
Financial Frictions and Pollution Abatement
Over the Life Cycle of Firms∗

Min Fang
University of Florida

Po-Hsuan Hsu
National Tsing Hua University

Chi-Yang Tsou
University of Manchester

June 9, 2025
Latest Version

Abstract

In the microdata and a quantitative heterogeneous firm general equilibrium model, we show
a pecking order of capital investment and pollution abatement activities among U.S. pub-
lic firms: Due to financial constraints, smaller and younger firms invest more in capital and
engage less in pollution abatement activities; as they accumulate more net worth, their abate-
ment activities accelerate, and their emission intensity reduces. Financial frictions make en-
vironmental regulation sub-optimal at any level by reducing the aggregate welfare gain by
40%. Counterfactuals show that green loan policies are considerably effective in reducing
emission intensity even without monitoring because of the pecking order.

Keywords: Financial frictions, abatement, heterogeneous firms, environment, climate;

JEL Codes: G30, E22, G38, Q50;
First Draft: March 15, 2023

∗Contacts: Min Fang (minfang@ufl.edu), Department of Economics, University of Florida; Po-Hsuan Hsu (pohsuanhsu@mx.nthu.edu.tw),
College of Technology Management, National Tsing Hua University; and Center for Research in Econometric Theory and Applications, National
Taiwan University; and Chi-Yang Tsou (chi-yang.tsou@manchester.ac.uk), Alliance Manchester Business School, University of Manchester. We
are grateful for the helpful comments from Shashwat Alok, Bo Bian, Sonny Biswas, Murillo Campello, Birana Chang, Chun-Che Chi, Kim-
Sau Chung, Yao Deng, Teodor Duevski, Alexander Dyck, Xiang Fang, Stefano Fasani, Maria Marchica, Neal Galpin, Vidhan Goyal, Bing Han,
Shiyang Huang, Wei Jiang, Michael Koetter, Alan Kwan, Spyridon Lazarakis, Jun E. Li, Hening Liu, Thomas Maurer, Mirela Miescu, Guillem
Ordonez-Calafi, Neslihan Ozkan, Lorenza Rosi, Julien Sauvagnat, Thomas Schmid, Kevin Schneider, Daigee Shaw, Dongling Su, Xiaomei Sui,
Dragon Yongjun Tang, Jincheng Tong, Roberto Tubaldi, Shang-Jin Wei, Adam Winegar, Jiri Woschitz, Fan Yang, Liyan Yang, Tiancheng Yu,
Chendi Zhang, Jingxuan Zhang, Xiao Zhao, Wentao Zhou, Yifan Zhu, and audiences in seminars at Toronto Econ, Toronto Rotman, Cambridge,
Stockholm, Iowa, UConn, BI Norwegian, Sveriges Riksbank, Warwick, Manchester, Lancaster, Bristol, UCDublin, ANU, HKU, HKBU, Academia
Sinica, NTU, NTPU, SUFE, ZJU, and conferences at WFA Snowird 2025, HEC-HKUST Sustainable Finance Workshop 2024, Finance Down Under
2024, NUS SGFIN Sustainability 2024, Stanford Institute of Theoretical Economics 2023, FMA Chicago 2023, among others. An earlier version
was titled “Pollution Abatement Investment under Financial Frictions and Policy Uncertainty.” Any remaining errors are ours.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4390975
mailto:minfang@ufl.edu
mailto:pohsuanhsu@mx.nthu.edu.tw
mailto:chi-yang.tsou@manchester.ac.uk


1 Introduction

Economic activities often result in excessive corporate pollution, causing damage to human health,

property, and nature. However, the 2005 Survey of Pollution Abatement Costs and Expenditures

suggests that pollution abatement activities increased disproportionately slower than capital in-

vestment over time, and the majority of such abatement activities are in the form of operating

costs rather than capital expenditures.1 Further U.S. Census Bureau and Environmental Protec-

tion Agency (EPA) analyses show that such a gap is even more substantial across firms: smaller

firms engage much less in pollution abatement activities than larger ones (Becker et al., 2013).

What is causing this pattern? Will it concern economists and policymakers? In this paper,

we try to answer both questions empirically and quantitatively. We argue that such a pattern

could be mainly attributed to the interplay of financial frictions and returns to scale on corporate

policies regarding both capital investment, which increases firm growth, and pollution abatement

activities, which reduce regulatory penalties along the life cycle of firm growth.

Our motivation starts with a simple trade-off in corporate decisions. A firm is self-interested

and grows under financial constraints and environmental regulations. The firm chooses between

capital investment to expand production scale and abatement activities to reduce environmental

regulation penalties. The essential differences are that (1) abatement expenditures lack collater-

alizability compared to capital investment, and (2) the return to abatement expenditures scales

with the production size, whereas the return to capital investment diminishes with the produc-

tion size. When the firm is small and constrained, resources are particularly costly, and spending

them on capital generates two returns: increased output and relaxed financial constraints through

collateralizability. On the contrary, spending them on pollution abatement only helps to reduce

environmental regulation penalties, and such a return is significantly smaller when the produc-

tion size is small. Therefore, despite stringent environmental regulation and enforcement, the

firm may still favor capital investment over abatement activities until it grows out of financial

constraints.

We implement our investigation in three steps to demonstrate such a trade-off, explain the

underlying mechanism, and explore potential policy implications. In the first step, we exploit rich

microdata to examine how the cross-sectional variations in pollution abatement activities, total

1According to the Survey, U.S. manufacturing sectors spent $20.7 billion in pollution abatement operating costs
and invested $5.9 billion in capital to reduce pollution. Also, pollution abatement expenditures even decreased from
1994 to 2005. Pollution abatement capital expenditures totaled $5.9 billion in 2005 compared to $10.0 billion in 1994,
and pollution abatement operating costs totaled $20.7 billion compared to $24.7 billion in 1994, all in 2005 dollars. “In
both years, pollution abatement operating costs are less than 1% of total output while pollution abatement capital ex-
penditures are less than 7% and 5% of total new capital expenditures in 1994 and 2005, respectively.” Link: www.epa.
gov/environmental-economics/pollution-abatement-costs-and-expenditures-2005-survey
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toxic emissions, emission intensity, and capital investment relate to financial frictions, illustrating

the above trade-off. In the second step, we construct a heterogeneous firm model with financial

frictions and life cycle dynamics, which clarifies the underlying mechanism. In the final step, we

examine the effects of major environmental policies, including regulatory penalties and green

loans, under the existence of financial frictions.

Our first step starts with combining several datasets. We first collect data from the Environ-

mental Protection Agency’s Pollution Prevention (P2) database for pollution abatement activities

and the Toxic Release Inventory (TRI) database for emission data from 1991 to 2020. A firm’s

pollution abatement activities and total toxic emissions are measured by aggregating new source

reduction activities reported in the P2 database and emissions listed in the TRI database for all

facilities owned by a firm each year, respectively. We also find that the majority of reported pol-

lution abatement activities are operating expenditures, which are non-collateralizable, and we

focus on these activities in our empirical analyses. We scale a firm’s total abatement activities

and emissions by its revenue to calculate its abatement and emission intensities, respectively. We

then collect financial data for public manufacturing firms from CRSP/Compustat. We assess a

firm’s financial constraints using size metrics, such as total assets, property, plant, and equip-

ment, employment, etc, the firm’s age measures, and other financial constraint indexes.

We find the following intriguing patterns related to financial frictions in the data. Larger,

older, and less financially constrained firms disproportionately engage more in pollution abate-

ment activities and exhibit lower emission intensity. In contrast, smaller, younger, and more

financially constrained firms invest more in capital and emit more toxic releases, conditional on

their production scale. Additional panel regression analysis confirms this pattern. We also esti-

mate firm-level abatement expenditures and find consistent results. Our evidence suggests that

firms prioritize expansion through capital investment when they are more financially constrained

and then accelerate their pollution abatement to comply with regulations when their financial

constraints ease. These findings underscore the significant impact of financial constraints on

firms’ trade-offs between capital investments and pollution abatement.

In the second step, we construct a heterogeneous firm model with financial frictions and life

cycle dynamics that illustrate pollution abatement and capital investment trade-offs. We first

analytically characterize the trade-off and graphically visualize the pecking order of capital in-

vestment and abatement activities. In the model, unconstrained firms always make the optimal

capital and abatement choices by equalizing the marginal return of both decisions to unity, re-

gardless of their net worth. However, constrained firms have limited resources to reach optimal

capital and abatement choices. Thus, before they grow out of financial constraints, they always

prefer capital investment over abatement activities because the marginal return of the former is
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higher, as it increases output and relaxes financial constraints through collateralizability.

We then take the model to US firm-level data to match firms’ pollution emissions, borrowing,

entry-exit dynamics, and pollution penalty in the microdata. The calibrated model reproduces

results consistent with our empirical observations and reveals a range of heterogeneity in firm

behaviors along with productivity and net worth dimensions. Furthermore, we validate the role

of financial frictions using a quasi-natural experiment on relaxing financial frictions and confirm

that heavy-polluting firms are subject to higher penalties from environmental litigation.

In the final step, we quantify the aggregate effects of financial frictions on environmental reg-

ulation outcomes. In equilibrium, less productive and more financially constrained firms invest

less in pollution abatement and are less responsive to environmental regulations. These firms

pollute the environment by emitting 13% more in the calibrated economy than a counterfactual

frictionless economy. In an economy with financial frictions, increasing the regulatory penalty is

less effective at reducing emission intensity. Moreover, financial frictions make regulatory penal-

ties sub-optimal at all levels. Quantitatively, an optimal regulatory penalty would generate 1.8%

welfare gain compared to 3% welfare gain in the frictionless economy, suggesting that financial

frictions reduce the aggregate welfare gain from the current optimal environmental regulation

by about 40%.

Finally, we examine the effects of green loan policies. By allowing firms to borrow green

loans for their abatement activities, the government could support all abatement activities with

green loans. The shortcoming is that the government cannot monitor the usage of green loans

exactly for pollution abatement or other purposes, also known as “financial greenwashing.” Nev-

ertheless, even without monitoring, green loan policies could reduce emission intensity through

two channels. They directly increase abatement activities and indirectly speed up the growth of

constrained, dirty firms. Moreover, even a green loan policy that lends 100% of firms’ costs of

abatement activities will account for only 0.75% total loans in the economy.

Related Literature. This paper contributes to several strands of literature, most importantly

the literature on corporate environmental policies with financing constraints and the broader

literature on finance andmacroeconomics on environmental issues. It also connects to the general

literature on ESG. For brevity, we will only discuss the most relevant literature here.

I. Corporate Environmental Policies with Financing Constraints. Our paper relates to the large

body of work on how financial frictions affect corporate environmental activities. Our major

contributions to this literature are twofold. Our empirical evidence complements and extends

earlier work focusing on the effects of various financial conditions on emission intensity and

total emission (Masulis and Reza, 2015; Fernando et al., 2017; Akey and Appel, 2021a; Xu and Kim,
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2022; Cheng et al., 2023; Hartzmark and Shue, 2023). In contrast, our empirical analysis focuses

directly on firms’ abatement activities and the life cycle perspectives regarding size and age.

We also provide causal evidence showing that (1) financial frictions hinder corporate abatement

activities, and (2) the return to abatement expenditures scales with the production size.

Our quantitative model is closely related to three recent papers. The first is Lanteri and

Rampini (2023), which investigates clean technology adoption in a theoretical setting featuring

old vs. new forms of capital and financial constraints. The second is Bellon and Boualam (2023),

which predicts that financially distressed firms scale down their production while increasing pol-

lution intensity in an endogenous default model. The third is Aghion et al. (2024), which shows

how financial constraints disproportionately affect young firms’ ability in green innovation. In

these papers, firms choose between two types of capital or innovation to determine their emis-

sion intensity. In contrast, we focus on the operating abatement activities as a non-collateralizable

corporate policy, highlight the change in choices between capital and operating abatement along

the life cycle of firms, and validate such trade-off with microdata.

II. Government Environmental Policies. Second, our paper relates to the growing theoretical

literature in environmental macroeconomics (Acemoglu et al., 2012; Golosov et al., 2014; Hassler

et al., 2016; Acemoglu et al., 2016; Barrage, 2020; Iovino et al., 2021). This literature focuses on gen-

eral equilibrium analyses of how to efficiently promote the economic transition from dirty inputs

to cleaner inputs through the combination of taxes or subsidies; however, they do not account

for firms’ heterogeneity in financial constraints. We contribute to this literature by introducing

a new framework with firms facing different financial constraints during their life cycle. We also

show substantial efficiency loss of regulatory penalties due to financial frictions.

Our paper also highlights the conditional effectiveness of environmental policies and regula-

tions and adds new insight into green credit policies. It is well documented that governments’

environmental initiatives do not consistently deliver satisfactory outcomes (e.g., Cohen (1987),

Baumol andOates (1988), Magat and Viscusi (1990), and Eskeland and Jimenez (1992)). Our empir-

ical evidence andmodel suggest that such ineffectiveness could be attributed to financial frictions.

While recent literature (Sun et al., 2019; Fan et al., 2021; Dursun-de Neef et al., 2023) finds that

the supply of green loans helps reduce pollution emissions, financial greenwashing (Kim et al.,

2022; Du et al., 2023; Barbalau and Zeni, 2022), such that the green loan is used in non-abatement

activities, is an essential concern on the efficacy of green loan policies in practice.2 Our model

suggests that despite financial greenwashing, green loan policies could still effectively reduce the

emissions of financially constrained firms through firm growth.

2In another related paper, Li et al. (2024) shows that ex-post measures of financial mechanisms, such as carbon
taxes, direct dirty capital towards financially constrained firms, potentially exacerbating emission.
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III. General Trade-offs of Corporate Policies. Third, our paper contributes to the emerging

corporate and macro-finance literature that examines the general trade-offs in corporate policies

across multiple strategic dimensions—for example, acquisition vs. internal development (Lee and

Lieberman, 2010), innovation vs. advertising (Cavenaile et al., 2025), and capital investment vs.

innovation (Ottonello andWinberry, 2024). Ourwork is closely related toOttonello andWinberry

(2024), which studies how financial frictions influence the allocation between investment and

innovation. They show a clear pecking order of investment over innovation before a firm becomes

financially unconstrained. Like that paper, we show that most pollution abatement activities

are operating expenditures, which are non-collateralizable, leading to a pecking order in which

capital investment is prioritized over abatement activities. The key distinction in our analysis is

that the return to abatement expenditures scales with the production size, which amplifies the

welfare cost of financial frictions by introducing an additional source of inefficiency.

IV. General CSR and ESG Practices. Finally, our work contributes to the broad literature on

the determinants of corporate social responsibility (CSR) and environmental, social, and gover-

nance (ESG) practices. Prior studies have focused on investors’ preferences and their attention

to environmental issues.3 In contrast, our analysis examines the firms’ optimization behavior

under financial constraints and litigation concerns in a general equilibrium setting. Our model

highlights that firms may rationally choose not to engage in pollution abatement activities due

to financial frictions, leading to higher pollution emissions and potentially higher future litiga-

tion risks. Our study rationalizes the marginal investors’ green preferences through the disutil-

ity of pollution from households that affects future magnitudes of environmental penalties and,

therefore, pollution abatement (i.e., green investment) choices, contributing to the discourse on

nonfinancial determinants of investment decisions.

Layout. The remainder of this paper is structured as follows. Section 2 presents our empirical

findings, demonstrating that financially constrained firms are less likely to engage in pollution

abatement and are associated with higher emission intensity. In Section 3, we develop a quan-

titative heterogeneous firm equilibrium model to interpret our findings further. In Sections 4, 5,

and 6, we illustrate, validate, and quantify the financial friction mechanism in firm decisions and

3Such preferences may be due to social norms, reputation concerns, or liquidity issues. Hong and Kacperczyk
(2009) argue that firms in “sin” industries are subject to funding constraints due to social norms. Krüger (2015) show
that investors react negatively to negative CSR news. Hong et al. (2019) meanwhile show that food firms of drought-
stricken countries underperformed those of countries that do not experience droughts in stock returns, which can
be attributed to investors’ inattention. Chen et al. (2019) find that investors’ social sentiment and attention to CSR
explain stock returns. Bansal et al. (2019) propose that households and institutional investors have stronger prefer-
ences for socially responsible investment. A growing body of literature documents that both retail and institutional
investors are more willing to hold socially responsible firms and funds (Renneboog et al. (2008), Starks et al. (2017),
Riedl and Smeets (2017), Dyck et al. (2019), Hartzmark and Sussman (2019), Cao et al. (2019), and Gibson et al. (2020)).
Hsu et al. (2021) shows that state ownership enhances firms’ environmental engagement.
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the associated aggregate effects. Section 7 shows the policy implications of regulations and green

loans. Finally, we conclude our paper in Section 8.

2 Data and Stylized Facts

In this section, we outline our data sources and examine how firms’ pollution abatement and

investment activities vary by different proxies of financial frictions. Our data analyses shed light

on the determinants of corporate decisions in pollution abatement activities and motivate us to

build a quantitative model aligned with these empirical findings.

2.1 Datasets

Our analysis utilizes a comprehensive dataset that includes firms listed in the TRI, P2, ECHO,

NETS, and CRSP/Compustat databases, focusing specifically on those with TRI records.4 Ad-

ditionally, macroeconomic data is from the Federal Reserve Economic Data (FRED). We briefly

discuss data sources and variable construction and leave all details to the Internet Appendix I.

Toxic Release Inventory (TRI): Our study utilizes the Toxic Release Inventory (TRI) database,

managed by the U.S. Environmental Protection Agency (EPA). The TRI requires certain facilities

to report their emissions of toxic chemicals to enhance public access to environmental data. We

focus on toxic emissions reported by manufacturing facilities, starting in 1991, due to the limited

coverage of earlier data. The TRI data provide detailed information on toxic emissions, including

the type and quantity of TRI-listed chemicals released (production wastes, total releases, onsite

releases, and land disposal), facility location, and the parent company.5

Pollution Prevention (P2): We then incorporate information from the EPA’s P2 database, which

documents facilities’ efforts to reduce pollution at the source. Facilities report new source reduc-

tion activities in eight categories: raw material modifications, product modifications, cleaning

and degreasing, surface preparation and finishing, process modifications, spill and leak preven-

4We link facility-level data from TRI, P2, and NETS to firm-level financial data in CRSP/Compustat using facility
identifiers and a manual verification process, as outlined by Chen, Hsieh, Hsu, and Levine (2022) and Hsu, Li, and
Tsou (2023), ensuring accurate matching across databases.

5It is important to note that while the TRI and P2 databases provide valuable information, they are not without
limitations. One major limitation is that the data is self-reported by facilities, which may result in some reporting
errors or failures to report. However, the EPA conducts quality checks and analyses to ensure report accuracy and
correct mistakes. In fact, according to a quality check report by the EPA in 1998 (i.e., EPA (1998)), most industries
reported errors within a 3% range. Furthermore, researchers such as Akey and Appel (2019, 2021b) and Kim and Kim
(2020) suggest that the potential criminal or civil penalties, as well as reputation costs associated with misreporting
to the EPA, incentivize facilities to provide accurate data and maintain strong data quality in the TRI database.
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tion, inventory control, and good operating practices. There are 49 distinct activities across these

eight categories. The Internet Appendix in Table IA.1 provides details on these activities.

Enforcement and Compliance History Online (ECHO): We extract data on environmen-

tal litigation from the Enforcement and Compliance History Online database, which records the

EPA’s administrative and judicial enforcement actions. Covering the period from 1991 to 2022,

this database includes details on penalties and the frequency of civil cases related to environmen-

tal violations by firms. We use this database to validate our mechanism.

National Establishment Time-Series (NETS): We then leverage the National Establishment

Time-Series (NETS) database, which offers a comprehensive record of U.S. establishments since

1990. This database provides detailed information about each facility, including location, size, and

economic activity, and is crucial for tracing the operational history of firms without survivorship

bias. The accuracy and breadth of NETS data support a robust analysis of production activities

and facilitate the linkage of TRI and Compustat data.

CRSP/Compustat Firm-level Data: The CRSP/Compustat database includes a wide range of

financial and operational details for publicly listed U.S. firms. It allows us to assess firms’ financial

positions, investment behaviors, and profitability. This dataset’s extensive coverage and longitu-

dinal nature enable us to control for firm-specific fixed effects, offering a nuanced understanding

of the interplay between corporate finance and environmental policy.

2.2 Abatement Activity Measures

Our variables of focus are pollution abatement activities (from P2) and emissions (from TRI) at

the facility/firm level. Unlike emissions that are well documented in the literature, abatement

activities are barely directly studied in economics and finance. We classify each pollution abate-

ment activity as an operating expense or a capital investment. In the P2 dataset, there are 49

distinct activities across these eight categories of facility-level new source reduction activities,

among which most are non-collateralizable operating expenses. (See Table IA.1 in the Internet

Appendix for detailed descriptions.) We use a score-based classification. We first assign a score

from 10 to 1 based on an abatement activity’s input requirements, process complexity, and infras-

tructure changes. A high score (10-9) indicates that the activity is an operating expense, as it is

procedural, easy to implement, and requires little to no infrastructure changes (e.g., substituting

materials ormodifying operational practices.) Amoderate score (8-7) suggests someminor capital

investment (e.g., small equipment modifications or workflow adjustments), but does not require

significant capital expenditures. A lower score implies that the abatement activity is more likely

to be classified as a capital investment, requiring substantial capital commitment. Activities scor-
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ing 6-5 involve moderate investments and process changes, possibly including newmachinery or

upgrades that improve operational efficiency. A score of 4-3 represents activities that require sig-

nificant infrastructure upgrades, such as modifying production layouts or integrating advanced

monitoring systems, though not necessarily replacing entire systems. The lowest scores (2-1)

are assigned to activities that demand full system replacements or high capital investment (e.g.,

installing new process equipment, overhauling production lines, or implementing major techno-

logical upgrades).

This scoring procedure ensures that each new abatement activity is systematically classified

based on its implementation complexity, enabling us to distinguish between routine expenses and

capital investments effectively. We then assign weights for each activity as follows: we assign a

weight of 1 to abatement activities with scores above 7, 0.5 to those with scores between 4 and

6, and 0 to those with scores below 3. Finally, we aggregate the weighted new abatement activi-

ties across all facilities to the firm level, which is our measure for operating abatement activities

(Abate) in annual frequency.

2.3 Sample and Summary Statistics

Table 1 reports pooled summary statistics with a total of 20, 518 firm-year observations with non-

missing pollution abatement. We explore the impact of financial constraints on firms’ pollution

abatement efforts through detailed panel regressions and analysis of Abate as described in Section

2.1. We measure raw emissions (Emission) as the total pollutant releases, measured in pounds,

across all of a firm’s plants in a given year. Emission intensity (Emission/Sales) is then calculated

by normalizing raw emissions by the firm’s sales revenue, expressed in millions of dollars. We

construct many proxies for financial constraints from Compustat, including net worth (N).6

2.4 The Pecking Order of Abatement and Capital

We first explore the heterogeneity of firm growth by examining how operating abatement activi-

ties and capital investment vary with a keymetric used to proxy firm size and financial constraint:

net worth (N). Additionally, we consider firm age and other financial constraint measures, as de-

tailed in Section II of the Internet Appendix.

