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Abstract

This paper infers the risk compensation for bearing pure GDP risk using data

from a historical episode where government bonds were indexed to aggregate growth.

Two findings stand out: First, the risk compensation for bearing aggregate risk is

moderate. Second, the risk-adjusted growth rate (the growth rate under the “risk-

neutral” measure) exceeds the interest rate (EQ(g) > r). The first finding implies that

GDP-hedged equity investments still command a sizable equity premium, implying

that the equity market rewards risks that are orthogonal to aggregate risk. The second

finding calls into question the validity of the “transversality condition” that is imposed

by infinitely-lived, representative-agent models. From a practical perspective, this

historical episode illustrates the potential of GDP-indexed bonds to provide an ex-ante

measure on whether financial markets are willing to accept negative yields (using GDP

as a numeraire), which in turn allows deterministic predictions about the path of the

debt-to-GDP ratio for a given primary deficit.
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1 Introduction

Macro-finance models featuring an infinitely-lived, representative agent typically imply that

(a) The equity premium reflects compensation for aggregate-endowment risk, and (b) The

long-run, risk-adjusted growth rate of consumption is smaller than the risk-free rate, so

that the present discounted value of aggregate consumption is finite (the “transversality

condition” ). The literature has shown that this second implications, namely the finiteness

of the present value of aggregate consumption, is a sufficient condition for excluding bubbles

on positive-supply assets.1 If, on the other hand, the present discounted value of aggregate

consumption is infinite, as it is in some seminal overlapping-generations models, then the

value of government debt may not correspond to the present value of primary surpluses.

More broadly, policies that result in inter-generational transfers (such as government debt

issuance) may lead to Pareto improvements.2

At first pass, it seems obvious that the present value of aggregate consumption ought

to be finite, because there exist finitely-valued assets, such as real estate, with dividends

that are cointegrated with aggregate consumption. Because of cointegration, one might

think that long-term “strips” to either consumption or the dividends of such assets should

command similar risk-adjustment and discount rates; therefore if the value of land is finite,

so should be the value of the consumption claim. Appealing as it may be, this argument is

wrong. This paper starts by showing that a cash-flow process Ct may be co-integrated with

a process Xt, and yet the price of strips to the first process diverge to infinity, while the

strips to the second process converge to zero and are summable as the maturity of the strips

grows. This somewhat counterintuitive result shows that one cannot rely on some basic and

broad theoretical argument to conclude that the finiteness of the value of land implies the

finiteness of a claim to aggregate consumption.

A more convincing approach to examine if the risk-adjusted growth rate of the economy

exceeds the interest rate would be to directly examine the yields on securities that are

explicitly indexed to aggregate growth, such as GDP-indexed bonds. While such securities

1See, e.g. Santos and Woodford (1997a).
2See e.g., Abel and Panageas (2022) and Bloise and Reichlin (2023).
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were never traded in the US, the paper exploits a historical episode where such bonds were

traded in France. The main finding is that the risk-adjustment for bearing GDP risk is

modest; the implied Sharpe ratio of bearing “pure” GDP risk is around 0.4.3 With such

a modest value for the GDP risk premium, the risk-adjusted growth rate of the economy

slightly exceeds the interest rate. In addition, combining the low compensation for GDP risk

with the relatively low correlation between GDP growth and the stock market implies that

only a modest fraction of the equity premium (about 40%) can be attributed to compensation

for aggregate risk. The rest of the equity premium reflects compensation for risks orthogonal

to GDP fluctuations, an observation that is also at odds with most representative agent

models.

Having summarized the paper, I next provide a more detailed explanation of the points

made above starting with a short overview of some theoretical issues. The main reason for

outlining these theoretical issues is to illustrate that the finiteness of present value of aggre-

gate consumption is not a trivial issue that can be derived from some high-level theoretical

argument.

In representative-agent models, the transversality condition implies that the present value

of aggregate consumption must be finite. By contrast, in overlapping generations economies,

the transversality condition implies only that aggregate wealth should equal the present

value of consumption of the currently alive generations. The present value of aggregate

consumption from the present time to infinity may well be infinite, an outcome that is

not uncommon in parameterizations of these models.4 As shown by Santos and Woodford

(1997b), when the present value of aggregate consumption is infinite, it is no longer necessary

for the price of a positive supply asset to equal the present value of its dividends.

It is tempting to argue that the value of the consumption claim must surely be finite

by using an argument based on co-integration: Take for instance a non-depreciating asset,

such as land. Suppose that rental payments and aggregate consumption share the same

3This low value of the GDP-risk premium is consistent with the low “shadow valuation” of GDP-risk in
US data, in a sense that is made more precise later in the paper.

4If the consumption of the current generations is a progressively declining fraction of future aggregate
consumption, then it may well be that the present value of consumption of the currently alive agents is finite,
while the present value of aggregate consumption isn’t.
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stochastic trend (this is an implication of co-integration). But then, it should be the case

that the long-run “strips” to consumption are discounted with the same discount rates as

the aggregate dividends of land. Because the value of land is finite, the strips to the dividend

payments of land must be summable; and since consumption strips must exhibit the same

asymptotic behavior as the strips of land, consumption strips must be summable and the

value of the consumption claim must be finite.

Unfortunately, this simple argument is erroneous: The paper shows that two cash-flow

processes Ct and Xt may well be co-integrated, but the price of a strip to the cash flow CT

grows without bound as T → ∞, while the price of a strip to the cash flow XT goes to

zero. Specifically, if there exists some portfolio of assets whose expected logarithmic rate of

return exceeds the average logarithmic growth rate of Ct, then it is always possible to start

a fund (with finite wealth) that pays out a cash flow Xt, with the property that Xt and Ct

are co-integrated, and yet, the present value of Ct may well be infinite. An implication of

this construction is that the time 0 value of a “strip” to the cash flow CT diverges to infinity

as T → ∞, while the time 0 value of a “strip” to its co-integrated cash flow XT converges

to zero as T → ∞. Such a payout process Xt always exists, whenever the available assets

reward some risk(s) that are orthogonal to the risks impacting Ct, or, phrased differently,

whenever the shocks affecting Ct are not the only priced risks in the economy.5

To summarize, it is not straightforward to use some high level argument to guarantee

that the value of the aggregate endowment (and by implication aggregate consumption) is

finite. Relatedly, one cannot simply use the unlevered equity premium to risk-adjust long

run consumption strips, since the stock market return may well reward risks orthogonal to

GDP (this is exactly the type of situation that can occur in OLG or heterogeneous-agents

models where distributional risks either between, or within cohorts are priced.)

Because of these limitation of stock-market data for discounting claims to the aggregate

endowment, one would ideally like to infer the discount rates for GDP-growth strips from

5Another way to argue the finiteness of the aggregate endowment and preclude bubbles comes from the
macro-economics literature. Abel et al. (1989) argue that the US economy appears “dynamically efficient,”
i.e., the expected logarithmic return on capital exceeds the logarithmic growth rate of the economy. How-
ever, as Abel and Panageas (2022) show, ins a stochastic economy it is well possible that the economy is
dynamically efficient, and yet the present value of consumption is infinite.
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contracts whose payoffs are contingent on aggregate gdp growth (such as GDP futures or

GDP-linked bonds.)

While there have been many proposals to introduce such bonds into financial markets for

developed economies, no active markets developed for trading such claims. In the few cases

where such bonds were introduced, it was in the aftermath of default in developing economies.

Scarred by the recent experience of default in those countries, market participants did not

embrace these bonds.

One important exception, however, was the historical experience of France in the late

1950s and early 1960s. In 1956 France introduced industrial-production-contingent bonds.

The index of industrial production was essentially perfectly correlated with the real GDP

growth of France, so in essence these bonds were GDP-linked bonds. They had a maturity

of 15 years and their coupons were contingent on the evolution of the index of industrial

production in France. The historical financial database of France provides biweekly prices

for these bonds.

By observing the prices of these bonds one can estimate the implied growth rate of GDP

under the risk-neutral measure. By comparing this number to the average (logarithmic)

growth rate of GDP and dividing by its volatility, one can also obtain the associated Sharpe

ratio for “pure GDP” risk. The main conclusion of this empirical exercise is that the market

price for pure GDP risk is not particularly large; the baseline estimate is 0.39 (excess return

per unit of standard deviation). This value is remarkably stable across various splits of the

sample and various volatility specifications.6

There are two conclusions that can be drawn from this implied market risk of GDP

growth. First, if one accepts that the baseline estimate of 0.39 is indicative of the risk com-

6As a plausibility check for this finding, I also use US data and perform the following thought experiment:
The fact that GDP-contingent bonds were many times proposed for the US, but never broadly embraced, sug-
gests that market participants must have suspected that these claims would not have mattered for investors;
they would not have materially impacted their marginal utility, and thus would not have changed the asset
prices of existing securities. Under this supposition, it becomes possible to infer the “shadow” market price
of risk for GDP risk from the covariance of GDP growth with the mean-variance efficient portfolio. Using
various combinations of test assets to build variations of the mean-variance portfolio, I arrive at the same
conclusion as with the direct estimation of GDP risk from the French data: The market price of risk for GDP
risk is not particularly large. Even taking the estimation errors into account (by performing a bootstrap) the
market price of GDP risk has a mean value around 0.2 and rarely exceeds 0.4 in the bootstrapped samples.
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pensation for pure GDP risk, then it appears that a good fraction of the equity premium

does not reflect compensation for aggregate GDP risk, especially after taking into consider-

ation the relatively low correlation between stock returns and gdp growth. This can be seen

by the following “back-of-the-envelope” exercise: Suppose that GDP futures (normalized to

have unit standard deviation) were traded and the Sharpe ratio of those futures were 0.39.

