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Abstract

We document an information channel for core inflation shocks in the relative pric-
ing of cross-sectional stocks. We estimate stock-level core inflation exposures using 
an announcement-day approach, as, unlike the energy component, the release of the 
core component is concentrated on CPI announcement days. We find: 1) significant 
and persistent cross-sectional spread in core inflation exposure; 2) firms with positive 
inflation exposure later experience increased cash flow as inflation rises; and 3) the 
relative pricing of stocks with diverging core inflation exposures significantly predicts 
core inflation shocks and the economists’ forecasting errors. The predictability is espe-
cially strong under heightened inflation risk, including the surges in 2021 and 1973, and 
when the Fed is behind the curve. Our overall results indicate active price discovery 
in cross-sectional stocks for core inflation shocks through the cash flow channel.



1 Introduction

Understanding the relationship between stock returns and inflation has long been a topic

of interest in financial economics. While prior research has predominantly focused on the

aggregate stock market, the information content of cross-sectional stocks has been less stud-

ied.1 In this paper, we study the extent to which the information contained in cross-sectional

stocks can tell us about inflation shocks. Specifically, with respect to inflation exposure, how

does the impact of inflation vary across firms and what drives this cross-sectional variation?

With respect to inflation forecasting, can the relative pricing between stocks with high- and

low-inflation exposure serve as an effective aggregator of investors’ expectations of future

inflation? If so, when is this information within the stock market most effective in predicting

inflation, and why does the aggregate stock market miss this information?

Our focus on inflation forecasting from cross-sectional stocks is motivated by the 2021

inflation surge, which was missed by the policymakers setting the U.S. monetary policy, and

the economists contributing to the survey-based inflation forecasts.2 As both policymakers

and economists form their expectations by using the information available to them at the

time, the 2021 experience highlights the need for alternative measures, potentially from

financial markets, to enrich the existing forecasting tools. Relative to the Treasury bond

market, whose yield curves have been widely used to forecast inflation, the information

contained in cross-sectional stocks can add value, especially when the pricing of U.S. Treasury

bonds is influenced by factors unrelated to inflation risk.3 Relative to the commodity market,

which typically contains rich information about energy prices, cross-sectional stocks can

offer additional information with respect to core inflation, both in terms of exposure and

forecasting.

Relative to the aggregate stock market, our focus on the relative pricing between stocks

1Fama and Schwert (1977) demonstrates that the aggregate stock market poorly hedges against inflation,
and more recently, Fang et al. (2021) highlight the negative impact of core inflation on stock returns. Unlike
Chen, Roll, and Ross (1986) and Boons et al. (2020), who study the inflation risk premium using cross-
sectional stocks, we focus on the informational role of individual stocks in discovering inflation news.

2During the most consequential months of 2021, the Bloomberg economists’ forecasts missed the rapid
ascent of the core CPI, month-over-month, by 60 bps in April, 20 bps in May, and 50 bps in June.

3For example, expectations of monetary policy, episodes of flight-to-safety, and Fed’s interventions (e.g.,
QE) can distort the bond pricing and thereby mask inflation expectations. Moreover, the illiquidity of the
market for TIPS can add noise to the break-even inflation forecasts.
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with high and low inflation exposure allows us to shift away from the overall equity-market

trends, which can also be influenced by expectations of monetary policy, and zero in on the

inflation expectations contained in the cross-section. To the extent that stock-level inflation

exposures are persistent over time and vary across firms, this cross-sectional approach allows

us to harness the active price discovery that takes place in the equity market with respect to

future inflation. This informational channel is akin to the seminal paper of Roll (1984), which

examines the market’s information processing ability by relating orange-juice futures price

changes with subsequent errors in temperature forecasts issued by the National Weather

Service for the central Florida region where most juice oranges are grown.

To further illustrate this information channel, we build a simple stock valuation model

with two important ingredients – 1) heterogeneous exposures bi of firms’ cash flows to in-

flation shocks; 2) a predictable component y in inflation shocks unique only to the stock

market investors. As stock prices are the present values of future cash flows, such investors’

estimates of the future cash flows are incorporated into the cross-sectional market prices. For

a given positive shock in the predictable component y (e.g., the 2021 inflation surge), stocks

with positive bi would experience a positive price increase relative to those with negative bi.

Conversely, the difference in their market pricing contains information about the predictable

component y, establishing the mechanism of inflation forecasting from cross-sectional stocks.4

In contrast, fixed-income securities such as government bonds have fixed cash flows, and this

channel of predictability is absent.

Cross-Sectional Inflation Exposure – Another implication of our illustrative model is that

the cross-sectional variation in cash flow exposure bi can be mapped into the cross-sectional

variation in return exposure βi. To empirically estimate the extent to which inflation expec-

tations affect the pricing of individual stocks, we use two approaches. First, following the

standard approach of Chen, Roll, and Ross (1986) and Boons et al. (2020), we estimate the

full-month beta, βfull
i , by regressing monthly stock returns on the contemporaneous-month

inflation innovations. Second, we introduce an information-based announcement-day beta,

βann
i , estimated by regressing stock returns on the day of inflation announcements against

4Cross-sectional variation of cash flows to inflation exposure is suggested and studied by Fama (1981)
and Boudoukh, Richardson, and Whitelaw (1994). These studies focus on the predictability of stock returns
via expected inflation, while our focus is on the predictability of inflation via cross-sectional differences in
realized stock returns.
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inflation innovations.5

Both measures can effectively differentiate cross-sectional inflation exposure, though they

vary in their informational content. Since components of the headline CPI, such as food and

energy, are continuously and contemporaneously observable through commodity prices, the

full-month inflation beta is most effective in capturing headline CPI exposure. Conversely,

because core CPI components, such as goods and services, are less observable in real-time

and often lead to surprises on CPI announcement days, the announcement-day beta is more

effective in capturing core CPI exposure.6 For this reason, we apply the full-month approach

to headline CPI and the announcement-day approach to core CPI, referring to them as βHead

and βCore, respectively.

By sorting stocks based on their pre-ranking beta, estimated using a 60-month rolling

window, we form monthly rebalanced top-minus-bottom quintile inflation portfolios – the

core-focused portfolio, IPCore, is constructed using the announcement and core-focused βCore,

while the headline-focused inflation portfolio, IPHead, is constructed using the full-month and

headline-focused βHead. Unlike the aggregate stock market, which typically exhibits a neg-

ative and unstable inflation exposure (Fama and Schwert (1977)), the long-short inflation

portfolio can better capture cross-firm variations by isolating the aggregate component. Im-

portantly, the post-ranking betas for the inflation portfolios are significantly positive – IPCore

responds significantly and positively to core-CPI shocks on announcement days. This indi-

cates that not only is there substantial cross-sectional variation in firms’ inflation exposure,

but also that such variations are persistent over time.

The Cash Flow Mechanism – To demonstrate that the returns of the inflation portfolio,

particularly IPCore, are driven by the impact of inflation on firm cash flows – a central

component of our illustrative model – we present the following evidence: First, we show that

firms with higher βCore
i also have a higher cash flow beta bi; that is, their quarterly cash

flows increase with positive inflation shocks. This indicates a significant alignment between

5Following Boons et al. (2020), we estimate inflation innovation using an ARMA(1,1) time series model,
allowing us to trace the inflation exposure of securities back to the 1970s. Our estimation of inflation betas
is robust to both survey-based and market-based measures of inflation surprises.

6When estimating inflation betas for both Treasury bonds and commodity markets, we observe a similar
pattern: inflation-sensitive securities tend to move with headline CPI during the contemporaneous month
and respond to core CPI on announcement days.
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the return-based inflation beta and the cash flow-based inflation beta.7

Second, we demonstrate that firms with more positive βCore tend to experience better

sales growth and stronger cash flows over the subsequent quarter after observing a high

IPCore. Analysts also update their beliefs upward about these firms’ long-term growth in

response to increased inflation expectations. Specifically, a one standard deviation increase

in inflation expectation, as captured by IPCore, predicts a 3.2% standard deviation increase

in cash flow over the next quarter for firms in the top βCore quintile relative to those in the

bottom quintile. This evidence highlights the channel through which inflation shocks can

have a heterogeneous impact on firms’ future cash flows, forming the basis for active price

discovery of inflation news among cross-sectional stocks.

Finally, we do not find empirical support for the risk premium channel. In particular,

IPCore neither predicts firms’ subsequent returns nor is driven by a time-varying inflation

risk premium. Unlike the full-month headline-beta sorted IPHead, which shows a significant

negative risk premium in the pre-2000 period (Boons et al. (2020)), the returns of IPCore are

insignificant both before and after 2000. This suggests that the full-month headline beta is

more effective at capturing the inflation risk premium, while for the purpose of identifying

inflation shocks, the information-based announcement-day beta is more effective.

Inflation Forecasting with IP Portfolios – Using the inflation portfolio for inflation fore-

casting, we document significant and non-redundant information from IPCore in predicting

core-CPI shocks, which are unexpected by both econometricians and economists. Specifi-

cally, a one standard deviation increase in IPCore observed at the end of month t predicts a

2.2 bps (t-stat=2.98) increase in core-CPI innovations and a 7.9 bps increase (t-stat=6.54)

in headline-CPI innovations for month t + 1. Given that the standard deviations of core-

and headline-CPI innovations are 16 bps and 26 bps, respectively, such a magnitude of pre-

dictability is noteworthy. In contrast, while the risk-based and full-month constructed IPHead

can capture the time-varying inflation risk premium, it fails to predict core-CPI movements.

When comparing the information content of IPCore against the two market-based fore-

casts known for reflecting inflation expectations – the commodity return of the Goldman

Sachs Commodity Index (GSCI) and the break-even inflation portfolio return between real

7Consistent with existing literature, firms with higher βCore generally have lower cash flow duration and
more immediate cash flow (e.g., higher dividend payouts). In contrast, firms with lower βCore are more likely
to be growth firms.
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and nominal U.S. Treasury bonds (TIPS-UST)8 – we find that although these forecasts can

effectively predict headline inflation innovations, they are considerably less effective at fore-

casting core inflation. When used jointly to predict core CPI, IPCore is the only forecaster

that significantly predicts core-CPI movements. Given the outsized influence of core CPI on

the Fed’s monetary policy, forecasting core inflation is of enormous importance, and this is

where the inflation expectations captured by our IPCore can be most beneficial.

Additionally, using IPCore to predict economists’ forecasting errors, we find similar ev-

idence. Between the observation of our inflation forecast at the end of month t and the

announcement of the month-t+1 CPI around mid-month t+2, more than a month elapses.

Despite being available over a month in advance, economists fail to sufficiently integrate the

information from IPCore into their forecasts, such that IPCore can predict the announcement-

day errors made by economists above and beyond other market-based predictors. In partic-

ular, a one standard deviation increase in IPCore predicts a 2.3 bps (t-stat=3.10) and 3.8 bps

(t-stat=4.22) increase in core and headline CPI surprises, respectively. As the respective CPI

surprises have standard deviations of 11 bps and 13 bps, the information from cross-sectional

stocks is non-trivial, suggesting that economists could enhance their forecasting accuracy by

integrating IPCore.9

When is Our IP Core More Informative? – To better understand the information chan-

nel driving the predictability of IPCore, we explore its cross-sectional heterogeneity and time-

varying informativeness. When investors have limited capacity or face constraints on ar-

bitrage, inflation expectations may not be quickly reflected in individual stock prices. As

a result, we anticipate stronger price discovery in firms with superior information environ-

ments. Supporting this, our findings show that IPCore exhibits stronger predictive power

when constructed using firms with better information environments, such as larger firms,

those with greater analyst coverage, and higher institutional ownership.

In analyzing the time-varying predictability, we find IPCore becomes more informative

during periods when inflation poses a significant risk and when there is heightened disagree-

8The break-even inflation return (TIPS-UST) is constructed by taking a long position in Treasury
Inflation-Protected Securities (TIPS), which are neutral to inflation, and a short position in nominal U.S.
Treasury bonds (UST), which are negatively impacted by inflation.

9The predictability of IPCore remains robust when applied to forecasting quarterly inflation growth and
movements in inflation swap rates.
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ment about inflation. The inflation surges of 2021 and 1973 serve as prime examples: During

the early stages of the 2021 inflation surge, which are largely overlooked by economists and

policy makers,10 IPCore successfully signaled a series of alerts. Over the 24 months from Oc-

tober 2020 to the peak of core CPI in September 2022, the predictability of IPCore increases

with an R-squared of 17.7%. When using the market-based predictors, including IPCore,

TIPS-UST, and GSCI, to jointly forecast core CPI during this period, IPCore emerges as the

sole significant predictor, dominating others in both economic and statistical significance.

The 1973 inflation surge offers a compelling parallel to the 2021 experience. Tracking

IPCore’s performance during the 24 months leading up to the core-CPI peak from May 1973

to April 1975, we observe a similar pattern: IPCore significantly predicts core-CPI innovations

with a substantially improved R-squared of 28.4% and an economic magnitude of 19.5 bps (t-

stat=3.43). Similar to the 2021-22 case, this enhanced predictability is captured exclusively

by our core-focused inflation portfolio, rather than by the Treasury or commodity markets.

These instances from 1973 and 2021 suggest that the effectiveness of inflation forecasting

varies over time. Our IPCore provides the most timely and valuable information during the

initial stages of inflation surges, making it particularly useful for policymakers and economists

trying to forecast core inflation shocks.

Further exploring the time-varying predictability, we show that the informativeness of

IPCore is stronger when the Fed is “behind the curve”, as measured by the gap between the

Fed funds rate and the rate recommended by the Taylor rule. Specifically, the predictability

of IPCore during periods when the Fed is behind the curve is twice as strong compared to other

times. This suggests that a higher-than-usual signal from cross-sectional stocks does not

automatically translate into sustained increases in core inflation, as seen in the inflationary

episodes of 2021 and 1973. When the Fed is ahead of the curve, actively adjusting monetary

policy fighting against price pressures, inflation can be effectively contained, resulting in

much muted predictability from IPCore. Conversely, when the Fed falls behind the curve,

allowing inflation to escalate unchecked, the predictability of IPCore strengthens.

Lastly, we demonstrate that the predictability of IPCore on inflation shocks remains ro-

bust out-of-sample. When benchmarked against the ARMA (1,1) time-series model, IPCore

10Throughout 2021 and into March 2022, the Fed maintained a zero interest-rate policy, pivoting only in
March 2022 and tightening aggressively since June 2022.
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enhances the forecasting accuracy of core-CPI growth by approximately 4-6%, outperform-

ing all other predictors we tested, including signals from commodity and treasury markets,

household and economist surveys, and macroeconomic variables.11 Moreover, the out-of-

sample predictive power is particularly strong during the 2021 inflation episode, periods of

above-median inflation uncertainty, and when the Fed lags behind the curve.

Related Literature: We contribute first and foremost to the literature on inflation fore-

casting. Using survey-based forecasts, Ang, Bekaert, and Wei (2007) and Faust and Wright

(2013) show that the economists’ surveys are the most accurate predictors of future inflation,

outperforming all market-based measures examined in their studies. Through the construc-

tion of the inflation portfolio, we show that the information embedded in cross-sectional

stock returns can significantly predict both inflation shocks and economists’ forecasting er-

rors, for both core and headline CPI. This cross-sectional method, which relies exclusively on

stock returns, has the advantage of tracking inflation movements over an extended historical

period, making it particularly valuable for markets that lack access to survey-based forecasts

and inflation-linked securities. This is especially relevant during the early stages of inflation

surges, when traditional measures may be less informative.

Moreover, Titman and Warga (1989) and Downing, Longstaff, and Rierson (2012) explore

the forecasting ability of aggregate stock market and industry portfolios on inflation. We

extend this line of research by demonstrating that our cross-sectional approach can minimize

the influence of the aggregate market, which is often shaped by expectations of monetary

policy. For the purpose of capturing inflation exposure and forecasting inflation, dynamically

sorting individual stocks based on their inflation sensitivities into an inflation portfolio proves

to be a more effective strategy. This is particularly important as new technologies alter the

inflation exposure of certain industries, making a dynamic and stock-specific approach more

adaptable to changing economic conditions.