6Net worth (N) is the sum of sales revenue (SALE) and plant, property, and equipment (PPET) minus net debt is-
suance as in Eisfeldt andMuir (2016). Alternative variables used to proxy for financial constraints include total assets
(AT), capital (K), and the number of employees (EMP). B/M is the ratio of book equity to market capitalization. I/K
represents the investment rate and is calculated as capital expenditure (item CAPX) divided by property, plant, and
equipment (item PPENT). ROA stands for return on assets and is calculated as operating income after depreciation
(item OIADP) scaled by total assets. Book leverage is the ratio of total liability (item DLC + DLTT) to total assets.
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Table 1: Summary Statistics

Mean Std P5 P25 Median P75 P95 Observations

Abate 3.70 13.06 0.00 0.00 0.00 2.50 16.50 20,518
Emission 1,764,524 10,707,621 0.00 2,526.9 40,311 365,699 7,284,471 20,518
Emission/Sales 1,736.02 30,059.55 0.00 2.14 32.56 226.59 2,439.21 20,039
Net Worth 13,232.92 39,512.55 83.64 615.53 2,645.71 10,136.93 53,436.94 10,387
Total Asset 8,803.51 33,566.03 57.62 349.70 1,327.27 5,269.51 36,865.67 20,055
Capital 2,871.07 10,407.94 12.21 83.75 331.67 1,478.71 12,970.55 20,055
Employee 18.60 68.51 0.30 1.57 4.90 14.4 73.53 20,438
Book-to-market Ratio 0.65 0.66 0.14 0.32 0.52 0.81 1.55 20,448
Return on Asset 0.18 0.12 0.05 0.11 0.16 0.22 0.40 20,401
Investment Rate 0.13 0.09 0.01 0.09 0.13 0.17 0.26 20,495
Leverage 0.26 0.16 0.00 0.14 0.25 0.37 0.54 20,473

Notes: This table presents summary statistics for the firm-year sample. We define pollution abatement activity as
the total number of new source reduction projects implemented by a firm at the facility level within a given year.
Specifically, Abate represents a firm’s total pollution abatement activities, aggregated across all its facilities to the
firm level, as defined by the weighting approach described in Section 2.1. We measure raw emissions (Emissions)
as the total pollutant releases (measured in pounds) across all of a firm’s plants in a given year. Emission intensity
(Emission/Sales) is then calculated by normalizing raw emissions by the firm’s sales revenue, expressed in millions
of dollars. Net worth (N) is defined as the sum of sales revenue (SALE) and plant, property, and equipment (PPENT)
minus net debt issuance (e.g., Eisfeldt and Muir (2016)) and is adjusted for inflation using the Consumer Price Index
(CPI) and reported in 2009 million USD. Total assets (AT) are CPI-adjusted. Property, plant, and equipment (K) are
also CPI-adjusted. Employee (EMP) is the number of employees. B/M is the ratio of book equity to market capital-
ization. I/K is capital expenditures (item CAPX) divided by property, plant, and equipment. Return on assets (ROA)
is operating income after depreciation (item OIADP) scaled by total assets. Book leverage (Lev) is the summation
of current liabilities (item DLC) and long-term debt (item DLTT) scaled by total assets. We report the pooled mean,
standard deviation (Std), 5𝑡ℎ percentile (P5), 25𝑡ℎ percentile (P25), median, 75𝑡ℎ percentile (P75), and 95

𝑡ℎ percentile
(P95). Observations denote the valid number of observations for each variable. The sample period is 1991 to 2020 at
an annual frequency.

Our analysis is implemented in two ways. The first method categorizes firms into quintile

groups based on their net worth and then compares the average characteristics of each group.

The second method employs panel regressions to examine the relationship between net worth

and pollution abatement, emission intensity, and physical capital investment.

2.4.1 The Pecking Order in Quintile Groups

We first discuss quintile groups’ average characteristics. We first sort all sample firms into five

groups by their net worth from low to high by each variable in each year. As a result, we construct

breakpoints for quintile portfolios for each year. We then assign all firms in year 𝑡 into quintile

groups. The low (high) quintile group contains firms with the lowest (highest) net worth in year

𝑡. After forming the five sorted groups (low to high), we calculate the time-series average of

cross-sectional means of each firm characteristic in each group.

Figure 1 shows that larger firms are more active in pollution abatement (Abate). Meanwhile,
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Figure 1. Visualizing the Pecking Order in Firm Size

Notes: These figures visualize the pecking order in firms’ abatement activities, investment rate, raw
emissions, and emission intensity. Raw values are presented for brevity, with the lowest quintile
normalized to 1 in each panel, except for the investment rate panel.

larger firms are less active in capital investment (I/K), which is well-known in the literature.7

However, although they have higher total emissions, their emission intensity (the red dashed

line) is much lower than that of their smaller counterparts. These patterns are consistent across

different measures of firm size, including total assets, capital stock, and number of employees,

as detailed in Section II of the Internet Appendix. These patterns suggest a nuanced relationship

between abatement activity and financial constraints, which will be furtehr examined in the next

subsection.
7See the I/K ratio as in Ottonello andWinberry (2024). Smaller firms display higher investment rates (I/K), which

is consistent with Almeida and Campello (2007, 2010). Conversely, the book-to-market ratio (B/M) and book leverage
(Lev) show little variation across the groups sorted by net worth, total assets, capital, and employees.
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2.4.2 The Pecking Order in Panel Regressions

We further validate the above pecking order of abatement activities and capital investment with

panel regressions. Later in our model, net worth directly affects the shadow price of external

finance – this concept is often approximated in corporate finance literature through various size-

related metrics. Our analysis confirms this pecking order of firm growth, as demonstrated in

Table 2, which presents the estimation results from the following regression:

𝑜𝑗 ,𝑡 = 𝜉𝑗 + 𝜉𝑡 + 𝑏 log 𝑠𝑗 ,𝑡 + 𝜀𝑗 ,𝑡 , (1)

where 𝑜𝑗 ,𝑡 represents outcomes such as abatement activity (Abate), emission, emission intensity,

and investment levels of firm 𝑗 in year 𝑡; 𝜉𝑗 and 𝜉𝑡 denote firm- and year-fixed effects; 𝑠𝑗 ,𝑡 denotes

the size-relatedmetric: networth; and 𝜀𝑗 ,𝑡 captures residuals. The estimated coefficient ̂𝑏 indicates

how outcomes fluctuate with net worth, with each variable log 𝑠𝑗 ,𝑡 being standardized over the

entire sample to make the units of the coefficient ̂
𝑏 easier to interpret. Our statistical inferences

are based on standard errors clustered at the firm level.

We present the estimation results using net worth as a measure of 𝑠𝑗 ,𝑡 in Panel A of Table 2.

Column 1 indicates that a one-standard-deviation increase in net worth boosts pollution abate-

ment by approximately 21%, highlighting the size-dependent relationship between net worth and

pollution abatement. Additionally, the results show a contrast across specifications: Column 2

suggests that higher net worth is associated with increased emissions, whereas Column 3 indi-

cates a substantial reduction in emission intensity. Specifically, a one-standard-deviation increase

in net worth corresponds to a 93% increase in raw emissions (Emission) but an 86% decrease in

emission intensity relative to production (Emission/Sales). This pattern is consistent with Fig-

ure 1. Finally, Column 4 suggests that increasing net worth corresponds to a lower investment

rate, aligning with decreasing returns to scale in firm growth. This finding supports the idea that

financially unconstrained firms experience lower returns on capital investment.

Consistent results are also found in Panels B to D based on total assets, capital (property, plant,

and equipment, and the number of employees, respectively. Our regression results, in which firm-

and time-specific factors have been controlled for, offer strong empirical evidence for the pecking

order in abatement activities and capital investment.

2.5 Additional Results on the Pecking Order

We show additional evidence for the pecking order based on imputed abatement expenditures,

various age measures, other financial indicators, capital-intensive abatement activities, and two-
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Table 2: The Peking Order by Various Size Measures
(1) (2) (3) (4)

Log (1+Abate) Log (1+Emission) Log (1+Emission/S) Investment Rate

Panel A: Net Worth

Log N 0.21*** 0.93*** -0.86*** -0.02***
[t] [3.03] [3.13] [-4.85] [-2.71]

Observations 10,380 10,380 10,376 10,317
R-squared 0.73 0.85 0.86 0.56

Panel B: Total Assets

Log AT 0.13*** 0.87*** -0.66*** -0.02***
[t] [2.95] [4.60] [-5.64] [-2.97]

Observations 20,055 20,055 20,039 19,938
R-squared 0.68 0.82 0.83 0.49

Panel C: Capital

Log K 0.13*** 0.82*** -0.57*** -0.04***
[t] [2.92] [4.49] [-5.25] [-6.53]

Observations 20,052 20,052 20,039 19,938
R-squared 0.68 0.82 0.83 0.50

Panel D: Employee

Log EMP 0.18*** 0.76*** -0.54*** -0.02***
[t] [4.43] [4.44] [-5.17] [-4.05]

Observations 20,438 20,438 19,963 20,323
R-squared 0.68 0.82 0.83 0.49

Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes

Notes: This table reports univariate regressions of firms’ pollution abatement, emission, emission
intensity, and investment on the logarithm of the net worth (N) in Panel A, total assets (AT) in
Panel B, capital (K) in Panel C, and employee (EMP) in Panel D, as well as firm and year fixed
effects. All independent variables are normalized to zero mean and unit standard deviation after
winsorization at the 1st and 99th percentiles to reduce the impact of outliers. 𝑡-statistics based on
standard errors clustered at the firm level are reported with ***, **, and * indicating significance at
the 1, 5, and 10% levels. The sample period is from 1991 to 2020.

dimensional sorting considering productivity. All detailed results are available in Section II of the

Internet Appendix.

Pecking Order on Imputed Abatement Expenditures We address additional concerns re-

garding the measures of abatement activities and their costs. Since no direct costs are reported

in any datasets of each abatement activity, the only validation we could rely on is the imputation

from the 2005 PACE survey. We then implement the empirical analysis to examine the relation-
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ship with firm size and find consistent results.

PeckingOrder onAge and Financial Indicators We show additional pecking order evidence

on firm agemeasures using founding/incorporation ages in Loughran and Ritter (2004), Jovanovic

and Rousseau (2001), andWorldScope and Compustat age. The sorting patterns are noisier in firm

age measures, but still qualitatively consistent with our main results. We also show the results

for financially constrained indicators using both Whited and Wu (2006) and Hadlock and Pierce

(2010). The pecking order between abatement activities and capital investment always holds.

Pecking Order in Two Dimensions We also show additional pecking order evidence in two

dimensions: size/age/financial indicators and productivity. The pecking order between abate-

ment activities and capital investment holds across all measures within each productivity group.

Pecking Order on Capital Investment related to Abatement We also show that such a

pecking order exists for abatement activities that are more capital-related and less operational.

To do so, we replace operating abatement activities with capital–related abatement activities as

the dependent variable in equation (1). Section I.2 of the Internet Appendix provides details on

the classification of capital-related abatement activities. We find that the coefficients on firm size

remain significantly positive for this outcome variable; nevertheless, their economic magnitude

is smaller than that based on operating abatement activities. Our results suggest that although

capital-related abatement activities could be used as collateral, it could still be harder to finance,

consistent with Lanteri and Rampini (2023).

3 The Model

We build a heterogeneous-firm general equilibrium model consisting of a production block with

heterogeneous firms and a general equilibrium block with a representative family of households.

Time is discrete and infinite.

3.1 Environment

Production and Pollution There is a unity mass of firms, indexed by 𝑗 , that produce output

𝑦𝑗𝑡 = 𝑧𝑗𝑡𝑘
𝛼

𝑗𝑡
, where 𝑧𝑗𝑡 denotes firm 𝑗 ’s productivity at time 𝑡 and 𝛼 < 1 stands for a decreasing

return to scale. Production creates a byproduct: pollution emission 𝑒𝑗𝑡 = 𝑦𝑗𝑡 × 𝑒/(1+ 𝛾𝑎𝑗𝑡), which

is an increasing function of the production scale 𝑦𝑗𝑡 and emission intensity 𝑒/(1+𝛾𝑎𝑗𝑡). Emission

intensity is a function of 𝑒 that indicates the base emission intensity without any abatement

activities, 𝑎𝑗𝑡 which stands for abatement activities implemented in the prior period, and 𝛾 as the
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transmission elasticity from abatement to emission reduction (Andreoni and Levinson, 2001).

Firm Dynamics Firms face two fundamental idiosyncratic shocks: (1) productivity shocks

and (2) exit risk shocks. First, idiosyncratic productivity 𝑧𝑗𝑡 follows a log-normal AR(1) process

𝑙𝑜𝑔𝑧𝑗𝑡+1 = 𝜌𝑙𝑜𝑔𝑧𝑗𝑡 + 𝜖𝑗𝑡+1. Second, at the beginning of each period, firms face a fixed probabil-

ity of exit 𝜋𝑑 . New entrants replace exiting firms with productivity, emission intensity, and net

worth drawn from some distribution Φ
0
(𝑧, 𝑛) with the same 𝑛0 and equilibrium distribution of 𝑧.

Capital Investment and Abatement Activities Firms that will continue into the next period

spend resources on physical investment and abatement activities. Capital investment expendi-

tures 𝑖𝑗𝑡+1 accumulate into more capital in the next period 𝑘𝑗𝑡+1 = (1−𝛿𝑘)𝑘𝑗𝑡+ 𝑖𝑗𝑡+1 which enlarges

future production. Abatement activities 𝑎𝑗𝑡+1 yield a lower emission intensity in the next period.

Financial Frictions Firms have two sources of finance for their physical investment and abate-

ment activities, both subject to friction. First, firms can borrow externally subject to the collateral

constraint 𝑏𝑗𝑡+1 ≤ 𝜃𝑘𝑘𝑗𝑡+1 as in Khan and Thomas (2013). Second, firms can use their internal re-

sources but not raise new equity through negative dividend payments (𝑑𝑗𝑡+1 ≥ 0).

PollutionRegulationPenalties Firms care about pollution emissions because theymay cause

implicit and explicit consequences once their externalities are visibly spotted. Implicitly, they

may face penalties for losing the consumer base due to a bad reputation for social responsibility.

Explicitly, they may face government regulations and litigation penalties. We model such penal-

ties as an implicit tax 𝜏𝑗𝑡𝑒𝑗𝑡 , as in Shapiro and Walker (2018), but allow the pollution penalty to

differ by firms with idiosyncratic shocks. Without loss of generality, we assume that 𝜏𝑗𝑡 follows

a log-normal distribution with the actual realized average penalty 𝜇𝜏 and volatility 𝜎𝜏 .

3.2 Recursive Problem and Equilibrium

Recursive Problem for Firms The firm’s optimization problem is written recursively, where

the state variables are the firm’s total factor productivity 𝑧𝑗𝑡 and net worth 𝑛𝑗𝑡 . The expression

gives the net worth 𝑛𝑗𝑡 :

𝑛𝑗𝑡 = 𝑧𝑗𝑡𝑘
𝛼

𝑗𝑡
+ (1 − 𝛿)𝑘𝑗𝑡 − 𝜏𝑗𝑡𝑒𝑗𝑡 − 𝑏𝑗𝑡 , (2)

where 𝑘𝑗𝑡 , 𝑏𝑗𝑡 , and 𝑒𝑗𝑡 are predetermined from the last period decision, but 𝜏𝑗𝑡 represents the

realized pollution penalty tax rate. The term 𝑧𝑗𝑡𝑘
𝛼

𝑗𝑡
represents the firm’s production revenue, (1−

𝛿)𝑘𝑗𝑡 represents the depreciation-adjusted capital stock, 𝜏𝑗𝑡𝑒𝑗𝑡 represents the pollution penalty,

and 𝑏𝑗𝑡 represents the cost of borrowing.
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Let 𝑣(𝑧𝑗𝑡 , 𝑛𝑗𝑡) denote the equity value function before forced exiting; it can be expressed as:

𝑣(𝑧𝑗𝑡 , 𝑛𝑗𝑡) = max
𝑎𝑗𝑡+1,𝑘𝑗𝑡+1,𝑏𝑗𝑡+1

𝑑𝑗𝑡 +

1

1 + 𝑟𝑡

𝐄𝐭 [𝜋𝑑𝑛𝑗𝑡+1 + (1 − 𝜋𝑑)𝑣(𝑧𝑗𝑡+1, 𝑛𝑗𝑡+1)] (3)

subject to

𝑑𝑗𝑡 ≡ 𝑛𝑗𝑡 − 𝑘𝑗𝑡+1 − 𝑎𝑗𝑡+1 +

𝑏𝑗𝑡+1

1 + 𝑟𝑡

≥ 0, (4)

𝑏𝑗𝑡+1 ≤ 𝜃𝑘𝑘𝑗𝑡+1, (5)

0 ≤ 𝑎𝑗𝑡+1, (6)

𝑛𝑗𝑡+1 ≡ 𝑧𝑗𝑡+1𝑘
𝛼

𝑗𝑡+1
+ (1 − 𝛿)𝑘𝑗𝑡+1 − 𝜏𝑗𝑡+1𝑒𝑗𝑡+1 − 𝑏𝑗𝑡+1, (7)

where 𝑟𝑡 is the real interest rate, 𝑧𝑗𝑡+1 follows an AR(1) productivity process, 𝜏𝑗𝑡+1 follows the

log-normal i.i.d. process, and the expectation 𝐄𝐭 is taken over the realization of 𝑧𝑗𝑡+1 and 𝜏𝑗𝑡+1.

Representative Households We assume a unit measure continuum of identical households

that own all the firms with an expected utility given by

𝑊 = 𝐄𝟎

∞

∑

𝑡=0

𝛽
𝑡

(
𝑙𝑜𝑔(𝐶𝑡) − 𝜁 𝑙𝑜𝑔(𝐸𝑡)

)

where 𝛽 is the time discount rate and 𝜁 is a constant that captures the disutility of pollution

emission (Hsu et al., 2023). The households face a budget constraint given 𝐶𝑡 +
1

1+𝑟𝑡

𝐵𝑡 ≤ 𝐵𝑡−1 +

Π𝑡 +Γ𝑡 , where 𝑟𝑡 represents the risk-free interest rate during the period from 𝑡 to 𝑡+1. 𝐵𝑡 denotes

the quantity of one-period risk-free bonds that households hold. Additionally, households receive

capital incomeΠ𝑡 from all the firms and Γ𝑡 pollution taxes from the government. Households bear

the disutility of pollution by internalizing the negative externalities of it from the total pollution

emission 𝐸𝑡 = ∑(𝑒). The optimality of intertemporal saving decisions implies the Euler equation,

which determines the real interest rate 1

1+𝑟𝑡

=
𝛽𝑈𝑐(𝐶𝑡+1,𝐿𝑡+1)

𝑈𝑐(𝐶𝑡 ,𝐿𝑡 )
= 𝛽 (

𝐶𝑡+1

𝐶𝑡
)

−1

.

Equilibrium Definition The equilibrium is a set of value functions 𝑣𝑡(𝑧, 𝑛); decision rules

𝑘
′

𝑡
(𝑧, 𝑛), 𝑏 ′

𝑡
(𝑧, 𝑛), and 𝑎

′

𝑡
(𝑧, 𝑛); a pollution penalty structure {𝜇𝜏 , 𝜎𝜏}; the measure of firms 𝜇𝑡(𝑧, 𝑛,

𝜏, 𝑘, 𝑏); and real interest rate 𝑟𝑡 such that (i) all firms optimize, (ii) households optimize, (iii) the

distribution of firms is consistent with decision rules, and (iv) the final good market clears, i.e.,

𝑌 = 𝐶 + 𝐼 + 𝐴, where 𝐴 = ∑(𝑎
′
) and 𝐼 = ∑(𝑘

′
) − (1 − 𝛿)∑(𝑘).

15



4 The Pecking Order in Our Model

We now show that our model generates a pecking order of firm investments in capital and abate-

ment consistent with the data. We also discuss the key economic forces governing this pecking

order, motivating how we calibrate the model in the quantitative part below.

4.1 Characterizing Decision Rules

KeyDifferencesBetweenPollutionAbatementActivities andCapital Investment There

are two key differences between the profit-generating capital investment choice 𝑘′ and the pollution-

reducing abatement activity choice 𝑎′ in our model:

(1) Collateralizability: Capital investment could increase the collateralizability of firms to relax

financial constraints, but investment in pollution abatement cannot.

(2) Return-to-scale: Capital investment exhibits decreasing return to scale in production, but

investment in pollution abatement is increasing return to scale in production.

Characterizing Decision Rules To characterize the firm’s decision rules, we first note that

the marginal cost of spending resources on either capital or abatement is given by the firm’s

shadow value of net worth, 𝜕𝑣𝑡 (𝑧,𝑛)

𝜕𝑛
= 1 + 𝜆𝑡(𝑧, 𝑛), where 𝜆𝑡(𝑧, 𝑛) is the Lagrange multiplier on the

non-negative constraint on dividends and is also known as the financial wedge. It represents the

marginal value of keeping resources inside the firm and is the opportunity cost of spending those

resources on capital or abatement expenditures instead. First, the shadow price of issuing equity

𝜆𝑡(𝑧, 𝑛) > 0 when firms are not currently binding on borrowing constraint 𝑏 ′
< 𝜃𝑘𝑘

′ but are

potentially constrained and issuing zero dividends. Second, the shadow price of issuing equity

𝜆𝑡(𝑧, 𝑛) = 𝜇𝑡(𝑧, 𝑛), where 𝜇𝑡(𝑧, 𝑛) is the shadow price of additional borrowing when the collateral

constraint is binding. Therefore, 𝜆𝑡(𝑧, 𝑛) measures how financial frictions affect the marginal

costs of both types of investments. We could derive the following Proposition 1, which extends

a similar result from Sui (2020) and Ottonello and Winberry (2024) on the trade-off between

investment and innovation of financially constrained firms.

Proposition 1. Consider a firm at time 𝑡 that is eligible to continue into the next period and has
idiosyncratic productivity 𝑧 and net worth 𝑛. For any given values of {𝑧, 𝑛}, the firm’s optimal
decision can be characterized by one of the following cases.

(i) Unconstrained: If 𝑛 ≥ �̄�𝑡(𝑧), then the firm pays positive dividends 𝑑 > 0 and the financial
wedge on no-equity-issuance constraint 𝜆𝑡(𝑧, 𝑛) = 0.
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(ii) Constrained and binding: If 𝑛 < 𝑛
𝑡
(𝑧), then the firm pays zero dividends 𝑑 = 0, the

collateral constraint is binding 𝑏 ′
= 𝜃𝑘𝑘

′, and the financial wedge is positive 𝜆𝑡(𝑧, 𝑛) > 0.

(iii) Constrained but not binding: If 𝑛
𝑡
(𝑧) < 𝑛 < �̄�𝑡(𝑧), then the firm pays zero dividends

𝑑 = 0, the collateral constraint is not binding 𝑏
′
< 𝜃𝑘𝑘

′, and the financial wedge is positive
𝜆𝑡(𝑧, 𝑛) > 0.

In all three cases, the optimal choices for capital investment 𝑘′
𝑡
(𝑧, 𝑛), abatement activities 𝑎′

𝑡
(𝑧, 𝑛),

and debt financing 𝑏 ′

𝑡
(𝑧, 𝑛) solve the following first-order conditions

1 + 𝜆𝑡(𝑧, 𝑛) =𝜃𝑘𝜇𝑡(𝑧, 𝑛) +

1

1 + 𝑟𝑡

𝐄𝑡
[ (

𝜋𝑑 + (1 − 𝜋𝑑)(1 + 𝜆𝑡+1(𝑧
′
, 𝑛

′
))) ×

((
1 −

𝜏
′
𝑒

1 + 𝛾𝑎
′)

𝑀𝑃𝐾(𝑧
′
, 𝑘

′
) + (1 − 𝛿)

)]

(8)

1 + 𝜆𝑡(𝑧, 𝑛) ≥

1

1 + 𝑟𝑡

𝐄𝑡
[ (

𝜋𝑑 + (1 − 𝜋𝑑)(1 + 𝜆𝑡+1(𝑧
′
, 𝑛

′
)))

𝛾𝜏
′
𝑒

(1 + 𝛾𝑎
′
)
2
𝑧
′
𝑘
′𝛼

]
(9)

𝑘
′
+ 𝑎

′
= 𝑛 +

𝑏
′

1 + 𝑟𝑡

if 𝜆𝑡(𝑧, 𝑛) > 0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑏
′
(𝑧, 𝑛) = 𝑏

∗

𝑡
(𝑧), (10)

where𝑀𝑃𝐾(𝑧
′
, 𝑘

′
) = 𝛼𝑧

′
𝑘
′𝛼−1 is the marginal product of capital, 𝜆𝑡(𝑧, 𝑛) is the Lagrange multiplier,

also known as the financial wedge, on the no equity issuance constraint 𝑑 ≥ 0, and 𝜇𝑡(𝑧, 𝑛) is the
multiplier on the collateral constraint 𝑏 ′

≤ 𝜃𝑘𝑘
′. The proof is in the Internet Appendix III.