Suppose that one used GDP futures to create a portfolio that invests in the stock market

and shorts an appropriate amount of GDP-futures to neutralize the exposure of the portfolio

to GDP risk. If the volatility of the stock market is 16 percent annually, the correlation

between the stock market and GDP growth is 0.4, the Sharpe ratio of GDP risk is 0.39, and

the equity premium is 6%, then the excess return of the GDP-risk-hedged portfolio would

be 6% - 0.4×0.16×0.39= 3.5%. This suggests that other risks (capital depreciation risks,

investment specific shocks, displacement risks, distributional risks) play an important role

in accounting for the equity premium. This finding implies that the stock market return

cannot be viewed as a levered investment in the aggregate endowment. If that were true,

then the GDP-hedged return on the stock market should be zero (and GDP growth would be

perfectly correlated with the stock market return). The finding also implies that the return

on capital cannot be used to ascertain whether the value of the aggregate endowment is likely

to be finite, because the stock market rewards risks that are orthogonal to aggregate-growth

risks.

Second, the empirical plausibility of the assumption that the present value of the aggre-

gate endowment is finite is far from obvious: In the historical experiment that we examine,

the expected growth rate under the risk-neutral measure (“risk adjusted growth rate”) ex-

ceeded the interest rate over that sample. Part of the reason was the aforementioned obser-

vation that the compensation for bearing GDP risk was not particularly large. If one were

to assume that this low compensation for GDP risk is indicative of the magntiude of risk

compensation that would be encountered if the US were to issue GDP-indexed bonds, then

it is tempting to perform the following thought experiment: In post WW-II data the US

annual real GDP growth rate has been approximately 3% with a volatility of approximately

2.3%. If the Sharpe ratio for GDP-growth risk is 0.39, the risk-adjusted growth rate is 3%
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-0.39×2.3% = 2.1%. By comparison, the (par) yields on either 20- or 30-year TIPS have only

rarely exceeded 2%. Therefore, if the French experience with GDP-linked bonds is indicative

of the order of magnitude of “pure” GDP risk compensation, it is far from clear whether the

conditions that ensure the finiteness of the aggregate endowment are satisfied or not.

Aside from the theoretical issues that hinge on the gap between the risk-adjusted growth

rate and the interest rate, there is a simple and practical dimension of the paper’s findings.

Assuming a 100% debt to GDP ratio, the gap between the risk-adjusted growth rate and the

interest rate is equal to the primary deficit (as a fraction of GDP) that will deterministically

ensure no further rise of the debt-to-GDP ratio if the government were to replace nominal

with GDP-indexed bonds. The reason for using the word “deterministically” is that while

GDP-contingent bods make the coupon and principal payments uncertain in units of dollars,

they make the payments certain when GDP is used as the “numeraire”. In turn, this means

that for any given assumption on the deficit as a fraction of GDP, it becomes possible to

exactly map out the evolution of debt as a fraction of GDP.

1.1 Literature review

The notion that r < g is associated with the possibility that government debt does not have to

equal the present value of surpluses dates back to the deterministic model of Diamond (1965).

Cass (1972) analyzes the notion of “dynamic efficiency.” An economy is dynamically efficient

if it is impossible to raise aggregate consumption today (and reduce capital accumulation)

without lowering aggregate consumption in some future period. The main result in Cass

(1972) is that an economy (that possesses a steady state) is dynamically efficient if the

logarithmic return on capital exceeds the logarithmic growth rate of capital (or equivalently

the growth rate of output, since the capital-to-output ratio is constant in steady state.) In

a later section, I provide a brief summary of the arguments used in Cass (1972) to arrive

at his main conclusion. Abel et al. (1989), Zilcha (1990) and Zilcha (1991) extend Cass’s

analysis to stochastic environments. Abel et al. (1989) shows that if the profit share in an

economy exceeds the investment share in every period, then the economy is dynamically

efficient. Zilcha (1991) shows that the Cass criterion (that the logarithmic rate of return
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on capital exceed the logarithmic rate of growth) applies also in a dynamic setup, except

that now the comparison applies to the expected logarithmic return on capital and aggregate

growth respectively.7

In a deterministic economy, the issue of dynamic efficiency and the possibility of bubbles

are tightly linked, mainly because the rate of return on capital and the risk-free rate of return

are the same. The centrality of the “r − g” comparison for the possibility of bubbles dates

back at least to Tirole (1985). Santos and Woodford (1997b) show that the key issue is not

whether the risk free rate exceeds the growth rate, but rather whether the present value

of the aggregate endowment is finite. (In a later section I provide a short, self-contained

argument for why the finiteness of the present value of the aggregate endowment plays a

key role.) Clearly, in a deterministic setup the rate of return on capital is equal to the

risk free rate, which is also the appropriate rate to discount the aggregate endowment.

This is the reason why both the dynamic efficiency conditions and the finiteness of the

value of the aggregate endowment are equivalent to r − g > 0. Of course, in a stochastic

economy different cash flows command different discount rates. Therefore there is no longer

an equivalence between dynamic efficiency on the one hand and the possibility of bubbles

(and the closely related notion of interim Pareto inefficiency) on the other. (Bertocchi (1991),

Binswanger (2005), Barbie et al. (2007), Bloise and Reichlin (2023), Abel and Panageas

(2022).) Intuitively, the reason is that an economy may be Pareto inefficient due to the lack

of efficient intergenerational risk-sharing, not capital over-accumulation. Specifically, even if

it is impossible to find interventions that (weakly) increase aggregate consumption in every

period, it may still be possible to find interventions that increase every generation’s welfare,

simply by improving the sharing of aggregate consumption between generations.8,9

The possibility of rolling debt forever without primary surpluses is fundamentally the

7Rangazas and Russell (2005) and Barbie and Kaul (2009) criticize some results in Zilcha (1991), which
require stronger assumptions than those used by Zilcha (1991). However, the conclusion that the economy
is dynamically efficient when the expected logarithmic return on capital exceeds the logarithmic growth rate
of the economy, which is the main result used in this paper, remains valid.

8There are other approaches to drive a wedge between rates of return and thus allow for the possibility
of bubbles, as in Farhi and Tirole (2011), Martin and Ventura (2012), Ball and Mankiw (2023).

9One important aspect of this paper is the usage of risk-adjusted growth rates. Lucas (2012) highlights
the importance of using risk-adjustments in public finance.
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same issue as a bubble on government debt. It should come as no surprise that the secular

decline in interest rates and the rising levels of deficits has brought the possibility of such debt

rollover to the fore. Blanchard and Weil (2001), Blanchard (2019), Barro (2023), Cochrane

(2021), Reis (2021), Hellwig (2021), Kocherlakota (2023a), Kocherlakota (2023b), Jiang

et al. (2019), Brunnermeier et al. (2021), Abel and Panageas (2022), Aguiar et al. (2021),

Amol and Luttmer (2022) are recent examples of this growing literature.10 A simple way to

see the connection between the (somewhat more theoretical) literature on bubbles and the

(somewhat more applied) literature on government debt is as follows: If the risk-adjusted

growth rate of the economy (the growth of the economy under the risk-neutral measure) is

above the risk-free rate on debt, then (a) the value of the aggregate endowment is infinite

and (b) the yield on a (fictitious) GDP-growth-contingent bond is negative as well. In other

words, the government could issue a liability in the form of a growth-contingent bond, and

be certain that the value of this liability as a fraction of GDP would be lower in the future

(due to its negative yield.) This deterministic decline in the value of the liability between

two periods of time opens up the possibility of permanent rollover.

1.2 Outline

Section 2 introduces the notion of a co-integrated, cash-flow mimicking fund. In particular,

this sections shows that as long as the logarithmic return of a portfolio of assets exceeds the

logarithmic growth rate of some target process Ct, then — starting with finite initial wealth

— it is always possible to finance a cash flow Xt that is co-integrated with Ct. Section 3

focuses on a complete market, so that there is no ambiguity on how to “price” cash flows

and shows that the yields on “dividend” strips to Ct and Xt may be entirely different and

not even converge to the same number asymptotically. Section 4 discusses the implications

of Section 3 for dynamic efficiency and the finiteness of the aggregate endowment. Section 5

discusses the French experience with growth-contingent bonds. All proofs are contained in

the appendix with the exception of one proof that is instructive.

10Indicative earlier contributions to this important topic include Aiyagari and McGrattan (1998), Blan-
chard and Weil (2001), Ball et al. (1998), Bohn (1995).
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2 Co-integrated cash-flow mimicking funds

This section introduces the concept of a cash-flow tracking fund. To start, consider a given

(“target” cash flow) process Ct with log-normal dynamics

dCt

Ct

= gdt+ σCdB
C
t , (1)

where g is a constant, and BC
t is a standard Brownian motion.

Suppose that there exists some fund that can invest in N assets with a vector of rates of

return equal to

dRt︸︷︷︸
N×1

= µ︸︷︷︸
N×1

dt+ σ︸︷︷︸
N×M

dBt︸︷︷︸
M×1

, where dBt ≡

 dBC
t

d
−→
B t

 , (2)

where µ is an N × 1 vector of expected returns, and σ is and N ×M matrix of exposures to

the M Brownian motions driving the returns. Assume that N ≤ M and that σ has rank N.

Accordingly, the market could be either complete (N = M) or incomplete (N < M.)

The fund can make distributions equal to Xt per unit of time dt, so that the dynamic

evolution of the fund’s value,Wt, is

dWt

Wt

=

(
r + w′µe − Xt

Wt

)
dt+ w′σdBt (3)

where r is the risk-free rate, µe ≡ µ − r1N is is an N × 1 column vector of expected excess

returns, and w is an N × 1 vector of the fund’s portfolio holdings.