Our paper also contributes to the literature on measuring inflation exposure by introduc-

ing the announcement-day approach to capture core inflation shocks. Traditionally, inflation

exposure is estimated by examining the sensitivity of monthly stock returns to headline infla-

tion innovations, as in Chen, Roll, and Ross (1986), Boons et al. (2020), and Chaudhary and

Marrow (2024). Additionally, Bekaert and Wang (2010), Ang, Brière, and Signori (2012),

11For predicting headline CPI out-of-sample, the RMSE improvement ranges from 7-11%.
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and Boudoukh, Richardson, and Whitelaw (1994) have shown that inflation betas, estimated

using the traditional approach, vary significantly across industries and over time.12 Method-

ologically, we contribute by proposing two distinct approaches for estimating headline and

core inflation exposures. We demonstrate that, for identifying firms’ core inflation exposure,

the information-based announcement-day beta is more effective.

The differential pricing impact of core versus headline inflation has been explored recently

in Ajello, Benzoni, and Chyruk (2020), who focus on the Treasury yield curve, and in Fang,

Liu, and Roussanov (2021), who examine aggregate asset classes. Consistent with Fang, Liu,

and Roussanov (2021), we find that negative inflation exposure is generally more pronounced

for core CPI than for headline CPI. However, unlike their focus on the aggregate stock

market, we show that to differentiate stocks by their relative inflation exposure, the full-

month βFull is more effective for headline CPI, while the announcement-day βAnn is more

effective for core CPI.

Finally, our paper contributes to the emerging literature motivated by the post-COVID

inflation surge.13 Focusing on belief formation and distortion in the context of inflation,

Bianchi, Ludvigson, and Ma (2024) and Weber, Gorodnichenko, and Coibion (2023) use

machine learning techniques and household data to examine inflation expectations. On

the supply and demand side of inflation, Feng et al. (2024) investigate the predictability of

supply-chain inflation on stock returns, while Cieslak, Li, and Pflueger (2024) explore its con-

nection to the Treasury convenience yield. In the context of firm-level impacts, Bhamra et al.

(2023) and Bonelli, Palazzo, and Yamarthy (2024) study how inflation affects firm default

risk and credit spreads. Additionally, Andrei and Hasler (2023) examine the Fed’s ability to

control inflation, highlighting the role of learning about the Fed’s inflation management in

shaping financial markets.

The rest of our paper is organized as follows. Section 2 and 3 describes the data and

methodology for inflation beta estimation. Section 4 introduces the model and the cash flow

mechanism related to predictability. Section 5 examines the ability of inflation portfolios to

predict inflation shocks and economists’ forecasting errors. Section 6 discusses robustness

checks and additional tests, and Section 7 concludes.

12Gil de Rubio Cruz et al. (2023) also examine announcement-day inflation exposure, though their focus
is on its relationship with firm characteristics.

13Cieslak and Pflueger (2023) provide a review of the time-varying impact of inflation on the economy.
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2 Data

We obtain monthly data on the Consumer Price Index (CPI), including Headline, Core,

and Energy CPI from the U.S. Bureau of Labor Statistics (BLS).14 The CPI announcement

dates are also collected from the BLS. Following Chen, Roll, and Ross (1986), Ang, Bekaert,

and Wei (2007), Bekaert and Wang (2010), CPI growth is defined as the difference in the

natural logarithm of monthly CPI: πt = ln(Pt) − ln(Pt−1), where Pt is the level of CPI for

month t. For each type of CPI series, CPI innovation is constructed using the ARMA(1,1)

time series model, following Fama and Gibbons (1984), Ang, Bekaert, and Wei (2007), and

Boons et al. (2020). The ARMA(1,1) model is estimated by maximum likelihood with the

following specification:

πt = µ+ ϕπt−1 + φεt−1 + εt. (1)

To avoid look-ahead bias, following Ang, Bekaert, and Wei (2007), we estimate the

ARMA(1,1) model using all the historical observations up to and including month t. We

then use the estimated coefficients to forecast the month t+ 1 inflation growth, denoted by

π̂t+1, and the CPI innovation for month t + 1 is calculated as the actual inflation growth

minus the forecasted growth:

CPI-Innovt+1 = πt+1 − π̂t+1 , (2)

where we require at least ten years of observations to estimate π̂t. Since data on core CPI

starts after 1957, the sample on CPI innovations starts from 1967.

Appendix Table IA1 reports the summary statistics for CPI innovations. Headline-CPI

innovation has a mean of -0.01 bps with a standard deviation (STD) of 26 bps, and core-CPI

innovation has a mean of -0.07 bps with a STD of 16 bps. The close-to-zero average value

of CPI innovations suggests that the ARMA(1,1) model does a good job of capturing the

overall inflation pattern. Consistent with the intuition that core CPI, which excludes food

and energy components, is generally more persistent than its non-core counterparts, the

standard deviation of core CPI is smaller than that of headline CPI. We also use economists’

forecasting errors, constructed as the actual monthly CPI growth value minus the median

14The BLS CPI data series are as follows: Headline (CPIAUCSL), Core (CPILFESL), and Energy (CPI-
ENGSL).
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forecast by Bloomberg economists, to capture surprises in CPI announcements. The headline

forecasting error on average is 0.1 bps with a STD of 13 bps, and the core forecasting error

is on average -0.23 bps with a STD of 10.9 bps.

Data on cross-sectional stocks are obtained from the Center for Research in Security

Prices (CRSP), and accounting information is from Compustat. We include all common

stocks traded on the NYSE, Amex, and NASDAQ. Stock returns are adjusted for delisting

(Shumway (1997)), setting a -30% return if performance-related delisting data is missing.

The CRSP value-weighted market return (VWRETD) serves as the aggregate stock mar-

ket return, with the one-month T-bill return as the risk-free rate, sourced from Kenneth

French’s website. To capture bond market dynamics, we use 2-year and 10-year U.S. Trea-

sury yields from the Federal Reserve Bank of St. Louis. As Treasury Inflation-Protected

Securities (TIPS) provide a natural hedge against headline inflation, we use the return dif-

ference between the Bloomberg U.S. Treasury Inflation Notes Total Return Index (TIPS,

average maturity of 7.8 years) and the Bloomberg U.S. Treasury Total Return Index (UST,

average maturity of 7.2 years) to capture the real-nominal bond return difference. Since data

on daily TIPS returns are only available after May 1998, our sample starts from 1998 when

TIPS are included as a control variable. To capture commodity market performance, we use

the Goldman Sachs Commodity Index return (GSCI).15

3 Measuring Inflation Exposure

In this section, we explain how we estimate the inflation beta for stocks and assets,

highlighting the differences between the announcement-day and full-month approaches.

3.1 Methodology: Announcement Day vs. Full Month

The financial market incorporates inflation-relevant news both during the month when

inflation is realized and on the CPI announcement day when the unexpected component

of inflation arrives. Previous research has primarily focused on the sensitivity of asset re-

turns to contemporaneous-month CPI innovations, neglecting the information from CPI

15Goldman Sachs launched GSCI in April 1991. Information prior to the launch date is hypothetically
back-tested by Goldman Sachs based on the index methodology at the launch date.
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announcement days (e.g., Chen, Roll, and Ross (1986), Boons et al. (2020), Fang, Liu, and

Roussanov (2021)). Since announcement days contain rich information about unexpected in-

flation shocks, using a narrow window to identify an asset’s inflation exposure could provide

additional insights beyond the traditional full-month approach.

We therefore use two approaches to estimate securities’ inflation exposure. The announcement-

day inflation beta is constructed by regressing securities’ announcement-day excess returns

on CPI innovations released on the announcement days. Given that different CPI compo-

nents (e.g., core vs. non-core) may affect the financial market at different times and with

varying intensities, we estimate securities’ sensitivities to core, headline, and energy CPI

innovations separately using the following regression specification:

Ri,At = αi + βAnn
i CPI-InnovAt + εi,At , (3)

where At denotes the CPI announcement day, Ri,At is the excess return of security i on

the announcement day At, and CPI-InnovAt , as defined in Equation (2), captures the CPI

innovation released on the announcement day At. The announcement-day inflation beta,

βAnn
i , captures security i’s sensitivity to inflation shocks on the CPI announcement days.

The full-month inflation beta is constructed by the sensitivity of securities’ monthly

excess returns to contemporaneous-month CPI innovations, following the methodology in

Chen, Roll, and Ross (1986), Boons et al. (2020), and Fang, Liu, and Roussanov (2021):

Ri,t = αi + βFull
i CPI-Innovt + εi,t, (4)

where t denotes the calendar month, and Ri,t denotes security i’s excess return in month t.16

3.2 Inflation Exposures in Cross-Sectional Stocks

We first estimate individual stocks’ pre-ranking inflation betas using a rolling five-year

window, as specified by equations (3) and (4). Section II of Internet Appendix details the

timeline for the estimations. Each month, after the CPI announcement At, we construct

16We follow Boons et al. (2020) and Ang, Bekaert, and Wei (2007) by using an ARMA(1,1) time series
model to measure inflation innovation, which enables us to track the inflation exposure of securities back
to the 1970s. Our estimates of inflation betas and the results remain robust when using survey-based and
market-based inflation surprise measures from the 1990s, as discussed in detail in Section 6.4.
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the announcement-day inflation beta for firm i using data from announcement At−59 to

announcement At, requiring at least 24 months of data out of the last 60 months available.

Similarly, we estimate the full-month beta, βFull, using monthly stock returns and inflation

innovations from month Mt−59 to month Mt. Since data on CPI innovations start from 1967,

with five-year estimation periods, the individual stocks’ CPI beta estimates begin in 1972.17

We construct the announcement-day and full-month (pre-ranking) inflation betas for each

individual stock using different components of inflation (core, headline, energy) innovations.

We then form 2×5 equal-weighted portfolios by two-way sorting all stocks at the intersection

of two size groups (Small and Large) and five inflation beta quintiles. The two size groups

are defined by the 50th percentile of NYSE market capitalization at the end of the previous

month, following Fama and French (1993). We hold the portfolio until the next CPI an-

nouncement day, at which point the new CPI innovation becomes available, allowing us to

update the estimates of each stock’s inflation exposure.

Table 1 reports the post-ranking announcement-day and full-month inflation betas for the

pre-ranking beta sorted cross-sectional stock portfolios, with the two size groups combined.

We find that cross-sectional stocks’ core-inflation betas are significantly more negative than

their headline betas, consistent with Fang, Liu, and Roussanov (2021). Additionally, core

CPI has a much larger impact on stock returns on announcement days compared to headline

and energy components. A one standard deviation increase in core-CPI innovation nega-

tively affects the bottom quintile of core beta-sorted stocks by -14.7 bps (t-stat=3.23) on the

CPI announcement days. In contrast, the same increase in headline- and energy-CPI inno-

vations has a positive and trivial impact of 1.6 bps (t-stat=0.19) and 4.5 bps (t-stat=0.57),

respectively.

As our focus is on the cross-sectional dispersion in individual stocks’ inflation exposure,

Panel B of Table 1 further reports the beta estimates while controlling for the aggregate

stock market return, i.e., controlling for announcement-day market return and full-month

market return in the estimation of βAnn and βFull, respectively. By removing the negative

inflation exposure at the market level, the inflation estimates become generally less negative.

However, we can still observe significant dispersion in cross-sectional stocks’ post-ranking

17Appendix Figure IA1 shows that the individual stocks inflation beta estimation is highly persistent. For
a stock in the top (bottom) quintile sorted based on month-t inflation beta, the probability of it remaining
in the same quintile is 76% and 74% after 6 months.
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core-beta when estimated using announcement days. The row labeled “Quintile 5-1” refers

to an inflation portfolio constructed with a long position in the top quintile (most positive

inflation beta stocks) and a short position in the bottom quintile (most negative inflation beta

stocks). A one standard deviation increase in announcement-day core innovation leads to a

4.6 bps (t-stat=2.49) return increase in the core beta-sorted portfolio, while such dispersion

is absent for headline and energy beta-sorted portfolios on CPI announcement days. This

suggests significant cross-sectional variations in firms’ core-inflation exposure, with firms

showing strong sensitivity to core-CPI innovations on past announcement days continuing

to respond significantly to core innovations in future announcements.

The full-month inflation betas, on the other hand, exhibit significant and persistent

sensitivity to headline inflation, particularly the energy component, but not to the core

component. In the version controlling for market returns, the post-ranking headline beta

increases monotonically from the lowest value of -1.5 bps to the highest value of 40.8 bps for

the quintile portfolios sorted based on stocks’ pre-ranking full-month headline betas. The

core-, headline-, and energy-inflation exposure for the top-minus-bottom portfolios sorted

based on the corresponding pre-ranking betas are 3.9 (t-stat=0.35), 42.3 (t-stat=2.96), and

37 (t-stat=2.23), respectively, suggesting a stronger response of monthly returns to the energy

component but not the core component.

Overall, the cross-sectional stocks’ inflation exposure suggests persistent cross-firm vari-

ations in inflation exposure, with the information-based announcement-day approach being

most effective in capturing the core-inflation exposure and the contemporaneous approach

most effective in capturing the headline exposure. This contrast is consistent with the in-

tuition that non-core inflation components (like energy and food) are more observable and

can be hedged using commodity instruments as investors experience inflation throughout

the month. In contrast, core components (such as goods and services) are harder to observe

and tend to cause larger surprises on CPI announcement days. Therefore, we refer to the

announcement-day estimated core beta as βCore and the full-month estimated headline beta

as βHead for short in our subsequent analyses.
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3.3 Inflation Exposures Across Asset Classes

Estimating the inflation betas for a wide range of inflation-sensitive assets, we observe

a consistent contrast between announcement-day and full-month approaches. In particular,

we estimate equations (3) and (4) for each asset using observations from the entire sample.

To ensure comparability across asset classes, all variables – both dependent and independent

– are standardized to have means of zero and standard deviations of one during the beta

estimations.

Focusing first on announcement days, Table 2 shows that core-inflation shocks have a

significantly positive impact on inflation-sensitive instruments, including nominal yields, the

spread between real and nominal bond returns, and commodities. In contrast, the effects of

headline and energy shocks on asset prices are minimal on these days. Specifically, nominal

yields rise significantly in response to announcement-day core inflation shocks. The TIPS-

UST return spread, which reflects the return associated with break-even inflation by isolating

the real component, responds even more strongly to core innovations announced on CPI days.

A one standard deviation increase in core innovations leads to a 22% (t-stat = 4.09) standard

deviation increase in TIPS-UST.

On the other hand, consistent with the pattern observed for cross-sectional stocks, asset

returns during the contemporaneous month are more sensitive to headline-CPI innovations,

primarily driven by the energy component, and less sensitive to core-CPI innovations. For

instance, a one standard deviation increase in headline innovation leads to a 31% (t-stat =

2.87) standard deviation increase in the TIPS-UST during the CPI month, compared to only

a 5% (t-stat = 0.70) increase for the same rise in core-CPI innovation.

The last two rows of Table 2 present the beta estimates for the aggregate stock market,

along with the inflation betas estimated for the long-short portfolio formed from the cross-

section of stocks (IP portfolio).18 Comparing the two, it is evident that the IP portfolio

behaves more like inflation-sensitive assets, in contrast to the aggregate stock market. This

is due to the significant cross-sectional variations in firms’ inflation exposure; some firms

exhibit positive inflation exposure, while others exhibit negative exposure. The aggregate

market sensitivity reflects the average of all firms. Thus, even if the market-wide inflation

18The magnitude of the inflation beta for the IP portfolio differs from that in Panel B of Table 1 because
the portfolio returns are standardized to facilitate cross-asset comparison.
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exposure may show an unstable and negative relation to inflation shocks (Fama and Schwert

(1977), Bekaert and Wang (2010)), the relative cross-firm variation in inflation exposure

remains stable and positive.19

3.4 Determinants of Inflation Beta

To better understand the variations in inflation exposure among different firms, we next

examine the factors that determine a firm’s inflation exposure. Specifically, we analyze the

relationship between return-based inflation betas, as estimated in Section 3.2, and firms’

cash flows and cash flow betas, which reflect the sensitivity of cash flows to inflation.

We estimate each firm’s cash flow inflation beta (bCore and bHead) using a rolling five-year

window, by regressing quarter-t changes in cash flow on quarter-t core-CPI innovations and

headline-CPI innovations, respectively. Columns (1) to (6) of Table 3 present the relationship

between return-based and cash flow-based core betas, while columns (7) to (12) focus on the

headline betas. We find a generally positive and significant relationship between return-based

inflation betas and their corresponding cash flow inflation betas. A one standard deviation

increase in CF beta (bCore) is associated with roughly a 3% standard deviation increase in

βCore, and this relationship remains consistent when controlling for firm characteristics and

Fama-French 48 industry fixed effects. As for headline betas, a similar pattern is observed,

although the coefficient becomes insignificant when industry fixed effects are included. This

suggests that return-based and cash flow-based betas align well with each other.