The first part of Proposition 1 describes three regimes of financial conditions, which are sim-

ilar to Khan and Thomas (2013). Characterizing the three regimes simplifies the solution of the

model numerically and also helps to illustrate the mechanism of the trade-off between capital and

abatement expenditures through financial constraints more easily. The second part of Proposi-

tion 1 characterizes the capital investment and abatement decisions for any of these three types of

firms. Equations (8) and (9) are the first-order conditions for capital and abatement expenditures,

respectively. Both left-hand sides denote the unit cost of resources, including the financial wedge.

Our focus is on the right-hand side of both equations. For capital investment, the marginal benefit

is the discounted expected marginal product of capital in the future and the marginal collateral

benefit provided by additional capital. For abatement expenditures, the marginal benefit is only

the discounted expected marginal reduction in regulatory penalty. The first-order condition may

not equal abatement expenditures due to the non-negative abatement 𝑎′ ≥ 0.

We have two observations in general. The first is that firm size already matters for abatement

expenditures even without considering the financial wedges. Considering the abatement deci-

sion as given, the marginal benefit increases with firms’ capital stock even without considering
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financial wedges. This is because firms’ production scales the emission reduction benefit, making

it more beneficial for larger firms to do abatement – a pattern that is fairly intuitive and fits the

reality that larger firms face greater scrutiny and incur greater reputation costs. Second, when

firms are financially constrained (𝜆𝑡(𝑧, 𝑛) > 0), abatement expenditure is even less attractive be-

cause the marginal benefit of abatement investment decreases faster than the marginal benefit

of capital investment in scale. Since capital and abatement expenditure must be financed from

internal resources or new borrowing, constrained firms prefer more capital investment.

4.2 Visualization of the Pecking Order

To illustrate the pecking order, we visualize the decision rules in Figure 2 and the realized total

emission and emission intensity in Figure 3 to illustrate our model’s key economic trade-offs

and consequences. These plots are generated with our calibrated parameters in the following

quantitative section, but the properties hold for a wide range of the parameter space.

The left panels of Figure 2 show the capital and abatement policies as a function of net worth

for different productivity levels. The right panels plot the returns associated with both activities

relative to unity, specifically the right-hand side of the respective first-order conditions (8) and (9).

We show the pecking order in two dimensions to be consistent with our data. The productivity

levels (High Prod for upper plots and Low Prod for lower plots) are fixed in these plots to illustrate

how the decision rules depend on relative financial constraints reflected by net worth.

The Pecking Order in the Model Firms’ pecking order in the model can be summarized in

two regions of net worth for a given level of productivity 𝑧. The division of two areas is based

on whether the firms are financially constrained. In our model, there are two indicators of when

a firm is financially constrained (i.e., the first region): (1) the firm is below its optimal scale of

capital given its productivity (in the left panels, any capital stock below the dotted black lines

of ”No Financial Frictions”), and (2) the firm has the marginal returns of capital investment and

abatement expenditure above unity (in the right panels, marginal returns above the dotted black

lines).

In the first region, the firm is below its optimal scale of capital, so it tends to spend more re-

sources to build up capital stock and choose a lower abatement level, as shown in the left panels

of Figure 2. Such a choice is optimal because the marginal return to capital lies strictly above the

marginal return to abatement. As the firm keeps growing and accumulating more net worth, it

can accumulate more capital. This has two effects on the returns of capital. First, it drives down

capital’s marginal return due to the diminishing marginal product of capital. Second, it improves

the total value of collateral and lowers the shadow cost of collateral constraint, making the firm
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Figure 2. Abatement Activities and Capital Investment over Size and Productivity

Notes: These figures plot firms’ abatement activities and capital investment decisions over firms’
size, measured in net worth. The blue solid line denotes capital, the purple dashed line denotes
abatement, and the black dotted line denotes the case of ”No Financial Frictions.” The left panels
plot capital expenditures 𝑘𝑡+1(𝑧, 𝑛) (left axis) and abatement expenditures 𝑎𝑡+1(𝑧, 𝑛) (right axis) of
the calibrated model for fixed high 𝑧

ℎ and low 𝑧
𝑙 , respectively. The right panel plots the return to

these activities, defined as the RHS of Euler Equations (8) and (9). ”No financial frictions” refers to
the model in which all firms follow the unconstrained policies 𝑘′∗(𝑧) and 𝑎′∗(𝑧) from Proposition 1.

less financially constrained. The firm, therefore, has started to engage in more abatement activ-

ities to avoid pollution regulation penalties for two reasons: a lower marginal cost of abatement

and a larger production scale that increases the penalty. However, as shown in the right panels

of Figure 2, the return to capital (in the solid line) is always higher than the return to abatement

(in the dashed line) because the firm only grows its size by accumulating capital.

When the firm accumulates sufficient net worth, it enters the second region and becomes

financially unconstrained. Conditional on its specific productivity level, a firm in this region

has reached its optimal scale of capital conditional on productivity. The shadow cost of finance

𝜆𝑡(𝑧, 𝑛) = 0, and the returns to capital investment and abatement expenditures both equal unity.

This implies that the firm’s abatement activities are finally unrelated to its financial conditions.

We show how the realization of total emission and emission intensity changes over firms’ net
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Figure 3. Realized Pollution Measures over Size and Productivity

Notes: These figures plot firms’ realized total emissions and emission intensity over firms’
size measured in net worth. The left panel plots realized emission 𝑒𝑡+1(𝑧, 𝑛) of the cali-
brated model for fixed high 𝑧

ℎ and low 𝑧
𝑙 , respectively. The right panel plots the realized

emission intensity 𝑒𝑡+1(𝑧, 𝑛)/𝑦𝑡+1(𝑧, 𝑛) of the calibrated model for fixed high 𝑧
ℎ and low

𝑧
𝑙 . ”No financial frictions” refers to the model in which all firms follow the unconstrained
policies 𝑘′∗(𝑧) and 𝑎

′∗
(𝑧) from Proposition 1.

worth in Figure 3 given the decision rules in Figure 2. As the firm keeps growing and accumu-

lating more net worth, it can accumulate more capital and enlarge its production scale, implying

a larger total emission. Meanwhile, the firm engages in more abatement activities and becomes

cleaner. Therefore, the firm’s total emission continuously increases, and emission intensity con-

tinuously decreases until it becomes financially unconstrained (i.e., the solid or dashed line hits

the dotted line). More importantly, although high-productivity firms emit more as they grow,

their engagements in abatement activities also grow faster than those of low-productivity firms.

Their optimal emission intensity is also lower. As a result, the former’s emission intensity is

lower and drops faster than the latter’s along the path of growth and accumulating net worth.

Comparing to the Data The discussion above illustrates how our model is consistent with

empirical patterns of abatement activities and capital investment that we documented in Section

2.4. We provide visualization plots of the data in Figure 4. First, since most firms enter the econ-

omy as small and financially constrained, they start by growing through capital investment and

pay less attention to environmental regulations, even though there are consequential penalties.

Second, as these firms grow, abatement activities become more and more meaningful since the

shadow cost of finance decreases and the production scale increases.

Figure 2 shows that, without financial frictions, the model would not have a pecking order;

firms would immediately jump up to their optimal scale of capital investment and abatement
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Figure 4. The Pecking Order over Size and Productivity in Data

Notes: These figures visualize the pecking order in two dimensions of net worth and productivity
in Internet Appendix II. It depicts firm characteristics sorted by net worth (N) and productivity (z),
including firms’ abatement activities in the upper left panel, investment rate (I/K) in the upper right
panel, raw emissions in the lower left panel, and emission intensity in the lower right panel. For
brevity, the lowest quintile in the low productivity group is normalized to 1 in each panel, except
for the investment rate in the upper right panel.

expenditures given current productivity. In such a case, abatement becomes independent of net

worth, size, and age, which would be oddly inconsistent with the evidence presented in Sec-

tion 2.4. Therefore, we argue that financial frictions are the key model ingredient when con-

sidering corporate abatement activities. Moreover, the model implies that, as they grow, high-

productivity firms’ abatement activities grow faster and their emission intensity drops faster than

low-productivity ones. Meanwhile, since they are larger in sales and conditional on the same net

worth, they still have higher raw emissions but lower emission intensity than low-productivity

ones. All these patterns are consistent with the two-dimensional sorting in Figure 4.
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5 Model Validation with Microdata

This section provides empirical validation to support testable implications in our model. First,

we present direct evidence that relaxing financial frictions facilitates more abatement activities

for financially constrained firms. Second, we demonstrate the presence of increasing returns to

scale in abatement activities.

5.1 Decision Rules Regarding Collateralizability and Scale

In this subsection, we revisit the firm’s optimal decisions regarding capital investment and abate-

ment expenditures, where each decision is made by equating its marginal cost to its marginal

benefit. Equations (8) denotes the optimal decision on capital investment 𝑘′:

1 + 𝜆𝑡(𝑧, 𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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{
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+ 𝜃𝜇𝑡(𝑧, 𝑛),

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

relax borrowing constraint

And equation (9) denotes the the optimal decision on abatement expenditure 𝑎′:

1 + 𝜆𝑡(𝑧, 𝑛)
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marginal benefit of abatement

]

}

.

In equation (8), we show that the marginal benefit of a unit of capital investment consists of

the marginal product of capital net of the emission penalty, plus the continuation value of capital

net of depreciation. On top of that, capital is collateralizable, contributing an additional marginal

value 𝜇𝑡 for financially constrained firms facing binding borrowing constraints (i.e., 𝜇𝑡 > 0). In

contrast, equation (9) presents the benefit of pollution abatement, which arises from mitigating

the pollution penalty through reduced emissions. Both types of decisions on capital investment

and pollution abatement draw on internal funding and may trigger the non-dividend payment

constraint, resulting in a positive multiplier 𝜆𝑡 > 0. Consequently, the marginal cost of either

capital investment or abatement expenditures is given by 1 + 𝜆𝑡 .

Suppose there is an exogenous increase in the collateralizability parameter 𝜃, and the collat-

eral constraint is binding (i.e., 𝜇𝑡 > 0). In this case, the new equilibrium path of capital investment
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𝑘
′ will rise, as firms can borrow more against their capital. As a result, the marginal product of

capital (MPK) will decline due to the decreasing returns to scale in the production function, where

𝑀𝑃𝐾 = 𝛼𝑧𝑘
𝛼−1. Furthermore, since higher capital investment raises output, raw emissions will

also increase, incentivizing firms to enhance their pollution abatement in response to the new

equilibrium. Consequently, the relaxation of the collateralizability constraint (i.e., a higher 𝜃)

leads to an increase in pollution abatement 𝑎′, especially among financially constrained firms

with binding collateral constraints. This prediction will be empirically tested in Section 5.2.

On the other hand, following a positive innovation in productivity dynamics 𝑧′, the marginal

product of capital scales up, while the Lagrange multiplier 𝜇𝑡 declines due to relaxed financial

frictions. In the new equilibrium, capital investment 𝑘′ rises, which subsequently pushes down

the marginal product of capital due to diminishing returns. According to equation (9), the optimal

pollution abatement 𝑎′ increases in response to the rise in both productivity 𝑧′ and capital invest-

ment 𝑘′. Meanwhile, output 𝑦′ rises due to the increase in productivity and capital investment.

Finally, emission intensity 𝑒
′
/𝑦

′ falls, recalling the emission function 𝑒
′
= 𝑦

′
× 𝑒/(1 + 𝛾𝑎

′
). In

contrast, the offsetting effects of rising output and increased pollution abatement imply an am-

biguous prediction for raw emissions. Taken together, a positive innovation in 𝑧
′ drives higher

output and lower emission intensity, but has an unclear effect on total emissions. This prediction

will be empirically tested in Section 5.3.

Overall, our model further provides testable implications that guide subsequent empirical

analyses. In the next subsection, we examine these predictions in the data, focusing on the role

of financial frictions and increasing returns to scale.

5.2 The Role of Financial Frictions

Our first challenge is identifying exogenous variation in financial frictions to establish their causal

effect on pollution abatement. It serves as the empirical counterpart to an increase in the collat-

eralizability parameter 𝜃 in our model while controlling for other determinants. We address this

by exploiting the exogenous variation provided by enacting anti-recharacterization laws as docu-

mented by Chu (2020), which alleviate firms’ financial constraints by enhancing secured lenders’

ability to repossess assets in bankruptcy.8 Section I.5 of the Internet Appendix provides the in-

stitutional details. In a nutshell, anti-recharacterization laws, integral to secured transactions

within U.S. Chapter 11 bankruptcy proceedings, ensure that secured debts maintain their prior-

ity status, protecting creditors from reclassifying their claims. These laws, enacted in states like

8While there is extensive literature on the effects of anti-recharacterization laws on corporate policies, a compre-
hensive review is beyond the scope of this paper. For reference, see Li, Whited, and Wu (2016), Chu (2020), Favara
et al. (2021), and Fairhurst and Nam (2023) among others.
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Texas, Louisiana, Alabama, and Delaware between 1997 and 2002, bolster lenders’ confidence

by legally safeguarding the terms of debt agreements, thus reducing lending risks. As a result,

creditors are more willing to extend credit to borrowers incorporated in these states.

Since the anti-recharacterization laws are unrelated to firms’ abatement operations, we can

design an identification test by examining the abatement activities of firms in states with and

without such laws. Considering the timing of law adoption, we limit our sample period from

1994 to 2004 and estimate the following difference-in-differences regressions:

Log(1 + Abate𝑗 ,𝑠,𝑡) = 𝜉𝑗 + 𝜉𝑡 + 𝑏 Log 𝑁𝑗 ,𝑠,𝑡 × Treat𝑠,𝑡 + 𝑐 Controls𝑗 ,𝑠,𝑡 + 𝜀𝑗 ,𝑠,𝑡 , (11)

where Log(1 + Abate𝑗 ,𝑠,𝑡) represents the logarithm of firm 𝑗 ’s pollution abatement, and Treat𝑠,𝑡
is a dummy variable that equals 1 for firms incorporated in Texas or Louisiana starting in 1997,

in Alabama from 2001, and in Delaware from 2002, up until 2004 when federal laws superseded

the state-level laws (the end of our sample). We include firm- and year-fixed effects, 𝜉𝑗 and 𝜉𝑡 , re-

spectively. Controls𝑗 ,𝑠,𝑡 include firm-level fundamentals such as book-to-market ratio, investment

rate, and ROA. All variables are winsorized at the 1st and 99th percentiles to minimize the impact

of outliers, and independent variables are normalized to have zero mean and one standard de-

viation after winsorization. To focus on financially constrained firms, we interact the logarithm

of firm 𝑗 ’s net worth with Treat𝑠,𝑡 . The interaction term allows us to examine whether more

financially constrained firms (smaller Log 𝑁𝑗 ,𝑠,𝑡) display a more pronounced effect from the pas-

sage of the laws than their counterparts. Our theory predicts that enacting these laws improves

such firms’ borrowing capabilities, easing their financial constraints and increasing abatement

activities, which means that the coefficient on the interaction term should be negative.

Table 3 reports estimation results of equation (11) for firms’ abatement changes corresponding

to the passage of anti-recharacterization laws. The first row shows that the negative coefficient on

the interaction term indicates that enacting anti-recharacterization laws is associated with an in-

crease in abatement activities among low net worth firms, compared to their counterparts in non-

enacted states. This association remains robust in Columns 3 and 4 when controlling for other

firm characteristics. As a validation of the model mechanism, our empirical evidence provides

causal support for the financial friction mechanism that influences firms’ pollution abatement

strategies. Notably, the estimated coefficient for the interaction term 𝑏 is significantly negative,

suggesting that financially constrained firms with lower net worth experience a more positive re-

sponse to financial shocks following the passage of the laws. This finding is consistent with our

theoretical prediction and underscores that the financial friction mechanism, rather than the size

effect (Log 𝑁𝑗 ,𝑠,𝑡), is the primary driver of the endogenous choice of pollution abatement. These

findings are consistent with Dang et al. (2022), which shows that financially constrained firms
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Table 3: The Effect of Anti-recharacterization Laws and Dynamics
(1) (2) (3) (4) (5) (6) (7) (8)

Abatement Activities

Log N x Treat -0.09** -0.09** -0.10*** -0.09**
[t] [-2.23] [-2.30] [-2.66] [-2.45]
Log N × Treat−2 -0.00 -0.01 0.00 -0.01
[t] [-0.13] [-0.51] [0.13] [-0.31]
Log N × Treat−1 -0.00 -0.02 0.00 -0.01
[t] [-0.12] [-0.53] [0.05] [-0.39]
Log N × Treat0 -0.05 -0.07** -0.05 -0.07*
[t] [-1.51] [-2.01] [-1.32] [-1.84]
Log N × Treat1 -0.09** -0.11*** -0.08** -0.10**
[t] [-2.29] [-2.67] [-2.09] [-2.49]
Log N × Treat2 -0.10*** -0.12*** -0.10** -0.11***
[t] [-2.68] [-3.01] [-2.45] [-2.81]
Log N × Treat3 -0.13*** -0.15*** -0.13*** -0.14***
[t] [-2.94] [-3.25] [-2.81] [-3.13]
Treat -0.21*** 0.11* -0.17*** 0.12*
[t] [-5.49] [1.78] [-4.36] [1.93]
Log N -0.22** 0.12 -0.23** 0.11 -0.14 -0.11 -0.15 -0.13
[t] [-2.54] [1.25] [-2.53] [1.19] [-1.22] [-0.98] [-1.24] [-1.06]
B/M 0.00 -0.01 -0.01 -0.01
[t] [0.08] [-0.44] [-0.69] [-0.39]
I/K 0.04** 0.01 0.01 0.01
[t] [2.29] [0.46] [0.53] [0.55]
ROA 0.05*** -0.01 -0.01 -0.00
[t] [2.59] [-0.37] [-0.48] [-0.08]

Observations 4,530 4,530 4,459 4,459 2,565 2,565 2,508 2,508
R-squared 0.82 0.83 0.82 0.83 0.88 0.88 0.88 0.88
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE No Yes No Yes No Yes No Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports changes in firms’ pollution abatement following the adoption of anti-
recharacterization laws. The independent variable, Treat, is a dummy that equals 1 for firms incorporated
in Texas or Louisiana starting in 1997, in Alabama starting in 2001, and in Delaware starting in 2002, after
the passage of these laws and before their preemption by federal laws in 2004. To capture the dynamic effect
on the adoption of anti-recharacterization laws, the independent variables of interest include time-specific
dummies: Treat−2, Treat−1, Treat0, Treat1, Treat2, and Treat3. These dummies indicate the status of the
law two years before adoption (Treat−2), one year before (Treat−1), the year of adoption (Treat0), one year
after (Treat1), two years after (Treat2), and three years after (Treat3) the law’s implementation. Additional
independent variables include net worth and control variables such as the book-to-market ratio, investment
rate, and ROA. Detailed definitions of these variables are listed in Table 1. All regressions include firm and
year fixed effects, and 𝑡-statistics based on standard errors clustered at the firm level are reported with ***,
**, and * indicating significance at the 1%, 5%, and 10% levels, respectively. The analysis covers the sample
period from 1994 to 2004, which corresponds to the timeline of the adoption of anti-recharacterization laws.
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prioritize capital investments over abatement activities due to the collateralizability of capital

assets using Chinese data on the Clean Air Act.

Another concern is that the results are driven by preexisting differences between treated and

control firms before the passage of the anti-recharacterization laws. To mitigate this concern,

we examine the dynamics of the law’s effects on abatement activities. Specifically, we construct

six variables related to the timing of the anti-recharacterization laws. The independent variables

of interest are Treat−2, which takes the value of 1 two years before the law’s passage; Treat−1,

one year before; Treat0, until Treat3, three years after. We replace Treat in the baseline specifi-

cation with these six newly constructed variables and interact them with the logarithm of net

worth. If the baseline results were driven by preexisting differences between the treated and con-

trol firms, effects would likely appear in Treat−2 and Treat−1. However, the results presented in

Columns 5 to 8 of Table 3 show that the coefficients on Treat−2 and Treat−1 are small and statis-

tically insignificant, suggesting that the baseline results are unlikely to be driven by preexisting

differences or reverse causality. In contrast, consistent with the baseline results, the coefficients

on Treat1 to Treat3 are substantially negative and statistically significant. Our tests based on

anti-recharacterization laws pinpoint the financial friction mechanism and support a causal in-

terpretation of our baseline results.

5.3 The Role of Return to Scale

Our second challenge is identifying exogenous variations in return to scale to ascertain their

causal effect on pollution emissions, controlling for other determinants. This task is particularly

challenging since we need shocks that directly change firms’ sales but not abatement activities.

To do so, we test how firms’ sales growth, emission growth, and emission intensity respond

when exposed to exogenous demand shocks caused by natural disasters. Our empirical strategy

is based on the idea that firms not directly affected by a natural disaster, but operating in industries

where peer firms are hit, would experience an unexpected shift in demand for their production.

These shocks are exogenous to the treated firms’ prior decisions on pollution abatement and

capital investment, but shift industry-wide demand and drive up sales for the unaffected firms.

We interpret such events as exogenous industry-specific demand shocks.

To identify the exogenous demand shock, we use county-level disaster records from Spatial

Hazard Events and Losses Database for the United States (SHELDUS), which provides data on the

location, timing, and type of disaster events across U.S. counties.9 We match SHELDUS disaster

9The SHELDUS Database is a county-level dataset that compiles information on natural hazard events and asso-
ciated losses across the United States. Maintained by Arizona State University, SHELDUS includes detailed records
on the location, timing, and type of disaster events, such as hurricanes, floods, earthquakes, and wildfires, along with
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events to TRI-reporting facilities by county-year, identifying whether a given facility was directly

affected by a disaster. Firmswith facilities in disaster-hit counties are flagged as directly impacted.

In contrast, those in the same industry but outside the disaster counties are indirectly exposed,

where the industry classifications are based on Fama-French 48 (Fama and French, 1997). These

indirectly exposed firms form our treatment group – we assume that they would experience an

unexpected surge in demand but face no production disruption. As a result, we expect an increase

in sales but a decline in emission intensity.

Table 4: Effects of Demand Shocks on Sales and Emissions
(1) (2) (3) (4) (5) (6)

Sales Growth Emission Growth Emission Intensity

Demand 3.01* 4.23*** -0.13 -0.09 -0.42*** -0.43***
[t] [1.92] [2.62] [-0.92] [-0.62] [-3.05] [-3.19]
Log AT 10.73*** 0.03 0.22***
[t] [4.42] [0.19] [3.35]
Log (1+Abate) -0.27 0.06 -0.70***
[t] [-0.40] [1.14] [-2.80]
B/M -2.22*** -0.00 0.09**
[t] [-4.11] [-0.06] [2.16]
I/K 1.45** 0.08* -0.00
[t] [2.41] [1.87] [-0.05]
ROA 8.08*** 0.03 0.00
[t] [11.83] [0.59] [0.05]

Observations 3,921 3,890 3,669 3,648 4,064 4,033
R-squared 0.30 0.40 0.13 0.13 0.86 0.87
Firm FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes

Notes: This table explores changes in firms’ emission intensity following the realization of local
demand shocks. The dependent variables include the firm-level sales growth and emission growth,
as well as intensity. The key independent variable is the demand shock dummy (Demand𝑖,𝑡 ), which
equals 1 for firms not located in disaster-hit counties but operating in industries where peer firms
were directly affected by natural disasters. These firms are assumed to experience a positive de-
mand shock due to temporary production disruptions to their peers within their industry, where
industry classifications are based on the Fama-French 48-industry classification. Additional in-
dependent variables include total assets and control variables such as the book-to-market ratio,
investment rate, ROA, and abatement activity. Detailed definitions of these variables are listed in
Table 1. All regressions include firm and year fixed effects, and 𝑡-statistics based on standard errors
clustered at the firm level are reported with ***, **, and * indicating significance at the 1, 5, and 10%
levels, respectively. The analysis covers the sample period from 1991 to 2020.

estimates of property and crop damages, injuries, and fatalities.
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To verify the impact of demand shocks, we estimate the following panel regressions:

𝑜𝑗 ,𝑖,𝑡 = 𝜉𝑗 + 𝜉𝑡 + 𝑏 × Demand𝑖,𝑡 + 𝑐 × Controls𝑗 ,𝑖,𝑡 + 𝜀𝑗 ,𝑖,𝑡 . (12)

where the dependent variables include the firm-level sales growth, emission growth, and emission

intensity. The key independent variable is a demand shock dummy (Demand𝑖,𝑡), which equals 1

for firms not located in disaster-hit counties but operating in industries where peer firms were

directly affected by natural disasters in year 𝑡. These firms are assumed to experience a positive

demand shock due to temporary production disruptions to their peers within their industry. The

control variables, Controls𝑗 ,𝑖,𝑡 , include firm-level fundamentals such as total assets, the book-to-

market ratio, investment-to-capital ratio, return on assets (ROA), and pollution abatement activ-

ity.10 All regressions include firm fixed effects (𝜉𝑗 ) and year fixed effects (𝜉𝑡). All variables are

winsorized at the 1st and 99th percentiles to mitigate the influence of outliers, and the indepen-

dent variables are standardized to have zero mean and unit variance following winsorization.