Let zt ≡ logWt − logCt denote the fund-value-to-cash-flow ratio. Ito’s Lemma implies

that

dzt =

(
r + w′µe − g − w′σσ′w − σ2

C

2
− Xt

Wt

)
dt+ w′σdBt − σCdB

C
t . (4)
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Suppose that the fund makes distributions according to the following rule:

Xt

Wt

≡ max(α + βzt, ε), where β > 0 and ε > 0. (5)

In other words, the fund chooses a higher distribution rate, Xt

Wt
, when zt, is high, and a lower

distribution rate when zt is low. The truncation at some ε > 0 ensures that the fund never

makes negative distributions. Substituting (5) into (4) results in the dynamics

dzt =

(
r + w′µe − g − w′σσ′w − σ2

C

2
−max(α + βzt, ε)

)
dt+ w′σdBt − σCdB

C
t . (6)

Next define the following quantity, which is the difference between the logarithmic rate of

rate of return on the portfolio and the logarithmic growth rate of Ct:

A = A(w) ≡ r − g + w′µe − w′σσ′w

2
+

σ2
C

2
. (7)

The following Proposition shows that the when A(w) > ϵ > 0, zt has a stationary distribu-

tion.

Proposition 1 Define ϕ ≡ w′σ− [σC , 0, .., 0] and let σZ ≡
√
ϕ′ϕ and z∗ ≡ ε−α

β
. Assume that

σZ > 0. If A(w) > ε, then zt has a stationary distribution f (z) given by

f (z) =
1z≤z∗e

2

σ2
z
(A−ε)z

+ 1z>z∗e
2

σ2
z

[
−β

z2−(z∗)2

2
+(A−α)z−(ε−α)z∗

]
∫ +∞
−∞ 1z≤z∗e

2

σ2
z
(A−ε)z

+ 1z>z∗e
2

σ2
z

[
−β

z2−(z∗)2
2

+(A−α)z−(ε−α)z∗
]
dz

. (8)

Figure 1 illustrates f (z) . It is a concatenation of an exponential distribution (decaying

at the rate A(w) > 0) for values of z ≤ z∗ and a normal distribution for z > z∗.

The two assumptions of Proposition 1 are that (a) σZ > 0 and (b) A(w) > ε > 0.

Assumption (a) implies that the return of the portfolio w is not perfectly correlated with the

increments dC
C
. Such a portfolio doesn’t exist if the market is incomplete (N < M) since the

matrix σ has rank N. But even if the market is complete (N = M) , the proposition focuses

on portfolios that are not perfectly correlated with dC
C
, so that the logarithmic difference
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Figure 1: Simulated and exact distribution of the log fund-to-cash-flow value, zt. Parameters are

A(w) = 0.08, ε = 0.01, α = 0.08, β = 0.3, σZ = 0.08.

between the fund and the cash flow (the “tracking error”) has non-zero standard deviation,

σZ . Assumption (b) is the more substantive assumption. In effect it requires that A(w) > 0.

(The reason is that ε is arbitrary, and therefore it is always possible to find some ε ∈ (0, A)

as long as A(w) > 0.) Proposition 1 asserts that under conditions (a) and (b), the process

zt is stationary.

The intuition behind Proposition 1 is that whenever z ≤ z∗, the logarithmic growth rate

of the fund becomes r+w′µe − w′σσ′w
2

− ε , whereas the logarithmic growth rate of the cash

flow Ct, is g −
σ2
C

2
. The assumption that A(w) > ε ensures that the logarithmic growth rate

of the fund exceeds that of the cash flow Ct. As a result the drift of zt is positive. Vice vera,

when zt exceeds z
∗, the drift of zt becomes negative for high enough zt : the payout, Xt

Wt
, is

linear in zt and eventually exceeds the logarithmic return of the fund, r + w′µe − w′σσ′w
2

for

high enough values of zt. The positive drift for low zt, which turns negative for high zt is the

reason for the mean reversion in zt.

Note that if A(w) were smaller than zero, then it would be impossible to find a non-

negative payout Xt, such that zt would be stationary. Indeed, in that case limT→∞ zt = −∞

11



a.s. for any payout policy Xt ≥ 0.11

Maintaining the assumption that A(w) > ε > 0, then the (log) distributions made by the

fund, Xt are co-integrated with the (log) cash-flow process Ct, since

logXt − logCt = log
Xt

Wt

− log

(
Ct

Wt

)
= log (max(α + βzt, ε)) + zt, (9)

where the last equation follows from (5) and the definition of zt. Since zt is stationary, equa-

tion (9) implies that logXt− logCt = log (max(α + βzt, ε))+zt is stationary, or equivalently

that the cash flow processes logXt and logCt are co-integrated.

3 Long-dated strips

The key takeaway from the previous section is that it is always possible to find a payout

strategy, Xt, that is co-integrated with Ct, as long as there exists a portfolio w such that

A(w) > 0. It is important to note that the portfolio w that finances the cash-flow Xt is not

a “replicating” portfolio. The assumption σZ > 0 of Proposition 1 implies that logXt and

logCt are co-integrated, but not perfectly correlated, irrespective of whether the market is

complete (N = M) or incomplete (N < M) .

This section shows that even though the cash-flow processes logXt and logCt are co-

integrated, the value of long-dated divided “strip” to the cash flowXT at time T will converge

to zero as T → ∞, even though the value of of a dividend-strip to CT may diverge to infinity.

Moreover, even if the value of both strips converges to zero as T → ∞, the yields of these

strips will in general not converge to the same number as T → ∞. The remainder of this

section formalizes these claims.

To remove any ambiguity about how to compute the value of dividends, the remainder

of this section focuses on the case N = M, so that the market is complete. Define the unique

11The easiest way to see this is to let z
(0)
t denote the process for zt assuming that Xt = 0 and note that

for any Xt ≥ 0 we have z
(0)
t ≥ zt. The properties of the Brownian motion with negative drift impliy that

−∞ = limT→∞ z
(0)
t ≥ limT→∞ zt.
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stochastic discount factor as

dmt

mt

= −rdt− κ︸︷︷︸
N×1

 dBc
t

d
−→
B t

 , (10)

where r is the prevailing interest rate and the vector κ ≡ σ−1µe is the vector of the “market

prices of risk.”

The price P
(XT )
t of a dividend strip to the cash flow XT ,divided by the current level of

Xt is defined as

P
(XT )
t

Xt

≡ Et

(
mT

mt

XT

Xt

)
= EQ

t

(
e−r(T−t)XT

Xt

)
, (11)

where Q is the “risk-neutral” measure associated with the SDF (10). Because the integral∫∞
t

P
(Xu)
t du is bounded above by the time-t value of the fund, Wt, it must be the case that

limT→∞ P
(XT )
t = 0.12 Similarly, the value of a long-dated dividend-strip to the cash flow Ct

is given by

P
(CT )
t

Ct

≡ Et

(
mT

mt

CT

Ct

)
= EQ

t

(
e−r(T−t)CT

Ct

)
= e−(r−g+κ(1)σC)(T−t), (13)

where κ(1) is the first element of the vector κ (i.e, the price of risk associated with the

12Note that under the probability measure Q, equation (3) becomes

dWt = (rWt −Xt) dt+ σWtdB
Q
t . (12)

Multiplying both sides of (12) with e−rt and taking expectations gives the following present-value relation:

Wt = EQ
t

∫ T

t

e−r(u−t)Xudu+ EQ
t e−r(T−t)WT .

Since WT > 0 for all T, it follows that the initial value of the fund, Wt, is an upper bound to

EQ
∫ T

t
e−r(u−t)Xudu for any T ; in particular, as T → ∞

Wt ≥ EQ
t

∫ ∞

t

e−r(u−t)Xudu.

Since Xt is non-negative, the fact that E
Q
t

∫∞
t

e−r(u−t)Xudu is bounded above by Wt leads to the conclusion

that limT→∞ EQ
t e−r(T−t)XT = 0.

13



Brownian motion BC
t ). The quantity g − κ(1)σC can be thought of as the “risk-adjusted”

growth rate of Ct. In particular, if r < g+ κ(1)σC , then limT→∞
P (CT )

Ct
= ∞. The conditions

of Proposition 1 may hold, even though r < g − κ(1)σC , as the next proposition asserts.

Proposition 2 There exists (an open set of) parameters such that (a) r − g + κ(1)σC < 0

and (b) the conditions of Proposition 1 both hold. Therefore, log XT

CT
is stationary, and yet

limT→∞ P
(CT )
t = ∞, while limT→∞ P

(XT )
t = 0.

Proposition 2 presents a conundrum. One would expect that the common stochastic

trend of Xt and Ct would dominate the variation of both claims in the long run. As a result,

one would expect the same yields on long term strips to either cash flow. Yet, Proposition 2

shows that the price of a dividend strip to CT diverges to infinity as T grows, whereas the

strip to XT goes to zero. How is it possible that the dividend strips of two co-integrated

cash flows can differ so dramatically in the long run?

To provide some perspective on the conundrum, define

f(zt) ≡ exp {log (max(α + βzt, ε)) + zt} . (14)

and note that equations (11) and (9) and (13) imply that

1

T − t
log

(
P

(XT )
t

Xt

)
=

1

T − t
logEQ

t

(
e−r(T−t)XT

Xt

)
=

=
1

T − t
log

{
e−r(T−t)EQ

t

(
CT

Ct

)
× EQ

t

(
CT

EQ
t (CT )

f(zT )

f(zt)

)}
=

1

T − t

[
log

(
P

(CT )
t

Ct

)
+ logEQ

t

(
CT

EQ
t (CT )

f(zT )

f(zt)

)]
.