Further examining the role of other firm characteristics, we include firm market-to-book

ratio (ME/BE), cash flow, dividend payout ratio, and the cash flow duration from Weber

(2018) to capture the distribution of cash flows.20 Table 3 suggests that firms with more

positive βCore tend to have lower growth potential, higher dividend payouts, and higher cash

flows. This suggests a concentration of immediate cash flows realized in the near term but

lower long-term cash flows, leading to a shorter cash flow duration. In contrast, firms with

more negative core betas exhibit longer cash flow duration and are typically growth firms.

19This announcement-day approach could also be applied to identify other macro exposures, provided that
the macro announcements create significant cross-firm variations in returns, where some firms benefit while
others are adversely affected. Announcements such as those from the FOMC and CPI might be suitable,
whereas those like NFP and GDP, which tend to affect all firms in the same direction, may be less effective.

20Detailed descriptions of variables are provided in Appendix A.
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Despite the significant relationship between βCore and firm cash flow characteristics, the

explanatory power is weak, with an R2 of 2%. This suggests that, beyond the static linear

relationship with cash flow characteristics, other factors might be contributing to variations

in core beta. Notably, when industry fixed effects are included, the R2 increases only slightly

to 3.4%, implying that inflation beta is more of a firm-specific property rather than an

industry-specific one. In line with this observation, Appendix Table IA3 demonstrates that

the price discovery of inflation news occurs more at the firm level than at the industry level.

Finally, columns (7) to (12) report the determinants regression for βHead, where a similar

but weaker pattern emerges. Firms with more negative headline betas also exhibit longer

cash flow durations, but show weaker relationships with dividend payout, growth potential,

and cash flows. The weaker relationship with cash flows may be attributed to the energy

component in headline inflation, which experiences stronger temporal fluctuations and has

a less persistent impact on firm cash flows compared to the core component.

4 An Illustrative Model and the Mechanism

This section presents a model illustrating how inflation expectations among financial

market participants can influence asset prices through the cash flow channel and how cross-

sectional stock returns can be used to predict inflation movements. We provide empirical

evidence supporting this cash flow mechanism.

4.1 An Illustrative Model

We use a simple model to illustrate the interaction channel between inflation innovations

and stock returns. The inflation innovation for time t+ 1 includes a component from time t

that predicts the firm cash flow (dividend) growth at time t+1. Consequently, a high stock

price at time t can be driven by these predictable inflation shocks, alongside other components

of dividend shocks. This mechanism explains how stock return shocks can forecast inflation

innovations, akin to the orange juice example by Roll (1984). The variation in predictability

across firms is due to differing levels of inflation exposure in their cash flows. In contrast,

this channel does not exist for government bonds, as their cash flows are fixed.

Let Pt be the time-t price level, and πt+1 = ln (Pt+1) − ln (Pt) be the inflation growth,
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with the following dynamics,

πt+1 = µπ
t + σπϵ

π
t+1,

where µπ
t is the inflation forecast made by the econometrician, accounting for lagged inflation

terms. Mapping it to our empirical specification in Section 2, µπ
t = π̂t+1, where π̂t+1 is the

time-t fitted value of the ARMA(1,1) model for the purpose of forecasting the time-t + 1

inflation growth. We further model the unanticipated inflation shock in the econometrician’s

information set via ϵπt+1, and use the constant parameter σπ to model the conditional volatility

of the inflation shock.

For market participants, however,

ϵπt+1 = yt + ϵt+1,

where yt represents the market participants’ superior information regarding the inflation

shock. We use ϵt+1, which is standard normal and independent over time, to denote the

inflation surprises within their information set. The market participants’ signal yt is assumed

as,

yt = σyϵ
y
t ,

where ϵyt is standard normal and independent over t. Additionally, ϵt and ϵyt are assumed to

be independent.

The short rate rt is modeled as:

rt = µr + αyt + σrϵ
r
t ,

where we allow the market participants’ expectations, yt, to influence the short rate rt via

the constant coefficient α. We use ϵrt , which is standard normal, to model additional shocks

to the short rate. Finally, all three shocks, ϵ, ϵy, and ϵr, are mutually independent.

The time-t dividend Di
t for stock i is given by

Di
t = Di

t−1 exp (µi + biσπϵ
π
t −

1

2
σ2
i + σiϵ

i
t) ,

where the parameter bi captures stock i’s cash flow (dividend) exposure to inflation shocks
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σπ ϵ
π
t . The heterogeneous exposures of firms’ cash flows to inflation shocks are supported

empirically. Specifically, our empirical findings in Sections 4.2 and 4.3 indicate that yt is

a significant predictor of cross-firm variations in cash flows at time t + 1, but it does not

have a significant impact on the risk premium. For this reason, we build the time-varying

inflation impact (i.e., yt) into the firm valuation through the cash flow channel, but not the

risk premium channel. We further use ϵit, standard normal, for the shock in firm-i’s dividend

growth, and assume it to be independent of ϵ, ϵy, and ϵr.

Under this framework, the time-t stock price for firm i with parameter θi can be calculated

as

Si
t = Et

[
∞∑
v=1

exp

(
−

v−1∑
u=0

rt+u

)
Di

t+v

]
= Di

t f(yt, θi) ,

where, excluding the risk premium channel from the valuation problem, we take the ex-

pectation under the physical measure.21 The price-dividend ratio can be further calculated

as

f(yt, θi) =
Si
t

Di
t

=
exp (µi − µr + (biσπ − α)yt − σrϵ

r
t +

1
2
b2iσ

2
π)

1− exp (µi − µr +
1
2
(σ2

r + b2iσ
2
π + (biσπ − α)2σ2

y))
, (5)

where it is important to note that the time-t stock price contains the superior information

possessed by the market participants, namely yt. Moreover, the price dependence varies

across firms via biσπ−α, where bi enters via the cashflow channel and differs cross-sectionally,

while α enters via the riskfree rate channel and is the same for all firms.22

For the infinite sum of the price-dividend ratio f(yt, θi) to converge, we need the transver-

sality condition:

µr − µi −
1

2

(
σ2
r + b2iσ

2
π + (biσπ − α)2σ2

y

)
> 0.

The bond price of a consol is a special case of Di
t = 1 with bi = 0 and σi = 0. The details

of the derivation, as well as the propositions below, are provided in Section I of the Internet

Appendix.

Proposition 1. For the cross-sectional inflation portfolio (IP) that takes a long position

21As the risk premium under our setting does not depend on yt, the market price of risk is a constant.
One way to take account of this constant risk premium is to interpret rt as the discount rate, with the
constant µr incorporating the risk premium. Regardless, the constant risk premium will not alter our main
results on beta estimation and inflation forecasting.

22Note that e−rt+µi+biσπyt+
1
2 b

2
iσ

2
π is the one-period conditional discount rate net of the dividend growth

rate, and e−µi+µr− 1
2 (σ

2
r+b2iσ

2
π+(biσπ−α)2σ2

y) is the unconditional discount rate net of dividend growth.
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of $1 in stock i and a short position of $1 in stock j, the inflation exposure is given by

βij =
bi−bj
σ2
y+1

.

By regressing the log-returns of stock i on inflation innovations, we can derive the return

beta for stock i:

lnSit+1/Sit = αi + βiσπϵ
π
t+1 + uit+1 ,

where the population estimate of the return beta for stock i is

βi =
E[lnSit+1/Sitσπϵ

π
t+1]

var[σπϵπt+1]
=

σπE[(αyt + biσπϵt+1)(yt + ϵt+1)]

var[σπϵπt+1]
=

σπ(ασ
2
y + biσπ)

σ2
π(σ

2
y + 1)

.

For the IP portfolio that takes a long position of $1 in stock i and a short position of $1 in

stock j, its return beta is:

βij =
E[(lnSit+1/Sit − lnSij+1/Sjt)σπϵ

π
t+1]

var[σπϵπt+1]
=

bi − bj
σ2
y + 1

.

Note that the term involving α, which accounts for the effect of yt on the short rate, is

eliminated in the IP portfolio return or excess return. As a result, the IP portfolio return

beta is directly proportional to the cash flow beta, bi− bj. We further utilize the IP portfolio

to predict inflation.

Proposition 2. Consider the predictive regression of inflation innovation on the IP portfolio:

σϵπt+1 = γij0 + γij

(
lnSit/Sit−1 − lnSjt/Sjt−1

)
+ uijt+1.

The population estimate of γij is

γij =
(bi − bj)σ

2
π

(bi − bj)2σ2
π(1 + 1/σ2

y) + (σ2
i + σ2

j − 2ρijσiσj)/σ2
y

,

where ρij is the correlation coefficient between ϵit+1 and ϵjt+1.

The time-t price-dividend ratio, as described in equation (5), and consequently the time-t

realized stock return (as shown in Section I of Internet Appendix, equations (8) and (9)),

depend monotonically on yt. This dependence is the source of the predictability of realized

stock returns on inflation innovations. The heterogeneity of this dependence, characterized

19



by bi, is the key reason for using the long-short IP portfolios. Since the cash flows of govern-

ment bonds are fixed, the cash flow predictability channel stemming from this heterogeneity

is absent in bond returns.

4.2 The Cash Flow Channel

Our model builds on the heterogeneous effect of inflation on firm cash flows. As shown

in Equation (5), this cash flow channel leads to a link between stock returns and the market

participants’ superior information, namely yt. To empirically test the cash flow channel of

our model, we utilize the IP portfolio return to capture the time-series variations in yt and

examine whether an increase in IPCore disproportionately affects the cash flows of firms with

negative βCore compared to those with more positive βCore. We focus on the βCore constructed

portfolio because the announcement-day-based βCore better captures core information shocks,

and our later analysis indicates that IPCore is most effective in capturing variations in yt.

Table 4 reports the relation between quarter-t βCore and the quarter-t + 1 firm funda-

mentals, captured by sales growth, cash flow, and IBES long-term growth forecast. The

variable of interest is the interaction between the quintile rank of inflation beta βCore
Rank and

IPCore, as it captures the additional effect of heightened inflation expectations (an increase

in IPCore) on firm fundamentals for the more positive βCore quintile firms compared to the

more negative ones. We control for other firm characteristics, including size, lagged values

of the dependent variables, asset growth, market-to-book, and dividend payout as indicated.

Firm and time fixed effects are included in all specifications.

Across all specifications, inflation positively affects sales growth, cash flow, and the IBES

long-term growth forecast more for firms with more positive βCore. Focusing on sales growth

in the first two columns, the coefficients of the interaction term are significantly positive. A

10% increase in IPCore leads to a 7.8% standard deviation increase in sales growth when the

quintile ranks of βCore move from the bottom to the top quintile. After taking into account

operational costs, we observe a similar magnitude of IPCore on cash flows: A 10% increase

in IPCore at the end of quarter t predicts a 7.1% standard deviation increase in quarter-t+1

cash flow. A similar pattern is observed for the IBES long-term growth forecast of firm

EPS, suggesting that analysts are potentially informed about the impact of inflation on firm

cash flows, or they promptly update their beliefs about firm long-term earnings growth upon
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observing a high yt.

Figure 1 offers a more intuitive graphical illustration. At the beginning of each quarter

t, we sort all stocks into quintile groups based on their core beta (βCore) and compute the

equal-weighted average quarter-t cash flow for stocks in each quintile group. The upper

graph plots the cash flow difference between the top and bottom quintiles, alongside the

IPCore return in quarter t. We observe a comovement between the return and cash flow of

IPCore, indicating that firms with higher βCore (those less negatively impacted by inflation)

tend to have relatively better cash flows during periods of rising inflation expectations. The

lower graph zooms in on the cash flow distribution during the recent inflation run-up episode

from 2019 Q1 to 2023 Q4. Accompanied by the warning signal sent by our IPCore in the

first quarter of 2021, firms with more positive βCore experienced relatively more positive

cash flows from 2021 Q2 to 2022 Q4. As inflation started to decline after 2022, the cash

flow difference between high and low-βCore firms returned to its normal levels. Overall, these

visualizations highlight the significant impact of inflation expectations on firm cash flows.

4.3 Inflation Risk Premium

We further test whether or not the cross-firm variations in returns are driven by the

inflation risk premium. If the variations in IPCore are driven by the time-varying inflation

risk premium, we would expect firms with higher βCore to face lower required rates of return

in the context of elevated inflation expectations, assuming that inflation is negatively priced.

However, we do not find evidence in support of this risk premium channel. Following the

same regression framework, the last two columns of Table 4 report the impact of IPCore on

firm returns. The coefficients of the interaction term are insignificant, indicating a lack of

return dispersion between stocks with high and low βCore.

Furthermore, Table 5 reports the inflation risk premium for the βCore sorted quintile

portfolios from January 1972 to December 2023, as well as for subsamples split around

December 2002.23 As shown in Panel A, over the full sample, there is no monotonic pattern

in returns for βCore sorted portfolios. The return dispersion of the top and bottom portfolios

23Prior literature shows that the time-varying relation between inflation and consumption growth changed
sign from negative to positive around 2002 (e.g., Boons et al. (2020), Bekaert and Wang (2010), Campbell,
Sunderam, and Viceira (2017)).
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(IPCore) is 1.2% (t-stat=1.06). The subsample analysis yields similar results: both in the pre-

2002 and post-2002 subsamples, the return difference between the top and bottom portfolios

is positive and insignificant. However, for the βHead sorted portfolios, as reported in Panel

B, we observe a different pattern. Annualized excess returns for βHead sorted portfolios

decrease from 9.8% for the bottom quintile to 7.6% for the top quintile, resulting in a top-

minus-bottom return difference of -2.2% (t=-1.67) for excess return and -2.7% (t=-1.98) for

CAPM alpha. In sum, βHead and βCore contain uniquely different information, with βHead

better capturing the risk premium and βCore better capturing the information shocks.

To further explore whether the variations in IP portfolio returns are driven by the time-

varying risk premium of inflation, we analyze the inflation risk premium conditional on the

nominal-real covariance (NRC) following Boons et al. (2020). We regress excess returns of

the inflation beta-sorted portfolios, holding from month t+1 to t+K (K has a value of one,

three, and twelve) on month-t NRC using the following regression specification:

Rt+1:t+K = α + βNRCNRCt + εt+1:t+K , (6)

The intercept measures the unconditional inflation risk premium, and βNRC measures

the increase in annualized portfolio return resulting from a one standard deviation increase

in NRC. Focusing on the βHead sorted portfolios in Panel B of Appendix Table IA2, we

find consistent evidence, as in Boons et al. (2020), that IPHead strongly co-moves with the

nominal-real covariance, reflecting a compensation for inflation risk. In contrast, as shown

in Panel A, for βCore sorted portfolios, the effect of NRC is insignificant, and the sign is even

negative. This indicates that variations in IPCore, and hence the predictability of IPCore on

inflation shocks, are not driven by the time-varying inflation risk premium.

5 Inflation Forecasting

In this section, we provide evidence that the cross-sectional IP portfolio contains unique

predictive information about future inflation shocks that is not yet fully incorporated by

econometricians and economists.
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5.1 Predicting Inflation Innovations

We use the monthly rebalanced top-minus-bottom quintile inflation portfolios from Sec-

tion 3.2 to predict inflation shocks. The core-focused inflation portfolio (IPCore) is constructed

using the announcement-day core-beta βCore, while the headline-focused inflation portfolio

(IPHead) is constructed using the full-month headline beta βHead. As discussed in Proposi-

tion 2, stocks in the bottom-ranked portfolio, whose inflation betas are ranked the lowest,

suffer the most when inflation increases. Therefore, in anticipation of heightened inflation,

sophisticated investors would underprice stocks in the bottom portfolio more severely than

those in the top portfolio, leading to a positive return for the inflation portfolios. In other

words, a higher-than-usual return for the inflation portfolio could serve as an early warning

from the equity market about an upcoming surge in inflation.

5.1.1 Event Study around Extreme CPI Months

We begin by tracking the performance of inflation portfolios around extreme CPI events to

understand the timing of price discovery. According to Lo and MacKinlay (1990), large stocks

have better liquidity and often lead small stocks in incorporating market-wide information, so

we focus on inflation portfolios constructed using large stocks.24 We categorize all CPI events

into quintiles based on headline- and core-CPI innovations, with the top (bottom) quintile

capturing the events with very positive (negative) surprises. We then plot the cumulative

performance of inflation portfolios (IPCore and IPHead) from t = −50 trading days before the

start of the CPI month to t = 50 days afterward in Figure 2, with t = 0 marking the start

of the CPI month.

