable htypothesis (H1).

Let ¯TC(α, B) be the average dealer’s spread across clients (C1 and C2), then:

¯TC(α, B) = (αG(S∗
2) + (1 − α))S∗

1 + α(1 − G(S∗
2))(S∗

1 + S∗
2)

= S∗
1 + α(1 − G(S∗

2))S∗
2 . (18)

Straightforward calculations show that ∂ ¯T C(α,B)
∂α

< 0, ∂ ¯T C(α,B)
∂B

> 0 and ∂2 ¯T C(α,B)
∂α∂B

< 0.

These observations yield our second and third testable hypotheses.
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B. Variable Definitions

Table A.I: Variable Definitions

Variable name Description

Dependent variable

tc Transaction cost of a trade measured in basis points. Defined as

the log-difference between the transaction price (in percentage of

par) and the closest inter-dealer price prior to the trade, but not

older than 24 hours, times the trade direction of the client (1 for

client-buy, -1 for client-sell): tc = log(p/p∗) × D × 10, 000. Prices

have been cleaned for outliers and transaction costs outside the 1st

or 99th percentile are dropped.

∆HY tc Transaction costs of a trade (tc) minus the average transaction costs

of high-yield bonds traded on the same day, excluding fallen angels,

i.e. bonds that were downgraded from investment-grade to high-

yield within the sample period. (See equation (4))

Controls

clientsell Dummy for client sales: 1 if client is selling, 0 otherwise.
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match Dummy for riskless principal trades where a dealer matches orders

of different counterparties that want to trade in opposite directions

instantly: 1 if dealer matched client with another counterparty, 0

otherwise. Except for the results shown in Table Table A.II, the

dummy also includes trades flagged with the MiFID trade capacity

category ‘MTCH’ which identifies trades in which the executing firm

acts in a riskless matched capacity (see Article 4(1)(38) of MiFID

II).

algo Dummy for trades executed by an algorithm. 1 if traded using an

algorithm, 0 otherwise.

logQ Natural logarithm of nominal quantity traded (in GBP). Sample

only includes bonds issued in GBP, EUR or USD and only trades

executed in those currencies. Trades in EUR or USD are converted

to GBP using the exchange rate at close on that day. Quantities

are cleaned for outliers and subsequently winsorized at the 1st and

99th percentile.

t2m Time-to-maturity of a given bond in a given trade measured in years.

Main variables
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CSL A client-sourced liquidity trade. These are transactions where a

dealer trades the same bond in opposite directions in subsequent

trades (e.g. buys first from one non-dealer counterparty and then

sells to another non-dealer counterparty). The dealer does not exe-

cute another trade in the same bond (including with other dealers)

between the first and second leg. The first leg is the trade that

comes first in time. The time difference between both legs is strictly

positive, but both legs must have been executed on the same day.

Both the first and second leg can include multiple transactions if

the dealer traded simultaneously with several counterparties at that

point in time. The same counterparty cannot be active in both the

first and second leg. (See section III.A for a detailed description.)

CSL(j) for j = 1, 2 Dummy taking the value 1 if the transaction is the first (j = 1) or

second (j = 2) leg in a CSL trade.

CSL
(j)
l for j = 1, 2 Same as CSL(j) with the additional condition that the first and

second leg occurred within a given time window:

• l = (15, 30]: within 15 and 30 minutes

• l = (30, 60]: within 30 minutes and 1 hour

• l = (60, ∞): after one hour but within the same day.

iCSL for i = f, s Dummy taking the value 1 if the trade is either fast (i = f) or slow

(i = s) CSL trade. Fast CSL trades are CSL trades where the first

and second leg are executed within 15 minutes of each other, slow

CSL trades are CSL trades where the legs are executed within more

than 15 minutes (but still within the same day).
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iCSL(j) The first (j = 1) and second leg (j = 2) of a fast (i = f) or slow

(i = s) CSL trade.

LPshareb A bond’s share of trading volume in fCSL trades over a given time

window. More specifically:

LPshareb =
∑

τ∈Tb(l,r) fCSLτ Qτ∑
τ∈Tb(l,r) Qτ

where Tb(l, r) are all transactions in bond b between the dates l and

r, and Qτ is the size of transaction τ measured in GBP nominal

amount. For LPshare measured related to downgrades, l = fb −

200 and r = fb − 100 where fb is the day of the downgrade from

investment-grade to high-yield (fallen angel). For LPshare related

to Dash-for-Cash, l = t−180 and r = t−1 where t is 1 March 2020.