Taking limits as T − t → ∞ gives

lim
T−t→∞

(−1)× 1

T − t
log

(
P

(XT )
t

Xt

)
= − lim

T−t→∞

1

T − t
log

(
P

(CT )
t

Ct

)
−R, (15)
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where

R ≡ lim
T−t→∞

1

T − t
logEQ

t

(
CT

EQ
t (CT )

f(zT )

f (zt)

)
.

Equation (15) implies that the yields on the long-term dividend strips to XT and CT are

not equal except if the term R is equal to zero. To study this term, note that CT

EQ
t (CT )

is

positive and has an expectation equal to one; therefore it is a likelihood ratio that can be

used to define a new probability measure, Q̃, equivalent to Q (a Radon-Nikodym derivative).

Specifically, we have the following result

Lemma 1 Define the change of measure dQ̃
dQ

= CT

EQ
t (CT )

. Under the measure Q̃ the term R

can be expressed as

R = lim
T−t→∞

1

T − t
logEQ̃

t (f(zT )) , (16)

and the dynamics of zt under the measure Q̃ are given by

dzt =
(
Ã(w)−max(α + βzt, ε)

)
dt+

{
w′σ −

[
σC , 01×(N−1)

]′}
dBQ̃

t , (17)

where dBQ̃
t is an N−dimensional Brownian motion under the probability measure Q̃, and

Ã(w) is given by

Ã(w) = r −
(
g − κ(1)σC

)
− σ2

C

2
− 1

2
w′σσ′w + w′σ

[
σC , 01×(N−1)

]′
. (18)

Corollary 1 The process zt is stationary under the probability measure Q̃ iff Ã(w) > ε for

some w.

Lemma 1 implies that if zt is a stationary process under the probability measure Q̃, and

limT−t→∞ EQ̃
t (f(zT )) < ∞, then R = 0. To provide conditions so that R = 0, note first that

the portfolio that maximizes Ã(w) is given by

w = (σσ′)
−1

σ [σC , 0]
′ , (19)

15



where 0 is an (N − 1) × 1 vector. (In the special case where N = 1, the portfolio w is a

scalar given by σC

σ
.)

The portfolio of equation (19) has an intuitive interpretation as a “replicating” portfolio.

The term (σσ′)−1 is the covariance matrix of returns. The term σ
[
σC , 01×(N−1)

]′
is the

vector of covariances between asset returns and the innovations to cash-flow growth σCdB
(C)
t .

In other words, the elements of the vector w are the regression coefficients obtained from

regressing the cash-flow growth,dCt

Ct
, on all asset returns.

Substituting the portfolio (19) into (18) gives

max
w

Ã(w) = r −
(
g − κ(1)σC

)
− σ2

C

2
[1, 01×N ]

(
I − σ′ (σσ′)

−1
σ
)
[1, 01×N ]

′

≤ r −
(
g − κ(1)σC

)
. (20)

When the market is complete (as I have assumed in this section), the full-rank assump-

tion on the matrix σ implies that the weak inequality (20) is actually an equality. Equa-

tion (20) shows that if r −
(
g − κ(1)σC

)
< 0 then it must be that Ã(w) ≤ maxw Ã(w) =

r −
(
g − κ(1)σC

)
< 0 < ε, but maxw A (w) > ε > 0. In words, the process zt is not station-

ary under the probability measure Q̃, even though it is stationary under the statistician’s

(“natural”) mature, P .

In summary, even though the cash flows Ct and Xt are co-integrated, the yields on cash-

flow streams to CT or XT , as T approaches infinity may be entirely different. It is useful to

note that r −
(
g − κ(1)σC

)
< 0 is sufficient to ensure the that Ã(w) < 0, but not necessary.

In particular, even if r −
(
g − κ(1)σC

)
> 0, there will exist portfolios w, so that Ã(w) < 0.

As a result of Ã(w) < 0, the process zt is not stationary under Q̃ and the long-term yields

of cash flows to CT and XT will generally differ and converge to different, albeit positive

numbers.13 In other words, long-term yields on the dividend strips to XT and CT will

converge to different numbers even if the prices of the two dividend strips approach zero as

T → ∞.

To complete the analysis, I next show that the divergence of the dividend-yield term

13The assumption r −
(
g − κ(1)σC

)
> 0 implies the positivity of the yields on cash flow streams to CT .
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structures is not only an asymptotic phenomenon. The entire shape of the term structure of

dividend-strip-yields differs: Clearly, because logCt follows a random walk, the yield curve

on dividend strips to CT is constant and independent of maturity (all yields are simply equal

to r −
(
g − κ(1)σC

)
.) By contrast, the term structure of dividend-strip-yields to XT will

not be flat. Figure 2 provides an illustration by plotting the yield differences between the

dividend strips to XT and CT for the same parameters as in Figure 2.

To understand Figure 2, I start by noting that the drift of zt under the measure Q̃ is neg-

ative and bounded away from zero. Therefore, under the measure Q̃ , zt becomes arbitrarily

negative in the long run with probability one, and max(α+ βzt, ε) equals ε with probability

one in the long run. Accordingly, the dynamics of zt become dzt =
(
Ã(w)− ε

)
dt+σwdB

Q̃
t ,

where σw ≡ w′σ−
[
σC , 01×(N−1)

]′
. Using properties of the log-normal distribution, it follows

that the long-term yield-discrepancy, R, is approximately given by

R ≈ lim
T−t→∞

1

T − t
logEQ̃

t

(
elog ε+zT−zt

)
= Ã(w)− ε+

σ2
w

2
. (21)

This asymptotic discrepancy is depicted by the dotted horizontal line in Figure 2.

On the opposite extreme, consider values of T close to t. For such values of T close to t,

the negative drift in zt under the measure Q̃ will generally exceed ε in absolute value in the

short run, especially for large initial values of zt. Indeed, the higher is the initial value of zt,

the larger the magnitude of the negative drift, because of the payout specification (5). This

is reflected in the fact that the lines in Figure 2 decays faster, the larger is the initial value

of zt.

These observations show that two co-integrated claims can exhibit (a) a positive gap in the

yields of their long-term dividend strips even at infinity, and (b) the shape of their dividend-

strip term structures can be entirely different. An implication of this finding is that even

though aggregate dividends and aggregate consumption are co-integrated, the term structure

of dividend strips may be uninformative about the term structure of aggregate consumption

strips: Typically, economic models make predictions about the latter term structure, whereas
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Figure 2: Difference in the yields of dividend strips to XT and CT . The different lines correspond

to initializing zt at the stationary mean of z (under the statistical measure, P ) plus / minus 0, 0.5, 1

stationary standard deviations. The dotted line depicts the long-term yield of the cash flow strip

in equation (21). The parameters are the same as in Figure 1. The value of Ã(w) is -0.02.

in the data one can at most observe the former.14

The next section uses the divergence of the term structures at infinity to derive some

implications about the relation betwen so-called “dynamic efficiency conditions” and the

possibility of bubbles in stochastic economies.

4 Dynamic efficiency conditions, and no-bubble condi-

tions

Proposition 2 helps provide an asset-pricing perspective on why dynamic-efficiency conditions

do not imply that an economy is free of bubbles. Specifically, the sufficient condition for

an economy to be “dynamically efficient” is that the average logarithmic return to capital

14An analysis of dividend strips from S&P options is contained in van Binsbergen et al. (2012), who find
that the term structure of dividend strips is downward sloping.
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exceeds the average logarithmic growth of the economy. By contrast, a sufficient condition

for ensuring the “absence of bubbles” (on positive-supply assets) is that the present value of

the aggregate endowment is finite, which implies that the prices of strips to the aggregate

endowment at time T converge to zero as T goes to infinity.15 This section shows that if

Proposition 2 were not true, that is, if two cash flows that are co-integrated must either

both be finitely-valued or both be infinitely-valued, then dynamic efficiency would actually

imply the absence of bubbles even in a stochastic economy. More importantly, Proposition

2 leads to Proposition 3 below, which shows that dynamic efficiency may imply the absence

of bubbles even in some stochastic economies.

To provide some background, and keep the paper self-contained, it is useful to provide

a brief summary of the notion of dynamic efficiency (Cass (1972)) in a discrete-time, de-

terministic economy. The criterion of dynamic efficiency is useful for detecting whether the

economy is over-accumulating capital or not. Specifically, an economy is over-accumulating

capital if it is possible to reduce today’s investment (and increase aggregate consumption) by

ϵ > 0, without changing aggregate consumption in any future period. Letting RK,t+i denote

the gross return on capital and 1+ g the aggregate economic growth rate, the Cass criterion

boils down to testing whether the cumulative product,
T∏
i=1

RK,t+i

1+g
, converges to zero or diverges

to infinity. Intuitively, if
T∏
i=1

RK,t+i

1+g
goes to infinity, then the consumption increase today will

have to lead to some consumption cut in the future.16 Zilcha (1990), Zilcha (1991) extend

this observation to stochastic economies and shows that an economy is dynamically effi-

cient as long as the expected logarithmic return on capital exceeds the expected logarithmic

15The condition that the price of these strips converges to zero is also necessary for excluding interim
Pareto inefficiency in overlapping generations economies. See Bloise and Reichlin (2023).

16Starting in a steady state and reducing next period’s capital by ε > 0 implies that output at time t+ 1
will be smaller by εFK,t+1, where FK,t+1 is the marginal product of capital. In turn, since consumption at
time t + 1 is unchanged, capital at time t + 2 will be smaller by ε (FK (Kt+1) + (1− δ)) = εRK,t+1, where
δ is depreciation and RK,t+1 is the gross return on capital. Iterating forward, capital at time T + 1 will

be smaller by ε

T∏
i=1

RK,t+i. In the unperturbed economy the capital stock grows at the rate (1 + g) , so that

the ratio of perturbed-to-unperturbed capital stocks at time T +1 is ε

T∏
i=1

RK,t+i

1+g . If the steady state value of

the return on capital, RK,t+i exceeds 1 + g, then sooner or later it will be inevitable to cut back aggregate
consumption because there will not be enough capital to support any given finite consumption.
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growth rate of the economy, E logRK,t ≥ E log (1 + gt) .