Focusing first on the upper graph, the performance of inflation portfolios remains flat

during the CPI month, regardless of whether the headline-CPI innovations are extremely

high or low. However, inflation portfolios start to drift upwards around 30 days before

the start of higher-than-expected headline-CPI innovations. The red line lies above the

yellow line, suggesting that the core-focused inflation portfolio (IPCore) discovers heightened

inflation information faster than the headline-focused portfolio (IPHead). The lower graph,

conditional on core-CPI innovations, shows similar pattern.

24We contrast the forecastability of large stocks with small stocks in Section 6.1.
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To pinpoint when the equity market starts incorporating next-month inflation expecta-

tions, Table 6 reports the predictability of inflation portfolio returns on CPI innovations, with

returns estimated over 10-day intervals. For instance, the interval [-10,-1] denotes returns

from 10 trading days before the CPI month to the last trading day before the CPI month.

To compare with information discovery in other asset markets, we also include TIPS-UST

returns to capture Treasury market dynamics, and GSCI returns for the commodity market.

All regressors are standardized with means of zero and standard deviations of one for ease

of interpretation.

Inflation portfolios demonstrate robust predictive power for both core-CPI and headline-

CPI innovations, initiating 30 days before the CPI month. For instance, within the [-30,-20]

day window, a one standard deviation increase in the 10-day return of IPCore predicts a

1.8 bps (t-stat=2.37) and 4.6 bps (t-stat=2.73) rise in core and headline-CPI innovations,

respectively. Despite noise in returns, coefficient estimates are consistently positive during

this 30-day period but become insignificant and even shift sign for the [-40,-30] window

preceding it. This pattern holds true not only for the inflation portfolios but also for TIPS-

UST and GSCI, indicating active price discovery of inflation news across various asset classes,

around 30 days before the actual CPI month begins. Our findings align with Downing,

Longstaff, and Rierson (2012), highlighting asset prices’ forward-looking nature regarding

future inflation expectations.

5.1.2 Predictability of Core-Focused Inflation Portfolio

Building on the event window analysis in Section 5.1.1, we assess the performance of

inflation portfolios in the 30-day period before the CPI month to predict upcoming inflation

changes. We focus on the additional forecasting ability of IPCore, comparing it with the

headline-inflation portfolio and market-based signals from Treasury bond and commodity

markets. Specifically, as shown in Section II of the Internet Appendix, at the end of month

t (Mt), we use the 30-day returns observed by the end of month t to forecast CPI changes

for month t + 1 (Mt+1), which are announced on day At+1, using the following regression

specification:

Core-Innovt+1 = α + γIPIPCore
t + γXXt + εi,t+1, (7)
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where Core-Innovt+1 denotes month-t+ 1 core-CPI innovations, and Xt includes the 30-day

return of TIPS-UST and GSCI observed at the end of month t. To predict headline-CPI

innovations, we replace the dependent variable with Head-Innovt+1. For ease of comparison,

the independent variables are standardized with means of zero and standard deviations of

one.

Table 7 shows the predictive power of IPCore on inflation innovations. A one standard

deviation increase in the 30-day core beta inflation portfolio (IPCore) observed at the end of

month t predicts a 2.2 bps increase (t-stat=2.98) in core-CPI innovations and a 7.9 bps in-

crease (t-stat=6.54) in headline-CPI innovations for month t+1. Given the sample standard

deviations of core- and headline-CPI innovations are 16 bps and 26 bps, respectively, the eco-

nomic significance of IPCore is non-trivial. This evidence confirms our finding in Section 5.1.1

that a significant portion of future inflation expectations is incorporated into cross-sectional

stocks well before the start of the actual CPI month.

The predictability of IPCore remains strong even when controlling for market indicators

from the Treasury and commodity markets. Given that TIPS are directly linked to headline

inflation and commodities are key inputs for it (Gorton and Rouwenhorst (2006) and Down-

ing, Longstaff, and Rierson (2012)), it is unsurprising that TIPS-UST and GSCI are strong

predictors of headline-CPI innovations.25 Including GSCI with IPCore boosts the predictabil-

ity on headline inflation from an R2 of 9.1% to 24%, while adding TIPS-UST enhances the R2

to 20.3%. In both cases, the coefficient estimate on IPCore remains robust both economically

and statistically.

While TIPS-UST and GSCI can predict headline-CPI innovations, their ability to forecast

core-CPI innovations is limited. According to the estimates in column (4), a one standard

deviation increase in IPCore predicts a 2.4 bps increase in core-CPI innovations (t-stat=2.47),

whereas TIPS-UST and GSCI predict increases of 0.7 bps (t-stat=0.71) and 1.0 bps (t-

stat=1.3), respectively. These findings suggest that while price discovery for headline CPI,

particularly its energy component, is more active in the commodity and Treasury markets,

the information embedded in cross-sectional stocks can still add significant value, especially

in terms of core-CPI shocks.

25Based on the index composition in 2023, the GSCI index was composed of 61% energy, 24% food, and
15% metals.
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Finally, columns (5)-(6) and (11)-(12) analyze the headline-focused portfolio (IPHead) for

predicting inflation. The forecastability of IPHead on headline inflation is similar to that

of IPCore. A one standard deviation increase in IPHead predicts a 7.4 bps (t-stat=5.78)

increase in headline-CPI innovations, close to the 7.9 bps (t-stat=6.54) increase predicted

by IPCore. However, IPHead is less effective for core-CPI innovations. When controlling for

TIPS-UST and GSCI in column (6), the coefficient for IPHead is an insignificant 0.9 bps

(t-stat=1.47), as the headline portfolio’s information is largely absorbed by Treasury and

commodity market signals. Thus, compared to IPHead, the core-focused IPCore excels in

forecasting both headline- and core-inflation changes. Given the core CPI’s influence on Fed

policy, the unique predictability from cross-sectional stocks is crucial.26

5.2 Do Economists Update Beliefs about Inflation?

Our IPCore forecaster is constructed at the end of month t, while the inflation data for

month-t + 1 is typically announced in the second or third week of month t + 2. This re-

sults in a lag of over one month between the signal formation and the CPI announcement.

This situation raises an intriguing question: Do economists update their inflation expecta-

tions based on market-based information, particularly that embedded in cross-sectional stock

data? Alternatively, if economists do not fully incorporate the information from IPCore, to

what extent can the inflation portfolio predict the announcement-day forecasting errors made

by economists?

To capture market economists’ expectations for month-t + 1 inflation growth, we uti-

lize Bloomberg Economists’ survey forecasts for headline- and core-CPI month-over-month

growth. These surveys provide the most current consensus view of inflation just prior to

the announcement. We define the change in forecasts as the difference between economists’

estimated value for month-t + 1 inflation growth and the value predicted by the ARMA

(1,1) model. The announcement-day forecasting error is then defined as the actual inflation

growth for month t+ 1 minus the value estimated by Bloomberg economists.

Table 8 shows that although economists are generally responsive to market-based inflation

signals, particularly the one from the commodity market, they do not adequately update their

26While the predictive power of IPCore is moderate in the full sample, it substantially increases to an R2

of around 20% during periods when inflation is significant, as discussed in Section 5.3.
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beliefs regarding IPCore. Consequently, IPCore can significantly predict announcement-day

forecasting errors with considerable magnitude. Specifically, we use the inflation portfolios

alongside GSCI and TIPS-UST to jointly predict changes in forecasts and the forecasting

errors for both core and headline inflation by economists. Focusing first on the economists’

belief updates (left panels), a one standard deviation increase in the GSCI return predicts

an upward adjustment of 1.3 bps (t-stat=2.73) and 10.5 bps (t-stat=5.02) in the economists’

forecast of core and headline inflation, respectively. Once we control for GSCI return, there is

no statistically significant evidence that economists use the information contained in IPCore to

update their inflation expectations. This suggests that the uniquely important core-focused

inflation portfolio is not in their information set.

The economists’ failure to utilize information from the cross-sectional stock market im-

plies that IPCore might predict announcement-day forecasting errors or survey-based an-

nouncement surprises. Consistently, the right panel shows that our core-focused inflation

portfolio can predict announcement-day errors for both headline- and core-CPI, beyond what

other market-based predictors can achieve. A one standard deviation increase in IPCore pre-

dicts an increase of 2.3 bps (t-stat=3.1) and 3.8 bps (t-stat=4.22) in the core and headline

CPI, respectively, which economists do not anticipate. Given that the standard deviations of

core- and headline-CPI forecasting errors are 11 bps and 13 bps, respectively, the information

from cross-sectional stocks is significant and can enhance economists’ forecasting accuracy.

Yet, this information, available over a month in advance, does not seem to be incorporated

into the economists’ forecasts.

5.3 Time-Varying Predictability

The influence of inflation on the economy and its effect on asset prices fluctuates over time

(Cieslak and Pflueger (2023) and Bauer, Pflueger, and Sunderam (2024)). When inflation is

low, it has a minimal impact on firms’ fundamentals, and the predictive power of our inflation

portfolio can be quite limited. However, when inflation becomes a significant risk factor in

the capital market, the price discovery of inflation-related news among assets intensifies. This

section examines the role of core-focused inflation portfolios during key inflation episodes,

considering inflation uncertainty and government interventions.

27



The Episode of 2021 – In 2021, the global economy saw a significant surge in inflation,

driven by supply chain disruptions from COVID-19, increased demand from fiscal and mon-

etary stimulus, and rising energy prices. After surpassing the 2% Fed target in April 2021,

core CPI continuously increased, reaching a 40-year high of 6.6% year-over-year growth by

September 2022. Despite this, the Fed maintained its zero interest-rate policy throughout

2021, only beginning to tighten in mid-2022. Economists also underestimated the severity

of inflation. The upper graph of Figure 3 shows core-CPI (MoM) growth against Bloomberg

economists’ forecasts from October 2020 to September 2022. During critical months in 2021,

the median forecasts missed the rapid ascent of core CPI by 10 bps in March, 60 bps in April,

20 bps in May, and 50 bps in June. The April 2021 forecast error was particularly notable,

being a 5.5-sigma event given that the standard deviation of forecasting error is 10.9 bps in

the whole sample.27

In contrast to the failure of economists, the inflation portfolio (IPCore) appeared to cor-

rectly anticipate the inflation surge during this period. The lower graph of Figure 3 plots

the 30-day IPCore return (red line), observed by the end of month t − 1, together with the

month-t core CPI (blue bars). We observe a tremendous increase in IPCore just before the

rapid surge of core CPI in April 2021. The magnitude of IPCore observed at the end of March

2021 is 3.7 times of its sample standard deviation. Meanwhile, IPCore co-moves well with the

ups and downs of core CPI, successfully catching the local trough in July 2021 and the local

peaks in April 2021 and June 2022.

In the form of a scatter plot, the upper left graph of Figure 4 further demonstrates

the capability of IPCore in predicting core-CPI innovations during this crucial period. A

10% increase in the 30-day IPCore observed at the end of month-t predicts a 26.3 bps (t-

stat=2.31) increase in core-CPI innovations for month t + 1, with an R-squared of 17.7%.

Amid doubts about the persistence of the inflation shock, possibly driven by temporary

supply-chain disruptions post-COVID-19, IPCore effectively captured the month-over-month

movements of core CPI that were largely missed by policymakers and economists.

Turning to other market-based predictors, we find their performance in predicting this

surge in inflation to be rather disappointing. Conducting the same analysis using signals

27Relating the policy rate with economists’ forecasts, Bauer, Pflueger, and Sunderam (2024) show that
economists do not expect the Fed to react to inflation changes until after the liftoff in March 2022.

28



from the bond market, the upper right graph of Figure 4 shows that TIPS-UST fails to

predict core-CPI innovations and even exhibits a negative correlation. Panel A of Table 9

further reports regression estimates using various market-based predictors to forecast core-

CPI innovations and economists’ forecasting errors. IPCore emerges as the only significant

predictor, with both economic and statistical significance far surpassing other predictors.28

Importantly, the coefficient estimates of IPCore on core-CPI innovation and survey-based

forecasting error are more than three times larger than the full-sample estimates, highlighting

the importance of the core-focused inflation portfolio in the price discovery of inflation during

the 2021 episode.

The Episode of 1973 – Drawing parallels to the inflationary surge of 2021, the 1973 expe-

rience is frequently revisited to provide insights into recent inflation dynamics. The buildup

to the Great Inflation began in the early 1970s, and by the end of 1973, inflation had es-

calated to 8.6%, significantly exceeding the average inflation rate of 2.5% observed between

1947 and 1972. This surge was driven by stimulative fiscal policies under Nixon’s presidency,

excessive government spending for the Vietnam War, and the Arab oil shock. Both periods

experienced highly accommodative monetary policies leading up to their respective inflation-

ary episodes. In 1973, inflation persisted at elevated levels until Paul Volcker’s appointment

as Chair of the Federal Reserve in 1979, when he initiated a stringent monetary tightening

campaign.

Similar to the 2021 scenario, economists and policymakers in the early 1970s severely

underestimated the rate of inflation. However, the core-focused inflation portfolio demon-

strated exceptional power in forecasting inflation during the 1973 episode. We form the 1973

episode by including 24 months after May 1973 to capture the run-up period of the Great

inflation. May 1973 is the first time when the year-over-year core-CPI growth crossed above

3% and stayed there afterward for a prolonged decade. The lower left graph of Figure 4 shows

that a 10% increase in IPCore, observed at the end of month t, can predict an increase of 76.2

bps (t-stat=3.43) in month-t + 1 core-CPI innovations, with a much improved R-squared

of 28.4%. This enhanced predictability on core-CPI innovations is uniquely captured by

our IPCore, mirroring the results observed in the 2021 episode. Columns (5) and (6) of Ta-

28The coefficient estimates in Figure 4 and Table 9 differ because the independent variables are in units
of return in Figure 4 and are standardized in Table 9.
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ble 9 further report the predictability of bond and commodity-based forecasters together

with IPCore.29 Among all these forecasters, IPCore is again the only significant variable that

predicts core-CPI innovations during the Great Inflation episode.

Inflation Uncertainty and Monetary Policy – To further explore the time-varying nature

of inflation predictability, we estimate the forecastability of IPCore, conditional on inflation

uncertainty and inflation disagreement. We hypothesize that our stock-based inflation port-

folio will add the most value when the market is most uncertain about the future course of

inflation. Conversely, when consensus is reached and market participants pay little attention

to inflation news, the potential for improvement from our inflation portfolios is limited.

We use two proxies to capture the time-varying nature of inflation uncertainty: (a) |CPI

Innovation|, the absolute value of CPI innovation in the last month; (b) CPI disagreement,

the difference between the 75th percentile and 25th percentile of quarterly CPI forecasts

from the Survey of Professional Forecasters (SPF) database.30 Panel B of Table 9 reports

the predictability of IPCore on core-CPI innovations and the forecasting errors (survey-based

surprises) for subsamples defined using the median cutoffs of the two proxies.

The forecasting power of IPCore is much stronger when the last-month |CPI Innovation|

and the CPI disagreement are above the median cutoff. For example, a one standard devi-

ation increase in IPCore predicts a 3.9 bps (t-stat=3.34) and 2.9 bps (t-stat=2.39) increase

in core innovations and core forecasting errors during periods with above-median inflation

risk. In contrast, during periods of low inflation risk, the predictive power is only 0.4 bps

and 1.8 bps, respectively.31 Overall, the evidence suggests that IPCore can provide valuable

information about future inflation expectations when the market most needs it.

We further explore how monetary policies impact the time-varying informativeness of

IPCore. The Taylor rule provides a useful framework for describing activist monetary pol-

icy (Taylor (1993)). When prices deviate from the 2-3% inflation target, the central bank

can implement monetary policy to restore the target. When the Fed aggressively combats

inflation preemptively, inflation can be effectively contained, reducing the predictability of

29Given that inflation-linked TIPS securities were unavailable in the 1970s, we use month-t change in
10-Year US Treasury yield as a proxy.

30Unlike the monthly Bloomberg Economists’ Survey Forecasts that start in 1997, SPF offers quarterly
forecasts but has the advantage of being traceable back to the third quarter of 1981.

31We focus on predicting core CPI due to its crucial role in the Fed’s decision-making process. The results
for headline-CPI predictions are qualitatively similar.
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market-based forecasters. For instance, during the 1989-1991 inflation period, driven by the

first Gulf War and rising oil prices, annual CPI rose to 5% in May 1989 but was controlled

to below 3% by October 1991. The effective federal funds rate was maintained around 9%,

successfully preventing runaway inflation. Hence, the Fed’s timely intervention may limit

the ability of market-based forecasters to predict inflation spikes. Conversely, when the

Fed reacts sluggishly, as in 2021 and 1973, inflation becomes uncontrollable, and with the

lack of Fed intervention, market-based forecasters could become more effective in predicting

inflation.