Table 4 presents the results. The first two columns show that firms that are hit by a pos-

itive demand shock experience a significant positive sales growth in the current year relative

to the past year. This is consistent with our identification assumption that demand shifts from

their peer firms, whose production was disrupted, to these firms, whose production was not dis-

rupted. However, Columns 3 and 4 show that these firms do not experience significant emission

growth, even after controlling for size and abatement. Finally, our last two columns show sub-

stantial reductions in the emission intensity of these firms, even after controlling for size and

abatement. These results provide empirical support for abatement activities’ increasing returns

to scale, suggesting that larger firms naturally benefit more from abatement activities in reducing

total emissions.

6 Quantitative Assessments

As the primary mechanism of this paper has been highlighted, we now apply the quantitative

model to the data, quantify the mechanism, and show the aggregate effects. To do so, we first pa-

rameterize the model to match US firms’ dynamic and cross-sectional moments. We then present

the quantitative results on financial frictions’ aggregate and cross-sectional effects.

10Sales and net worth are highly correlated, as net worth incorporates sales. To fix this problem, we use total
assets to measure firm size to avoid multicollinearity. We have also tried other size measures and find consistent
results.
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6.1 Parameterization

Our parameterization proceeds in three steps. In the first step, we select a set of parameters to

match standard cross-sectional andmacroeconomic targets in the steady state. In the second step,

we choose the remaining parameters so that the model can replicate additional cross-sectional

moments observed in the data. Finally, we choose the pollution disutility parameter, assuming

the current penalty schedule in the second step is already optimal.

Fixed Parameters The first part of Table 5 presents the parameters directly taken from the

literature. The model operates at an annual frequency, and the time discount rate 𝛽 is set to 0.96

to match the average real risk-free rate of 4% per year. The capital share 𝛼 is set to 0.65 to match

a decreasing return to scale of two-thirds. The annual depreciation rate of capital 𝛿𝑘 is set to 0.10

to match the U.S.’s average nonresidential fixed investment rate.

Table 5: Calibrated Parameter Values and Sources
Symbols Descriptions Values Sources

Fixed Parameters
𝛽 Discount factor 0.96 Annual Frequency
𝛼 Capital share 0.55 DRS of Two-thirds
𝛿𝑘 Capital depreciation rate 0.10 BEA Data
𝜁 Dis-utility of pollution emission 0.17 Uncalibrated

Fitted Parameters
𝜌𝑧 Productivity persistence (fixed) 0.90 Targeted Moments
𝜎𝑧 Productivity volatility 0.05 Targeted Moments
𝜋𝑑 Exogenous exit risk 0.09 Targeted Moments
𝑛0 Net worth of entry 2.50 Targeted Moments
𝜃𝑘 Collateral constraint 0.40 Targeted Moments
𝑒 Highest emission intensity 10.0 Targeted Moments
𝛾 Elasticity of abatement into intensity 5.0 Targeted Moments
𝜇
𝜏 Mean of pollution penalty 0.01 Targeted Moments

𝜎
𝜏 Volatility of pollution penalty 0.01 Targeted Moments

Notes: This table presents the parameters used in the model, including both fixed and
fitted parameters. The model operates at an annual frequency. The fixed parameters
are based on existing literature and include the time discount rate (𝛽 = 0.96), chosen to
match the average risk-free rate of 4% per year. On the firm side, the capital coefficient
(𝛼 = 0.55) is set to match an implied decreasing-return-to-scale of two-thirds, and capital
is assumed to depreciate annually at a rate of 10% (𝛿𝑘 = 0.10), consistent with the average
aggregate nonresidential fixed investment rate reported in Bachmann et al. (2013). The
fitted parameters are chosen to match targeted moments from the firm-level data sample,
which will be further discussed in Table 6.

Fitted Parameters The second part of Table 5 presents the parameters we calibrated to match

the firm-level moments reported in Table 6. While all parameters are jointly determined, we

outline the rough relations between the parameters and moments. The first set of parameters
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pertains to output and finance. We set the productivity persistence parameter, 𝜌𝑧, to 0.90 and

the productivity volatility parameter, 𝜎𝑧, to 0.05 to match the auto-correlations of output across

different horizons. Tomatch the annual exit risk of 8.7% and the size of entrants relative to average

firms at about 30%, we choose the exogenous exit risk parameter, 𝜋𝑑 , to be 0.09 and the net worth

of the entry parameter, 𝑛0, to be 2.50. Finally, we set the collateral constraint parameter, 𝜃𝑘, to

0.40, leading to an equilibrium average firm-level leverage of 34%

Table 6: Targeted Moments: Model and Data
Moments Data Model

Output and Finance
1-year autocorrelation of output 0.89 0.90
3-year autocorrelation of output 0.69 0.71
5-year autocorrelation of output 0.53 0.56
Size ratio of entrant relative to average 0.28 0.28
Annual exit rate of firms 0.09 0.09
Mean of debt/asset ratio 0.34 0.34
Pollution and Abatement
Mean of emission intensity 5.38 4.16
Median of emission intensity 5.66 4.45
Standard deviation of emission intensity 3.05 1.82
P75/P25 of emission intensity 1.98 1.56
Ratio of zero pollution penalty 0.40 0.40
Mean of pollution penalty 0.01 0.01
Standard deviation of pollution penalty 0.01 0.01

Notes: This table presents the firm-level moments utilized to calibrate the fitted parameters of the
model. The emission intensity is measured in pounds/millions and is normalized. We start by
selecting a default pollution emission intensity of 𝑒 = 10 and an abatement technology of 𝛾 = 5.0

to simultaneously fit the emission intensity distribution, measured as the emission-to-sales ratio
in the model. Next, we select the mean of pollution penalty as 𝜇𝜏 = 0.01, the volatility of pollution
penalty is 𝜎𝜏 = 0.01, to simultaneously fit the pollution penalty distribution, measured as the
litigation-to-sales ratio. The fitted parameters chosen to match these targeted moments from the
firm-level data sample are listed in Table 5.

The second set of fitted parameters is related to pollution and abatement. The default pol-

lution emission intensity 𝑒 = 10 and the abatement to intensity elasticity 𝛾 = 5.0 are chosen

to match the emission intensity distribution. The emission-to-sales ratio is defined as pounds of

toxic emissions over millions of dollars of sales. Then, the mean of pollution penalty 𝜇𝜏 = 0.01,

the volatility of pollution penalty during normal periods 𝜎𝜏 = 0.01 are chosen to match the dis-

tribution of pollution penalty, which is measured as the litigation-to-sales ratio. Currently, the

monetary value of the direct costs of litigation cases over the total sales of firms is used tomeasure

the pollution penalty.11

11The data source regarding the pollution penalty is available on the website of the EPA at this link here. We also
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Disutility of Pollution While the disutility of pollution parameter 𝜁 does not affect our cur-

rent quantitative analysis on the firm side, it does have negative welfare effects on households, so

we must have 𝜁 > 0. Our current data do not determine the exact value of 𝜁 . The value of 𝜁 will

impact the optimal degree of pollution penalty and the optimal level of abatement. We choose 𝜁

in the baseline calibration, assuming the current penalty is optimal. We will further discuss the

optimal regulation policy and the optimal level of abatement based on the value of 𝜁 .

6.2 The Effects of Financial Frictions

We now use our calibrated model to assess the aggregate implications of financial frictions. Since

financial frictions delay constrained firms’ incentive to abate pollution, aggregating across firms,

this fact should imply that there will be fewer abatement activities in the aggregate level. Our

goal in this subsection is to quantify these negative effects of financial frictions. To do so, we

compare our calibrated baseline model to the frictionless model in which firms are not subject to

financial constraints and follow the unconstrained policies 𝑘′∗(𝑧) and 𝑎
′∗
(𝑧).

Figure 5. Environmental Distribution in Stationary Equilibrium

Notes: These plots show the density distribution of abatement activities and emission intensity
from our model-simulated firm sample. The dashed curve is the density of abatement and emis-
sion intensity in the frictionless model, while the solid blue curve is the corresponding density in
the baseline model. The productivity distribution solely determines the densities in the friction-
less model and, therefore, is perfectly normal-shaped. The densities in the baseline model are a
combination of two firms: the unconstrained firms acting as firms in the frictionless model and the
constrained firms that abate less. Therefore, the distributions are dual-peaked with lower abate-
ment and higher emission intensity.

Environmental Distributions in Equilibrium First, we check how abatement activities are

distributed across firms. Financial frictions depress abatement primarily in small, financially

collected data on the number of settlements for each case and found that the mean and median settlements for all
cases are 8.27 and 0.8 million dollars, respectively.
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constrained firms with relatively high returns to capital and low returns to abatement.

We illustrate this mechanism in Figure 5. These plots show the density distribution of abate-

ment activities and emission intensity from our model-simulated firm sample. The dashed curve

is the density of abatement activities and emission intensity in the frictionless model, while the

solid blue curve is the corresponding densities in the baseline model. The productivity distribu-

tion solely determines the densities in the frictionless model and, therefore, is perfectly normal-

shaped. The densities in the baseline model are a combination of two firms: the unconstrained

firms acting as firms in the frictionless model and the constrained firms that spend less in abate-

ment. Therefore, the distributions are dual-peaked with lower abatement and higher emission

intensity. From this perspective, the emission intensity distribution in our full model has more

mass in the right tails than the distribution without financial frictions. The thickness of the right

tail reflects the essential outcome, which is that financial frictions hinder firms from being cleaner.

Aggregate Effects of Financial Frictions We then show the aggregate effects of financial fric-

tions on the economy and the environment. Besides financial frictions hindering firms’ growth

(economy), we aim to find how financial frictions make firms dirtier (environment).

Table 7: The Aggregate Effects of Financial Frictions
Outcomes Output Capital Consump. Abatement Emission E.Intensity

Frictionless 4.78 17.05 2.90 0.172 25.37 5.43
Baseline 4.04 13.25 2.58 0.137 23.14 6.16

% Changes -15.5% -22.3% -11.0% -20.3% -8.8% +14.8%

Notes: This table shows the aggregate effects of financial frictions on the stationary economy cal-
culated from aggregating the stationary equilibrium distributions of the frictionless economy and
our baseline economy. We have two observations. First, financial frictions hinder firm growth over
their life cycle, so total output and capital stock are lower in the baseline economy. More specif-
ically, a 15.5% drop in output and a 22.3% drop in capital are both caused by financial frictions.
Second, conditional on the 15.5% drop in output, emission only drops by 8.8%, but emission inten-
sity goes up oppositely by 14.8%. This is because, under financial frictions, the more constrained,
smaller, and younger firms choose to abate less optimally. Therefore, financial frictions amplify the
pollution externality in the aggregate because of the distribution of financially constrained firms.

Table 7 shows the aggregate effects of financial frictions. We have two significant observa-

tions. First, financial frictions hinder firm growth over their life cycle, so total output and capital

stock are lower in the baseline economy. More specifically, a 15.5% drop of the production and

a 22.3% drop in capital are both caused by financial frictions. More importantly, we are able to

quantify how financial frictions affect the economy’s abatement activities and emission intensity.

Conditional on the 15.5% drop in output, total emission only drops by 8.8%, but emission inten-

sity goes up oppositely by 14.8%. This is because, under financial frictions, the more constrained,
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smaller, and younger firms choose to abate less optimally. In other words, financial frictions hurt

economic growth and exacerbate the aggregate environmental externality.

7 Policy Implications

We now discuss policy implications after quantifying and validating the mechanismwith data. To

do so, we first show the effects of increasing themagnitude of regulatory penalties on themacroe-

conomy and the environment. We then present the results of combining regulatory penalties and

credit interventions.

7.1 The Effects of Environmental Policy

We first use our calibrated model to assess the aggregate effects of increasing environmental

regulation penalties under financial frictions. Since financial frictions hinder firms’ incentive to

abate, the impact of regulation penalties depends on financial frictions.

The Effects of Increasing Regulatory Penalty We further investigate the effects of regula-

tory penalties by showing economies from zero penalty to a relatively high penalty using our

model-simulated samples. Increasing regulatory penalties improves the environment (increased

abatement, reduced emission intensity, and reduced emissions) but significantly reduces eco-

nomic performance measured in capital, output, and consumption.

Figure 6 shows the results. We simulate 101 economies from zero penalty 𝜇𝜏 = 0.00 to 𝜇𝜏 =

0.20 with a step size Δ𝜇𝜏 = 0.005 to generate the smooth changes. We normalize all variables

𝑥 by dividing by 𝑥(𝜇𝜏 = 0.00), except abatement since it starts with zero. Therefore, we could

directly observe the changes in the baseline economy relative to the frictionless economywithout

comparing the absolute values. We discuss the consequences in two parts: the economy and

the environment. For the impact on the economy as shown in the lower three panels (Capital,

Output, and Consumption), increasing the regulatory penalty monotonically leads to decreases

in all variables; however, the differences between the baseline and frictionless models (denoted

by solid and dashed lines, respectively) are negligible.

The key differences are in the perspective of the environment, as shown in the three upper

panels (Abatement, Emission Intensity, and Total Emission). In the beginning, increasing the reg-

ulatory penalty does not increase abatement at all when the penalty is low, regardless of financial

frictions. As a result, emission intensity stays at the highest level. Total emission decreases only

because firms’ optimal capital is smaller, and their output decreases. Then, as the regulatory
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Figure 6. The Effects of Increasing Regulatory Penalty

Notes: These plots show how the aggregate economy changes with increased regulatory penalties
in our model-simulated firm samples. We simulate 101 economies from zero penalties 𝜇𝜏 = 0.00 to
𝜇𝜏 = 0.20 with a step size Δ𝜇𝜏 = 0.005 to generate the smooth changes. We normalize all variables
𝑥 by dividing by 𝑥(𝜇𝜏 = 0.00), except abatement since it starts with zero. Therefore, we could
directly observe the changes in the baseline economy relative to the frictionless economy without
comparing the absolute values.

penalty increases substantially, firms start to participate in abatement activities, and their emis-

sion intensity begins to decrease. Different from the perspective of the economy, the gap between

the baseline and frictionless models is substantial, especially when penalties are considerable. For

a realized 𝜇𝜏 = 0.01, the emission intensity in a frictionless economy drops by 35% compared to

while it only drops by 25% in the baseline economy.

Welfare Implications Under Financial Frictions We then explore the welfare implications

by showing that the policy that directly increases the pollution penalty may be sub-optimal de-

pending on the interaction of the penalties with financial frictions. The welfare in the stationary

equilibrium is the trade-off between utility gain from consumption and utility loss from pollution,

as in the following equation 𝑊
∗
(𝜇𝜏) = 𝑙𝑜𝑔(𝐶

∗
(𝜇𝜏)) − 𝜁 𝑙𝑜𝑔(𝐸

∗
(𝜇𝜏)). Therefore, the changes in

consumption and pollution jointly govern the changes in total welfare.

We first show interesting results in Figure 7, how welfare changes with penalties in our base-

line economy (left plot) compared to alternative economies in which households are less con-
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Figure 7. Welfare Implications Under Financial Frictions

Notes: These plots show how welfare changes with increased regulatory penalties in our model-
simulated firm samples. We simulate 101 counterfactuals from zero penalty 𝜇𝜏 = 0.00 to 𝜇𝜏 =

0.20 with a step size Δ𝜇𝜏 = 0.005 to generate the smooth changes. We normalize the welfare by
dividing by 𝑤𝑒𝑙𝑓 𝑎𝑟𝑒(𝜇𝜏 = 0.00) and then subtracting one. Therefore, we could directly observe
the changes in the baseline economy relative to the frictionless economy without comparing the
absolute values. We also show the results with different household preferences of the disutility of
pollution parameters.

cerned about pollution (central plot) or households are more pro-environment (right plot). We

normalize the welfare by dividing by𝑤𝑒𝑙𝑓 𝑎𝑟𝑒(𝜇𝜏 = 0.00) and then subtracting one. Therefore, we

could directly observe the changes in the baseline economy (solid line) relative to the frictionless

economy (dashed line) without comparing the absolute values.

Figure 7 offers three patterns. First, welfare changes are not monotonic regarding regula-

tory penalties, regardless of financial frictions and household preferences under moderate pa-

rameter ranges. This is mainly due to firms’ inaction in abatement when penalties are minor.

In this region, increasing pollution penalties only reduce emissions through reduced production

scale. Consequently, the economy generates welfare loss because households suffer from reduced

consumption but gain only slowly from emission reduction. Figure 8 shows the decomposition,

where the second panel shows the relative welfare loss caused by consumption reduction and the

third panel shows the relative welfare gain from emission reduction.

Second, not surprisingly, welfare changes depend on the disutility of the pollution parameter

𝜁 . We calculate two alternative welfare, assuming a relatively lower disutility 𝜁 = 0.10 (Less-
Concerned) economy and a relatively higher disutility 𝜁 = 0.20 (Pro-Environment) economy to

show the differences. In the Less-Concerned economy, consumption losses dominate the envi-

ronmental gains, and the optimal regulatory penalty is zero. In the Pro-Environment economy,

the environmental gains dominate consumption losses when penalties are substantial, and the
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Figure 8. Welfare Implications Decomposition

Notes: These plots show how welfare changes with increased regulatory penalties in our model-
simulated firm sample for the baseline economy. We simulate 101 counterfactuals from zero
penalty 𝜇𝜏 = 0.00 to 𝜇𝜏 = 0.20 with a step size Δ𝜇𝜏 = 0.005 to generate the smooth changes.
We normalize the welfare and welfare components by dividing by 𝑤𝑒𝑙𝑓 𝑎𝑟𝑒(𝜇𝜏 = 0.00) and then
subtracting one. Therefore, we could directly observe the changes in the baseline economy relative
to the frictionless economy without comparing the absolute values.

optimal regulatory penalty is about 1.5%, which leads to 10% consumption loss and 17% environ-

mental gain. The decomposition is in the second and third panels in Figure 8 at 𝜇𝜏 = 0.015.

Third, we discuss the role of financial frictions. Under all preferences, welfare changes in the

frictionless economy (dashed line) are higher than in the baseline economy (solid line). More im-

portantly, in a frictionless economy, the optimal penalty is larger because firms are more respon-

sive to increases in regulatory penalties. If we check the decomposition in Figure 8, consumption

losses are not increasing as fast in an economy without financial frictions, and environmental

gains are growing faster with regulatory penalties. Quantitatively, an optimal regulatory penalty

𝜇𝜏 = 0.14 in the frictionless economy would generate 3% welfare gain while an optimal regu-

latory penalty 𝜇𝜏 = 0.12 in the baseline economy with financial frictions would generate 1.8%

welfare gain, which is 1.2% lower in magnitude and 40% lower in percentage. In other words, the

aggregate welfare gain from optimal environmental regulation is reduced by 40% due to financial

frictions.

Discussions on Investors’ Green Preference We do not explicitly model green preference

from investors to motivate corporate inputs in abatement activities. Instead, shareholders are

completely profit-driven; they only engage in abatement activities to prevent future environ-

mental penalties (indirect forms of taxes, fines, litigation costs, or indirect forms of consumer

and government relationships). These are reflected in households’ disutility of pollution emis-

sions 𝜁 and, therefore, the general environmental penalties 𝜇𝜏 . In other words, the marginal
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investors’ green preferences are captured by the households’ disutility of pollution, which affects

future magnitudes of environmental penalties.

7.2 Effects of Green Loan Policies

We then use our calibrated model to assess the effects of combining environmental regulation

penalties with alternative credit intervention policies such as green loan policies. A big concern

about green loans is “financial greenwashing”, which means that firms may use green loans par-

tially or entirely for non-abatement activities, such as capital investment, due to imperfect moni-

toring technology. We present evidence for an interesting idea here that green finance could still

be a good policy, along with moderate pollution penalties, even without monitoring.

Implementation of Green Loan Policies We implement the green loan interventions in an

extension of our baseline model by modifying the collateral constraint. Firms can now use cer-

tificates of their pollution abatement costs as additional collateral to apply for a green loan from

the government up to 𝜃𝑎.12 The new collateral constraint would be:

𝑏𝑗𝑡+1 ≤ 𝜃𝑘𝑘𝑗𝑡+1 + 𝜃𝑎𝑎𝑗𝑡+1, (13)

The government cannot monitor the exact use of the funds raised for firms’ abatement activi-

ties in a world without green loans. For instance, without getting a green loan, a company would

implement abatement activities for one million; after getting a green loan of exactly one million,

the company could still implement abatement activities for exactly one million and use the green

loan for capital investment completely. The firms’ optimization follows the same recursive prob-

lem as in Section 3.2 but now with the new collateral constraint as stated in equation (13) instead

of equation (5). The solution method is in the Internet Appendix III.

We choose a 𝜃𝑎 = 1 to denote a 100% green loan support for any abatement activities for any

firm. Though 𝜃𝑎 = 1 is way larger than 𝜃𝑘 = 0.4, given that total abatement activities are only

about 1% of total capital stock, this policy is likely only injecting a tiny amount of green loans

into the financial market. In our simulated counterfactual, the supply of green loans is only about

0.75% of total credit in the economy.

Firm-level Effects of Green Loans Wefirst showwhich firms are affectedmore by green loan

policies by examining their decision rules and the equilibrium distribution. Figure 9 shows the

12Using the certificates of pollution abatement costs as collateral is similar to the setup of patent collateral (Chen
et al., 2023) or loan guarantee (Benhima et al., 2024). The essential idea is that firms’ marginal finance costs of
abatement are now relaxed, and they can get a green loan or bond based on such abatement expenditures.
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firm-level effects. The upper-left panel shows the abatement policies of firms under green loans

(blue solid line) compared to the baseline model (purple dashed line) and the frictionless model

(black dotted line). We also show the percentage changes of abatement under green loans over

the baseline model in the orange dashed-dotted line, which is the distance between the blue solid

line and the purple dashed line. Smaller and more constrained firms significantly increase their

abatement activities after receiving green loans. Therefore, as shown in the upper-right panel,

their emission intensity also significantly decreases.

Figure 9. Green Loan Effects on Decision Rules and Distributions

Notes: Subplot 1 shows the abatement policies of firms (high productivity) under green loans com-
pared to the baseline and frictionless models. Smaller and more constrained firms significantly
increased their abatement activities. Therefore, as shown in Subplot 2, their emission intensity
also significantly decreased. Subplots 3 and 4 show the density distribution of abatement activities
and emission intensity from our model-simulated firm sample. The dotted curve is the density of
abatement and emission intensity in the frictionless model, the dashed purple curve is the corre-
sponding densities in the baseline model, and the solid blue curve is the corresponding densities
in the green loan model. The densities in the baseline model are a combination of two firms: the
unconstrained firms acting as firms in the frictionless model and the constrained firms that abate
less. The distributions are dual-peaked, with lower abatement and higher emission intensity. The
green loan model helps reduce the inefficient peak in the emission intensity distribution.

The lower panels show the density distribution of abatement activities and emission intensity

from our model-simulated firm sample. The densities in the baseline model are a combination of
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two types of firms: the unconstrained firms acting as firms in the frictionless model and the con-

strained firms that abate less. The baseline model’s abatement and emission intensity distribution

are dual-peaked, with a second peak having lower abatement and higher emission intensity, re-

spectively. In the counterfactual model with green loans, the second peak with lower abatement

in the abatement distribution is wiped out, and the second peak with higher emission intensity is

reduced. The green loan policies help reduce the inefficient emission intensity distribution peak.