The sufficient condition that guarantees the absence of bubbles on positive supply assets

is distinct from the dynamic efficiency condition. Again in the interest of keeping the paper

self-contained, it is useful to provide a short derivation of this condition in a fairly simple,

continuous-time, overlapping-generations, endowment economy. Suppose that individuals

come to life at time s and live for T periods. Denote by ct,s ≥ 0 an individual’s consumption

at time t, where s indexes a birth cohort, and t indexes calendar time. Similarly, let ωt,s ≥ 0

denote the individual’s labor income and At,s her assets. Assuming that consumers come to

life without assets (As,s = 0) , and that the financial markets are complete, the individual’s

life-time budget constraint is

At,s = Et

(∫ s+T

t

mu

mt

(cu,s − ωu,s) du

)
, (22)

where mt is the unique stochastic discount factor. To focus on infinite-horizon bubbles

and exclude the finite-horizon bubbles that can arise simply because of continuous trading,

assume that all Sharpe ratios and the interest rate are bounded. The following result, which

is a simplified version of Santos and Woodford (1997b), shows that as long as the present

value of the aggregate endowment is finite, the total value of all assets is equal to the present

value of dividend income (aggregate consumption minus aggregate wage income.)

Proposition 3 Define aggregate consumption, Ct ≡
∫ +∞
−∞ ct,s1{s≤t≤s+T}ds, and aggregate la-

bor income, Ωt ≡
∫ +∞
−∞ ωt,s1{s≤t≤s+T}ds. Also let At ≡

∫ t

−∞At,s1{s≥t−T}ds denote the aggre-

gate value of all assets in the economy. Assume that Et

∫∞
t

mu

mt
Ωudu ≤ Et

∫∞
t

mu

mt
Cudu < ∞.

Then the aggregate value of all assets is equal to the present value of aggregate dividend

income over the infinite horizon,

At = Et

∫ ∞

t

mu

mt

(Cu − Ωu) du. (23)

Because the value of all assets obeys the present value relationship (23), there can be no

bubbles on positive supply assets. The finiteness of the aggregate endowment, Et

∫∞
t

mu

mt
Cudu <
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∞, is the key assumption of Proposition 3. Without this condition, an economy can exhibit

bubbles.

In a deterministic economy that possesses a steady state, the dynamic efficiency condition

boils down to whether the steady state return on capital exceeds the aggregate growth of

the economy. Additionally, the absence of risk implies that all rates of return are equal, and

accordingly the dynamic efficiency condition is equivalent to the interest rate exceeding the

growth rate in the economy, which implies that
∫∞
t

mu

mt
Cudu = Ct

∫∞
t

e−(r−g)(u−t)du < ∞.

In a stochastic economy, the dynamic efficiency condition differs from the condition that

the aggregate endowment is finite. Proposition 2 helps explain why the dynamic efficiency

condition does not imply the finiteness of the aggregate endowment. Indeed, suppose (coun-

terfactually) that the statement of Proposition 2 is incorrect. Specifically, assume (counter-

factually) that if there exists a (finite-valued) fund that finances a cash flow processes Xt

that is co-integrated with consumption, Ct, then the present value of Ct must also be finite.

If this statement were true, then the dynamic efficiency condition would imply the finiteness

of the endowment condition, even in a stochastic economy. The reason is that (a) capital is

a tradable asset, and (b) the dynamic efficiency condition (expressed in continuous time) is

r− g+µe
K − σ2

K

2
+

σ2
C

2
> 0; therefore, the condition A(w) > 0 of Proposition 2 is satisfied by

the portfolio that invests exclusively in capital. Put simply, the dynamic efficiency condition

implies the existence of a portfolio (plain investment in capital) that finances a cash flow

that is co-integrated with Ct. Were it not for the (negative) result of Proposition 2, then the

dynamic efficiency condition would imply the finiteness of the endowment condition.

The results of the previous section don’t only provide an asset-pricing perspective on

why dynamic efficiency does not imply finiteness of the aggregate endowment. The results

of Proposition 2 also provide a route to derive slightly more general “dynamic efficiency”

conditions that do imply the finiteness of the aggregate endowment. The next proposition

provides an example

Proposition 4 Let dRK = µKdt+σKdBt denote the dynamics of the return to capital, and

also let σK,1 denote the first element of the vector σK. Suppose that the excess return on
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capital reflects exclusively compensation for endowment risk

µK − r = κ(1)σK,1. (24)

Let w = [ σC

σK,1
;
−→
0 N−1] be ther portfolio of risky assets that invests a fraction σC

σK
in capital

and zero in everything else. Additionally, assume that A (w) > 0. Then Et

∫∞
t

mu

mt
Cudu < ∞.

In words, Assumption (24) states that the only risk that drives the risk premium of the

stock market is the risk associated with the Brownian motion BC
t . If this assumption holds,

and the expected logarithmic return of a portfolio that invests σC

σK,1
in capital and 1 − σC

σK,1

in the riskless asset exceeds the logarithmic growth rate of Ct, then the present value of Ct

is finite.

The proof of Proposition 4 is short and instructive. The definition of the portfolio w and

assumption (24) imply that

A (w) = r − g +
σC

σK,1

(
κ(1)σK,1

)
+

σ2
C

2
− 1

2

(
σC

σK,1

)2

σ2
K .

Accordingly,

r −
(
g − κ(1)σC

)
= A (w) +

σ2
C

2

[
∥σK∥2

σ2
K,1

− 1

]
> 0,

which follows from the assumption A (w) > 0 and ∥σK∥2 ≥ σ2
K,1. Since r−

(
g − κ(1)σC

)
>

0, the present value of Ct is finite.

Proposition 4 says that if the logarithmic return of a specific portfolio exceeds the ag-

gregate logarithmic growth rate, then the present value of the endowment is finite. Un-

fortunately, condition (24) is a very strong one. In some special situations this condition

may be warranted. One such situation is if the return on capital is perfectly correlated with

the Brownian motion BC
t . In that case the return on capital (appropriately combined with

the risk-free asset) is effectively the replicating portfolio of the cash flow Ct. But then the

present value of Ct must be finite because the value of capital is finite. Of course in the
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data, the return on capital, which is typically proxied by a delevered version of the return

on the stock market, is far from perfectly correlated with either consumption or output. In

addition, as I argue in Section 5, only a small fraction of the equity premium appears to

reflect compensation for aggregate risk; the fluctuations in stock returns that are orthogonal

to GDP growth seem to command a sizeable premium as well.17

Another situation where assumption (24) could make sense is if one assumed that the

economy is populated by a representative agent, and therefore the only source of risk to

her marginal utility emanates from the Brownian shock, BC
t . But in that case, it would be

pointless to check the finiteness of the aggregate endowment. The transversality condition of

the representative agent’s optimization problem would ensure this finiteness of the aggregate

endowment in the first place.

I conclude this section with two remarks.

First, the analysis sofar has focused on situations where the market is complete (M = N),

so as to remove any ambiguity associated with the pricing of dividend strips. Incomplete-

ness makes the implications of Proposition 2 particularly unfortunate: When the market is

complete, the disconnection between dynamic efficiency and the finiteness of the endowment

becomes more of a theoretical exercise. From a practical perspective, a complete market

allows the determination of the value of a portfolio that exactly replicates the cash flow CT .

Therefore, one can examine directly whether the value of this replicating portfolio tends to

grow without bound as T increases. In an incomplete market, one cannot exactly replicate

the value of a claim to CT , and κ(1) cannot be tied down uniquely. If Proposition 2 were not

true, that is, if it were always the case that two cointegrated claims are either both finitely

valued or both infinitely valued, then one could sidestep the challenges of incompleteness: To

establish the finiteness of the endowment, it would suffice to find a traded asset (or portfolio)

that finances a cash flow that is co-integrated with CT . In turn, as I discussed above, this

would always be possible in a dynamically efficient economy by investing in capital. Unfor-

17In incomplete-markets models and OLG models aggregate risk is only part of the equity premium;
distributional risks are priced as well. See, e.g., Gârleanu et al. (2012), Gârleanu and Panageas (2021),
Gârleanu and Panageas (2023). But even in some representative-agent models, the risk compensation in the
stock market may reflect compensation for depreciation shocks, investment specific shocks, etc. See, e.g.,
Bulow and Summers (1984) or Papanikolaou (2011).
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tunately, Proposition 2 stops this line of reasoning in its tracks. To find out if r−(g+κ(1)σC)

is positive or not, one needs to elicit κ(1) somehow. This is the topic of the next section.

The second comment is parenthetical. In Appendix B I address the following question:

Intuitively, how is it possible for the value of the aggregate endowment to be infinite, and yet

for the stock market, which is “the present value of aggregate dividends” to be finite? The

answer provided in Appendix B is that the stock market is the present value of dividends of

the units of the capital stock currently in existence, which is finite. Whether the value of the

stock market is also the the present value of aggregate dividends may or may not be true.