To test the predictability of inflation indicators conditional on Fed monetary policy, we

measure the extent to which the Fed is behind-the-curve by the distance between the Fed

funds rate recommended by the Taylor rule and the actual federal funds rate. The recom-

mended Fed funds rate is calculated as 2.5%+1.5*(Core-CPI YoY Growth-2%)+0.5*OutPut

Gap, where the output gap is estimated by the percentage deviation of real output from the

long-run trend (Taylor (1993)). We use response coefficients of 1.5 for inflation deviations

and 0.5 for output gap, following Piazzesi (2022).32 Panel B of Table 9 reports the subsample

regression estimates, where “Behind” refers to the periods when the difference between the

rate implied by the Taylor rule and the actual Fed funds rate is above the 67% percentile

cutoff. A one standard deviation increase in IPCore predicts a 3.7 bps (t-stat=2.8) increase in

core-CPI innovations with an R-squared of 5.6%, when the Fed is behind the curve. For the

rest of the periods, the predictability of IPCore is 1.3 bps (t-stat=1.83) with an R-squared of

0.4%.

As a graphical illustration, Figure 5 plots the time-series predictive power of IPCore. For

each time t, we estimate equation (7) using a rolling five-year window from t − 59 to t

and plot the coefficient estimate γIP on the left axis.33 On the right axis, the upper and

lower graphs plot the volatility of inflation shocks and the extent to which the Fed is behind

the curve, respectively. We observe a strong co-movment between the γIP estimate and

the importance of inflation risk at the time. γIP peaks during significant core inflationary

episodes in 1973–82 and 2021–2022. Zooming into these periods, the predictive power is

consistently stronger at the beginning of the inflation run-up when the Fed is behind the

32The target core-inflation rate is set at 2%, following Clarida (2021).

33Appendix Figure IA2 plots the regression R-squared.
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curve in combating inflation. Conversely, when the Fed aggressively fights inflation, such as

during the early 1980s under Paul Volcker and in late 2022 with aggressive rate hikes, the

γIP estimate decreases dramatically.

5.4 Out-of-Sample Forecastability

Section 5.1 to 5.3 presents in-sample evidence that the core-focused inflation portfolio has

strong predictive power for future inflation shocks, particularly the core component. To bet-

ter reflect real-time information available to market participants, we follow the methodologies

of Ang, Bekaert, and Wei (2007) and Faust and Wright (2013), examining the out-of-sample

forecasting power of IPCore alongside other leading inflation indicators. Out-of-sample tests

provide a more realistic performance assessment using public data available at the time and

help alleviate concerns of overfitting.

At the end of each month t, we estimate the forecasting model πt = a+
∑N

k=1 bk X
k
t−1+ ϵt

using only publicly available information up to month t. Here, Xk
t−1 represents the forecasting

signal k observed at the end of month t − 1, and πt represents the inflation growth for

month t. We then use the estimated coefficients to forecast inflation growth for month t+1.

The forecasting error for month t+1 is calculated as the actual inflation growth minus the

forecasted growth. Out-of-sample accuracy is measured by relative RMSE, which is the

ratio of the root-mean-square forecasting error (RMSE) for a particular model relative to

that of the benchmark model. We use an ARMA(1,1) time-series model as our benchmark.

Additional forecasting signals such as IPCore, commodity-based GSCI returns, and TIPS-

UST returns are added to evaluate their incremental forecasting power. A relative RMSE

below 1 indicates that the indicator improves the benchmark model’s performance. To ensure

sufficient historical data for training the forecasting model, the out-of-sample period begins

in May 2003, five years after the introduction of TIPS data in May 1998.

Table 10 shows the relative RMSE for various forecasting models. IPCore improves the

forecasting accuracy of month-t+1 core and headline CPI by 3.6% (p-value=0.05) and 7.3%

(p-value=0.00), respectively, relative to the ARMA(1,1) model. Among all forecasters from

the Treasury, equity, and commodity markets, IPCore has the highest incremental forecasting

power for core CPI and ranks the second for headline CPI, after GSCI. Consistent with

the in-sample evidence, GSCI has the highest forecasting power for headline CPI, with an
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RMSE improvement of 14.2%. Interestingly, while TIPS-UST, designed to track inflation

expectations, only improves forecasting accuracy by 6.9%. Besides, we find limited out-of-

sample evidence that aggregate stock market and nominal bond yields can forecast upcoming

inflation growth.

In addition to these market-based indicators, we include economists’ and households’ in-

flation forecasts from the Survey of Professional Forecasters (SPF) database and the Surveys

of Consumers by the University of Michigan. Ang, Bekaert, and Wei (2007) and Faust and

Wright (2013) show that subjective survey forecasts outperform those from Phillips curve or

term structure models. The importance of household subjective expectations is also empha-

sized by Weber, Gorodnichenko, and Coibion (2023) and D’Acunto and Weber (2024). Since

we are predicting month-t+1 inflation growth at the end of month t, we use the latest survey

forecast available at that time.34 Table 10 indicates that economists’ preliminary forecasts

at month t can improve the time-series model by only 1.7%. Motivated by the Phillips curve

economic model (e.g., Stock and Watson (1999)), we also include real GDP growth, output

gap, unemployment rate, labor income share, and CFNAI as proxies for economic activity in

the forecasting model. Consistent with Ang, Bekaert, and Wei (2007), real activity measures

do not add value.

Finally, Panel B of Table 10 reports the out-of-sample performance of IPCore for subsam-

ples when inflation is particularly significant to the economy. Consistent with Section 5.3,

the forecasting power of IPCore is stronger during periods when inflation plays a critical role.

The out-of-sample predictability for core and headline CPI improves by 6.4% and 11.2%,

respectively, during the 2021 inflation episode. For periods when inflation risk is above the

median or when there is significant noise from the Treasury market, improvements are 3.8%

for core CPI and 8.3% for headline CPI. Overall, IPCore provides unique information about

inflation both in-sample and out-of-sample, particularly during heightened inflation periods.

34We do not use Bloomberg Economist Forecasts here because we are forecasting month-t+1 inflation at
the end of month t, and the Bloomberg forecasts are updated until the last minute before the announcement.
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6 Other Discussions and Robustness Tests

6.1 Firm Information Environment

Our hypothesis assumes that sophisticated market participants can understand the effects

of inflation on firm cash flows and integrate these effects into stock pricing. However, not

all firms are the same. If investors have limited capacity, expectations about inflation may

not be promptly reflected in stock prices. In such cases, the predictability of IPCore should

be stronger among firms with a more opaque information environment, which we capture

through analyst coverage. Additionally, pricing efficiency relies on sophisticated investors,

such as arbitrageurs, to incorporate information in a timely manner and bring stock prices

to their intrinsic value. Therefore, we expect that the predictability of inflation portfolios

will be more pronounced among firms subject to fewer limits to arbitrage, as proxied by firm

size and institutional ownership.

Specifically, at the end of month t, we first divide firms into halves based on the median

of the information environment proxy X (X ∈ size, residual institutional ownership, residual

analyst coverage).35 We then sort stocks within each category by their βCore into quintiles.

Table 11 reports the informativeness of the top-minus-bottom quintile IPCore portfolios con-

structed within each group. While IPCore (X≤Median), constructed based on the stocks with

below-median information environments, is sometimes significant in predicting the core-CPI

shocks, its predictive power is fully absorbed by IPCore (X>Median) when included together

in columns (3), (6), and (9). This evidence is consistent with our hypothesis and indicates

a stronger active price discovery among larger firms with higher institutional ownership and

analyst coverage.

6.2 Predicting Inflation-Linked Asset Returns

Given that IPCore effectively predicts both inflation innovations and economists’ forecast-

ing errors, it is worthwhile to examine whether IPCore can also predict interest rate changes,

especially the inflation component. This potential predictability builds on the assumption

35Since analyst coverage and institutional ownership are strongly correlated with firm size, we further
orthogonalize these variables with respect to firm size and use the residual values for sorting (Hong, Lim,
and Stein (2000)). The two size groups are defined by the median cutoff of NYSE market capitalization.
Stocks with size > Median are the large stocks that we focus on in the baseline results.
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that the information embedded in the cross-sectional stocks may not yet be fully incorpo-

rated by other assets. We focus on changes in inflation swap rates and nominal yields, as

they are directly influenced by inflation expectations. An inflation swap allows one party

to exchange a fixed payment for one linked to an inflation index, directly reflecting changes

in inflation expectations. If IPCore can predict the inflation component, it may also predict

nominal yield changes, provided the real component does not perfectly offset the inflation

change. This predictability of inflation-linked assets could help investors hedge against or

speculate on inflation risk.

Table 12 reports the predictability of IPCore, observed at the end of month t, on the

change in inflation swap rates (Panel A) and the change in nominal yields (Panel B) from

the end of month t to the announcement day when the actual inflation of month t + 1 is

publicly released. For ease of interpretation, IPCore is standardized with a mean of zero and

a standard deviation of one. A one standard deviation increase in IPCore predicts a 19.4

bps (t-stat=2.93) increase in the one-year inflation swap rate, with the magnitude declining

monotonically with maturity. This indicates that the information from the cross-section of

stocks is mostly concentrated in the short run. Similarly, a one standard deviation increase

in IPCore also predicts an increase in nominal yields, with the magnitude decreasing from

the highest of 11.7 bps for the one-year yield to the lowest of 4.5 bps for the 30-year yield.

These yield changes align roughly with the monthly predictability of around 2.2 bps in

forecasting CPI innovations. Overall, it suggests that IPCore can capture information not yet

incorporated by inflation-linked assets.

6.3 Industry vs. Stock-Specific Information

To determine whether the predictability of inflation portfolios is influenced more by in-

dustry or firm-specific factors, we calculate inflation betas for the Fama and French 48

Industries, using a method similar to that for individual stocks. This allows us to analyze

the distribution of betas across industries and compare price discovery at the industry level

with that at the firm level. Panel A of Table IA3 presents the top 10 and bottom 10 in-

dustries that are most and least sensitive to announcement-day core-CPI innovations and

full-month headline-CPI innovations, respectively. Our findings align with previous studies

by Boudoukh, Richardson, and Whitelaw (1994) and Ang, Brière, and Signori (2012), show-
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ing significant variability in inflation exposure across industries. Notably, industries such

as oil, mining, and metals serve as effective inflation hedges, with positive full-month head-

line betas, consistent with the notion that oil and gas stocks benefit from rising commodity

prices. In contrast, cyclical industries like soda, restaurants, hotels, and insurance are more

negatively impacted by unexpected inflation shocks.

The distribution of announcement-day core-based inflation betas is less documented in the

literature. The core beta ranking reveals that βCore captures distinct information compared

to βHead. For instance, the industry of shipping containers appears in the top 10 for βCore with

a positive core beta of 0.03 per announcement day but falls into the bottom 10 for βHead with

a negative headline beta of -0.14 per month. This contradictory behavior makes intuitive

sense: while rising commodity prices are costly for firms running shipping containers, price

increases for providing shipping services benefit them.

Given these significant cross-industry variations in inflation exposure, we further investi-

gate whether the predictive power of our stock-based inflation portfolios is subsumed when

we control for industry-based inflation portfolios. Panel B of Table IA3 examines the fore-

castability of industry-constructed inflation portfolios. The 30-day cumulative returns for

these portfolios, denoted as IPCore
Ind and IPHead

Ind , are constructed by taking long positions in top-

quintile inflation beta industries and short positions in the bottom-quintile. IPCore
Ind exhibits

weak predictability for core-CPI innovations, with an R-squared of just 0.3%. When we use

both IPCore
Ind and IPCore to predict core-CPI innovations, the information content of industry

portfolios is fully absorbed by stock-based portfolios. In summary, our evidence suggests

that the inflation exposure of stocks is not merely a byproduct of their industry affiliation,

but rather that there exists active price discovery of inflation news among cross-sectional

stocks.

6.4 Alternative Measures of IP and Robustness Tests

Forecasting CPI Growth – In our primary analysis, we focus on predicting one-month

ahead CPI shocks. Our findings remain robust when using IPCore to predict CPI growth and

when extending to longer horizons. Appendix Table IA4 demonstrates the predictability

of IPCore, observed at the end of month t, for month-t + 1 CPI growth and for quarterly

CPI growth. To account for serial correlation in CPI growth, we control for the lagged
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dependent variable, akin to controlling for an AR(1) series of CPI. Consistent with our

baseline estimates in Table 7, a one standard deviation increase in IPCore predicts a 2.0 bps

increase (t-stat=2.93) in next-month core-CPI growth and a 6.5 bps increase (t-stat=5.72)

in headline-CPI growth. For quarterly (three-month) CPI growth, a one standard deviation

increase in IPCore predicts a 7.3 bps increase (t-stat=4.03) in core-CPI growth and a 15.6

bps increase (t-stat=4.69) in headline-CPI growth over the next three months.

Ann-Day Surprise Estimated Beta – In our baseline specification, we use ARMA(1,1)

computed inflation innovations to estimate stocks’ inflation exposure, a method also adopted

by Boons et al. (2020) and Ang et al. (2007), among others. However, some of the informa-

tion in these CPI innovations may already be incorporated into asset prices well before the

official announcement. Ideally, the surprise measure should be based on real market forecasts

made prior to the announcement. The challenge is that surprise data based on economists’

forecasts, such as money market service data and Bloomberg surveys, is only available from

1991 onward (Swanson and Williams (2014)). Therefore, we rely on the time-series model

to measure inflation innovations, which allows us to track inflation movements back to the

1970s in our main analysis.

To ensure robustness, we use alternative measures of inflation surprises, including economists’

forecasting errors of core CPI, announcement-day changes in 2-year and 5-year Inflation

Swap Rates, and changes in 2-year and 5-year UST yields.36 Appendix Table IA5 presents

the baseline results on inflation exposure and forecasting using these five alternative mea-

sures of announcement-day surprises. The post-ranking announcement-day inflation betas

are significantly positive for the top-minus-bottom portfolio constructed based on the corre-

sponding pre-ranking betas. For inflation forecasting, we construct long-short IP portfolios

using surprise-based inflation betas. Panel B shows that, consistent with our baseline results,

all five inflation portfolios significantly predict core-CPI innovations.

Beta Estimated By All Historical Observations – In our baseline specification, we estimate

individual stocks’ inflation betas using a five-year rolling window (Fama and French (1993)).

Appendix Table IA6 further presents results based on inflation betas constructed following

the methodology in Boons et al. (2020), using a weighted least squares (WLS) regression

36Using market-based instruments (e.g., inflation swaps) to capture inflation beta has the additional
drawback that the beta might also reflect comovements in the risk premium.
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with exponential weights over an expanding window that includes all historical observations.

In line with Table 1, there is a significant post-ranking beta difference between the top and

bottom quintiles for core CPI on the announcement day and for headline CPI (mainly the

energy component) during the full month. The announcement-day core-CPI exposure of

the inflation portfolio (Quintile 5-1) is 4.7 bps (t-stat=2.38), and the full-month headline-

CPI exposure of the inflation portfolio is 43.4 bps (t-stat=2.89). Using the rolling all-year

window estimated βCore to form inflation portfolios and to predict inflation shocks yields

similar results, both in terms of predicting CPI innovations and economists’ forecasting

errors.

Risk Factors and Portfolio Alpha – Panel A of Appendix Table IA7 presents the beta

loadings of the inflation portfolios on the Fama-French five factors. In line with the re-

sults from Table 3, IPCore exhibits a positive loading on HML, although the t-stat is only

marginally significant. Panel B additionally reports the predictability of the Fama-French

five-factor adjusted inflation portfolio alphas in response to inflation shocks. The findings

are robust and exhibit similar economic magnitudes.

7 Conclusions

In this paper, we explore the price discovery of inflation news among cross-sectional

stocks. To understand the cross-firm variations in inflation exposure, we observe that cross-

sectional stock returns exhibit persistent sensitivity to headline inflation shocks during the

calendar month of the CPI release and to core inflation news on CPI announcement days.

Both headline and core betas are effective in capturing individual stocks’ exposure to infla-

tion, but they convey different information. The headline beta is more attuned to variations

in headline exposure and inflation risk premiums across firms, while the core beta is better

at detecting core inflation shocks. Furthermore, we provide evidence that the relative pricing

between stocks with high and low inflation exposure can predict inflation shocks, driven by

the cash flow effect of inflation on firm pricing.