Table 8: The Allocation and Aggregate Effects of Green Loan Policies (𝜃𝑎 = 1)

Panel A: Allocation of Green Loans

Outcomes Total ∑ 𝑏 Green∑ 𝑏𝑔 Used ∑Δ𝑎

∑ 𝑏𝑔

Washed ∑Δ𝑘

∑ 𝑏𝑔

New∑ 𝜃𝑘Δ𝑘

Baseline 5.30 0.00 – – –
Green Loan 5.37 0.04 0.002 0.038 0.03

% to Total∑ 𝑏 +1.32% +0.75% +0.04% +0.71% +0.56%
% to Green∑ 𝑏𝑔 – – 5% 95% 75%

Panel B: Aggregate Effects of Green Loan Policies

Outcomes Output Capital Consump. Abatement Emission E. Intensity

Baseline 4.04 13.25 2.58 0.137 23.14 6.16
Green Loan 4.06 13.32 2.59 0.139 23.11 6.12
% Changes +0.5% +0.5% +0.4% +1.5% -0.1% -0.6%

Notes: Panel A shows the allocation of total credit and green loans. We have three observations. First, the
green loans policy is a relatively small-scale credit intervention in the credit market. Firms, in total, use about
0.75% of green loans ∑ 𝑏𝑔 relative to total credit ∑ 𝑏 in the baseline model. Second, the supply of green loans
also relaxes financial frictions in general. We see an accompanying growth in capital collateral credit ∑ 𝜃𝑘Δ𝑘

of 0.56% because firms grow larger and have additional collateral. Both channels add up to a total of 1.32%
growth in total credit ∑ 𝑏 . Third, financial greenwashing happens. Among the 0.75% usage of green loans
∑ 𝑏𝑔 , only 5% is indeed exactly used for increased abatement activities ∑Δ𝑎

∑ 𝑏𝑔

. At the same time, the other 95% is

greenwashed for increased capital investment ∑Δ𝑘

∑ 𝑏𝑔

. Panel B shows the aggregate effects of green loan policies
(𝜃𝑎 = 1) on the stationary economy calculated from aggregating the stationary equilibrium distributions of the
green loans economy and its comparison to our baseline economy. First, the supply of green loans makes the
economy cleaner by directly increasing abatement activities. More specifically, the injection of green loans of
0.75% of total credit directly increases abatement activities by 1.5% and lowers emission intensity. It also boosts
the economy by increasing the output and capital stock by 0.5% and consumption by 0.4%. Such growth of the
economy leads to a smaller reduction of total emissions of 0.1% compared to the 0.6% reduction in emission
intensity. Second, the supply of green loans makes the economy cleaner by indirectly relaxing the financial
frictions of dirtier firms and, therefore, making them cleaner. Although most green loans are used by firms for
capital investment, the supply of green loans indirectly relaxes the financial burdens of smaller and constrained
firms to do abatement and capital investment. Allowing the more constrained, smaller, and younger firms to
grow faster also helps to reduce emission intensity. Therefore, both the direct and indirect channels lead to the
total reduction of emission intensity of 0.6%.

Allocation and Aggregate Effects of Green Loans We finally show how the newly supplied

green loans are allocated and their aggregate implications in Table 8. Panel A shows the allocation

of total credit and green loans. We observe three patterns. First, when we compare the baseline

39



economywith the economywith green loans in Panel A, the green loan policy is a relatively small-

scale credit intervention in the credit market: Green loans used by firms (∑ 𝑏𝑔 ) only account for

about 0.75% of total credit (∑ 𝑏). Second, financial greenwashing happens. Among the 0.75%

usage of green loan ∑ 𝑏𝑔 , only 5% is indeed exactly used for increased abatement activities ∑Δ𝑎

∑ 𝑏𝑔

.

At the same time, the other 95% is greenwashed for increased capital investment ∑Δ𝑘

∑ 𝑏𝑔

. Third,

the supply of green loans also relaxes financial frictions in general. We see an accompanying

growth in capital collateral credit∑ 𝜃𝑘Δ𝑘 of 0.56% because firms grow larger and have additional

collateral. The two channels (the growth channel and the increased abatement channel) add up

to a total of 1.32% growth in total credit∑ 𝑏 .

Panel B shows the aggregate effects of green loan policies on the economy calculated by

aggregating the distributions of firms in Panel A. First, the supply of green loans makes the econ-

omy cleaner by directly increasing abatement activities (i.e., the increased abatement channel).

More specifically, the injection of green loans of 0.75% of total credit directly increases abatement

activities by 1.5%. Second, the supply of green loans makes the economy cleaner by indirectly re-

laxing the financial frictions of dirtier firms and, therefore, making them cleaner (i.e., the growth

channel). Although firms use most green loans for capital investment, the supply of green loans

indirectly relaxes the financial burdens of smaller and constrained firms to do abatement and

capital investment. Third, the green loans lead to economic growth. It also boosts the economy

by increasing output and capital stock by 0.5% and consumption by 0.4%. Such growth of the

economy leads to a 0.1% reduction in total emissions and a 0.6% reduction in emission intensity.

In other words, allowing the more constrained, smaller, and younger firms to grow faster also

helps to reduce emissions.

8 Conclusion

This paper explores the effects of financial frictions on firms’ pollution abatement activities and

their aggregate implications for the economy and the environment. At the center of our analysis

is the role of financial frictions in the life cycle of firm growth. Using US firm-level data, we

document significant differences in pollution abatement activities over the life cycle of firms.

Smaller and younger firms are more constrained in financial indicators and have higher emission

intensity. In addition, these firms invest more in physical capital and engage less in pollution

abatement activities; interestingly, their abatement investment accelerates, and their emission

intensity reduces as they accumulate more net worth and grow older.

Motivated by this evidence, we develop and quantify a heterogeneous firmmodel to study the
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relationship between financial frictions, physical investment, and pollution abatement activities.

In the model, constrained, smaller, and younger firms prefer physical investment over pollution

abatement because the returns from the former are higher than those from the latter. The model

successfully replicates all the life cycle patterns in our empirical analysis. Taking the model to

the data, we show that the aggregate welfare loss from the sub-optimal environmental regulation

due to financial frictions is substantial. Finally, we show that even without monitoring, green

loan policies are still considerably effective in reducing emission intensity through increasing

abatement investment and enhancing firm growth.
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I Data Appendix

I.1 The Toxic Release Inventory (TRI) Database

The Toxic Release Inventory (TRI) program and the resultant database are maintained by the

United States Environmental Protection Agency (EPA). In 1986, the U.S. Congress passed the

Community Right to Know Act (EPCRA) in response to public concerns over the release of toxic

chemicals from several environmental accidents in the U.S. and overseas. The EPCRA entitles res-

idents in their respective neighborhoods to know the source of detrimental substances, especially

for their potential impacts on human health from routes of exposure.

In response to the EPCRA, the EPA established the TRI program to track and supervise certain

classifications of toxic substances and chemical pollutants that endanger human health and the

environment. The changes and updates to the list of these pollutants are provided on the EPA

website (www.epa.gov/sites/production/files/2020-01/documents/tri chemical

list changes 01 21 2020.pdf). In particular, the EPA mandates a record of the amount of

each TRI-listed toxic chemical being released to the environment through the air, water, or soil

each year for every facility that meets the following criteria:

1. It manufactures, processes, or otherwise uses a TRI-listed chemical in quantities above

threshold levels in a given year.

2. It has ten or more full-time equivalent employees.

3. It is in the mining, utility, manufacturing, publishing, hazardous waste, or federal industry.

When a facility meets all three criteria in a year, it must report to the EPA and thus enter into

the TRI program. The EPA then publicizes the TRI database, which contains detailed information

about the TRI program and is available for any interested third party to access. The EPA also

provides annual data on pollutant density recorded by air monitors. A single air monitor records

the density of multiple pollutants at a fixed location every hour.

To maintain the data quality of the information in the TRI program, the EPA first identifies

if a TRI form submitted by a facility contains potential errors; if so, the EPA contacts the facility.

Once the EPA confirms errors, the facility is requested to resubmit a corrected TRI report. In

addition, the Office of Inspector General is an independent office within the EPA that performs

audits, evaluations, and investigations of the agency and its contractors to prevent and detect

fraud, waste, and abuse. The EPA then conducts an extensive quality analysis of the TRI reporting

data and provides analytical support for enforcement efforts led by its Office of Enforcement and

Compliance Assurance (OECA).
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The annual emission data of all facilities reported to the EPA are updated on the webpage of

the TRI program between July and September of the following year, as shown in Figure IA.1. It

is worth noting that the TRI program has included approximately 98% of facility-level emission

data of 2020 on July 20, 2022.

To calculate a facility’s total emissions, wemeasure emissions across four key categories: total

production emissions, total releases, onsite releases, and land disposal. As the EPA outlines, these

categories enable a detailed emissions analysis, providing insights into a facility’s environmental

impact. For example, total production emissions include all emissions resulting from the facility’s

production processes within a specific timeframe, serving as a baseline for evaluating operational

efficiency and environmental responsibility. Total releases compile all emissions discharged into

the environment, offering a comprehensive view of the facility’s overall impact.

On-site releases specifically focus on emissions directly released into the surrounding envi-

ronment from the facility’s location, highlighting areas for immediate pollution reduction. Land

disposal measures the waste and emissions disposed of on land, indicating the facility’s effect on

land quality and the risk of soil contamination. This systematic categorization improves under-

standing of a facility’s emission profile and supports identifying targeted strategies for mitigating

environmental damage. Finally, we calculate the total emissions by adding the amounts of all

chemicals the facility releases in pounds for a given year.

Thus, in our empirical tests, such as our portfolio analysis, we construct portfolios at the end

of September of year 𝑡 to ensure that the information with respect to facility emissions in year

𝑡 − 1 is publicly available when we sort portfolios.

[Place Figure IA.1 about here]
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We also notice that the TRI database may not be comprehensive before 1991, as we observe

an abnormally high ratio of reported zeros in facilities’ TRI-listed chemicals in pre-1991 years.

We thus download and organize the facility-level TRI data from 1991 to 2020 as follows:

Step 1: We access the TRI program via the EPA website

(https://www.epa.gov/toxics-release-inventory-tri-program)

[Place Figure IA.2 about here]

Step 2: We download the annual TRI data from 1991 to 2020.

[Place Figure IA.3 about here]

Step 3: For each facility in a year, we use the value “PROD. WASTE (8.1 THRU 8.7),” which

is the sum of the total released toxic pollutants (in pounds) across all chemical categories for

each plant. Despite this, there are seven items reported in Section 8 of the TRI database, in-

cluding item 8.1 (amount of total releases), 8.2 (energy recovery on-site), 8.3 (energy recovery

off-site), 8.4 (recycling on-site), 8.5 (recycling off-site), 8.6 (treatment on-site), 8.7 (treatment off-

site), and PROD. WASTE (8.1 THRU 8.7) (the sum of the quantities in items 8.1 through 8.7).

Details available in the TRI database (https://www.epa.gov/sites/production/files/

2019-08/documents/basic data files documentation aug 2019 v2.pdf). Since 2003,

item 8.1 (amount of total releases) has been separated into four sub-items and documented as

item 8.1a (on-site contained releases), 8.1b (on-site other releases), 8.1c (off-site contained re-

leases), and 8.1d (off-site other releases).

Three issues are worth discussing before we proceed. First, the TRI database provides a link

table with the facility-level Dun & Bradstreet number. As a result, we exploit the identifier to

bridge the TRI database to the NETS database and obtain additional facility-level information,

including sales and employment. Second, the TRI database also includes a “parent name” that

indicates the name of a company that owns the facility. Thus, we can further use the “parent

name” to bridge the TRI database to the CRSP/Compustat database (e.g., Xiong and Png (2019)).

Third, the TRI database has not changed the coverage of chemicals and pollutants to be disclosed.
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I.2 The Pollution Prevention (P2) Database

We obtain the facility-level abatement activities from the Pollution Prevention (P2) database to

measure a facility’s pollution abatement activities. Specifically, we sum up the number of new

source reduction activities across all chemicals implemented by the facility in that year. For in-

stance, Alcoa Corporation reported implementing 71 abatement activities across 28 states in the

United States in 1993. For example, one of its facilities in Iowa State (TRI Facility ID: 52808LM-

NMCHIGHW) implemented two activities with code W58 to reduce other process modifications

and one with code W81 to change product specifications. We download the facility-level P2 data

from 1991 to 2020 as follows:

Step 1: We access the P2 program via the EPA website (https://www.epa.gov/p2)

[Place Figure IA.4 about here]

Step 2: We download the annual P2 data from 1991 to 2020.

[Place Figure IA.5 about here]

Step 3: For each facility in a year, we count the total number of abatement activities.

[Place Figure IA.6 about here]

We exploit the Pollution Prevention P2 database from the EPA to analyze abatement activities.

As presented in Figure IA.6, EPA provides the wastemanagement hierarchy starting from 1991. In

addition, to release quantities for a released pollutant, plants reporting in the TRI database must

document specific source reduction activities that mitigate the number of hazardous substances

entering the waste stream: the quantities of the chemical recycled, used for energy recovery, or

treated at the facility or elsewhere in addition to the original reporting requirements on releases

emitted directly into the environment or transferred off-site to disposal, treatment, or storage

facilities. Moreover, plants report optional waste minimization information on source reduction

activities, such as process modifications and substituting raw materials, which were newly im-

plemented during the reporting year. The rest, but the most common type of abatement activity,

comprises several actions: modifications to equipment, layout, or piping. The list of various

abatement activities is available in Table IA.1.

[Place Table IA.1 about here]
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I.3 Abatement Activity Measures: Capital Investment

Our analysis focuses on firm-level pollution abatement activities (from the P2 dataset) and

emissions (from the TRI database). Following the classification method outlined in Section 2.2

of the main text, we first classify each abatement activity as either an operating expense or a

capital investment based on its implementation characteristics, and then isolate those activities

identified as capital investments for our analysis.

To classify pollution abatement activities from the P2 dataset, we assign each of the 49 distinct

activities a score from 10 to 1 based on input requirements, process complexity, and infrastructure

needs according to Table IA.1 in Section I.3. Higher scores (10 and 9) indicate low complexity and

procedural changes that require minimal infrastructure modifications. These are characteristic of

operating expenses, such as material substitution or adjustments to operational practices. Mod-

erate scores (8–7) imply minor capital outlays (e.g., small equipment modifications), while lower

scores denote increasing capital intensity: scores of 6–5 involve moderate investment (e.g., new

machinery), 4–3 signal significant infrastructure upgrades, and 2–1 indicate full system replace-

ments or major technological overhauls.

We then translate these scores into weights: 1 for scores below 3 (capital investment), 0.5 for

scores between 4 and 6 (moderate), and 0 for scores above 7 (operating expenses). Aggregating

the weighted activities at the firm-year level yields our measure of capital-intensive abatement

activities.

I.4 Civil Litigation Cases Against Pollution Dataset

Pollution Penalty from Civil Litigation Cases Against Pollution We collect data on civil

cases against pollution to match the pollution penalty in our model. To collect the number and

dollar amount of civil cases against pollution in the EPA record, we use the following procedures:

Step 1: We access the Enforcement and Compliance History Online (ECHO) system that

contains information on civil cases provided by the EPA:

https://echo.epa.gov/tools/data-downloads/icis-fec-download-summary

[Place Figure IA.7 about here]

Step 2: We next download all cases from the “PENALTIES” file on the webpage. Different

types of civil penalties are reported for each case, as well as the case identifier, the total federal

penalty amount, the state or local penalty amount, the total supplemental environmental project

amount, the total complying action amount, and the federal cost recovery awarded amount.
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Step 3: Moreover, we access facility-case-level information from the “Facilities in Case” file,

including the facility identifier, the case identifier, and detailed address information about the

facility’s location in each case. Finally, using this file, we trace back to the TRI database via the

facility identifier and collect the number and dollar amount of civil litigation cases at the firm

level for our empirical analysis.

ACase Study of a Public Firm’s Environmental Impact Figure IA.8 illustrates a case of en-

vironmental contamination by Dow Chemical. In 2002, Dow Chemical agreed to settle a lawsuit

in California by spending $3 million on wetlands restoration. In 2008, the federal government

intervened and claimed damages to nearby residents’ health from airborne contamination from

Dow Chemical’s nuclear weapon plant in Colorado. In 2011, Dow Chemical negotiated with the

regulator about violations of the Clean Air Act, which caused the dioxin contamination in Michi-

gan. See Corporate Research Project (http://www.corp-research.org/dowchemical). On

November 9, 2019, Dow Inc., which merged with DuPont Co. in 2017, settled an environmen-

tal complaint at an estimated cost of $77 million in projects and funding for the restoration of

injured fish, wildlife, and habitats after hazardous chemical pollutants were released over sev-

eral decades from Dow’s facility located in Midland, Michigan. See Dow’s settlement (https:

//www.michigan.gov/ag/0,4534,7-359-92297 47203-511944--,00.html).
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I.5 Matching TRI (NETS) with CRSP/Compustat

We extract facilities’ parental names in the TRI (NETS) database and then match these names in

the TRI database to the names of U.S. public companies in the CRSP/Compustat database. We

first clean parent firm names in the TRI (NETS) database and firm names in the CRSP/Compustat

database following the approach of Chen, Hsieh, Hsu, and Levine (2022). Specifically, we remove

punctuation and clean special characters. We then convert firm names into uppercase and stan-

dardize them. For example, we standardize “INDUSTRY” to “IND,” “INCORPORATION” to “INC,”

and “COMPANY” to “COM.”

Tomatch facilities’ parental firm names with firms in CRSP/Compustat based on standardized

names, we use the fuzzy name-matching algorithm via SAS, which generates matching scores for

all name pairs of parent names in TRI (NETS) and firms in CRSP/Compustat. The matching score

measures the distance between the two firms’ names. The index score ranges from 0 to infinity,

with a score of zero being a perfect match. We obtain a pool of potential matches based on two

criteria: (1) the matching score must be precisely 0 and thus the same as those of firms in the

CRSP/Compustat database, and (2) the matching score must be below 500. We then hire research

assistants to identify exact matches from all potential matches manually.
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I.6 Details on Anti-Recharacterization Laws Shocks

Anti-recharacterization laws are pivotal in secured transactions, especially pertinent in bankruptcy

proceedings under Chapter 11 of the U.S. Bankruptcy Code, which facilitates business reorga-

nization. These laws prevent reclassifying secured debt agreements as other forms of financial

arrangements during bankruptcy. This distinction is crucial because the treatment of these agree-

ments under Chapter 11 can significantly influence both the debtor’s reorganization plan and the

recovery strategy of secured creditors.

In regions where anti-recharacterization laws are robust, these statutes ensure that secured

debts retain their status throughout the bankruptcy process. This is particularly important under

Chapter 11, where the reclassification of debts can alter creditors’ priority, potentially diminish-

ing their rights to claim against the debtor’s assets. By maintaining the integrity of the original

contractual terms, these laws ensure that secured debts are not subject to recharacterization as

unsecured, which can crucially affect the repayment hierarchy in bankruptcy.

The implications of anti-recharacterization laws on secured lending are as follows. The enact-

ment of anti-recharacterization laws strengthens the position of secured creditors by safeguard-

ing the terms of their agreements against judicial reinterpretation in bankruptcy cases. This legal

certainty is instrumental for creditors, as it diminishes the risks associated with lending. Know-

ing that their claims and collateral are legally protected makes lenders more willing to extend

credit to businesses, particularly in financially volatile environments.

For borrowers, particularly those in industries with higher operational risks, these laws can

facilitate easier access to credit. Lenders, reassured by the legal protections these laws provide,

may offer larger loans or more favorable terms. This is because the enhanced creditor protection

minimizes the potential loss in the event of the borrower’s bankruptcy, ensuring that the secured

assets can be reclaimed or prioritized for repayment.

Ultimately, the stability brought by anti-recharacterization laws encourages a healthier credit

market. Lenders are more likely to engage in secured lending when they can trust the enforce-

ability of their agreements, leading to increased financial fluidity for businesses. This supports

business expansion and stimulates economic growth by ensuring enterprises can access neces-

sary capital under conditions that respect creditors’ rights.
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I.7 Details on Natural Disaster Demand Shocks

To identify exogenous demand shocks, we utilize county-level disaster records from the Spa-

tial Hazard Events and Losses Database for the United States (SHELDUS), which provides detailed

data on the location, timing, and type of natural disaster events across all U.S. counties. The SHEL-

DUS Database, maintained by Arizona State University, is a comprehensive county-level dataset

that tracks natural hazard events and associated losses across the United States. It includes in-

formation on the occurrence and severity of disasters such as hurricanes, floods, wildfires, and

earthquakes, along with property damage, crop losses, injuries, and fatalities.

We begin by matching SHELDUS disaster events to facility-level data from the Toxics Release

Inventory (TRI) based on the county-year in which each facility operates. A firm is considered

indirectly affected—and thus part of the treatment group—if none of its TRI-reporting facilities

is located in a county that experienced a disaster in a given year, but other firms in the same

industry-year were directly affected. These treatment firms do not face production disruptions,

operational delays, or physical damage, but may experience increased demand as a result of dis-

asters impacting their industry peers. In contrast, firms with facilities located in disaster-affected

counties are classified as directly impacted and excluded from the treatment group in order to

avoid conflating supply-side disruptions with demand-driven effects. We focus on firms that

were not directly affected by disasters but operate in the same industry-year as at least one firm

that was. These firms are assumed to face a temporary surge in consumer demand, likely due to

a substitution effect as supply disruptions reduce the output of disaster-affected peers. To define

industries, we use the Fama-French 48 industry classification system (Fama and French, 1997).

This approach creates a quasi-experimental setup, allowing us to compare firms that are pos-

itively exposed demand shocks (but face no operational disruptions) to firms in unaffected indus-

tries. These demand shocks are exogenous to the firms’ investment and pollution abatement deci-

sions, which are assumed to be predetermined. Therefore, any observed difference in outcomes,

such as emission intensity or sales growth, can be interpreted as a response to the exogenous

shift in industry-specific demand pressure.
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II Empirical Appendix

In this section, we present additional empirical results and robustness tests.

II.1 Details of Firm-level Productivity Estimation

Firm-level Productivity Estimation Data and firm-level productivity estimations are con-

structed as follows. We consider publicly traded companies on U.S. stock exchanges listed in

both the annual Compustat and the CRSP (Center for Research in Security Prices) database. We

assume that the production function at the firm level is Cobb-Douglas and allow the parameters

of the production function to be industry-specific:

𝑦𝑖,𝑗 ,𝑡 = 𝑧𝑖,𝑗 ,𝑡𝑘
𝛼1,𝑗
𝑖,𝑗 ,𝑡𝑛

𝛼2,𝑗
𝑖,𝑗 ,𝑡 ,

in which 𝑧𝑖,𝑗 ,𝑡 is the firm-specific productivity level at time 𝑡. This is consistent with our orig-

inal specification because the observed physical capital stock, 𝑘𝑖,𝑗 ,𝑡 , corresponds to the mass of

production units owned by the firm.

We estimate the industry-specific capital share, 𝛼1,𝑗 , and labor share, 𝛼2,𝑗 , using the dynamic

error component model adopted in Blundell and Bond (2000) to correct for endogeneity. Given

the industry-level estimates for 𝛼1,𝑗 and 𝛼2,𝑗 , the estimated log productivity of firm 𝑖 is computed

as follows:

ln 𝑧𝑖,𝑗 ,𝑡 = ln 𝑦𝑖,𝑗 ,𝑡 − 𝛼1,𝑗 ⋅ ln 𝑘𝑖,𝑗 ,𝑡 − 𝛼2,𝑗 ⋅ ln 𝑛𝑖,𝑗 ,𝑡 .

We allow for 𝛼1,𝑗 + 𝛼2,𝑗 ≠ 1, but our results also hold when we impose constant returns to scale

in the estimation, that is, 𝛼1,𝑗 + 𝛼2,𝑗 = 1.

We use the multi-factor productivity index for the private non-farm business sector from the

BLS as the measure of aggregate productivity.