BlockedLPbt The share in fCSL(2) trade volume in a bond prior to dash-for-

cash accounted for by clients that are sellers only on day t. More

specifically,

BlockedLPbt =
∑

τ∈Tb(t−180,t−1) 1{cτ ∈St}fCSL(2)
τ Qτ∑

τ∈Tb(t−180,t−1) fCSL
(2)
τ Qτ

,

where Tb(l, r) is the set of all trades in bond b between dates l and r,

t is 1 March 2020, cτ is the client in transaction τ , St is the set of all

clients that exclusively sold bonds on day t (i.e. clients with positive

sell volume and zero buy volume across all dealer-client transactions

in the sample), and 1{·} is an indicator function taking the value 1

if the condition in {·} is met.
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Dτ A“fallen angel” dummy indicating if a trade took place within a pe-

riod where the corresponding bond is downgraded from investment-

grade to high-yield. The window starts 100 days prior to the date

of the downgrade to 300 days after the downgrade date.

Lrels
b The share of sector s (see sector dummies below) in a bond’s total

fCSL(2) trades prior to being downgraded from investment-grade

to high-yield. More specifically:

Lrels
b =

∑
τ∈Tb(t−200,t−100) 1{sτ =s} fCSL(2)

τ Qτ∑
τ∈Tb(t−200,t−100) fCSL

(2)
τ Qτ

,

where t is the date of the downgrade, Tb(l, r) are all trades in bond

b between dates l and r, 1{sτ =s} is an indicator function taking

the value one if the client in trade τ belongs to sector s and zero

otherwise, and Qτ is the size of transaction τ measured in GBP

nominal amount.

Lreldct Share of client c’s trade volume in dealer d’s total fCSL(2) trading

volume over the window t minus 90 days to t − 1:

Lreldct =
∑

τ∈Tdc(t−90,t−1) fCSL(2)
τ Qτ∑

c

∑
τ∈Tdc(t−90,t−1) fCSL

(2)
τ Qτ

,

where Tdc(t − 90, t − 1) are all transactions between dealer d and

client c in the 90 days prior to t, fCSL(2)
τ takes the value one if the

transaction is the second leg of a fast CSL trade and zero otherwise,

and Qτ is the nominal size of the transaction measured in GBP.
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Qreldct Share of clients c’s trade volume in dealer d’s total trade volume

over the window t minus 90 days to t:

Qreldct =
∑

τ∈Tdc(t−90,t−1) Qτ∑
c

∑
τ∈Tdc(t−90,t−1) Qτ

,

where Tdc(t − 90, t − 1) is the set of all transactions between client

c and dealer d over the 90 days prior to day t, and Qτ is the GBP

nominal amount in transaction τ .

sector dummies AM: asset manager, Bank: bank, HF: hedge fund, PFLDI: pension

fund or liability driven investor, Ins: insurer, Broker: trading ser-

vices firm such as platforms and brokers, PTF: proprietary trading

firm.

Other variables

deal All trades that are not match or CSL trades.

DfC Dash-for-Cash episode spanning 1 to 18 March 2020.
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C. Additional Empirical Findings

Table A.II: Share by MiFID trade-capacity flag

MiFID II capacity flag

AOTC DEAL MTCH

fCSL 2.72 96.46 0.82
sCSL 3.66 95.61 0.73
match 8.24 86.58 5.18
deal 8.51 89.41 2.09
all 7.56 90.04 2.40

Notes: This table shows the percentage of trading volume across different MiFID II trade capacity flags

for each trade type. Trades types include ‘deal’ (all trades where the dealer does not match counterparties

trading in opposite directions), ‘matched’ (trades where a dealer matches instantly counterparties trading

in opposite directions), fCSL (trades where the dealer matches opposing couterparties successively within

15 minutes), and sCSL (trades where the dealer matches counterparties within the same day but within

more than 15 minutes). MiFID II trade capacity flags are ‘DEAL’, trades where the executing firm deals

on own account; ‘MTCH’, trades where the executing firm trades in a matched principal capacity; and

‘AOTC’ where the executing firm act in any other capacity not covered by ‘MTCH’ or ‘DEAL’ (see pp.

15 in the ESMA reporting guidelines).
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