Given the weak contemporaneous correlation between the aggregate stock market and in-

flation documented by Fama and Schwert (1977), the common belief is that the stock market

is not an active place for price discovery with respect to inflation. The strong predictability
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documented in our paper suggests that much can be gained from the cross-section. Our

analysis shows that the predictability of inflation portfolios increased significantly, with an

R-squared of 17.7% and 28.4% during the inflationary periods of 2021 and 1973, respec-

tively. Key to our predictability is the cross-sectional approach, in which the relative pricing

between stocks with high and low inflation exposure allows us to shift away from the over-

all equity market trends and focus on inflation expectations. Compared to Treasury and

commodity markets, which are commonly used for forecasting inflation, our results indicate

that the information contained in cross-sectional stocks can add value, especially for the core

component.

Focusing on economists’ forecasting errors, we find that they do not incorporate the

information contained in the inflation portfolio, and their room for improvement is especially

large during the 2021 episode. As both policymakers and economists form their forecasts by

incorporating all of the information available to them, their initial miss of the 2021 inflation

surge reflects the limitations of existing inflation forecast measures and suggests a need for

more diverse sources of information. By leveraging the inflation expectations embedded

in cross-sectional stocks, our paper offers a novel approach to improving inflation forecasts.

Going forward, the methodology we developed can be applied to other macroeconomic shocks

to better understand market perceptions of macroeconomic states, provided these shocks

have diverse impacts across different stocks.

References

Ajello, A., Benzoni, L., and Chyruk, O. (2020). Core and ‘Crust’: Consumer Prices and the
Term Structure of Interest Rates. The Review of Financial Studies 33(8), 3719–3765.

Andrei, D. and Hasler, M. (2023). Can the Fed Control Inflation? Stock Market Implications.
Available at SSRN 4225973.

Ang, A., Bekaert, G., and Wei, M. (2007). Do Macro Variables, Asset Markets, or Surveys
Forecast Inflation Better? Journal of Monetary Economics 54(4), 1163–1212.

Ang, A., Brière, M., and Signori, O. (2012). Inflation and Individual Equities. Financial
Analysts Journal 68(4), 36–55.

Bauer, M.D., Pflueger, C.E., and Sunderam, A. (2024). Changing Perceptions and Post-
Pandemic Monetary Policy. In Jackson Hole Symposium, Federal Reserve Bank of Kansas
City.

39



Bekaert, G. and Wang, X. (2010). Inflation Risk and the Inflation Risk Premium. Economic
Policy 25(64), 755–806.

Bhamra, H.S., Dorion, C., Jeanneret, A., and Weber, M. (2023). High inflation: Low default
risk and low equity valuations. The Review of Financial Studies 36(3), 1192–1252.

Bianchi, F., Ludvigson, S.C., and Ma, S. (2024). What Hundreds of Economic News Events
Say About Belief Overreaction in the Stock Market. NBER Working Paper (w32301).

Bonelli, D., Palazzo, B., and Yamarthy, R. (2024). Good Inflation, Bad Inflation: Implica-
tions for Risky Asset Prices. Available at SSRN 4798269.

Boons, M., Duarte, F., de Roon, F., and Szymanowska, M. (2020). Time-Varying Inflation
Risk and Stock Returns. Journal of Financial Economics 136(2), 444–470.

Boudoukh, J., Richardson, M., and Whitelaw, R.F. (1994). Industry returns and the Fisher
effect. the Journal of Finance 49(5), 1595–1615.

Campbell, J.Y., Sunderam, A., and Viceira, L.M. (2017). Inflation Bets or Deflation Hedges?
The Changing Risks of Nominal Bonds. Critical Finance Review 6, 263–301.

Chaudhary, M. and Marrow, B. (2024). Inflation expectations and stock returns. Available
at SSRN 4154564.

Chen, N.F., Roll, R., and Ross, S.A. (1986). Economic Forces and the Stock Market. Journal
of Business, 383–403.

Cieslak, A., Li, W., and Pflueger, C. (2024). Inflation and treasury convenience. NBER
Working Paper (w32881).

Cieslak, A. and Pflueger, C. (2023). Inflation and asset returns. Annual Review of Financial
Economics 15(1), 433–448.

Clarida, R.H. (2021). The Federal Reserve’s New Framework: Context and Consequences.
Finance and Economics Discussion Series, Board of Governors of the Federal Reserve.

Downing, C.T., Longstaff, F.A., and Rierson, M.A. (2012). Inflation Tracking Portfolios.
Working Paper, National Bureau of Economic Research.

D’Acunto, F. and Weber, M. (2024). Why survey-based subjective expectations are mean-
ingful and important. Annual Review of Economics 16.

Fama, E. (1981). Stock Returns, Real Activity, Inflation, and Money. American Economic
Review.

Fama, E.F. and French, K.R. (1993). Common Risk Factors in the Returns on Stocks and
Bonds. Journal of Financial Economics 33(1), 3–56.

Fama, E.F. and Gibbons, M.R. (1984). A Comparison of Inflation Forecasts. Journal of
Monetary Economics 13(3), 327–348.

40



Fama, E.F. and Schwert, G.W. (1977). Asset Returns and Inflation. Journal of Financial
Economics 5(2), 115–146.

Fang, X., Liu, Y., and Roussanov, N. (2021). Getting to the Core: Inflation Risks Within
and Across Asset Classes.

Faust, J. and Wright, J.H. (2013). Forecasting Inflation. In Handbook of Economic Forecast-
ing, Volume 2, pp. 2–56. Elsevier.

Feng, J., Huang, S., Lee, C., and Song, Y. (2024). Inflation in the Cross-section: Separating
Winners from Losers. Available at SSRN 4907871.

Gil de Rubio Cruz, A., Osambela, E., Palazzo, B., Palomino, F., and Suarez, G. (2023).
Inflation surprises and equity returns. Available at SSRN 4280699.

Gorton, G. and Rouwenhorst, K.G. (2006). Facts and Fantasies About Commodity Futures.
Financial Analysts Journal 62(2), 47–68.

Hennessy, C.A., Levy, A., and Whited, T.M. (2007). Testing Q theory with financing fric-
tions. Journal of Financial Economics 83(3), 691–717.

Hong, H., Lim, T., and Stein, J.C. (2000). Bad news travels slowly: Size, analyst coverage,
and the profitability of momentum strategies. The Journal of finance 55(1), 265–295.

Lo, A.W. and MacKinlay, A.C. (1990). When Are Contrarian Profits Due to Stock Market
Overreaction? The Review of Financial Studies 3(2), 175–205.

Piazzesi, M. (2022). Inflation Blues: The 40th Anniversary Reissue? Institute for Economic
Policy Research (SIEPR), Stanford.

Roll, R. (1984). Orange Juice and Weather. The American Economic Review, 861–880.

Shumway, T. (1997). The delisting bias in CRSP data. The Journal of Finance 52(1),
327–340.

Stock, J.H. and Watson, M.W. (1999). Forecasting Inflation. Journal of Monetary Eco-
nomics 44(2), 293–335.

Swanson, E.T. and Williams, J.C. (2014). Measuring the effect of the zero lower bound on
medium-and longer-term interest rates. American economic review 104(10), 3154–3185.

Taylor, J.B. (1993). Discretion Versus Policy Rules in Practice. Carnegie-Rochester Confer-
ence Series on Public Policy 39, 195–214.

Titman, S. and Warga, A. (1989). Stock returns as predictors of interest rates and inflation.
Journal of Financial and Quantitative Analysis 24(1), 47–58.

Vasicek, O.A. (1973). A note on using cross-sectional information in Bayesian estimation of
security betas. The Journal of Finance 28(5), 1233–1239.

Weber, M. (2018). Cash flow duration and the term structure of equity returns. Journal of
Financial Economics 128(3), 486–503.

41



Weber, M., Gorodnichenko, Y., and Coibion, O. (2023). The Expected, Perceived, and
Realized Inflation of US Households Before and During the COVID19 Pandemic. IMF
Economic Review 71(1), 326–368.

42



Figure 1. Core Beta and Firm Future Cash Flows

This figure reports the quarterly cash flow for inflation beta sorted portfolios. At the end of each quarter t − 1, we

sort all the stocks into quintile groups based on their core beta (βCore), and compute the average quarter-t cash flow

for stocks in each quintile group. The upper graph plots the cash flow difference between the top (most positive)

and bottom (most negative) quintiles, along with the IPCore return in quarter t. The grey areas denote the NBER

recession periods. The lower graph plots the average cash flow for the top and bottom quintile groups from 2019 Q1

to 2023 Q4, along with the IPCore return in quarter t. The shaded areas indicate the 95% confidence interval.
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Figure 2. Performance of Inflation Portfolios around Extreme CPI Months

The upper graph illustrates the performance of IPCore and IPHead during the [-50, +50] trading day period surround-

ing extreme headline-CPI events, where t=0 denotes the beginning of the CPI data month. High (low) CPIs are

categorized as those falling within the top (bottom) quintile among all CPI values. The lower graph depicts the cor-

responding performance of inflation portfolios when extreme CPI events are defined based on core-CPI innovations.
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Figure 3. Economists’ Forecasts and IPCore in the 2021 Episode

The upper graph plots the month-over-month core-CPI growth for the period from October 2020 to September 2022.

The solid red line denotes the median forecast value of core-CPI (MoM) as made by Bloomberg economists. The

dotted lines represent the highest and lowest values of Bloomberg forecasts. The lower graph plots the monthly values

of IPCore and TIPS-UST during the same period.
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Figure 5. Predicting CPI Shocks using IPCore

The graphs display the predictive coefficients, γIP, estimated using a rolling five-year window for core-CPI shocks. For

each time t, we estimate the model: CPI Shockt+1 = α+ γIP × IPCore
t + εt+1, using observations from t− 59 to t. We

require at least 24 months of data for estimation. The sample period spans from December 1973 to December 2023.

The red solid line shows the γIP with shocks measured by CPI innovations, while the blue dotted line represents CPI

shocks measured by Bloomberg economists’ forecasting errors. In the upper graph, the right axis plots the volatility

of core shocks, measured by the average absolute value of core-CPI innovations in the corresponding rolling five-year

window. In the lower graph, the right axis plots the extent to which the Fed is behind the curve, calculated as the

Fed funds rate implied by the Taylor rule minus the actual Fed funds rate.
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Table 1. Inflation Beta in Cross-Sectional Stocks: Ann-Day vs. Full-Month
For each stock on every CPI announcement day, we estimate the pre-ranking announcement-day betas by regressing

the announcement-day firm excess returns on the inflation innovations released on the announcement days. Pre-

ranking full-month betas are computed by regressing firm monthly excess returns on the contemporaneous-month

inflation innovations. The “Raw Model” and “CAPMModel” present the estimates when inflation betas are estimated

without and with market return (VWRETD) as controls, respectively. Stocks are then sorted into quintile groups

based on their pre-ranking inflation betas within the NYSE size median cutoff groups, and we subsequently form

equal-weighted 2×5 size and CPI beta sorted portfolios. These portfolios are rebalanced at each CPI announcement

day when CPI information becomes available. The upper and lower panels report the post-ranking core, headline,

and energy betas for portfolios sorted based on the corresponding pre-ranking betas, under the “Raw Model” and

“CAPM Model”, respectively. The portfolio returns are in bps. For ease of comparison, the inflation innovations are

standardized with means of zero and standard deviations of one. Standard errors are adjusted for heteroskedasticity,

and the t-stats are presented in parentheses.

Panel A. Post-Ranking Inflation Beta, Raw Model

Announcement-Day (βAnn) Full-Month (βFull)

Core Headline Energy Core Headline Energy

Q1 (Low) −14.68 1.56 4.50 −68.02 −32.87 25.21

(−3.23) (0.19) (0.57) (−2.48) (−0.87) (0.72)

Q2 −9.75 2.32 6.27 −58.14 −28.24 23.02

(−2.37) (0.27) (0.75) (−2.47) (−0.88) (0.78)

Q3 −8.85 2.10 5.53 −57.99 −27.11 27.63

(−2.18) (0.23) (0.57) (−2.58) (−0.94) (1.00)

Q4 −8.63 1.71 4.39 −66.58 −22.35 29.24

(−2.00) (0.17) (0.43) (−2.84) (−0.78) (1.03)

Q5 (High) −9.48 0.18 2.87 −68.09 2.58 58.31

(−1.94) (0.02) (0.25) (−2.46) (0.07) (1.50)

Q5 − Q1 5.21 −1.38 −1.63 −0.06 35.46 33.10

(2.48) (−0.31) (−0.33) (−0.00) (1.77) (1.36)

Panel B. Post-Ranking Inflation Beta, CAPM Model

Announcement-Day (βAnn) Full-Month (βFull)

Core Headline Energy Core Headline Energy

Q1 (Low) −2.19 −1.10 −1.29 −9.50 −1.51 −4.69

(−1.14) (−0.52) (−0.64) (−0.70) (−0.12) (−0.35)

Q2 0.75 1.27 0.10 −9.23 −4.64 −3.72

(0.44) (0.62) (0.06) (−1.04) (−0.55) (−0.38)

Q3 1.75 1.20 1.02 −16.29 −4.85 1.71

(0.92) (0.59) (0.45) (−2.09) (−0.63) (0.21)

Q4 2.10 2.55 0.96 −13.74 3.89 8.53

(1.01) (1.11) (0.44) (−1.56) (0.44) (0.90)

Q5 (High) 2.37 1.43 −2.09 −5.57 40.75 32.33

(1.01) (0.50) (−1.05) (−0.47) (2.73) (1.91)

Q5 − Q1 4.56 2.53 −0.80 3.93 42.25 37.02

(2.49) (0.98) (−0.39) (0.35) (2.96) (2.23)
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Table 2. Inflation Beta Across Asset Classes: Ann-Day vs. Full-Month
This table presents the announcement-day and full-month inflation betas across various asset classes. Announcement-

day core, headline, and energy betas are derived by regressing announcement-day asset excess returns on

announcement-day core-, headline-, and energy-CPI innovations, respectively. Full-month core, headline, and energy

betas are estimated by regressing monthly asset excess returns on contemporaneous-month inflation innovations. We

assess the inflation exposure for different assets, including the change in the 2-Year U.S. Treasury yield (∆y2YR), the

change in 10-Year U.S. Treasury yield (∆y10YR), the negative value of the Bloomberg U.S. Treasury Index return

(-UST), the difference between the Bloomberg U.S. Treasury Inflation Notes Index return and the Bloomberg U.S.

Treasury Index return (TIPS-UST), the Goldman Sachs Commodity Index return (GSCI), the aggregate stock mar-

ket return (VWRETD), and the cross-sectional IP return. To facilitate comparison, all variables (both dependent

and independent) are standardized with means of zero and standard deviations of one. The sample spans from

January 1972 to December 2023. Standard errors are adjusted for heteroskedasticity, and the t-stats are presented

in parentheses.

Announcement-Day (βAnn) Full-Month (βFull)

Core Headline Energy Core Headline Energy

∆y2YR 0.120 0.037 0.019 0.120 0.140 0.068

(2.14) (0.83) (0.51) (1.67) (3.44) (2.11)

∆y10YR 0.122 0.061 0.041 0.104 0.195 0.146

(2.40) (1.09) (0.90) (1.72) (4.08) (3.58)

-UST 0.156 0.091 0.080 0.034 0.238 0.221

(2.97) (1.18) (1.23) (0.61) (3.50) (3.20)

TIPS-UST 0.224 0.250 0.122 0.052 0.306 0.263

(4.09) (2.58) (1.57) (0.70) (2.87) (2.73)

GSCI 0.060 −0.010 −0.045 0.035 0.218 0.284

(1.84) (−0.20) (−0.89) (0.74) (4.12) (6.05)

Stock Market −0.115 0.005 0.051 −0.105 −0.056 0.051

(−2.82) (0.06) (0.60) (−2.43) (−0.94) (0.95)

Cross-Section IP 0.107 0.068 −0.025 0.019 0.173 0.137

(2.49) (0.98) (−0.39) (0.35) (2.96) (2.23)
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Table 4. Core Beta and Firm Future Cash Flows
This table presents the predictive regressions of quarter-t+1 firm fundamentals conditional on quarter-t core betas and

inflation expectations. The dependent variables are quarter-t+ 1 firm sales growth, cash flow, change of IBES long-

term growth forecast of EPS (IBES LTG), and quarterly return. The independent variables include the interaction

of the quintile rank of βCore (βCore
Rank) with IPCore, βCore

Rank, Log(Size), asset growth, ME/BE, and dividend payout, all

observed at the end of quarter t. To control for the persistence in firm fundamentals, we also include the quarter-t

value of the dependent variable as controls (Yt). All variables (except βCore
Rank and IPCore) are standardized with means

of zero and standard deviations of one for ease of interpretation. Time and firm fixed effects are included. Standard

errors are double clustered by quarter and firm, and the t-stats are presented in parentheses.