Endogeneity and the Dynamic Error Component Model We follow Blundell and Bond

(2000) and write the firm-level production function as follows:

ln 𝑦𝑖,𝑡 = 𝜙𝑖 + 𝑤𝑡 + 𝛼1 ln 𝑘𝑖,𝑡 + 𝛼2 ln 𝑛𝑖,𝑡 + 𝑣𝑖,𝑡 + 𝑢𝑖,𝑡

𝑣𝑖,𝑡 = 𝜌𝑣𝑖,𝑡−1 + 𝑒𝑖,𝑡 , (II.1)

in which 𝜙𝑖, 𝑤𝑡 , and 𝑣𝑖,𝑡 indicate a firm fixed effect, a time-specific intercept, and a possible au-

toregressive productivity shock, respectively. The residuals from the regression are denoted by
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𝑢𝑖,𝑡 and 𝑒𝑖,𝑡 and are assumed to be white noise processes. The model has the following dynamic

representation:

Δ ln 𝑦𝑖,𝑗 ,𝑡 = 𝜌Δ ln 𝑦𝑖,𝑗 ,𝑡−1 + 𝛼1,𝑗Δ ln 𝑘𝑖,𝑗 ,𝑡 − 𝜌𝛼1,𝑗Δ ln 𝑘𝑖,𝑗 ,𝑡−1 + 𝛼2Δ ln 𝑛𝑖,𝑗 ,𝑡 − 𝜌𝛼2Δ ln 𝑛𝑖,𝑗 ,𝑡−1

+(Δ𝑤𝑡 − 𝜌𝑤𝑡−1) + Δ𝜅𝑖,𝑡 , (II.2)

inwhich𝜅𝑖,𝑡 = 𝑒𝑖,𝑡+𝑢𝑖,𝑡−𝜌𝑢𝑖,𝑡−1. Let 𝑥𝑖,𝑗 ,𝑡 = {ln(𝑘𝑖,𝑗 ,𝑡), ln(𝑛𝑖,𝑗 ,𝑡), ln(𝑦𝑖,𝑗 ,𝑡)}. Assuming that𝐸[𝑥𝑖,𝑗 ,𝑡−𝑙𝑒𝑖,𝑡] =
𝐸[𝑥𝑖,𝑗 ,𝑡−𝑙𝑢𝑖,𝑡] = 0 for 𝑙 > 0 yields the following moment conditions:

𝐸[𝑥𝑖,𝑖,𝑡−𝑙Δ𝜅𝑖,𝑡] = 0 for 𝑙 ≥ 3

𝐸[𝑥𝑖,𝑗 ,𝑡−𝑙Δ𝜅𝑖,𝑡] = 0 for 𝑙 ≥ 3. (II.3)

that are used to conduct a consistent GMM equation estimation (II.2). Given the estimates 𝛼1,𝑗

and 𝛼2,𝑗 , log productivity of firm 𝑖 is computed as:

ln 𝑧𝑖,𝑗 ,𝑡 = ln 𝑦𝑖,𝑗 ,𝑡 − 𝛼1,𝑗 ln 𝑘𝑖,𝑗 ,𝑡 − 𝛼2,𝑗 ln 𝑛𝑖,𝑗 ,𝑡 , (II.4)

in which 𝑧𝑖,𝑗 ,𝑡 is the productivity for firm 𝑖 in industry 𝑗 .

Endogeneity and FixedEffects An alternativeway to estimate the production function, avoid-

ing endogeneity issues, is to work with the following regression:

ln 𝑦𝑖,𝑗 ,𝑡 = 𝑣𝑗 + 𝜙𝑖,𝑗 + 𝑤𝑗 ,𝑡 + 𝛼1,𝑗 ln 𝑘𝑖,𝑗 ,𝑡 + 𝛼2,𝑗 ln 𝑛𝑖,𝑗 ,𝑡 + 𝑢𝑖,𝑗 ,𝑡 . (II.5)

The parameters 𝑣𝑗 , 𝜙𝑖,𝑗 , and 𝑤𝑗 ,𝑡 indicate an industry dummy, a firm fixed effect, and an industry-

specific time dummy, respectively. The residual from the regression is denoted by 𝑢𝑖,𝑗 ,𝑡 . Given our

point estimate of 𝛼1,𝑗 and 𝛼2,𝑗 , we can use equation (II.4) to estimate 𝑧𝑖,𝑗 ,𝑡 . Given this estimation

of firms’ productivity, we obtain an alternative estimation of firms’ productivity.
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II.2 The Pecking Order in Two Dimensions

We further explore the pecking order of abatement and investment by jointly examining firm

net worth and productivity. To do so, we double-sort firms along these two dimensions and

report the results in Table IA.2. Productivity is defined as the Solow residual estimated from

industry-specific Cobb-Douglas production functions, as detailed in Section II.1 of the Internet

Appendix. We report Table IA.2 and visualize in Figure 4 in Section 4.2 of the main text to provide

a nuanced understanding of how abatement activities, total raw emissions, emission intensity,

and investment rates vary across different levels of net worth and productivity.

[Place Table IA.2 about here]

Panel A of Table IA.2 plots pollution abatement activities (Abate) against firm net worth, sepa-

rating high- and low-productivity firms. Abatement activities rise monotonically with net worth

for low-productivity firms, but the increase is steeper for high-productivity firms. This suggests

that abatement decisions are shaped not only by firm size but also by productivity, which ampli-

fies the effect of net worth. Notably, the gap in abatement between high- and low-productivity

firms widens with net worth, highlighting the role of productivity in driving cross-firm variation

in abatement activities.

Panel B shows that total raw emissions (Emission) also rise with net worth across both pro-

ductivity groups. High-productivity firms emit more at any given net worth level, confirming a

scaling effect due to greater output. Panel C examines emission intensity (Emission/Sales), which

declines with net worth. This pattern aligns with the observed increase in abatement activities,

suggesting that emissions per unit of output fall as firms grow. Furthermore, high-productivity

firms exhibit lower emission intensity than their low-productivity counterparts at comparable

net worth levels, indicating that productivity drives cross-firm heterogeneity.

Finally, Panel D focuses on investment rates (I/K), revealing an inverse relationship between

investment rate and net worth, especially pronounced among high-productivity firms. This pat-

tern may reflect diminishing marginal returns to capital as firms grow. Importantly, the invest-

ment rate is higher for more productive firms, underscoring the positive association between pro-

ductivity and investment decisions. These results illustrate the interaction between net worth,

productivity, and key firm characteristics, consistent with our model in Sections 4.2.
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II.3 The Pecking Order on Size Measures

Table IA.3 reports reports the time-series average of the cross-sectional means of firm charac-

teristics for five groups sorted by firms’ net worth in Panel A, total assets in Panel B, capital in

Panel C, and the number of employees in Panel D. Pollution abatement is measured as the sum of

new source reduction projects undertaken by facilities of a firm within a specific year. Raw emis-

sions are derived by aggregating the pounds of total releases (Emission) from all plants owned by

a firm within a year. Emission intensity (Emission/S) is calculated by aggregating the specified

emission components across all of a firm’s plants within a year for each group. This aggregate

is then divided by aggregating firms’ sales for each respective group to normalize the measure.

This process yields the emission intensity. Net worth, total assets, and capital are adjusted for

inflation using the Consumer Price Index (CPI) and reported in 2009 million USD. I/K is capital

expenditures (item CAPX) divided by property, plant, and equipment (PPENT). B/M is the ratio

of book equity to market capitalization. Return on assets (ROA) is operating income after de-

preciation (item OIADP) scaled by total assets. Book leverage (Lev) is the summation of current

liabilities (item DLC) and long-term debt (item DLTT) scaled by total assets. Firm characteristics

are described in Table 1. The sample period is 1991 to 2020.

[Place Table IA.3 about here]
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II.4 The Pecking Order on Age Measures

Table IA.4 reports the time-series average of the cross-sectional means of firm characteristics for

five groups sorted by age according to Compustat in Panel A, World Scope in Panel B, incorpo-

ration year in Panel C, and founding year in Panel D.

[Place Table IA.4 about here]

Table IA.5 presents the time-series average of the cross-sectionalmeans of firm characteristics,

categorized into five groups double-sorted by those measures for firm ages and two groups by

firm-level productivity. The estimation for firm-level productivity is discussed in Section II.1 of

the Internet Appendix. The sample period covers from 1991 to 2020.

[Place Table IA.5 about here]

Table IA.6 reports univariate regressions of firms’ pollution abatement, emission intensity,

and investment rate on age according to Compustat in Panel A, World Scope in Panel B, incor-

poration year in Panel C, and founding year in Panel D, as well as firm and year fixed effects. All

independent variables are normalized to zero mean and unit standard deviation after winsoriza-

tion at the 1st and 99th percentiles to reduce the impact of outliers. 𝑡-statistics based on standard

errors clustered at the firm level are reported with ***, **, and * indicating significance at the 1, 5,

and 10% levels. The sample period is from 1991 to 2020.

[Place Table IA.6 about here]
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II.5 The Pecking Order on Financial Constrained Indicators

Table IA.7 reports the time-series average of the cross-sectional means of firm characteristics for

five groups sorted by SA index in Panel A and WW index in Panel B.

[Place Table IA.7 about here]

Table IA.8 presents the time-series average of cross-sectional means of firm characteristics,

categorized into five groups double-sorted by financial constraint measures, SA index in Panel A

and WW index in Panel B, and two groups based on firm-level productivity.

[Place Table IA.8 about here]

Table IA.9 reports univariate regressions of firms’ pollution abatement, raw emissions, emis-

sion intensity, and investment on the SA index in Panel A and the WW in Panel B, as well as

firm and year fixed effects. All independent variables are normalized to zero mean and unit stan-

dard deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers.

𝑡-statistics based on standard errors clustered at the firm level are reported with ***, **, and *

indicating significance at the 1, 5, and 10% levels. The sample period is from 1991 to 2020.

[Place Table IA.9 about here]
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II.6 The Pecking Order on Abatement Capital Investment

We further examine whether the pecking order observed for operating-related abatement also

holds for capital investment–intensive abatement activities; for instance, green capital versus

brown capital. To do so, we re-estimate equation (1) using only capital-related abatement as the

outcome variable. The results are presented in Table IA.10.

[Place Table IA.10 about here]

Table IA.10 shows that firm size, as measured through various proxies such as net worth, total

assets, capital stock, and employment, is positively associated with the level of capital-intensive

abatement. For example, a one-standard-deviation increase in net worth is associated with a

14% increase in capital-related abatement activities. Moreover, the age and financial constraint

proxies indicate that older and less financially constrained firms also undertake more abatement

activity. This finding is consistent with the idea that such abatement investments may still be

more complex to finance, although potentially pledgeable due to their long-term and illiquid

nature, in line with insights from Lanteri and Rampini (2023). Overall, the evidence reinforces

the existence of a pecking order in firms’ abatement activities.
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II.7 Details on Abatement Costs Imputation

To estimate the expenditure burden of operating pollution abatement activities at the firm level,

we develop a method that integrates detailed source reduction activity data from the Toxics Re-

lease Inventory (TRI) with industry-level cost information from the 2005 Pollution Abatement

Costs and Expenditures (PACE) survey. We aim to assign a cost estimate to each reported W-

code activity, reflecting its implementation type (operating cost vs. capital investment) and its

intensity in dollar terms relative to industry output.

Step 1: ClassifyingW-codes by Cost Type. EachW-code in the TRI P2 dataset represents

a distinct type of source reduction activity. We begin by assigning a score to each W-code on

a scale from 1 to 10, based on its expected input requirement, complexity, and infrastructure

changes. Higher scores indicate lower implementation complexity and are more likely to reflect

operating costs than capital investments. For example, W84 (substituting materials in products)

is a low-complexity, procedural change and receives a high score, whileW66 (installing new rinse

systems) involves equipment upgrades and gets a lower score.

We then classify codes with scores above seven as operating costs, while those with scores

seven or below are treated as capital investments. This binary categorization allows us to link

each W-code to the appropriate category of abatement spending reported in the PACE survey.

Step 2: Measuring Abatement Cost Intensity by Industry. The PACE survey reports

total industry-level expenditures on pollution prevention, broken down into operating costs and

capital investments. These are expressed in nominal 2005 U.S. dollars. To normalize for differ-

ences in industry size, we divide each cost component by total industry output (from BEA gross

output data) to derive operating cost intensity and capital investment intensity, measured in dol-

lars per $1 of production, for each 3-digit NAICSmanufacturing sector, where𝜔op
𝑖 and𝜔cap

𝑖 denote

the operating cost and capital investment intensity, respectively, for industry 𝑖.

Step 3: Allocating Cost to W-codes within Each Industry Next, we compute the rela-

tive frequency of each W-code within its category (capital or operating) in a given industry. For

example, if industry 𝑖 has 200 capital W-code entries, and W66 accounts for 50, its frequency

weight is 0.25 in the operating cost or capital investment category. We then allocate the corre-

sponding cost intensity to each W-code in a given industry based on this frequency weight:

Cost Intensityℎ,𝑖 =
⎧⎪⎪
⎨⎪⎪⎩

(
Countℎ,𝑖

∑ℎ′∈capital Countℎ′ ,𝑖) × 𝜔op
𝑖 , if ℎ is the operating cost

(
Countℎ,𝑖

∑ℎ′∈operating Countℎ′ ,𝑖) × 𝜔cap
𝑖 , if ℎ is the capital investment.

(II.6)

This yields aW-code-specific abatement cost intensity by industry, which can be interpreted as
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the average cost intensity (in dollars per $1 of output) associated with each activity.

Step 4: Estimating Firm-Level Abatement Costs Using firm-year observations from the

TRI dataset, we calculate the share of each W-code activity reported by a firm in a given year. Let

Shareℎ,𝑗 ,𝑡 be the share of firm 𝑗 reports W-code ℎ in year 𝑡, and let 𝑆𝑗 ,𝑡 be the firm’s total sales. We

compute the estimated firm-level abatement cost as:

Abatement Cost𝑗 ,𝑡 = ∑
ℎ
Shareℎ,𝑗 ,𝑡 × Cost Intensityℎ,𝑖 × 𝑆𝑗 ,𝑡 (II.7)

This method produces a cost-weighted abatement metric for each firm-year, reflecting the

scale and composition of its reported pollution prevention activities and adjusted for industry-

specific cost norms.

Step 5: Link to Firm Size and Empirical Validation We use this dollar-adjusted measure

to examine how abatement costs vary with firm size. Specifically, we test whether larger firms

incur higher abatement costs or benefit from economies of scale in abatement investment. We

regress firm-level abatement costs on size-related metrics to do so, as described in Section 2.4.
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II.8 The Pecking Order on Imputed Abatement Expenditures

We further examine whether the pecking order observed also holds for imputed abatement ex-

penditures in the above subsection. To do so, we re-estimate equation (1) using the imputed

abatement expenditures as the outcome variable. The results are presented in Table IA.11.

[Place Table IA.11 about here]

Table IA.11 shows that firm size, as measured through various proxies such as net worth, total

assets, capital stock, and employment, is positively associatedwith the level of imputed abatement

expenditures. For example, a one-standard-deviation increase in net worth is associated with a

51% increase in imputed abatement expenditures. Moreover, the age and financial constraint

proxies indicate that older and less financially constrained firms also undertake more abatement

activity. This finding is consistent with our main results in the paper. Overall, the evidence

reinforces the existence of a pecking order in firms’ abatement activities.
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II.9 Pollution Abatement Activities and Emission Reduction

According to Xu and Kim (2022), the higher release of toxic emissions is driven by insufficient

investment in pollution abatement among firms subject to financial frictions. We provide direct

evidence by examining the joint relationship between firm-level operating- or capital-intensive

abatement activities and emission reduction. The Pollution Prevention database includes infor-

mation on how much an abatement activity has reduced releases of each toxic chemical to the

environment by which pollution prevention each year and compare how different facilities have

managed their toxic releases. We sum up these reductions at the firm level each year.

[Place Table IA.12 about here]

We examine the relation between firm-level operating- or capital-intensive abatement activ-

ities and emission reduction more formally by estimating OLS regressions,

ΔEmission𝑗 ,𝑡 = 𝜉𝑗 + 𝜉𝑡 + 𝑏 Log (1 + 𝑎𝑗 ,𝑡) + 𝑐 Controls𝑗 ,𝑡 + 𝜀𝑗 ,𝑡 , (II.8)

for which we control a list of firm-level control variables, including size, book-to-market ratio,

investment rate, and profitability, as well as facility and year fixed effects. Standard errors are

clustered at the firm level. As presented in Table IA.12, all specifications indicate that estimated

coefficients on operating- or capital-intensive abatement activities are statistically significantly

negative at the 1% level, suggesting that pollution abatement activities effectively reduces toxic

emissions. More importantly, evidence in this subsection provides us with a micro-foundation

of a negative relation between emission and pollution abatement investment and calls for more

theoretical work.
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III Quantitative Appendix

III.1 Proof of Proposition 1

Following closely to Ottonello and Winberry (2024) with modifications to abatement activities.

Lagrangian The Lagrangian of the firm’s optimization equation (3) is

 =(1 + 𝜆𝑡(𝑧, 𝑛))(𝑛 − 𝑘′ − 𝑎′ +
𝑏 ′

1 + 𝑟𝑡)
+ 𝜇𝑡(𝑧, 𝑛)(𝜃𝑘𝑘′ − 𝑏 ′)

+ 𝜒𝑡(𝑧, 𝑛)𝑎′ +
1

1 + 𝑟𝑡
𝐄𝑡[𝜋𝑑𝑛′ + (1 − 𝜋𝑑)𝑣𝑡+1(𝑧′, 𝑛′)]

(III.1)

where 𝜆𝑡(𝑧, 𝑛) is the multiplier on the non-negative dividend constraint 𝑑 ≥ 0, 𝜇𝑡(𝑧, 𝑛) is the
multiplier on the collateral constraint 𝑏 ′ ≤ 𝜃𝑘𝑘′, and 𝜒𝑡(𝑧, 𝑛) is the multiplier on the non-negative

constraint on abatement investment 𝑎′ ≥ 0.

The first-order condition for borrowing 𝑏 ′ is

(1 + 𝜆𝑡(𝑧, 𝑛))
1

1 + 𝑟𝑡
= 𝜇𝑡(𝑧, 𝑛) −

1
1 + 𝑟𝑡

𝐄𝑡 [𝜋𝑑
𝜕𝑛′

𝜕𝑏 ′ + (1 − 𝜋𝑑)
𝜕𝑣𝑡+1(𝑧′, 𝑛′)

𝜕𝑛′
𝜕𝑛′

𝜕𝑏 ′ ]

From the envelope condition, we have 𝜕𝑣𝑡+1(𝑧′,𝑛′)
𝜕𝑛′ = 1 + 𝜆𝑡+1(𝑧, 𝑛), together with 𝜕𝑛′

𝜕𝑏′ = −1, we get

(1 + 𝜆𝑡(𝑧, 𝑛))
1

1 + 𝑟𝑡
= 𝜇𝑡(𝑧, 𝑛) +

1
1 + 𝑟𝑡

𝐄𝑡 [𝜋𝑑 + (1 − 𝜋𝑑)(1 + 𝜆𝑡+1(𝑧, 𝑛))]

Reorganize we get

𝜆𝑡(𝑧, 𝑛) = (1 + 𝑟𝑡)𝜇𝑡(𝑧, 𝑛) + (1 − 𝜋𝑑)𝐄𝑡 [𝜆𝑡+1(𝑧′, 𝑛′)] (III.2)

This is the same as in Ottonello and Winberry (2024). The financial wedge here 𝜆𝑡(𝑧, 𝑛) is the
expected value of current and all future Lagrange multipliers on the collateral constraint 𝜇𝑡(𝑧, 𝑛),
discounted by the exit risk.

The first-order condition for future capital 𝑘′ is

1 + 𝜆𝑡(𝑧, 𝑛) = 𝜃𝑘𝜇𝑡(𝑧, 𝑛) +
1

1 + 𝑟𝑡
𝐄𝑡 [𝜋𝑑

𝜕𝑛′

𝜕𝑘′
+ (1 − 𝜋𝑑)

𝜕𝑣𝑡+1(𝑧′, 𝑛′)
𝜕𝑛′

𝜕𝑛′

𝜕𝑘′ ]

Given that 𝜕𝑛′
𝜕𝑘′ = 𝛼𝑧′𝑘′𝛼−1 + (1 − 𝛿) − 𝜏′𝑒

(1+𝛾𝑎′)𝛼𝑧
′𝑘′𝛼−1 = (1 −

𝜏′𝑒
(1+𝛾𝑎′))𝑀𝑃𝐾(𝑧′, 𝑘′) + (1 − 𝛿), where
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𝑀𝑃𝐾(𝑧′, 𝑘′) = 𝛼𝑧′𝑘′𝛼−1, we could rewrite the FOC as

1 + 𝜆𝑡(𝑧, 𝑛) =𝜃𝑘𝜇𝑡(𝑧, 𝑛) +
1

1 + 𝑟𝑡
𝐄𝑡[ (𝜋𝑑 + (1 − 𝜋𝑑)(1 + 𝜆𝑡+1(𝑧′, 𝑛′)) ×

((1 −
𝜏′𝑒

(1 + 𝛾𝑎′))
𝑀𝑃𝐾(𝑧′, 𝑘′) + (1 − 𝛿))]

(III.3)

The first-order condition for abatement 𝑎′ is

1 + 𝜆𝑡(𝑧, 𝑛) = 𝜒𝑡(𝑧, 𝑛) +
1

1 + 𝑟𝑡
𝐄𝑡 [𝜋𝑑

𝜕𝑛′

𝜕𝑎′
+ (1 − 𝜋𝑑)

𝜕𝑣𝑡+1(𝑧′, 𝑛′)
𝜕𝑛′

𝜕𝑛′

𝜕𝑎′ ]
(III.4)

Given that 𝜕𝑛′
𝜕𝑎′ =

𝛾𝜏′𝑒
(1+𝛾𝑎′)2 𝑧

′𝑘′𝛼 , we have

1 + 𝜆𝑡(𝑧, 𝑛) ≥
1

1 + 𝑟𝑡
𝐄𝑡 [(𝜋𝑑 + (1 − 𝜋𝑑)(1 + 𝜆𝑡+1(𝑧, 𝑛))

𝛾𝜏′𝑒
(1 + 𝛾𝑎′)2

𝑧′𝑘′𝛼] (III.5)

with equality if 𝑎′ > 0.

To summarize, the firm’s optimal decisions are characterized by the first-order conditions

(III.2), (III.3), and (III.5) together with the complementary slackness conditions:

𝜇𝑡(𝑧, 𝑛) (𝜃𝑘𝑘′ − 𝑏 ′) = 0 with 𝜇𝑡(𝑧, 𝑛) ≥ 0, and

𝜆𝑡(𝑧, 𝑛)𝑑 = 0 with 𝜆𝑡(𝑧, 𝑛) ≥ 0.

Partition of State Space The first-order conditions derive very nice properties of partition of

state space. This would also benefit the solution of the model quantitatively, as in Ottonello and

Winberry (2024). We briefly describe our understanding and proof below.

Unconstrained Firms: A financially unconstrained firm pays positive dividends and is not

binding on borrowing constraint, so their financial wedges 𝜆𝑡(𝑧, 𝑛) = 0 and 𝜇𝑡(𝑧, 𝑛) = 0. Also,
from the first-order condition of borrowing (III.2), 𝜆𝑡(𝑧, 𝑛) = 0 today means that the firm expects

𝜆𝑡+1(𝑧′, 𝑛′) = 0 for any possible states of {𝑧′, 𝜏′} (or further, as in Ottonello and Winberry (2024),

𝜇𝑗𝑡+𝑠 = 𝜆𝑗𝑡+𝑠 = 0 for all 𝑠 ≥ 0; being unconstrained is an absorbing state.)

Since these firms are unconstrained at all today and in the future, their net worth 𝑛𝑡 should

not be a factor affecting their optimal decisions. These decisions could be characterized by a set

of policy functions 𝑏 ′∗
𝑡 (𝑧), 𝑘′∗𝑡 (𝑧), 𝑎′∗𝑡 (𝑧), and a separable value function 𝑣∗𝑡 (𝑧).