Specifically, Appendix B considers a production economy where average q and marginal q

are both equal to one (no adjustment costs.) By definition, a unit of capital is equal to the

discounted present value of the profits that will accrue to this specific unit of capital from

0 to infinity. In turn, the value of the stock market is the present value of profits that will

accrue to the existing, not future units of capital, which will depreciate over time. This

depreciation implies that the profit share accruing to the existing units of capital will decline

as a fraction aggregate profits. As a result the growth rate of profits of a fixed unit of the

capital stock is below the growth rate of aggregate profits. Because of this, it is possible

for the present value of profits of the existing units of the capital stock to be finite, while

the present value of aggregate dividends may not even be a well-defined object. The stock

market equals the present value of aggregate profits only under the additional assumption

that the present value of a strip that pays a cash flow proportional to the aggregate capital

stock , KT , converges to zero as T → ∞. The intuition for this finding is that when new

units of the capital are added to the economy, the net present value of each addition is zero;

the investment cost simply equals the present value of profits that will accrue to the new

units of the capital stock.

5 The market price of GDP-risk

The previous sections highlighted that it is not possible to argue that the present value

of the consumption stream is finite simply because there are claims to cash flows that are
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co-integrated with GDP that have finite value. In particular, the dynamic efficiency con-

dition guarantees the existence of a cash flow process that is co-integrated with GDP, but

unfortunately this does not imply that a cash flow stream that is proportional to GDP has

finite value. Reaching the conclusion that such a cash-flow stream is finitely-valued requires

a stance on the risk neutral dynamics of interest rates and GDP growth. Taking a stance

on the risk neutral dynamics of GDP growth (the risk compensation κ(1)) is particularly

difficult, since there are no traded GDP futures. In addition, it appears impossible to create

portfolios that exhibit perfect correlation with GDP growth, so as to use the Sharpe ratio

of such a portfolio to infer the risk compensation κ(1).

In the next two subsections I take a pragmatical approach to the issue of gauging the

magnitude of κ(1). Section 5.1 examines a historical episode where GDP-linked bonds (more

precisely bonds linked to industrial production) were actually traded. Subsection 5.2 takes

a more indirect approach by deriving the level of κ(1) that is implied by the observation that

attempts to introduce GDP futures in the US market resulted in essentially zero uptake.

5.1 The French experience in the mid-1950’s

It is hard to find historical episodes where countries issued bonds with coupons linked to

GDP growth.18 Typically, the attempts to introduce GDP-linked bonds occur in developing

economies and usually in the aftermath of sovereign default. Not too surprisingly, market

participants tend to be unwilling to purchase such bonds, since the possibility of another

sovereign default looms in their minds.

An interesting exception, where a large, developed economy introduced contingent bonds

is the case of France in the mid 1950s.19 In addition, there is readily available data on the

market prices of these bonds spanning about 15 years.

Specifically, on June 1, 1956, the French Government issued bonds with coupons that

18There is a sizeable academic and practitioner literature on the benefits of GDP-linked debt. See Boren-
sztein and Mauro (2004) for a comprehensive survey. See also Benford et al. (2016), Bowman and Naylor
(2016), Blanchard et al. (2016), Kamstra and Shiller (2009), Shiller (1998) for indicative policy proposals.
Barro (1995), Hatchondo and Martinez (2012), and Caballero and Panageas (2008) are indicative papers
that discuss the potential benefits of indexation in macroeconomic models.

19See, e.g., Rozental (1959).
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were contingent on the path of industrial production (“Bons d’Equipement Industriel et

Agricole”.) According to the press release in Le Monde (May 24, 1956), these bonds would

have denominations of 10,000 , 100,000, and 1,000,000 francs and a 15-year maturity. Re-

demption would be at 105% of par. The interesting part was the determination of the annual

coupon. According the press release, the coupon would be at a 5% minimum; in addition,

the coupon increased by 0.05% for each point that the annual index of industrial production

exceeds its level in 1955 (base 120 in 1955.) In terms of taxation, “interest and the increase

in interest are exempt from tax on securities, the redemption premium benefits from the

same exemption and is not subject to the progressive surtax on personal income.”

These bonds were traded on the French stock exchange and are available on the “Database

for Financial History” (dfih.fr). The database contains 875 price observations (typically on

a biweekly frequency from August 1956 to April 1971) across all three denominations.20

I complement this time series with the following data series: (1) Annual data on French

real GDP 1950-1971 from FRED. (2) Monthly data on “Production of Total Industry in

France”, available from 1960-1971. (3) Monthly data on Long Term Bond Yields (10-year)

available from 1960-1971. To obtain interest rate data prior to 1960, I also use Tableu 3

from Chauveau (1975) for the years 1953-1972.

As is frequently the case with historical data, there are some important limitations. The

first and most important limitation is that there appears to have only been a single issue of

those bonds. This makes it impossible to derive a term structure (since this would require

multiple maturities on the same date.)

Second, it is not completely clear which is the reference index that is being used for the

determination of coupons. For the analysis that follows I use the index “Production of Total

Industry in France.” (PTIF.) At an annual frequency, the logarithm of this index is essentially

perfectly correlated with the logarithm of real GDP (correlation of approximately 99% from

1960-1971.) The left plot of Figure 3 provides a visual impression. Because of this very tight

correlation, I use the log-growth rate of GDP to extend the index of industrial production

backwards to 1956, albeit at an annual frequency. (The data on industrial production from

20The database indicates that the data corresponds to actual transactions, because the entry “transaction
#” takes numbers larger than 1 on several days.
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Figure 3: Left subplot: Log real GDP (dotted line) and log industrial production (solid line). Base

year=1959. Right subplot: Inferred log-industrial production from coupon payments (solid line),

and the log-index of industrial production from FRED (dotted line.)

1960 onwards are monthly.)

A simple way to validate that the PTIF index is the appropriate reference index for these

bonds is to use the drops in the price of the bonds each June to infer the annual coupon

(payable at the beginning of June). From the inferred coupon, one can use the contractual

formula for the determination of the coupon to impute the value of the index that was

used for the coupon determination and then compare the result to the PTIF index. The

main limitation of this indirect inference approach is that the coupon payment can only be

inferred from bi-weekly, not daily data, which introduces some noise in the imputation of the

coupon. Nonetheless, Figure 3 shows that the imputed index corresponds reasonably well to

the PTIF index. Also, the essentially unit correlation of the PTIF index with GDP implies

that effectively these bonds are GDP-contingent bonds.

I next perform the following exercise. I assume that the dynamics of GDP follow the

process

dYt

Yt

= gQdt+ σdBQ
t (25)

under the risk-neutral measure Q. Using (25) and letting Ti ≥ t denote the dates of remaining

coupon payments after date T , and T the date of maturity, the arbitrage-free price of the
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bond P̂ (Yt) at time t is

P̂ (Yt) = 100×
T∑
Ti

e−rt(Ti−t)
[
0.05 + 0.0005× EQ

t (Yt − Y1955)
+
]
+ 105e−rt(T−t) (26)

= 100×
T∑
Ti

[
e−rt(Ti−t)0.05 + 0.0005× CBS

(
Yt, Y1955, Ti − t, rt, σ, rt − gQ

)]
+ 105e−rt(T−t),

where CBS (St, K, T − t, r, σ, q) denotes the Black-Sholes Call option formula, and St is the

price of the underlying,K is the strike price, T−t is the time to maturity, r is the interest rate,

σ the volatility of the underlying, and q is the continuous dividend yield on the underlying.21

Equation (26) allows one to infer the value of Yt by solving the equation Pt = P (Yt) , where

Pt is the observed price of the security at time t. This leads to the implicit value of industrial

production Ỹt(Pt; g
Q, σ) = P̂−1

(
Pt; g

Q, σ
)
. In words, this equation says that conditional on

a choice of gQ, and σ, one can infer a time series of imputed Ỹt from the time-series of Pt. σ is

the same under the statistical and the risk-neutral measure, and therefore I use monthly data

on the index of industrial production and estimate an annualized volatility of σ̂ = 0.042 from

1960-1971. I then define uti ≡ log Yti − log Ỹti(Pti ; g
Q, σ̂) − α and estimate the risk-neutral

growth parameter, gQ, to minimize the expression

ĝQ = argmin
gQ,α

N∑
i=1

u2
ti
. (27)

If the quantity Yt was a traded security, the timing of observation for Yti and Ỹti were

perfectly synchronized, there is no micro-structure noise, etc. then uti = 0 for the true value

of gQ. However, because Yti is available only once a month, whereas Pti is an average of bi-

weekly observations, and there are liquidity effects that could cause short run disturbances in

prices, one would expect non-zero residuals uti . Assuming that uti is i.i.d. and independent

of Pti , Yti , then (27) can be estimated by non-linear least squares. Using the implicit function

21Note that Yt is not a directly traded security, but by assuming a dividend yield equal to q = rt − gQ,
the drift of dYt

Yt
under the risk neutral measure is given by r − q = r − (r − g) = gQ, which is precisely (25).
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Full Sample Subsamples

End Year: 1969 1962 1965 1967

σ =0.043 0.0259 0.0277 0.0282 0.0240
(0.0026) (0.0065) (0.0036) (0.0031)

σ =0.020 0.0268 0.0300 0.0297 0.0251
(0.0026) (0.0062) (0.0035) (0.0031)

σ =0.030 0.0265 0.0292 0.0292 0.0248
(0.0026) (0.0063) (0.0036) (0.0031)

σ =0.040 0.0260 0.0281 0.0285 0.0242
(0.0026) (0.0064) (0.0036) (0.0031)

σ =0.050 0.0253 0.0266 0.0273 0.0233
(0.0027) (0.0068) (0.0037) (0.0032)

Table 1: Estimates of gQ for different subsamples and different volatility assumptions.

theorem to compute ∂Ỹt(Pt;gQ,σ)
∂gQ

gives22

Zt ≡
∂Ỹt(Pt; g

Q, σ)

∂gQ
= −

∑T
Ti≥t (Ti − t)× ∂CBS(Yt,Y1955,Ti−t,rt,σ,rt−gQ)

∂Yt∑T
Ti≥t

∂CBS(Yt,Y1955,Ti−t,rt,σ,rt−gQ)
∂Yt

.