Sales Growtht+1 Cash Flowt+1 IBES LTGt+1 Returnt+1

(1) (2) (3) (4) (5) (6) (7) (8)

βCore
Rank×IPCore

t 0.196 0.177 0.178 0.142 0.109 0.145 −0.133 −0.155

(3.69) (3.11) (3.76) (3.09) (2.24) (2.76) (−0.97) (−1.14)

βCore
Rank 0.002 0.002 0.001 0.003 −0.005 −0.003 0.001 0.001

(0.62) (0.71) (0.34) (1.48) (−2.23) (−1.38) (0.31) (0.39)

Log(Size) −0.024 −0.093 0.198 0.119 −0.006 −0.001 −0.519 −0.476

(−2.00) (−7.11) (13.76) (8.46) (−0.70) (−0.16) (−16.64) (−16.63)

Yt −0.291 −0.337 0.384 0.341 −0.079 −0.079 −0.006 −0.013

(−18.05) (−20.38) (26.02) (21.06) (−6.06) (−6.04) (−0.50) (−1.00)

Asset Growth 0.199 0.027 0.008 0.002

(16.55) (5.90) (3.33) (0.67)

ME/BE 0.083 0.165 0.011 −0.013

(9.93) (17.29) (2.19) (−1.34)

Dividend Payout 0.006 −0.031 0.019 −0.025

(1.32) (−8.48) (4.76) (−4.92)

Time FE Y Y Y Y Y Y Y Y

Firm FE Y Y Y Y Y Y Y Y

Observations 167,559 150,573 168,021 150,917 137,358 124,181 173,512 152,867

Adj. R2 10.9% 14.4% 58.6% 58.4% 2.7% 3.5% 29.8% 29.8%
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Table 5. Inflation Beta Sorted Portfolios and Inflation Risk Premium
This table shows the performance of quintile portfolios sorted by core beta (βCore, Panel A) and headline beta (βHead,

Panel B). The table reports the annualized excess returns (over the risk-free rate) and CAPM alpha for the full sample

from January 1972 to December 2023, as well as for subsamples split around December 2002. Standard errors are

adjusted for heteroskedasticity, and the t-stats are presented in parentheses.

Panel A. Core Beta (βCore) Sorted Portfolios

Whole Sample Pre-2002 Post-2002

Ex.Ret. αCAPM Ex.Ret. αCAPM Ex.Ret. αCAPM

Q1 (Low) 8.45 0.52 7.04 1.23 10.52 −0.45

(3.19) (0.63) (2.01) (1.25) (2.60) (−0.31)

Q2 9.48 2.66 7.81 2.94 11.94 2.11

(4.19) (4.01) (2.63) (3.14) (3.42) (2.42)

Q3 9.21 2.51 7.69 2.98 11.46 1.54

(4.13) (3.57) (2.66) (2.97) (3.26) (1.79)

Q4 8.86 1.67 7.45 2.47 10.95 0.06

(3.70) (2.30) (2.46) (2.65) (2.81) (0.06)

Q5 (High) 9.63 1.22 7.68 1.72 12.52 0.22

(3.41) (1.31) (2.13) (1.65) (2.76) (0.12)

Q5 − Q1 1.19 0.70 0.63 0.48 2.00 0.67

(IPCore) (1.06) (0.62) (0.61) (0.47) (0.87) (0.28)

Panel B. Headline Beta (βHead) Sorted Portfolios

Whole Sample Pre-2002 Post-2002

Ex.Ret. αCAPM Ex.Ret. αCAPM Ex.Ret. αCAPM

Q1 (Low) 9.82 1.89 8.90 3.08 11.18 0.24

(3.68) (2.08) (2.49) (2.52) (2.81) (0.18)

Q2 9.68 2.79 8.32 3.38 11.69 1.81

(4.20) (3.74) (2.73) (3.11) (3.33) (2.04)

Q3 9.23 2.49 7.50 2.77 11.78 1.77

(4.10) (3.52) (2.57) (2.73) (3.32) (2.08)

Q4 9.33 2.30 7.72 2.82 11.71 1.17

(4.02) (3.56) (2.61) (3.26) (3.13) (1.28)

Q5 (High) 7.63 −0.83 5.34 −0.59 11.00 −1.54

(2.65) (−0.78) (1.46) (−0.45) (2.37) (−0.85)

Q5 − Q1 −2.20 −2.72 −3.56 −3.66 −0.18 −1.79

(IPHead) (−1.67) (−1.98) (−2.13) (−2.11) (−0.09) (−0.81)
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Table 9. Time-Varying Predictability
Panel A reports the forecasting ability of the IPCore portfolio on core-CPI innovations and economists’ forecasting

errors during heightened inflation periods. The “2021 Episode” includes the 24 months before the peak of core

inflation in September 2022 (i.e., from October 2020 to September 2022), and the “1973 Episode” includes the 24

months during the core-CPI run-up period from May 1973 to April 1975. Since TIPS are unavailable in the 1970s,

we use the change in the 10-Year US Treasury yield as a substitute. Panel B reports the predictability of the IPCore

portfolio for various subsamples. High and low uncertainty denote periods with above- and below-median last-month

absolute CPI innovations. High and low disagreement are defined based on the median cutoff of CPI disagreement,

calculated as the difference between the 75th percentile and the 25th percentile of quarterly CPI forecasts from the

Survey of Professional Forecasters (SPF) database. “Behind the curve” refers to periods when the difference between

the Taylor rule implied Fed funds rate and the actual Fed funds rate is higher than the 67% percentile cutoff, and

“Other” refers to the rest. The federal funds rate implied by the Taylor rule is estimated as 2.5%+1.5*(Core-CPI YoY

Growth-2%)+0.5*OutPut Gap. The standard errors are adjusted for heteroskedasticity, and the t-stats are reported

in parentheses.

Panel A. Heightened Inflation Episodes

2021 Episode 1973 Episode

Core Innovationt+1 Forecasting Errort+1 Core Innovationt+1

(1) (2) (3) (4) (5) (6)

IPCore 8.721 10.176 6.841 9.088 19.537 18.441

(2.31) (2.47) (1.73) (2.40) (3.43) (3.56)

GSCI −5.171 −7.303 0.332

(−1.07) (−1.60) (0.13)

TIPS-UST (∆y10YR) 6.824 10.665 7.865

(0.85) (1.44) (1.10)

Observations 24 24 24 24 24 24

Adj. R2 17.7% 15.0% 9.1% 12.3% 28.4% 26.1%

Panel B. Conditional on Inflation Risk and Noise from Treasury Market

Core Innovationt+1 Forecasting Errort+1 Core Innovationt+1 Forecasting Errort+1

High Uncertainty Low Uncertainty

IPCore 3.918 2.900 0.442 1.815

(3.34) (2.39) (0.70) (2.38)

Adj. R2 5.4% 5.1% −0.2% 3.1%

High Disagreement Low Disagreement

IPCore 2.474 2.946 0.939 1.005

(2.25) (2.89) (1.46) (1.26)

Adj. R2 3.3% 6.3% 0.6% 0.3%

Behind the Curve Other

IPCore 3.688 3.255 1.252 1.674

(2.80) (3.46) (1.83) (1.56)

Adj. R2 5.6% 6.8% 0.4% 2.1%
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Table 10. Out-of-Sample Forecastability
Panel A reports the out-of-sample incremental inflation forecasting power of inflation portfolios and other inflation

forecasters. The forecasting period is from May 2003 to December 2023. In each month t, we estimate the forecasting

model, πt = a+
∑N

k=1 bk X
k
t−1 + ϵt, using only information up to and including month t. We then use the estimated

coefficients to forecast month-t + 1 inflation growth. We include forecasting signals of inflation portfolios (IPCore,

IPHead), financial assets (GSCI, TIPS-UST, VWRETD, ∆y2YR, and ∆y10YR), the latest survey forecasted inflation

growth from SPF survey and Michigan survey, and macroeconomic variables (real GDP growth, output gap, unem-

ployment rate (UNEMP), labor income share (Labor Share), and CFNAI). “Relative RMSE” reports the ratio of

the root mean squared forecasting error estimated using the corresponding forecasting model, relative to that of the

benchmark model of ARMA(1,1). The p-value is computed under the null that the RMSE for that model equals the

RMSE for the ARMA(1,1), with the alternative hypothesis that the RMSE for the ARMA(1,1) exceeds the RMSE

for that model. Panel B reports the out-of-sample forecasts for subsamples of high inflation importance defined in

Table 9, including the 2021 episode, periods of high uncertainty, high disagreement, and behind-the-curve periods.

Panel A. Relative RMSE for the Whole Sample

Forecasting Model

Core-CPI Headline-CPI

Relative RMSE p-value Relative RMSE p-value

IP:

IPCore 96.37% 0.05 92.75% 0.00

IPHead 99.67% 0.41 94.46% 0.00

Other Financial Assets:

GSCI 97.59% 0.14 85.84% 0.00

TIPS-UST 101.18% 0.69 93.11% 0.11

VWRETD 100.99% 0.99 99.78% 0.38

∆y2YR 99.49% 0.39 99.19% 0.06

∆y10YR 99.46% 0.38 99.49% 0.26

Survey:

SPF Survey 104.34% 0.92 98.33% 0.30

Michigan Survey 99.42% 0.27 100.47% 0.66

Macroeconomic Variables:

Real GDP Growth 101.47% 0.79 101.09% 0.96

Output Gap 105.53% 0.97 101.34% 0.99

UNEMP 103.27% 0.99 100.99% 0.98

Labor Share 100.92% 0.88 100.75% 0.88

CFNAI 102.41% 0.60 103.51% 0.83

Panel B. Subsample Tests for the IPCore Model

Subsample

Core-CPI Headline-CPI

Relative RMSE p-value Relative RMSE p-value

2021 Episode 93.56% 0.05 88.78% 0.07

High Uncertainty 95.15% 0.05 91.53% 0.00

High Disagreement 96.12% 0.07 91.28% 0.00

Behind the Curve 96.21% 0.09 91.67% 0.02
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Table 12. Forecasting Inflation Swaps and Nominal Yields
This table reports the ability of IPCore, observed at the end of month t, to predict changes in inflation swap rates

(Panel A) and nominal yields (Panel B). Changes in swap rates and nominal yields are measured from the end of

month t to the CPI announcement day of month-t + 1 (released in month-t + 2). IPCore is standardized to have a

mean of zero and a standard deviation of one. The standard errors are Newey-West adjusted with two lags. The

t-stats are in parentheses.

Panel A. Predicting Changes in Inflation Swap Rates (%)

1 Year 2 Year 3 Year 5 Year 7 Year 10 Year 20 Year 30 Year

IPCore 0.194 0.129 0.095 0.067 0.051 0.038 0.033 0.025

(2.93) (2.48) (2.44) (2.22) (2.08) (2.23) (2.21) (1.78)

Observations 234 233 233 233 233 234 233 233

Adj. R2 7.6% 6.1% 5.6% 4.8% 3.8% 3.3% 3.0% 1.5%

Panel B. Predicting Changes in Nominal Yields (%)

1 Year 2 Year 3 Year 5 Year 7 Year 10 Year 20 Year 30 Year

IPCore 0.117 0.102 0.094 0.077 0.065 0.056 0.058 0.045

(3.87) (3.70) (3.88) (3.56) (3.37) (3.15) (3.30) (2.76)

Observations 624 571 624 624 624 624 542 563

Adj. R2 2.4% 2.2% 2.2% 1.7% 1.4% 1.2% 1.5% 1.0%
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Appendix A. Variable Definition

This table reports the definitions of the main variables used in the paper.

Variable Definition

CPI growth πt = log(Pt)− log(Pt−1), where Pt is the level of CPI for month t

CPI innovation CPI-Innovt+1 = πt+1− π̂t+1, where π̂t+1 is estimated using all the historical observations

on and before month t from ARMA(1,1) time series model: πt+1 = µ+ ϕπt +φεt + εt+1

IPCore The cumulative return of the announcement-day core beta (βCore) formed portfolio in

the 30 days ([-30,-1]) before the end of month t

IPHead The cumulative return of the full-month headline beta (βHead) formed portfolio in the 30

days before the end of month t

GSCI Goldman Sachs Commodity Index return in the 30 days before the end of month t

TIPS-UST Return difference between Bloomberg U.S. Treasury Inflation Notes Index and Bloomberg

U.S. Treasury Index in the 30 days before the end of month t

Change in Forecasts The Bloomberg economists’ forecasting value of CPI growth minus the value predicted

under the ARMA(1,1) model

Forecasting Error The actual CPI growth minus the forecasting value by Bloomberg economists

CPI Uncertainty Last-month absolute CPI innovations

CPI Disagreement The difference between the 75th percentile and the 25th percentile of quarterly CPI

forecasts from the Survey of Professional Forecasters database

Behind the curve Periods when the difference between the Taylor rule implied Fed funds rate

(2.5%+1.5*(Core-CPI YoY Growth-2%)+0.5*OutPut Gap) and the actual Fed funds

rate is higher than the 67% percentile cutoff

QE Periods of Quantitative Easing: November 2008 to March 2010, November 2010 to June

2011, September 2012 to October 2014, and March 2020 to March 2022

Output Gap Log real GDP, detrended using the Hodrick–Prescott filter

CFNAI A monthly index designed to gauge overall economic activity and related inflationary

pressure

Log(Size) The natural logarithm of a firm’s market capitalization

Asset Growth Growth rate of total asset: ATt/ATt−1 − 1

Cash Flow Income before extraordinary items plus depreciation and amortization, divided by total

asset (Hennessy et al. (2007)):
∑

(IBt, DPt)/ATt

CF Beta Cash flow betas, bCore
i and bHead

i , are estimated by regressing changes in quarterly cash

flows on quarterly core and headline innovations, respectively, using a rolling window of

5-year

ME/BE The market value of total assets divided by the book value of total assets: MEt/BEt

Dividend Payout Dividends divided by income: DV Ct/IBt

CF Duration Cash flow duration, constructed following Weber (2018)

Sales Growth Change of gross sales divided by total asset: (Salest − Salest−1)/ATt−1
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Internet Appendix for

“What Can Cross-Sectional Stocks Tell Us About

Core Inflation Shocks ”

Claire Yurong Hong, Jun Liu, Jun Pan, and Shiwen Tian

In this appendix, we provide additional results mentioned in the paper but not reported

there for brevity. The appendix is organized as follows. In Section I, we provide detailed proof

of model propositions. Section II illustrates the timeline of beta estimation and inflation

forecasting. Section III provides additional tables and plots mentioned in the paper.

I. Model Proof

Derivations of formulas for the illustrative model are given below.

Stock Price

The stock price is given by

Si
t = Et[

∞∑
v=1

exp(−
v−1∑
u=0

rt+u)D
i
t+v].

Data suggests that the risk premium of stocks does not dependent on yt, we take risk

premium to be zero so risk-neutral measure is the same as physical measure. Alternatively,

the constant risk premium for yt risk is absorbed in the constant µr. Given our assumption

of rt and Di
t, we get

Si
t = Di

t

∞∑
v=1

Et[e
−µrv−

∑v−1
u=0(αyt+u+σrϵrt+u)+µiv+biσπ

∑v−1
u=0(yt+u+ϵt+u+1)−

σ2
i
2
v+σi

∑v−1
u=0 ϵ

i
t+u+1 ],

where the first two terms in the exponential are constant and conditional components of the

discount rate respectively, the middle two terms are constant and conditional components of

the dividend growth rate respectively, and the last two terms are the dividend shocks. This

leads to

Si
t = Di

t

∞∑
v=1

e−(µr−µi)−(µr−µi− 1
2
(σ2

r+b2i σ
2
π+(biσπ−α)2σ2

y)(v−1)−σrϵrt+(biσπ−α)yt+
1
2
b2i σ

2
π

1



= Di
t

e−(µr−µi)−αyt−σrϵrt+biσπyt+
1
2
b2i σ

2
π

1− e−(µr−µi− 1
2
(σ2

r+b2i σ
2
π+(biσπ−α)2σ2

y))
= Di

t

e−rt+µi+biσπyt+
1
2
b2i σ

2
π

1− e−(µr−µi− 1
2
(σ2

r+b2i σ
2
π+(biσπ−α)2σ2

y))
.