First, we determine the optimal borrowing 𝑏 ′∗
𝑡 (𝑧) since unconstrained firms are indifferent

over any combination of 𝑏 ′ and 𝑑 which leaves them financially unconstrained. We follow Khan

and Thomas (2013)’s minimum savings policy by assuming the firms accumulate the most debt
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(or, if 𝑏 ′ < 0, do the least amount of savings) which leaves them financially unconstrained. The

optimal borrowing 𝑏 ′∗
𝑡 (𝑧) would then be for any 𝑧′, 𝑑𝑡+1(𝑧′) ≥ 0 holds, which is

𝑑𝑡+1(𝑧′) =𝑧′ (𝑘′∗𝑡 (𝑧))
𝛼
+ (1 − 𝛿)𝑘′∗𝑡 (𝑧) −

𝜏′𝑒𝑧′ (𝑘′∗𝑡 (𝑧))
𝛼

1 + 𝑎′∗𝑡 (𝑧)
− 𝑏 ′∗

𝑡 (𝑧) − 𝑘
′∗
𝑡+1(𝑧

′) − 𝑎
′∗
𝑡+1(𝑧

′) +
𝑏 ′∗
𝑡+1(𝑧′)
1 + 𝑟𝑡+1

≥ 0

The minimum savings policy 𝑏 ′∗
𝑡 (𝑧) is the largest level of debt to satisfy this constraint certainly:

𝑏 ′∗
𝑡 (𝑧) = min

𝑧′,𝜏′

{
𝑧′ (𝑘′∗𝑡 (𝑧))

𝛼
+ (1 − 𝛿)𝑘′∗𝑡 (𝑧)

−
𝜏′𝑒

1 + 𝛾𝑎′∗𝑡 (𝑧)
𝑧′ (𝑘′∗𝑡 (𝑧))

𝛼
− 𝑘

′∗
𝑡+1(𝑧

′) − 𝑎
′∗
𝑡+1(𝑧

′) +
𝑏 ′∗
𝑡+1(𝑧′)
1 + 𝑟𝑡+1

} (III.6)

The above policy implies dividends are zero at the minimizer 𝑧′ of the right-hand side of (III.6)

and strictly positive otherwise. Computationally, we could iterate (III.6) to solve the minimum

savings policy 𝑏 ′∗
𝑡 (𝑧) after solving the optimal policies 𝑘′∗𝑡 (𝑧) and 𝑎′∗𝑡 (𝑧).

Second, we solve for the unconstrained optimal separable value function 𝑣∗𝑡 (𝑧) given the op-

timal policies as follows:

𝑣∗𝑡 (𝑧) = −𝑘
′∗
𝑡 (𝑧) − 𝑎

′∗
𝑡 (𝑧) +

−𝑏 ′∗
𝑡 (𝑧)

1 + 𝑟𝑡
+

1
1 + 𝑟𝑡

𝔼𝕥[𝜋𝑑𝑛′ + (1 − 𝜋𝑑)𝑣∗𝑡+1(𝑧
′)] (III.7)

where 𝑛′ = 𝑧′ (𝑘′∗𝑡 (𝑧))
𝛼
+ (1− 𝛿)𝑘′∗𝑡 (𝑧) −

𝜏′𝑒𝑧′(𝑘′∗𝑡 (𝑧))𝛼
1+𝑎′∗𝑡 (𝑧)

− 𝑏 ′∗
𝑡 (𝑧) is independent of net worth 𝑛 today.

Therefore, for unconstrained firms, 𝑣𝑡(𝑧, 𝑛) = 𝑛 + 𝑣∗𝑡 (𝑧). Given the value function, the first-order

conditions for capital and innovation are reduced to

1 =
1

1 + 𝑟𝑡
𝐄𝑡[(1 −

𝜏′𝑒
1 + 𝛾𝑎′)

𝑀𝑃𝐾(𝑧′, 𝑘′) + (1 − 𝛿)] (III.8)

1 ≥
1

1 + 𝑟𝑡
𝐄𝑡 [

𝛾𝜏′𝑒
(1 + 𝛾𝑎′)2

𝑧′𝑘′𝛼] (III.9)

Finally, we could determine the lower bound of net worth �̄�𝑡(𝑧) that firms are considered

financially unconstrained. If the firms do not violate the no-equity issuance constraint, they are

considered financially unconstrained if they can follow these policies. Therefore,

𝑛 − 𝑘
′∗
𝑡 (𝑧) − 𝑎

′∗
𝑡 (𝑧) +

𝑏 ′∗
𝑡 (𝑧)
1 + 𝑟𝑡

≥ 0

We can now define

�̄�𝑡(𝑧) ≡ 𝑘
′∗
𝑡 (𝑧) + 𝑎

′∗
𝑡 (𝑧) −

𝑏 ′∗
𝑡 (𝑧)
1 + 𝑟𝑡

. (III.10)
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Constrained Firms: Financially constrained as those for whom 𝜆𝑡(𝑧, 𝑛) > 0. These firms issue

zero dividends 𝑑𝑡(𝑧, 𝑛) = 0. They solve the first-order conditions (III.2), (III.3), and (III.5) together
to get optimal policies 𝑏 ′𝐶

𝑡 (𝑧, 𝑛), 𝑘′𝐶
𝑡 (𝑧, 𝑛), and 𝑎′𝐶

𝑡 (𝑧, 𝑛).

III.2 Solution Method

Unconstrained Firms’ Policies: We first solve for the decisions of the unconstrained firms.

Step 1: Guess unconstrained policies 𝑘′∗
(it)(𝑧), 𝑎

′∗
(it)(𝑧), and 𝑏

′∗
(it)(𝑧), where (it) indexes the iter-

ation, we start with 𝑖𝑡 = 0 since it is the initial guess; Given an interest rate 𝑟𝑡 = 𝑟∗.
Step 2: Update 𝑘′∗

(it+1)(𝑧) using equation (III.8, restated below) taken 𝑟𝑡 = 𝑟∗ and 𝑎′ = 𝑎′∗
(it)(𝑧).

𝑘
′∗(𝑧) = (

𝛼
𝑟∗ − 𝛿

𝐄𝑡 [𝑧
′
(1 −

𝜏′𝑒
1 + 𝛾𝑎′∗(𝑧))])

1
1−𝛼

Step 3: Update 𝑎′∗
(it+1)(𝑧) using equation (III.13 with equality, restated below) taken 𝑟𝑡 = 𝑟∗

and the new iteration of the capital policy 𝑘′∗
(it+1)(𝑧). Suppose the solution of equation (III.13)

with equality is ̃𝑎′∗
(it+1)(𝑧), then 𝑎′∗

(it+1)(𝑧) = 𝑚𝑎𝑥{0, ̃𝑎′∗
(it+1)(𝑧)}.

𝑎
′∗(𝑧) = max

{

0,(
𝐄𝑡[𝜏′𝑒𝑧′(𝑘

′∗(𝑧))𝛼]
𝛾 (1 + 𝑟∗) )

1
2

−
1
𝛾

}

Step 4: Repeat Steps 2 and 3 until the convergence of 𝑘′∗
(∗)(𝑧) and 𝑎′∗

(∗)(𝑧).
Step 5: Iterate on equation (III.6, restated below) until the convergence of 𝑏 ′∗

(∗)(𝑧) with the

borrowing constraints applied for the optimal capital choice 𝑘′∗
(∗)(𝑧).

𝑏 ′∗
𝑡 (𝑧) = min

𝑧′,𝜏′

{

𝑧′ (𝑘′∗𝑡 (𝑧))
𝛼
+ (1 − 𝛿)𝑘′∗𝑡 (𝑧) −

𝜏′𝑒𝑧′ (𝑘′∗𝑡 (𝑧))
𝛼

1 + 𝛾𝑎′∗𝑡 (𝑧)
− 𝑘

′∗
𝑡+1(𝑧

′) − 𝑎
′∗
𝑡+1(𝑧

′) +
𝑏 ′∗
𝑡+1(𝑧′)
1 + 𝑟𝑡+1

}

𝑏 ′∗
(∗)(𝑧) = min(𝜃𝑘𝑘

′∗
(∗)(𝑧), 𝑏

′∗
𝑡 (𝑧))

Step 6: Calculate the unconstrained net worth cutoff from equation (III.10, restated below).

�̄�𝑡(𝑧) ≡ 𝑘
′∗
𝑡 (𝑧) + 𝑎

′∗
𝑡 (𝑧) −

𝑏 ′∗
𝑡 (𝑧)
1 + 𝑟𝑡

.

Output: A collection of vectors 𝑘′∗
(∗)(𝑧), 𝑎

′∗
(∗)(𝑧), 𝑏

′∗
(∗)(𝑧), and �̄�𝑡(𝑧).

Constrained Firms’ Policies: With these unconstrained policies in hand, we can then solve
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the decision rules for all firms over the entire state space (𝑧, 𝑛). We iterate on 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛),

𝑎(it)(𝑧, 𝑛), 𝜆(it)(𝑧, 𝑛), and 𝑣(it)(𝑧, 𝑛).

Step 1: Guess constrained policies 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛), 𝑎′(it)(𝑧, 𝑛), 𝜆(it)(𝑧, 𝑛), and 𝑣(it)(𝑧, 𝑛),

where (it) indexes the iteration, we start with 𝑖𝑡 = 0; Given an interest rate 𝑟𝑡 = 𝑟∗.
Step 2: For any state (𝑧, 𝑛) that satisfies 𝑛 > �̄�(𝑧), use the unconstrained policies and

value function for 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛), 𝑎′(it)(𝑧, 𝑛), and 𝑣(it)(𝑧, 𝑛). Make 𝜆(it)(𝑧, 𝑛) = 0 and

𝜇𝑡(𝑧, 𝑛) = 0.
Step 3: Solve for the policy assuming the collateral constraint is not binding:

Step 3.1: Update 𝑘′(it+1)(𝑧, 𝑛) using equation (III.3, restated below) with 𝜇𝑡(𝑧, 𝑛) = 0.
We compute the law of motion for net worth 𝑛′ and the expectation using the current

iteration (it) of the policy rules.

𝑘′(it+1)(𝑧, 𝑛) =
⎛
⎜
⎜
⎝

𝛼𝐄𝐭 [(1 + (1 − 𝜋𝑑)𝜆𝑡+1(𝑧′, 𝑛′))(1 −
𝜏′𝑒

(1+𝛾𝑎′)) 𝑧′]
(1 + 𝑟𝑡)(1 + 𝜆𝑡(𝑧, 𝑛)) − (1 − 𝛿)𝐄𝐭 [(1 + (1 − 𝜋𝑑)𝜆𝑡+1(𝑧′, 𝑛′))]

⎞
⎟
⎟
⎠

1
1−𝛼

Step 3.2: Update 𝑏 ′
(it+1)(𝑧, 𝑛) from 𝑑𝑡 = 0 constraint:

𝑏 ′
(it+1)(𝑧, 𝑛) = (1 + 𝑟∗)(𝑘′(it+1)(𝑧, 𝑛) + 𝑎′(it)(𝑧, 𝑛) − 𝑛).

Step 4: Solve for the policy where the collateral constraint is binding, that is, for the state

space (𝑧, 𝑛) such that 𝑏 ′
(it+1)(𝑧, 𝑛) > 𝜃𝑘𝑘′(it+1)(𝑧, 𝑛) from the last step:

Step 4.1: Update 𝑘′(it+1)(𝑧, 𝑛) from 𝑑 = 0 and 𝑏 ′ = 𝜃𝑘𝑘′:

𝑘′(it+1)(𝑧, 𝑛) =
𝑛 − 𝑎′(it)(𝑧, 𝑛)
1 − 𝜃𝑘/(1 + 𝑟∗)

Step 4.2: Set 𝑏 ′
(it+1)(𝑧, 𝑛) = 𝜃𝑘𝑘′(it+1)(𝑧, 𝑛).

Step 4.3: Recover 𝜇(𝑖𝑡+1)(𝑧, 𝑛) from equation (III.3).

𝜇𝑡(𝑧, 𝑛) =
1
𝜃𝑘(

1 + 𝜆𝑡(𝑧, 𝑛) −
1

1 + 𝑟𝑡
𝐄𝑡[ (1 + (1 − 𝜋𝑑)𝜆𝑡+1(𝑧′, 𝑛′)) ×

((1 −
𝜏′𝑒

(1 + 𝛾𝑎′))
𝑀𝑃𝐾(𝑧′, 𝑘′) + (1 − 𝛿))])

Step 5: Update 𝑎′(it+1)(𝑧, 𝑛) from equation (III.5 with equality, restated below). Suppose the
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solution of equation (III.5) with equality is ̃𝑎′

(it+1)(𝑧, 𝑛), then 𝑎
′

(it+1)(𝑧, 𝑛) = 𝑚𝑎𝑥{0, ̃𝑎′

(it+1)(𝑧, 𝑛)}.

̃𝑎′

(it+1)(𝑧, 𝑛) = (
𝐄𝑡[(1(1 − 𝜋𝑑)𝜆𝑡+1(𝑧, 𝑛)) 𝜏′𝑒𝑧′(𝑘

′(𝑧))𝛼]
𝛾 (1 + 𝑟∗)(1 + 𝜆𝑡(𝑧, 𝑛)) )

1
2

−
1
𝛾

Step 6: Update the financial wedge 𝜆(it)(𝑧, 𝑛) with equation (III.2).

𝜆𝑡(𝑧, 𝑛) = (1 + 𝑟𝑡)𝜇𝑡(𝑧, 𝑛) + (1 − 𝜋𝑑)𝐄𝑡 [𝜆𝑡+1(𝑧′, 𝑛′)]

Output: Iterate Steps 1 to 6 until the convergence of 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛), 𝑎′(it)(𝑧, 𝑛), 𝜆(it)(𝑧, 𝑛),

and 𝜇(it)(𝑧, 𝑛).

III.3 Solution Method for Green Loan Policies

Lagrangian for Green Loan Extension The Lagrangian of the firm’s optimization (3) is

 =(1 + 𝜆𝑡(𝑧, 𝑛))(𝑛 − 𝑘′ − 𝑎′ +
𝑏 ′

1 + 𝑟𝑡)
+ 𝜇𝑡(𝑧, 𝑛)(𝜃𝑘𝑘′ + 𝜃𝑎𝑎′ − 𝑏 ′)

+ 𝜒𝑡(𝑧, 𝑛)𝑎′ +
1

1 + 𝑟𝑡
𝐄𝑡[𝜋𝑑𝑛′ + (1 − 𝜋𝑑)𝑣𝑡+1(𝑧′, 𝑛′)]

(III.11)

where 𝜆𝑡(𝑧, 𝑛) is the multiplier on the non-negative dividend constraint 𝑑 ≥ 0, 𝜇𝑡(𝑧, 𝑛) is the
multiplier on the collateral constraint 𝑏 ′ ≤ 𝜃𝑘𝑘′, and 𝜒𝑡(𝑧, 𝑛) is the multiplier on the non-negative

constraint on abatement investment 𝑎′ ≥ 0.

The first-order condition for borrowing 𝑏 ′ is the same as equation (III.2).

The first-order condition for future capital 𝑘′ is the same as equation (III.3).

The first-order condition for abatement 𝑎′ is now different as:

1 + 𝜆𝑡(𝑧, 𝑛) = 𝜃𝑎𝜇𝑡(𝑧, 𝑛) + 𝜒𝑡(𝑧, 𝑛) +
1

1 + 𝑟𝑡
𝐄𝑡 [𝜋𝑑

𝜕𝑛′

𝜕𝑎′
+ (1 − 𝜋𝑑)

𝜕𝑣𝑡+1(𝑧′, 𝑛′)
𝜕𝑛′

𝜕𝑛′

𝜕𝑎′ ]
(III.12)

Given that 𝜕𝑛′
𝜕𝑎′ =

𝛾𝜏′𝑒
(1+𝛾𝑎′)2 𝑧

′𝑘′𝛼 , we have

1 + 𝜆𝑡(𝑧, 𝑛) ≥ 𝜃𝑎𝜇𝑡(𝑧, 𝑛) +
1

1 + 𝑟𝑡
𝐄𝑡 [(𝜋𝑑 + (1 − 𝜋𝑑)(1 + 𝜆𝑡+1(𝑧, 𝑛))

𝛾𝜏′𝑒
(1 + 𝛾𝑎′)2

𝑧′𝑘′𝛼] (III.13)

with equality if 𝑎′ > 0.

To summarize, the firm’s optimal decisions are characterized by the first-order conditions
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(III.2), (III.3), and (III.13) together with the complementary slackness conditions:

𝜇𝑡(𝑧, 𝑛) (𝜃𝑘𝑘′ + 𝜃𝑎𝑎′ − 𝑏 ′) = 0 with 𝜇𝑡(𝑧, 𝑛) ≥ 0, and

𝜆𝑡(𝑧, 𝑛)𝑑 = 0 with 𝜆𝑡(𝑧, 𝑛) ≥ 0.

Unconstrained Firms’ Policies: Same as in Section III.2.

Constrained Firms’ Policies: With these unconstrained policies in hand, we can then solve

the decision rules for all firms over the entire state space (𝑧, 𝑛). We iterate on 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛),

𝑎(it)(𝑧, 𝑛), 𝜆(it)(𝑧, 𝑛), and 𝑣(it)(𝑧, 𝑛).

Step 1: Guess constrained policies 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛), 𝑎′(it)(𝑧, 𝑛), 𝜆(it)(𝑧, 𝑛), and 𝑣(it)(𝑧, 𝑛),

where (it) indexes the iteration, we start with 𝑖𝑡 = 0; Given an interest rate 𝑟𝑡 = 𝑟∗.
Step 2: For any state (𝑧, 𝑛) that satisfies 𝑛 > �̄�(𝑧), use the unconstrained policies and

value function for 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛), 𝑎′(it)(𝑧, 𝑛), and 𝑣(it)(𝑧, 𝑛). Make 𝜆(it)(𝑧, 𝑛) = 0 and

𝜇𝑡(𝑧, 𝑛) = 0.
Step 3: Solve for the policy assuming the collateral constraint is not binding:

Step 3.1: Update 𝑘′(it+1)(𝑧, 𝑛) using equation (III.3, restated below) with 𝜇𝑡(𝑧, 𝑛) = 0.
We compute the law of motion for net worth 𝑛′ and the expectation using the current

iteration (it) of the policy rules.

𝑘′(it+1)(𝑧, 𝑛) =
⎛
⎜
⎜
⎝

𝛼𝐄𝐭 [(1 + (1 − 𝜋𝑑)𝜆𝑡+1(𝑧′, 𝑛′))(1 −
𝜏′𝑒

(1+𝛾𝑎′)) 𝑧′]
(1 + 𝑟𝑡)(1 + 𝜆𝑡(𝑧, 𝑛)) − (1 − 𝛿)𝐄𝐭 [(1 + (1 − 𝜋𝑑)𝜆𝑡+1(𝑧′, 𝑛′))]

⎞
⎟
⎟
⎠

1
1−𝛼

Step 3.2: Update 𝑏 ′
(it+1)(𝑧, 𝑛) from 𝑑𝑡 = 0 constraint:

𝑏 ′
(it+1)(𝑧, 𝑛) = (1 + 𝑟∗)(𝑘′(it+1)(𝑧, 𝑛) + 𝑎′(it)(𝑧, 𝑛) − 𝑛).

Step 4: Solve for the policy where the collateral constraint is binding, that is, for the state

space (𝑧, 𝑛) such that 𝑏 ′
(it+1)(𝑧, 𝑛) > 𝜃𝑘𝑘′(it+1)(𝑧, 𝑛) + 𝜃𝑎𝑎′(it+1)(𝑧, 𝑛) from the last step:

Step 4.1: Update 𝑘′(it+1)(𝑧, 𝑛) from 𝑑 = 0 and 𝑏 ′ = 𝜃𝑘𝑘′ + 𝜃𝑎𝑎′:

𝑘′(it+1)(𝑧, 𝑛) =
𝑛 − (1 + 𝑟∗ − 𝜃𝑎)/(1 + 𝑟∗)𝑎′(it)(𝑧, 𝑛)

1 − 𝜃𝑘/(1 + 𝑟∗)

Step 4.2: Set 𝑏 ′
(it+1)(𝑧, 𝑛) = 𝜃𝑘𝑘′(it+1)(𝑧, 𝑛) + 𝜃𝑎𝑎′(it+1)(𝑧, 𝑛).
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Step 4.3: Recover 𝜇(𝑖𝑡+1)(𝑧, 𝑛) from equation (III.3).

𝜇𝑡(𝑧, 𝑛) =
1
𝜃𝑘(

1 + 𝜆𝑡(𝑧, 𝑛) −
1

1 + 𝑟𝑡
𝐄𝑡[ (1 + (1 − 𝜋𝑑)𝜆𝑡+1(𝑧′, 𝑛′)) ×

((1 −
𝜏′𝑒

(1 + 𝛾𝑎′))
𝑀𝑃𝐾(𝑧′, 𝑘′) + (1 − 𝛿))])

Step 5: Update 𝑎′(it+1)(𝑧, 𝑛) from equation (III.13 with equality, restated below). Suppose the

solution of equation (III.13) with equality is ̃𝑎′

(it+1)(𝑧, 𝑛), then 𝑎
′

(it+1)(𝑧, 𝑛) = 𝑚𝑎𝑥{0, ̃𝑎′

(it+1)(𝑧, 𝑛)}.

̃𝑎′

(it+1)(𝑧, 𝑛) = (
𝐄𝑡[(1(1 − 𝜋𝑑)𝜆𝑡+1(𝑧, 𝑛)) 𝜏′𝑒𝑧′(𝑘

′(𝑧))𝛼]
𝛾 (1 + 𝑟∗)(1 + 𝜆𝑡(𝑧, 𝑛) − 𝜃𝑎𝜇𝑡(𝑧, 𝑛)) )

1
2

−
1
𝛾

Step 6: Update the financial wedge 𝜆(it)(𝑧, 𝑛) with equation (III.2).