It follows that ĝQ − gQ is asymptotically normal with mean zero and standard error equal

to 1√
N

σ̂(uti)
σ̂(Zti)

.

Table 1 shows that the estimated values of gQ are in a range of 0.0233− 0.03 depending

on the subsample used and considering many alternative volatility choices. The standard

errors of the estimate for gQ is 0.0026 for the full sample, implying a 95% coverage interval

from 0.021− 0.031. The estimates don’t seem to be particularly sensitive to the subsample

used, nor are they particularly sensitive to the assumption about the volatility σ.

To put the numbers in perspective, the average growth rate of real log GDP from 1950

22The implicit function theorem implies that

d log Ỹ

dgQ
=

1

Ỹ

∑
CBS

q

(
Ỹ , Y1955, Ti − t, rt, σ, rt − gQ

)
∑

CBS
Ỹ

(
Ỹ , Y1955, Ti − t, rt, σ, rt − gQ

)
Using standard properties of the Black-Sholes formula CBS

Ỹ
= e−q(T−t)N (d1) and

CBS
q

Ỹ
=

− (T − t) e−q(T−t)N (d1) = − (T − t)CBS
Ỹ

.
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Figure 4: Log-Industrial production index inferred from bond prices (blue line), log real GDP

(black line) and the index of log industrial production (red line). The data for the third time series

start in 1960.

to 1960 in France was about 0.0425. Even though I don’t have readily available data on the

industrial production index during this period, the near unit correlation between log GDP

and log industrial production suggests that the growth rate of the log industrial production

was also 0.0425 for the most recent historical period around the launch of these bonds.

Accordingly, the baseline value of 0.026 for gQ translates into a “Sharpe ratio” κ(1) = g−gQ

σ
=

0.0425−0.026
0.0427

= 0.39. This number for the Sharpe ratio of aggregate risk is in the same ballpark

that one encounters for the Sharpe ratio of equity markets.

Figure 4 gives a visual impression of the goodness of fit. The figure depicts three time

series: (1) the inferred index of industrial production (monthly), (2) real log gdp growth

(annual), and (3) the index of industrial production (available post 1960-monthly). The

figure shows that the index of industrial production that is inferred from bond-price data

is somewhat more volatile than the other two indices, but overall the series co-move quite

closely. In particular, the discrepancies between the time series (1) and (3) appear quite
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Figure 5: Interest rates (from 10-year bonds), inflation and the real interest rate. (Data on inflation

are readily available from 1960 onward.)

transient, consistent with the interpretation that they reflect liquidity effects and other

trading frictions.

I conclude this section with a remark. The (realized) real rate of the French economy

during this period was 0.021 and quite stable around that value, as Figure 5 shows. This

value is lower than the baseline estimate of 0.026 for gQ implying that — over this sample

period – the risk-adjusted value of the growth rate was higher than the real rate.

Of course, this is not conclusive evidence, because one would like to know whether the

real rate (at an infinite maturity) as inferred from the term structure is below or above gQ.

The data of that period do not allow one to perform such an exercise.

5.2 The plausibility of the relatively low market price of risk for

aggregate output

The previous section inferred the market price of aggregate-output risk from securities whose

value is directly dependent on output risk. The main result of the section was that the Sharpe

ratio for output risk was not spectacularly high. As a plausibility check, this section takes a

different approach to gauging the plausibility of this low estimate.
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The analysis starts with the following observation: Historically, there has been a multitude

of proposals to introduce gdp-linked bonds in advanced economies. These proposals were

primarily discussed in academic circles. On occasion, these proposals reached policy makers

and practitioners. Yet, there was no uptake by market participants. The approach taken

in this section is to try to infer some information from this reluctance to embrace gdp-

linked bonds. Specifically, the section takes the view that market participants must have

perceived that the introduction of a zero net supply security (indexed to growth) would not

substantially raise the welfare of the representative investor and would not induce her to

choose a different portfolio than she is already holding.

To formalize this intuition, suppose that M = N +1 in equation (2) and that in addition

there is now an asset (in zero net supply) with a return that is perfectly correlated with dBC
t

and a volatility that is normalized to one. By the absence of arbitrage,

µe = σκ, where κ =

 κ(1)

κ(2..N+1)

 , (28)

and it follows that the expected (excess) rate of return of this contract is κ(1), since its

volatility is normalized to one. The optimal portfolio for an investor with risk aversion γ

is w∗∗ = 1
γ

(
σnewσnew′)−1

µe,new, where σnew and µe,new are the new covariance matrix and

the new vector of excess returns. Suppose that investors perceive that the introduction of

the new security will not change the return properties of all pre-existing assets, nor will it

change investors’ optimal portfolios. Mathematically, this idea can be expressed by the pair

of equations

σnew =

 [1; 01×N ]

σ

 , and µe,new =

 κ(1)

µe

 , (29)

and

1

γ

(
σnewσnew′

)−1

 κ(1)

µe

 = w∗∗ =

 0

w∗

 , where w∗ =
1

γ
(σσ′)

−1
µe . (30)
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Solving for κ(1) from (30) leads to

κ(1) = [1; 01×N ]
(
σnewσnew′

) 0

σ−1µe

 (31)

Equation (31) is intuitive. It says that the market price of risk κ(1) is given by the covariance

between 1
σC

dC
C

= dB
(C)
t and the return of the mean-variance efficient portfolio σ−1µe. Equa-

tions of this form are well understood for the determination of the expected returns of traded

assets. The equation continues to apply in environments where investors perceive that the

introduction of a new asset will not alter the return properties of the existing assets. An

early paper that introduced this assumption in the context of valuing the investment plans of

a firm in incomplete markets is Grossman and Hart (1979) (the “competitive perceptions”,

or more appropriately “utility-taking” assumption.) While in general this assumption is a

strong one, it appears somewhat more plausible in situations where market participants con-

templated the introduction of a new security and presumably concluded that it would not

affect investors’ welfare and marginal utilities; by implication it would leave asset prices of

existing securities largely unchanged.23

The estimation of κ(1) from (31) is straightforward conceptually, but econometrically

challenging, because the mean-variance efficient portfolio estimated by using the empirical

covariance matrix and the historical returns could differ substantially from its theoretical

23The value of κ(1) resulting from (31) can also be viewed as the “shadow” market price of risk that one
would obtain if an investor were simply constrained to choose a weight of zero in the first asset. Specifically,
consider the problem of maximizing the constrained problem

V = max
w

[
w′µe,new − 1

2
w′
(
σnewσnew′

)
w

]
, subject to [1; 01×N ]

′
w = 0.

Using the envelope theorem, equation (29), and recalling the constraint [1; 01×N ]
′
w = 0 implies

∂V

∂κ(1)
= [1; 01×N ]

′
wopt = 0. (32)

Equation (32) has an interpretation in terms of the theory of “convex duality”: The value of κ(1) that
renders the portfolio (30) optimal is obtained by minimizing V over all possible vectors κ that satisfy the (no-
arbitrage) requirment (28). (To see this, note that equation (32) is simply the first order condition associated
with the problem of minimizing V over κ(1). Equation (32) together with the no-arbitrage restrictions (28)
fully determine the vector κ that minimizes V.)
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Figure 6: Estimates of the market price of GDP risk, κ(1), using a progressively expanding set of

portfolios as “test assets.” Data are bootstrapped one thousand times and the histogram depicts

the resulting values of κ(1). The solid red line corresponds to the mean and the dotted red lines to

the 95% coverage intervals.

κ(1) 0.093 0.159 0.143 0.177
(0.041) (0.063) (0.095) (0.101)

Table 2: Estimates and standard errors of κ(1) for different portfolio combinations. Standard
errors are computed by bootstrapping 1000 samples obtained with replacement.

counterpart, σ−1µe. To account for this estimation uncertainty, Figure 6 uses a bootstrap

methodology. Specifically, I use different combinations of portfolios to form the vector of

returns (the market portfolio, the six portfolios that comprise the Fama-French factors, Fama

bliss bond portfolios etc.) For each portfolio combination, the returns are resampled with

replacement (1000 times), the variance covariance matrix and the average returns are re-
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estimated and the quantity κ(1) is re-computed. The figure shows the distribution of the

estimates for the different portfolio combinations.

There are two observations worth highlighting. First, the distribution of κ(1) does not

differ much, irrespective of which combination of portfolios are used as the set of assets in

equation (31). Even though the weights of the assets that enter the mean variance portfolio

are different in each of the subplots, the covariance of the returns of the resulting portfolio

with (real) log gdp growth is essentially unchanged. Second, the magnitude of κ(1) is in the

same moderate range as the values suggested by the French experience. In all bootstrapped

samples one rarely encounters a value of κ(1) above 0.4.

6 Conclusion

It is commonplace in macro-finance to impose “transversality” or no-bubble conditions ev-

erywhere. To a large extent, these conditions are motivated by the convenience of working

within the framework of an infinitely-lived, representative-agent economies. Even though

there are plenty of non-pathological models in the OLG and the heterogenous-agents lit-

erature that violate some of the transversality conditions imposed by representative-agent

models, these models have been encountered with skepticism. Part of that skepticism is

rooted in the view that the US economy appears dynamically efficient (by the Abel et al.

(1989) test). In finance circles one also encounters the argument that there are some claims

whose cash flows appear cointegrated with the aggregate endowment, which are finitely val-

ued. This is taken as suggestive evidence that the aggregate endowment is finitely-valued as

well, which excludes the possibility of bubbles.