Stock Returns

The capital gains return from time t− 1 to t is

Si
t+1

Si
t

=
fi(yt+1, θi)D

i
t+1

fi(yt, θi)Di
t

= e(biσπ−α)(yt+1−yt)−σr(ϵrt+1−ϵrt )+µi+biσπ(yt+ϵt+1)− 1
2
σ2
i +σiϵ

i
t+1

= e(biσπ−α)yt+1−σrϵrt+1+µi+αyt+σrϵrt+biσπϵt+1− 1
2
σ2
i +σiϵ

i
t+1 .

The log capital-gains return is

lnSit+1/Sit = (biσπ − α)yt+1 − σrϵ
r
t+1 + µi + αyt + σrϵ

r
t + biσπϵt+1 −

1

2
σ2
i + σiϵ

i
t+1. (8)

A hedging portfolio is a portfolio that longs $1 of stock i and shorts $1 of stock j for

i ̸= j, with following log capital-gains return

ln
Sit+1

Sit

− ln
Sjt+1

Sjt

=(bi − bj)σπyt+1 + (µi − µj) + (bi − bj)σπϵt+1

− 1

2
(σ2

i − σ2
j ) + (σiϵ

i
t+1 − σjϵ

j
t+1).

(9)

In the above expression, the yt+1 term dependence is due to the price-dividend ratio and

represents the pricing effect, while the ϵt+1 term is due to inflation exposure in the dividend

growth rates, and the ϵit+1 and ϵjt+1 terms are “real” shocks from dividend growth rates.

Consider the regression of log-capital-gains-return on inflation innovation,

lnSit+1/Sit = αi + βiσπϵ
π
t+1 + uit+1,

the population estimate of βi is

βi =
E[lnSit+1/Sitσπϵ

π
t+1]

var[σπϵπt+1]
=

σπE[(αyt + biσπϵt+1)(yt + ϵt+1)]

var[σπϵπt+1]
=

σπ(ασ
2
y + biσπ)

σ2
π(σ

2
y + 1)

.

The beta βij of the hedging portfolio is given by βi − βj:

βij =
E[(lnSit+1/Sit − lnSit+1/Sit)σπϵ

π
t+1]

var[σπϵπt+1]
=

bi − bj
σ2
y + 1

.
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Now consider the predictive regression of inflation innovation on hedging portfolio,

σϵπt+1 = γij0 + γij

(
lnSit/Sit−1 − lnSjt/Sjt−1

)
+ uijt+1

= γij0 + γij

(
(bi − bj)σπyt + (bi − bj)σπϵt + (σiϵ

i
t − σjϵ

j
t) + (µi − µj)−

1

2
(σ2

i − σ2
j )
)
+ uijt+1.

The population estimate of γij is

γij = σπ

E[(yt + ϵt+1)
(
(bi − bj)σπyt + (bi − bj)σπϵt + (σiϵ

i
t − σjϵ

j
t)
)
]

var[
(
(bi − bj)σπyt + (bi − bj)σπϵt + (σiϵit − σjϵ

j
t)
)
]

=
(bi − bj)σ

2
π

(bi − bj)2σ2
π(1 + 1/σ2

y) + (σ2
i + σ2

j − 2ρijσiσj)/σ2
y

,

where ρij is the correlation coefficient between ϵit and ϵjt .
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II. Illustration of the Time Line

Beta Estimation – To capture the inflation exposure of individual stocks as well as

different assets, we adopt two approaches. The first approach estimates an information-based

inflation beta, constructed by regressing firm i’s announcement-day returns on announcement-

day released CPI innovations. Each month after the announcement of CPI (At), we measure

the headline- and core-inflation exposure for firm i using a rolling window of 60 months. We

dynamically update the estimation of inflation beta on the CPI announcement days, as we

need to wait until announcement day At to get the CPI innovation for month Mt.

As illustrated in the above graph, standing at announcement day At, firm i ’s announcement-

day beta is estimated using announcement-day returns from At−59 to At under the equation

(4). Taking the announcement day of May 11, 2022 as an example, At−59 refers to June 14,

2017, which is the announcement day for CPI month of May 2017.

The second approach estimates the inflation risk exposure by the sensitivity of monthly

asset returns to the contemporaneous-month inflation innovations. Standing at announce-

ment day At, firm i ’s full-month beta is estimated using monthly returns from month Mt−59

to Mt. For example, if we are estimating inflation beta on May 11, 2022, which is the CPI

announcement day for April 2022, we use the monthly returns and monthly CPI innovations

from May 2017 to April 2022 to estimate.

Forecasting with IP – To examine the forecastability of inflation portfolio returns, stand-

ing at the end of month t (Mt), we use the 30-day inflation portfolio returns observed by

the end of month t (Mt) to predict the CPI innovations realized in month t+ 1 (Mt+1) and

announced in day At+1. For example, to predict the CPI for month April 2022, i.e., Mt+1 is

April 2012, we construct our signal using the 30-day cumulative return from February 18,

2022 to March 31, 2022 (total 30 trading days). The predicted CPI is then materialized in

month April 2022 and announced on day May 11, 2022.
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III. Additional Results

Figure IA1. Persistence of Inflation Beta

This figure shows the persistence of core beta (βCore, upper graph) and headline beta (βHead, lower graph). For each

month t, we form quintile portfolios by ranking stocks based on their core beta and headline beta. The figures report

the probability that stocks in the top (bottom) quintile group will remain in the top (bottom) quintile group over

the 24 months following the portfolio formation month t.
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Figure IA2. Predicting CPI Shocks using IPCore, R-Squared

The upper and lower graphs display the predictive regression R-squared, estimated using a rolling five-year window

for core CPI and headline CPI, respectively. For each time t, we estimate the model: CPI Shockt+1 = α + γIP ×
IPCore

t + εt+1, using observations from t− 59 to t. We require at least 24 months of data for estimations. The sample

period spans from December 1973 to December 2023. The red solid line shows the regression R-squared with shocks

measured by CPI innovations, while the blue dotted line represents CPI shocks measured by Bloomberg economist

forecasting errors.
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Table IA1. Summary Statistics
This table reports the monthly summary statistics for our main variables. CPI innovations for month t + 1 (Head-

Innovt+1 and Core-Innovt+1) are computed as the actual CPI monthly growth minus the value predicted by the

time-series model of ARMA(1,1). Economists’ inflation forecasting errors, Head-Surpriset+1 and Core-Surpriset+1,

are constructed as the actual CPI monthly growth minus the median forecast by Bloomberg economists. IPCore and

IPHead are the 30-day cumulative returns of the βCore and βHead sorted portfolios observed at the end of month

t. We also include statistics for asset returns, including the aggregate stock market return (VWRETD), changes

in two-year and ten-year U.S. Treasury yields (∆y2YR and ∆y10YR), the Goldman Sachs Commodity Index return

(GSCI), and the return difference between the Bloomberg TIPS index and the U.S. Treasury index (TIPS-UST). The

sample period is from January 1972 to December 2023.

Variable N Mean Median Q1 Q3 STD

Head-Innovt+1 (bps.) 624 −0.01 −0.47 −12.29 12.61 25.97

Core-Innovt+1 (bps.) 624 −0.07 −0.51 −7.34 5.66 15.58

Head-Surpriset+1 (bps.) 308 0.10 0.00 −10.00 10.00 13.00

Core-Surpriset+1 (bps.) 307 −0.23 0.00 −10.00 10.00 10.92

IPCore (%) 624 0.19 0.12 −1.06 1.42 2.56

IPHead (%) 624 −0.24 −0.25 −1.72 1.52 3.22

VWRETD (%) 624 1.23 1.70 −1.42 4.43 5.21

∆y2YR (%) 571 −0.01 −0.01 −0.25 0.18 0.53

∆y10YR (%) 624 0.00 −0.01 −0.21 0.20 0.40

GSCI (%) 624 0.95 1.42 −3.06 5.00 6.74

TIPS-UST (%) 308 0.17 0.19 −0.33 0.88 1.43
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Table IA2. Inflation Risk Premium Conditional on Nominal-Real Covariance
This table presents time-series regressions of inflation beta-sorted portfolios on the lagged nominal-real covariance

following Boons et al. (2020). The nominal-real covariance is proxied by the time-varying relation between current

inflation and future 12-month consumption growth. The left-hand side returns are compounded over horizons of one,

three, and 12 months. The standard errors are Newey-West adjusted with K lags. The t-stats are in parentheses.

Panel A. Core Beta (βCore) Sorted Portfolios

K = 1 K = 3 K = 12

Intercept βNRC Intercept βNRC Intercept βNRC

Q1 (Low) 12.75 −1.83 12.89 −1.68 13.36 −1.87

(4.65) (−0.69) (5.39) (−0.69) (5.91) (−0.79)

Q2 13.78 −1.82 13.92 −1.84 14.45 −2.27

(5.92) (−0.77) (6.85) (−0.84) (7.57) (−1.15)

Q3 13.51 −1.60 13.61 −1.68 14.04 −2.15

(5.94) (−0.69) (6.98) (−0.80) (8.07) (−1.18)

Q4 13.16 −2.63 13.28 −2.67 13.74 −3.02

(5.40) (−1.04) (6.30) (−1.16) (7.07) (−1.53)

Q5 (High) 13.93 −2.14 14.04 −2.03 14.42 −2.31

(4.85) (−0.75) (5.65) (−0.78) (6.51) (−1.06)

Q5 − Q1 1.19 −0.32 1.21 −0.48 1.29 −0.44

(IPCore) (1.05) (−0.30) (1.16) (−0.50) (1.23) (−0.43)

Panel B. Headline Beta (βHead) Sorted Portfolios

K = 1 K = 3 K = 12

Intercept βNRC Intercept βNRC Intercept βNRC

Q1 (Low) 14.12 −2.90 14.31 −2.86 14.82 −3.17

(5.10) (−1.08) (5.95) (−1.15) (6.63) (−1.46)

Q2 13.98 −2.34 14.14 −2.44 14.71 −2.98

(5.90) (−0.98) (6.86) (−1.12) (7.63) (−1.52)

Q3 13.53 −1.83 13.64 −1.84 14.16 −2.17

(5.89) (−0.78) (6.90) (−0.86) (7.73) (−1.14)

Q4 13.63 −1.85 13.74 −1.84 14.23 −2.22

(5.78) (−0.75) (6.71) (−0.82) (7.45) (−1.09)

Q5 (High) 11.93 −1.17 12.04 −1.00 12.30 −1.24

(4.05) (−0.40) (4.70) (−0.37) (5.27) (−0.51)

Q5 − Q1 −2.20 1.73 −2.10 1.61 −1.94 1.76

(IPHead) (−1.58) (1.19) (−1.65) (1.21) (−1.42) (1.36)
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Table IA5. Inflation Beta Constructed using Ann-Day Surprise
Panel A reports the post-ranking inflation betas for stock portfolios formed when pre-ranking betas are constructed by

regressing announcement-day stock excess returns on announcement-day economists’ forecasting errors of Core CPI

(βSurp), Changes in 2 year Inflation Swap Rates (βISWAP2YR), Changes in 5 year Inflation Swap Rates (βISWAP5YR),

Changes in 2 year UST yield (βUST2YR) and Changes in 5 year UST yield (βUST5YR) under the “CAPM Model”.

Panel B examines the predictability of IPSurp, IPISWAP2YR, IPISWAP5YR, IPUST2YR and IPUST5YR constructed based

on Panel A’s betas, observed at the end of month t, on core-CPI innovations and headline-CPI innovations at month-

t+ 1. Standard errors are adjusted for heteroskedasticity, and the t-stats are in parentheses.

Panel A. Post-Ranking Inflation Beta

Q1 (Low) Q2 Q3 Q4 Q5 (High) Q5 − Q1

βSurp −9.18 −3.77 0.37 2.09 1.20 10.38

t-stat (−2.32) (−1.42) (0.12) (0.60) (0.30) (2.24)

βISWAP2YR −9.62 −4.15 −1.10 3.90 14.25 23.87

t-stat (−1.97) (−1.22) (−0.38) (1.21) (2.38) (3.44)

βISWAP5YR −9.75 −6.42 −2.62 1.96 15.05 24.81

t-stat (−1.72) (−1.76) (−0.68) (0.50) (2.90) (4.28)

βUST2YR −2.82 −0.45 1.38 2.94 6.61 9.43

t-stat (−0.69) (−0.17) (0.61) (1.20) (2.14) (2.69)

βUST5YR −1.89 0.13 1.18 2.29 4.96 6.85

t-stat (−0.52) (0.05) (0.55) (1.10) (1.72) (2.58)

Panel B. Predicting Month t+ 1 CPI Innovation

Core-CPI Innovation Headline-CPI Innovation

IPSurp 1.811 7.824

(2.22) (3.68)

IPISWAP2YR 2.381 13.895

(2.36) (4.99)

IPISWAP5YR 2.094 14.215

(1.79) (5.37)

IPUST2YR 1.536 0.899

(2.34) (0.77)

IPUST5YR 1.857 0.016

(2.76) (0.01)

Observations 248 207 208 511 624 248 207 208 511 624

Adj. R2 2.1% 3.5% 2.6% 1.2% 1.3% 6.1% 22.4% 23.1% −0.1% −0.2%
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Table IA6. Inflation Beta Constructed Using All Historical Observations
Panel A reports the post-ranking inflation betas of cross-sectional stocks, where the pre-ranking inflation betas are

estimated using a weighted least squares (WLS) regression with exponential weights over an expanding window that

encompasses all historical observations, following Boons et al. (2020). Firm i’s announcement-day inflation beta

(βAnn
i,At

) is given by: min
αi,At

,βAnn
i,At

∑t
τ=1 w(τ)(Ri,Aτ − αi,At − βAnn

i,At
CPI-InnovAτ )

2,, where Ri,Aτ denotes firm i’s excess

return on the announcement day Aτ . The weight is given by w(τ) = exp(−|t−τ |/h)∑t−1
τ=1 exp(−|t−τ |/h)

. Using h = log(2)/60 means

the half-life of the weights w(τ) converges to 60 months for large t. The full-month inflation betas are estimated

similarly. Following Boons et al. (2020), the betas are further transformed using the Vasicek (1973) adjustment:

β̂v
i,t = β̂i,t+

varTS(β̂i,t)

varTS(β̂i,t)+varCS(β̂i,t)
× (meanCS(β̂i,t)− β̂i,t), where each β̂v

i,t represents a weighted average of the stock’s

beta derived from time-series data (β̂i,t) and the cross-sectional beta average (meanCS(β̂i,t)). We control for market

returns in estimating the betas. Panel B reports the inflation predictability of IPCore, which is constructed based on

the βCore estimated in Panel A. The standard errors are adjusted for heteroskedasticity. The t-stats are in parentheses.

Panel A. Post-Ranking Inflation Beta, CAPM Model

βAnn βFull

Core Headline Energy Core Headline Energy

Q1 (Low) −2.20 −0.59 −0.61 −10.70 −7.45 −6.79

(−1.20) (−0.28) (−0.31) (−0.85) (−0.61) (−0.51)

Q2 0.52 2.07 −0.14 −12.46 −5.80 −1.96

(0.29) (1.10) (−0.09) (−1.39) (−0.67) (−0.21)

Q3 1.15 0.93 1.37 −14.32 3.33 −0.56

(0.62) (0.46) (0.62) (−1.71) (0.39) (−0.06)

Q4 2.79 1.85 −0.35 −11.71 7.54 5.92

(1.31) (0.84) (−0.18) (−1.27) (0.77) (0.56)

Q5 (High) 2.53 1.09 −1.58 −5.27 35.92 37.64

(1.08) (0.36) (−0.69) (−0.47) (2.65) (2.37)

Q5 − Q1 4.73 1.68 −0.96 5.43 43.37 44.43

(2.38) (0.55) (−0.37) (0.45) (2.89) (2.47)

Panel B. Predicting Month t+ 1 Inflation

Core-CPI Headline-CPI

Innovation Forecasting Error Innovation Forecasting Error

IPCore 2.669 2.499 2.009 2.006 7.466 4.617 3.588 2.368

(3.40) (2.56) (2.70) (2.38) (6.83) (2.06) (4.06) (2.36)

GSCI 0.637 −0.543 12.272 3.670

(0.64) (−0.59) (5.74) (4.04)

TIPS-UST 1.149 1.166 2.62 −0.686

(1.43) (1.57) (0.81) (−0.60)

Intercept −0.072 −0.835 −0.232 −0.228 −0.012 −1.942 0.097 0.097

(−0.12) (−1.37) (−0.38) (−0.37) (−0.01) (−1.41) (0.14) (0.14)

Observations 624 308 307 307 624 308 308 308

Adj. R2 2.8% 7.9% 3.1% 3.3% 8.1% 30.3% 7.3% 12.5%
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