𝜆𝑡(𝑧, 𝑛) = (1 + 𝑟𝑡)𝜇𝑡(𝑧, 𝑛) + (1 − 𝜋𝑑)𝐄𝑡 [𝜆𝑡+1(𝑧′, 𝑛′)]

Output: Iterate Steps 1 to 6 until the convergence of 𝑘′(it)(𝑧, 𝑛), 𝑏 ′
(it)(𝑧, 𝑛), 𝑎′(it)(𝑧, 𝑛), 𝜆(it)(𝑧, 𝑛),

and 𝜇(it)(𝑧, 𝑛).
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Figure IA.1. The Annual Updates of the TRI Program

Source:
https://www.epa.gov/toxics-release-inventory-tri-program/2021-tri-preliminary-dataset
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Figure IA.2. Access to the TRI Database

Source: https://www.epa.gov/toxics-release-inventory-tri-program
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Figure IA.3. The TRI Database by Years

Source: https://www.epa.gov/toxics-release-inventory-tri-program/
tri-basic-data-files-calendar-years-1987-present
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Figure IA.4. Access to the P2 Database

Source: https://www.epa.gov/p2
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Figure IA.5. The P2 Database by Years

Source: https://www.epa.gov/toxics-release-inventory-tri-program/
tri-basic-plus-data-files-calendar-years-1987-present
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Figure IA.6. Waste Management Hierarchy

Source: https://www.epa.gov/smm/
sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy
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Figure IA.7. Civil cases and settlements.
Source: https://echo.epa.gov/tools/data-downloads/icis-fec-download-summary
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Figure IA.8. Dow’s environmental settlement.
Source: https://intercontinentalcry.org/dow-chemical-agrees-to-77-million-environmental-restoration-settlement/
and https://www.michiganradio.org/post/why-does-it-take-40-years-clean-polluted-river.
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Table IA.1: The List of Reported Abatement Activities

W Code Catecgory Abatement Activities Score

W41 Raw Material Modifications Increased purity of raw materials 9
W42 Raw Material Modifications Substituted raw materials 10
W43 Raw Material Modifications Substituted a feedstock or reagent chemical with adifferent chemical 9
W49 Raw Material Modifications Other raw material modifications made 6
W81 Product Modifications Changed product specifications 8
W82 Product Modifications Modified design or composition of product 8
W83 Product Modifications Modified packaging 10
W84 Product Modifications Developed a new chemical product to replace a previous chemical product 4
W89 Product Modifications Other product modifications made 7
W59 Cleaning and Degreasing Modified stripping/cleaning equipment 3
W60 Cleaning and Degreasing Changed to mechanical stripping/cleaning devices 2
W61 Cleaning and Degreasing Changed to aqueous cleaners 10
W63 Cleaning and Degreasing Modified containment procedures for cleaning units 9
W64 Cleaning and Degreasing Improved draining procedures 10
W65 Cleaning and Degreasing Redesigned parts racks to reduce drag out 7
W66 Cleaning and Degreasing Modified or installed rinse systems 2
W67 Cleaning and Degreasing Improved rinse equipment design 3
W68 Cleaning and Degreasing Improved rinse equipment operation 8
W71 Cleaning and Degreasing Other cleaning and degreasing modifications made 9
W72 Surface Preparation and Finishing Modified spray systems or equipment 3
W73 Surface Preparation and Finishing Substituted coating materials used 10
W74 Surface Preparation and Finishing Improved application techniques 9
W75 Surface Preparation and Finishing Changed from spray to other system 2
W78 Surface Preparation and Finishing Other surface preparation and finishing modifications made 6
W50 Process Modifications Optimized reaction conditions or otherwise increased efficiency of synthesis 5
W51 Process Modifications Instituted re-circulation within a process 3
W52 Process Modifications Modified equipment, layout, or piping 2
W53 Process Modifications Used a different process catalyst 8
W54 Process Modifications Instituted better controls on operating bulk containers tominimize discarding of empty containers 10
W55 Process Modifications Changed from small volume containers to bulk containersto minimize discarding of empty containers 9
W56 Process Modifications Reduced or eliminated use of an organic solvent 10
W57 Process Modifications Used biotechnology in manufacturing process 3
W58 Process Modifications Other process modifications made 7
W31 Spill and Leak Prevention Improved storage or stacking procedures 10
W32 Spill and Leak Prevention Improved procedures for loading, unloading, and transferoperations 9
W33 Spill and Leak Prevention Installed overflow alarms or automatic shut-off valves 2
W35 Spill and Leak Prevention Installed vapor recovery systems 1
W36 Spill and Leak Prevention Implemented inspection or monitoring program ofpotential spill or leak sources 3
W39 Spill and Leak Prevention Other changes made in spill and leak prevention 8
W21 Inventory Control Instituted procedures to ensure that materials do not stay in inventory beyond shelf-life 10
W22 Inventory Control Began to test outdated material—continue to use if stilleffective 10
W23 Inventory Control Eliminated shelf-life requirements for stable materials 10
W24 Inventory Control Instituted better labeling procedures 10
W25 Inventory Control Instituted clearinghouse to exchange materials that wouldotherwise be discarded 10
W29 Inventory Control Other changes made in inventory control 9
W13 Good Operating Practices Improved maintenance scheduling, record keeping, orprocedures 10
W14 Good Operating Practices Changed production schedule to minimize equipment and feedstock changeovers 9
W15 Good Operating Practices Introduced in-line product quality monitoring or otherprocess analysis system 4
W19 Good Operating Practices Other changes made in operating practices 9
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Table IA.2: Double Sort on Net Worth and Productivity

This table presents the time-series average of the cross-sectional means of firm characteristics, categorized into
five groups double-sorted by net worth and two groups by firm-level productivity. The estimation for firm-level
productivity is discussed in Section II.1 of the Internet Appendix. We report firm characteristics, including pollution
abatement (Abate) in Panel A, raw emissions (Emission) in Panel B, emission intensity (Emission/Sales) in Panel C,
and investment rate (I/K) in Panel D, for these double sorts. Detailed descriptions of firm characteristics are provided
in Table 1. The sample period covers from 1991 to 2020.

L 2 3 4 H

Panel A: Abate

L 0.67 1.42 1.89 2.71 3.87
H 1.14 2.59 4.17 8.98 12.36

Panel B: Log Emission

L 12.06 12.66 12.89 13.61 15.35
H 11.72 12.84 13.92 14.63 15.63

Panel C: Log Emission/Sales

L 7.54 7.03 6.39 6.45 6.55
H 5.39 5.42 5.75 5.64 5.68

Panel D: I/K

L 0.21 0.20 0.18 0.16 0.14
H 0.24 0.19 0.18 0.17 0.17
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Table IA.3: Firm Characteristics

This table reports the time-series average of the cross-sectional means of firm characteristics for five groups sorted
by net worth (N) in Panel A, total assets (AT) in Panel B, capital (K) in Panel C, and employee (EMP) in Panel D.
Abate represents a firm’s total pollution abatement activities, aggregated across all its facilities to the firm level.
We measure raw emissions (emissions) as the total pollutant releases (measured in pounds) across all of a firm’s
plants in a given year. Emission intensity (Emission/Sales) is then calculated by normalizing raw emissions by the
firm’s sales revenue, expressed in millions of dollars. Net worth, total assets, and capital are adjusted for inflation
using the Consumer Price Index (CPI) and reported in 2009 million USD. I/K is capital expenditures (item CAPX)
divided by property, plant, and equipment (PPENT). B/M is the ratio of book equity to market capitalization. Return
on assets (ROA) is operating income after depreciation (item OIADP) scaled by total assets. Book leverage (Lev)
is the summation of current liabilities (item DLC) and long-term debt (item DLTT) scaled by total assets. Firm
characteristics are described in Table 1. The sample period is 1991 to 2020.

L 2 3 4 H L 2 3 4 H

Panel A: Net Worth Panel B: Total Assets

Abate 0.84 1.75 2.79 5.53 10.11 1.01 1.52 2.98 4.45 7.74
Log Emission 12.21 12.58 13.38 14.25 15.55 12.85 13.22 13.62 14.36 15.51
Log Emission/Sales 7.85 6.14 5.96 5.95 5.90 8.46 7.40 6.68 6.28 6.26
Log AT 5.54 6.90 7.96 9.03 10.93 5.19 6.51 7.45 8.50 10.58
Log K 3.93 5.53 6.64 7.93 9.83 3.87 5.23 6.18 7.34 9.48
Log N 5.52 7.02 8.05 9.09 10.95 5.62 6.86 7.76 8.71 10.71
Log EMP 0.02 1.35 2.30 3.08 4.53 0.01 1.16 1.99 2.79 4.22
I/K 0.21 0.19 0.17 0.16 0.17 0.20 0.19 0.18 0.17 0.16
B/M 0.77 0.64 0.60 0.58 0.55 0.81 0.67 0.64 0.58 0.57
ROA 0.10 0.14 0.14 0.14 0.14 0.10 0.13 0.14 0.14 0.13
Lev 0.14 0.23 0.27 0.30 0.29 0.17 0.24 0.28 0.29 0.30
Num 70 69 69 69 69 134 134 134 134 133

Panel C: Capital Panel D: Employee

Abate 0.82 1.64 2.90 5.23 7.12 0.95 1.73 2.52 3.46 9.09
Log Emission 12.29 12.99 13.13 14.12 15.67 13.75 13.53 13.58 14.74 15.18
Log Emission/Sales 8.23 7.56 6.64 6.92 6.69 8.71 6.82 5.91 6.43 5.53
Log AT 5.56 6.73 7.63 8.66 10.54 5.93 7.18 8.03 8.96 10.45
Log K 3.61 4.95 6.00 7.17 9.51 5.17 6.39 7.12 8.19 9.18
Log N 5.73 6.84 7.83 8.88 10.68 6.17 7.49 8.22 9.21 10.64
Log EMP 0.23 1.30 2.12 2.93 4.15 -0.40 0.85 1.69 2.50 4.32
I/K 0.21 0.19 0.18 0.17 0.15 0.20 0.18 0.18 0.17 0.18
B/M 0.76 0.67 0.62 0.60 0.62 0.79 0.73 0.64 0.60 0.50
ROA 0.09 0.13 0.14 0.14 0.13 0.09 0.13 0.14 0.14 0.14
Lev 0.17 0.23 0.28 0.29 0.31 0.19 0.25 0.28 0.28 0.28
Num 134 134 134 134 133 134 133 133 133 132
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Table IA.4: Firm Characteristics Sorted by Age

This table reports the time-series average of the cross-sectional means of firm characteristics for five groups sorted
by age according to Compustat in Panel A, World Scope in Panel B, incorporation year in Panel C, and founding year
in Panel D. Abate represents a firm’s total pollution abatement activities, aggregated across all its facilities to the
firm level. We measure raw emissions (Emission) as the total pollutant releases (measured in pounds) across all of
a firm’s plants in a given year. Emission intensity (Emission/Sales) is then calculated by normalizing raw emissions
by the firm’s sales revenue, expressed in millions of dollars. Net worth, total assets, and capital are adjusted for
inflation using the Consumer Price Index (CPI) and reported in 2009 million USD. I/K is capital expenditures (item
CAPX) divided by property, plant, and equipment (PPENT). B/M is the ratio of book equity to market capitalization.
Return on assets (ROA) is operating income after depreciation (item OIADP) scaled by total assets. Book leverage
(Lev) is the summation of current liabilities (item DLC) and long-term debt (item DLTT) scaled by total assets. Firm
characteristics are described in Table 1. The sample period is 1991 to 2020.

L 2 3 4 H L 2 3 4 H

Panel A: Compustat Panel B: World Scope

Abate 1.81 2.21 2.55 4.36 7.53 2.54 2.60 2.31 4.49 7.24
Log Emission 13.74 14.18 14.24 14.40 15.09 14.63 14.48 13.94 14.26 14.37
Log Emission/Sales 7.28 6.73 8.07 7.59 6.11 7.75 6.72 6.22 6.05 5.72
Log AT 8.00 7.96 8.62 8.84 10.41 8.67 8.65 8.92 8.92 9.66
Log K 6.82 6.87 7.48 7.85 9.27 7.67 7.73 7.91 7.79 8.59
Log N 8.21 8.06 9.25 9.06 10.5 9.06 9.04 9.29 9.45 10.10
Log EMP 1.94 2.23 2.86 2.76 3.95 2.45 2.65 2.73 3.18 3.42
I/K 0.20 0.19 0.18 0.18 0.16 0.18 0.19 0.19 0.18 0.16
B/M 0.69 0.71 0.67 0.61 0.56 0.69 0.64 0.64 0.65 0.56
ROA 0.11 0.12 0.14 0.14 0.13 0.12 0.12 0.13 0.14 0.14
Lev 0.28 0.25 0.22 0.24 0.29 0.28 0.26 0.25 0.21 0.26
Num 145 130 149 131 113 121 113 110 111 111

Panel C: Incorporation Panel D: Founding

Abate 1.51 2.35 1.20 1.21 2.22 2.36 1.86 3.18 5.38 7.60
Log Emission 13.51 14.33 12.56 13.78 13.03 13.74 14.02 13.61 14.84 15.00
Log Emission/Sales 7.82 6.69 5.76 6.34 6.32 8.37 6.80 6.73 7.38 7.15
Log AT 7.91 8.28 8.11 7.71 8.26 8.27 8.38 8.72 9.53 10.23
Log K 6.95 7.19 6.57 6.58 6.91 7.28 7.04 7.69 8.42 9.09
Log N 7.35 7.98 8.70 8.20 8.92 8.56 8.63 9.51 9.66 10.43
Log EMP 1.97 2.15 2.13 2.23 2.49 2.39 2.34 3.23 3.34 3.70
I/K 0.23 0.22 0.21 0.18 0.17 0.21 0.21 0.18 0.16 0.16
B/M 0.68 0.61 0.65 0.77 0.66 0.68 0.66 0.65 0.62 0.54
ROA 0.09 0.13 0.12 0.13 0.13 0.12 0.14 0.13 0.13 0.14
Lev 0.25 0.23 0.24 0.25 0.30 0.24 0.22 0.22 0.27 0.29
Num 49 45 43 45 44 108 105 106 104 102
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Table IA.5: Double Sort on Age and Productivity

This table reports the time-series average of cross-sectionalmeans of firm characteristics, categorized into five groups
based on firm age, measured using Compustat in Panel A, Worldscope in Panel B, incorporation year in Panel C, and
founding year in Panel D, and two groups based on firm-level productivity. The estimation for firm-level productivity
is discussed in Section II.1 of the Internet Appendix. We report firm characteristics, including pollution abatement
(Abate), raw emissions (Emission), emission intensity (Emission/Sales), and investment rate (I/K), for these double
sorts. Detailed descriptions of firm characteristics are provided in Table 1. The sample period covers from 1991 to
2020.

L 2 3 4 H L 2 3 4 H

Panel A: Compustat Panel B: World Scope

Abate

L 1.48 1.83 2.08 1.51 2.87 1.79 2.36 2.03 1.95 2.45
H 2.30 2.60 3.65 7.83 8.28 3.35 2.89 4.30 6.84 10.00

Log Emission

L 13.18 13.45 14.49 13.08 15.06 14.56 14.04 13.77 12.86 14.13
H 14.17 14.73 14.03 14.89 14.92 14.87 14.67 14.23 14.83 14.24

Log Emission/Sales

L 6.74 6.63 8.88 6.44 8.09 7.80 6.71 6.50 6.65 6.18
H 6.38 6.57 5.36 6.05 5.41 6.73 6.41 5.48 5.74 5.30

I/K

L 0.19 0.18 0.18 0.17 0.15 0.18 0.18 0.18 0.18 0.16
H 0.21 0.20 0.19 0.18 0.16 0.21 0.21 0.20 0.18 0.17

Panel C: Incorporation Panel D: Founding

Abate

L 1.32 3.84 1.20 0.98 1.57 2.51 1.93 1.55 1.98 2.75
H 1.82 0.97 1.23 1.78 2.71 2.17 3.09 5.76 7.44 10.21

Log Emission

L 12.89 14.19 13.35 13.17 13.1 12.75 14.51 12.77 13.98 15.33
H 14.41 14.04 12.19 14.15 13.07 13.69 14.35 13.55 15.09 14.73

Log Emission/Sales

L 6.82 7.15 6.26 6.29 6.54 6.79 9.06 6.22 7.26 8.36
H 6.64 5.36 4.79 6.36 5.67 5.99 5.50 5.38 5.99 5.67

I/K

L 0.2 0.19 0.21 0.17 0.16 0.19 0.19 0.17 0.15 0.14
H 0.26 0.25 0.22 0.20 0.17 0.22 0.21 0.18 0.17 0.16

IA-42



Table IA.6: The Peking Order by Age

This table reports univariate regressions of firms’ pollution abatement, emission intensity, and investment on age
according to Compustat in Panel A, World Scope in Panel B, incorporation year in Panel C, and founding year in
Panel D, as well as firm and year fixed effects. All independent variables are normalized to zero mean and unit
standard deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers. 𝑡-statistics
based on standard errors clustered at the firm level are reported with ***, **, and * indicating significance at the 1, 5,
and 10% levels. The sample period is from 1991 to 2020.

(1) (2) (3) (4)
Log (1+Abate) Log (1+Emission) Log (1+Emission/Sales) I/K

Panel A: Compustat

Log(1+Age) 0.20*** 0.02 -0.21*** -0.02***
[t] [6.43] [0.21] [-2.96] [-5.87]

Observations 20,055 20,055 20,039 19,938
R-squared 0.69 0.82 0.83 0.50
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes

Panel B: World Scope

Log(1+Age) 0.11** 0.22 0.01 -0.02***
[t] [2.27] [1.55] [0.07] [-4.13]

Observations 16,985 16,985 16,980 16,907
R-squared 0.68 0.82 0.83 0.49
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes

Panel C: Incorporation Year

Log(1+Age) 0.24** 0.70 0.01 -0.09***
[t] [2.57] [1.26] [0.01] [-6.00]

Observations 6,765 6,765 6,755 6,727
R-squared 0.59 0.80 0.82 0.54
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes

Panel D: Founding Year

Log(1+Age) 0.38*** 0.01 -0.32** -0.03***
[t] [5.39] [0.03] [-2.07] [-3.92]

Observations 15,743 15,743 15,740 15,643
R-squared 0.70 0.81 0.82 0.48
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes
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Table IA.7: Firm Characteristics Sorted by Financial Constraints

This table reports the time-series average of the cross-sectional means of firm characteristics for five groups sorted by
sorted by SA index in Panel A andWW index in Panel B. Abate represents a firm’s total pollution abatement activities,
aggregated across all its facilities to the firm level. We measure raw emissions (Emission) as the total pollutant
releases (measured in pounds) across all of a firm’s plants in a given year. Emission intensity (Emission/Sales) is
then calculated by normalizing raw emissions by the firm’s sales revenue, expressed in millions of dollars. Net
worth, total assets, and capital are adjusted for inflation using the Consumer Price Index (CPI) and reported in 2009
million USD. I/K is capital expenditures (item CAPX) divided by property, plant, and equipment (PPENT). B/M is the
ratio of book equity to market capitalization. Return on assets (ROA) is operating income after depreciation (item
OIADP) scaled by total assets. Book leverage (Lev) is the summation of current liabilities (item DLC) and long-term
debt (item DLTT) scaled by total assets. Firm characteristics are described in Table 1. The sample period is 1991 to
2020.

L 2 3 4 H L 2 3 4 H

Panel A: SA Panel B: WW

Abate 8.23 3.87 1.77 2.51 1.15 8.05 4.70 2.67 1.63 0.97
Log Emission 15.18 14.03 14.62 13.71 13.19 15.52 14.37 13.59 13.43 12.52
Log Emission/Sales 5.93 7.62 7.14 7.33 8.06 6.28 6.32 7.06 7.91 7.97
Log AT 10.38 8.29 8.22 7.95 7.38 10.58 8.52 7.57 6.81 5.58
Log K 9.26 7.15 7.16 6.74 6.23 9.48 7.42 6.31 5.48 4.27
Log N 10.49 8.76 8.44 8.05 7.51 10.71 8.70 7.81 7.02 5.84
Log EMP 4.02 2.72 2.26 2.13 1.24 4.21 2.79 2.06 1.38 0.25
I/K 0.16 0.18 0.19 0.18 0.20 0.16 0.17 0.18 0.19 0.20
B/M 0.55 0.60 0.65 0.70 0.76 0.55 0.57 0.63 0.69 0.83
ROA 0.14 0.14 0.14 0.13 0.10 0.14 0.14 0.14 0.13 0.09
Lev 0.30 0.25 0.23 0.26 0.25 0.29 0.28 0.26 0.23 0.21
Num 141 127 134 134 133 130 130 130 130 129

IA-44



Table IA.8: Double Sort on Financial Constraints and Productivity

This table reports the time-series average of cross-sectionalmeans of firm characteristics, categorized into five groups
based on financial constraints, measured using SA index in Panel A andWW index in Panel B, and two groups based
on firm-level productivity. The estimation for firm-level productivity is discussed in Section II.1 of the Internet Ap-
pendix. We report firm characteristics, including pollution abatement (Abate), raw emissions (Emission), emission
intensity (Emission/Sales), and investment rate (I/K), for these double sorts. Detailed descriptions of firm character-
istics are provided in Table 1. The sample period covers from 1991 to 2020.

L 2 3 4 H L 2 3 4 H

Panel A: SA Panel B: WW

Abate

L 2.98 1.70 1.77 2.35 0.85 3.18 2.64 1.89 1.22 0.81
H 9.73 6.40 3.60 2.52 1.99 10.08 7.05 4.56 2.73 1.41

Log Emission

L 14.97 14.11 14.13 13.48 12.54 15.24 13.91 13.69 13.52 11.21
H 15.21 13.88 14.17 14.69 13.85 15.53 15.14 13.77 13.08 12.15

Log Emission/Sales

L 7.07 8.13 7.13 8.61 7.08 6.56 7.50 7.96 8.75 6.86
H 5.78 5.45 5.78 6.64 6.22 5.77 6.76 5.81 5.93 5.51

I/K

L 0.14 0.17 0.18 0.18 0.20 0.14 0.17 0.18 0.19 0.19
H 0.17 0.18 0.19 0.19 0.21 0.17 0.17 0.18 0.19 0.24
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Table IA.9: The Peking Order by Financial Constraints

This table reports univariate regressions of firms’ pollution abatement, emission intensity, and investment on SA
index in Panel A and WW index in Panel B, as well as firm and year fixed effects. All independent variables are
normalized to zero mean and unit standard deviation after winsorization at the 1st and 99th percentiles to reduce
the impact of outliers. 𝑡-statistics based on standard errors clustered at the firm level are reported with ***, **, and *
indicating significance at the 1, 5, and 10% levels. The sample period is from 1991 to 2020.

(1) (2) (3) (4)
Log (1+Abate) Log (1+Emission) Log (1+Emission/Sales) I/K

Panel A: SA

SA -0.37*** -0.28 0.49*** 0.02***
[t] [-8.03] [-1.64] [4.49] [4.32]

Observations 20,021 20,021 20,005 19,904
R-squared 0.69 0.82 0.83 0.49
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes

Panel B: WW

WW -0.12*** -0.68*** 0.43*** 0.00
[t] [-3.31] [-4.38] [4.55] [0.29]

Observations 19,444 19,444 19,443 19,339
R-squared 0.69 0.82 0.83 0.49
Firm FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes
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Table IA.10: The Peking Order by Various Measures - Capital Intensive Abatement

(1) (2) (3) (4) (5) (6) (7)
Log N Log AT Log K Log EMP Age Comp SA WW

Abatement - Log (1+Abate)

Size 0.14** 0.07* 0.10** 0.11*** 0.27*** -0.32*** -0.07**
[t] [2.25] [1.71] [2.35] [3.06] [3.59] [-7.35] [-2.18]

Observations 10,379 20,052 20,049 20,435 18,235 20,018 19,441
R-squared 0.65 0.51 0.51 0.51 0.47 0.52 0.51
Firm FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports univariate regressions of firms’ capital intensive pollution abatement in Panel A and abate-
ment intensity in Panel B on the size, including logarithm of the net worth (N), total assets (AT), capital (K), employee
(EMP), age, or financial constraint, including the SA and WW indexes, as well as firm and year fixed effects. All in-
dependent variables are normalized to zero mean and unit standard deviation after winsorization at the 1st and
99th percentiles to reduce the impact of outliers. 𝑡-statistics based on standard errors clustered at the firm level are
reported with ***, **, and * indicating significance at the 1, 5, and 10% levels. The sample period is from 1991 to 2020.
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Table IA.11: The Peking Order by Various Measures - Imputed Abatement Expenditures

(1) (2) (3) (4) (5) (6) (7)
Log N Log AT Log K Log EMP Log Age SA WW

Abatement Cost - Log (1+Abate Cost)

Size 0.51*** 0.38*** 0.32*** 0.40*** 0.51*** -0.31*** -0.52***
[t] [6.82] [9.22] [7.44] [8.85] [3.71] [-9.16] [-10.12]

Observations 10,380 20,049 20,047 19,971 20,049 19,443 20,015
R-squared 0.80 0.77 0.77 0.77 0.76 0.77 0.78

Firm FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports univariate regressions of firms’ pollution abatement cost in Panel A and abatement cost
intensity in Panel B on the size, including logarithm of the net worth (N), total assets (AT), capital (K), employee
(EMP), age, or financial constraint, including the SA and WW indexes, as well as firm and year fixed effects. All
independent variables are normalized to zero mean and unit standard deviation after winsorization at the 1st and
99th percentiles to reduce the impact of outliers. 𝑡-statistics based on standard errors clustered at the firm level are
reported with ***, **, and * indicating significance at the 1, 5, and 10% levels. The sample period is from 1991 to 2020.
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Table IA.12: Emission Reduction and Abatement Investment

This table shows the joint link between emission reduction and operating or capital-intensive abatement activities.
We report panel regressions of emission reduction on abatement investment, together with other firm characteristics.
All variables are normalized to a zero mean and unit standard deviation after winsorization at the 1st and 99th
percentiles to reduce the impact of outliers. 𝑡-statistics based on standard errors that are clustered at the firm level
are reported in parentheses. ***, **, * indicate significance at the 1, 5, and 10% levels in Panel A, and all regressions
in Panel B are conducted at the annual frequency. The sample period is from 1991 to 2020.

(1) (2) (3) (4)
Operating Capital-Intensive

Log (1+Abate) -0.03*** -0.04*** -0.02*** -0.03***
[t] [-4.11] [-4.12] [-3.85] [-3.27]
Log N -0.05 -0.05
[t] [-1.46] [-1.52]
B/M 0.00 0.00
[t] [0.56] [0.51]
I/K -0.02** -0.01*
[t] [-1.98] [-1.89]
ROA 0.02** 0.02*
[t] [2.01] [1.91]

Observations 9,211 4,927 9,208 4,926
R-squared 0.18 0.23 0.18 0.23
Facility FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Cluster SE Yes Yes Yes Yes
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