Neither the dynamic efficiency nor the co-integration argument are correct. Two cash

flow processes can be co-integrated, and yet the first cash flow cannot be replicated by any

finitely-valued portfolio, while the second can. In this paper, I showed that this paradox of

co-integration is actually responsible for why dynamic efficiency does not imply the absence

of bubbles. Were it not for this paradox of co-integration, then the dynamic efficiency

condition would actually imply the finiteness of the aggregate endowment and the absence
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of bubbles. Without taking a stance on the market price of risk for pure GDP risk, it is

impossible to conclude anything about the magnitude of risk-adjusted growth, simply by

appealing to co-integration. To add to the problem, with the existing set of assets, there is

no way to create a portfolio that is perfectly correlated with GDP, so that one can infer the

Sharpe ratio of GDP risk.

To gauge the magnitude of this Sharpe ratio, in this paper I used a historical episode

where growth-contingent bonds were actually traded. This allows one to infer the implied

risk-neutral growth rate that is reflected in the prices of those bonds. The key takeaway is

that the Sharpe ratio of GDP risk is 0.39, around the same order of magnitude as the Sharpe

ratio of equity investments. This Sharpe ratio for GDP risk leads to two natural conclusions.

First, this magnitude of the Sharpe ratio for GDP risk, coupled with the relatively low

correlation between the stock market and GDP growth, implies that a non-trivial part of the

equity premium is driven by risks that appear orthogonal to GDP risk. Put more precisely,

if GDP futures were traded and had a Sharpe ratio similar to the one that French investors

demanded, then a portfolio consisting of an investment in the stock market and short GDP

futures to make the portfolio have a beta of zero to GDP shocks, would still command a risk

premium of 3.5%. Among other things, this finding implies that it is problematic to view

the stock market as simply a levered claim on output. Under this view of the world, the

portfolio described in the previous sentence should have an excess return of zero.

Second, the gap between statistical (g) and risk-adjusted (gQ) differs by about 0.39 times

the volatility of output (around 0.023.) This implies a rather small gap of about 0.39 × 0.023

= 90 basis points between the statistical and risk-adjusted growth rate of GDP. With this

low risk adjustment, it is not clear whether the condition r − gQ > 0 is such an empirically

strong assumption that it renders all models that challenge it empirically implausible.
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A Appendix

Proof of Proposition 1. Using the definitions of σz and z∗, the dynamics for zt can be

written as

dzt =

(A− α− βzt) dt+ σzdB̃t if zt > z∗,

(A− ε) dt+ σzdB̃t if zt ≤ z∗,

where B̃t is a standard Brownian motion. Note that dzt behaves like an Ornstein-Uhlenbeck

process whenever zt > z∗ and dzt behaves like a Brownian motion with (positive) drift

A(w)− ε whenever zt ≤ z∗. The Fokker-Plank equation implies that the stationary density

must satisfy the differential equation

σ2
z

2

∂2f (z)

∂z2
=

∂ [f (z) (A− α− βzt)]

∂z
if zt > z∗, (33)

and

σ2
z

2

∂2f (z)

∂z2
=

∂ [f (z) (A− ε)]

∂z
if zt ≤ z∗, (34)

subject to the additional conditions limz→+∞ f (z) = limz→−∞ f (z) = 0 and f (z) : R → R+

is continuously differentiable, f ∈ C1. Integrating both sides of (33) and (34) with respect

to z, and imposing the requirements limz→+∞ f (z) = limz→−∞ f (z) = 0 leads to the pair of

differential equations

σ2
z

2

∂f (z)

∂z
=

f (z) (A− α− βzt) if zt > z∗,

f (z) (A− ε) if zt ≤ z∗.

This differential equation has solution

f (z) =

D1e
2

σ2
z

[
(A−α)z−β z2

2

]
if zt > z∗,

D2e
2

σ2
z
(A−ε)z

if zt ≤ z∗.

(35)
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for two arbitrary, positive constants D1 and D2. The requirement that f ∈ C1 requires that

D1e
2

σ2
z

[
(A−α)z∗−β

(z∗)2

2

]
= D2e

2

σ2
z
(A−ε)z∗

, (36)

and

D1e
2

σ2
z

[
(A−α)z∗−β

(z∗)2

2

]
[(A− α)− βz∗] = D2 (A− ε) e

2

σ2
z
(A−ε)z∗

. (37)

The definition of z∗ implies that if equation (36) is satisfied, then (37) is automatically

satisfied. Therefore, D2 can be arbitrary and D1 must be set so that

D1 = D2 exp

{
2

σ2
z

[
β
(z∗)2

2
− (ε− α) z∗

]}
. (38)

Substituting (38) into the top equation of (35) and choosing D1 so that
∫ +∞
−∞ f (z) dz = 1

leads to (8).

Proof of Proposition 2. The easiest way to prove this result is to assume that N = M = 1.

In that case κ(1) = µe

σ
, where µe, σ are scalars corresponding to the expected excess return

and volatility of the (single) risky asset. In turn, the condition r < g − κ(1)σC , can be

expressed as

r − g +
µe

σ
σC < 0. (39)

The conditions of Proposition 1 will be satisfied for some portfolio w as long as

max
w

A (w) = r − g +max
w

{
wµe − 1

2
w2σ2

}
+

1

2
σ2
C > 0.

Next, use the definition of A(w) from (7), and observe that since σC

σ
is a feasible portfolio,

max
w

A (w) = A

(
µe

σ2

)
≥ A

(σC

σ

)
= r − g +

µe

σ
σC . (40)

Assume that µe

σ
̸= σC , so that the inequality (40) is strict. Then, inequality (40) can be
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used to show that there exist values of r − g such that (39) holds while maxw A (w) > 0.

Specifically, suppose that r − g = −µe

σ
σC − δ for some δ > 0, so that (39) holds. We have

A

(
µe

σ2

)
= r − g +

1

2

(
µe

σ2

)2

+
1

2
σ2
C = −δ − µe

σ
σC +

1

2

(
µe

σ

)2

+
1

2
σ2
C =

1

2

(
µe

σ
− σC

)2

− δ ,

which is positive for 0 < δ < 1
2

(
µe

σ
− σC

)2
. Accordingly, there exists δ > 0 such that the

inequality (39) and A
(
µe

σ2

)
> 0 both hold. Choosing the portfolio w = µe

σ2 and noting

that µe

σ
̸= σC implies that the two condition of Proposition 1 hold, namely σZ > 0 and

A
(
µe

σ2

)
> ε for some ε > 0. Accordingly log XT

CT
is stationary, and yet limT→∞ P

(CT )
t = ∞. The

fact that the cash flow Xt can be financed with finite wealth implies that limT→∞ P
(XT )
t = 0.

Proof of Proposition 3. Write At as

At ≡
∫ t

−∞
At,s1{s≥t−T}ds =

∫ t

−∞
At,s1{s≥t−T}ds+ Et

(∫ ∞

t

ms

mu

As,sds

)
,

since As,s = 0. Using (22) it follows that

At = Et

∫ +∞

−∞

(∫ ∞

t

mu

mt

(cu,s − ωu,s) 1{s≤u≤s+T}du

)
ds.

Assuming that the order of integration can be exchanged,

At = Et

∫ ∞

t

mu

mt

(∫ +∞

−∞
(cu,s − ωu,s) 1{s≤u≤s+T}ds

)
du (41)

= Et

∫ ∞

t

mu

mt

(Cu − Ωu) du,

where the second equality follows from the definitions of Ct =
∫ +∞
−∞ ct,s1{s≤t≤s+T}ds and

Ωt ≡
∫ +∞
−∞ ωt,s1{s≤t≤s+T}ds. This shows that the aggregate value of all assets in the economy,

At, is equal to the present value of financial income, Et

∫∞
t

mu

mt
(Cu − Ωu) du. There is no

room for bubbles, since bubbles would require that At = Et

∫∞
t

mu

mt
(Cu − Ωu) du+Bt, where

43



Bt > 0 is the value of the bubble.

In deriving the above equations, the key step is the exchange of the order of integration

in equation (41), which requires that

Et

∫ +∞

−∞

∫ ∞

t

mu

mt

|cu,s − ωu,s| 1{s≤u≤s+T}dsdu < ∞. (42)

A sufficient condition for this inequality to hold is that Et

∫∞
t

mu

mt
Cudu < ∞ and Et

∫∞
t

mu

mt
Ωudu <

∞, since then (42) is an implication of the triangle inequality.

Proof of Lemma 1. First note that the Radon-Nikodym derivative dQ̃
dQ

= CT

EQ
t (CT )

is given

by dQ̃
dQ

= CT

EQ
t (CT )

= e−
1
2
σ2
C(T−t)+σC(BC,Q

T −BC,Q
t ). Using Girsanov’s theorem, the dynamics of zt

under the probability measure Q̃ are given by

dzt =

(
r −

(
g − κ(1)σC

)
+

σ2
C

2
− 1

2
w′σσ′w −max(α + βzt, ε)

)
dt

+ w′σ

d
−→
B Q̃

t +

 σC

0N×1

 dt

− σC

(
dBC,Q̃

t + σCdt
)
.

B Is the stock market the expected present value of

aggregate dividends?

In classical q theory without adjustment costs, the combination of a first order condition for

capital accumulation and a transversality condition lead to the familiar “marginal q equals

one” condition,

Vt

Kt

= EQ
t

∫ ∞

t

e−
∫ u
t (rn+δn)dnFK (u) du = 1, (43)

where FK (t) is the marginal product of capital at time t, rt is the interest rate and δt is

depreciation. We therefore have that the value of the stock market is V0 = K0. Letting

dIt = dKt + δtKtdt denote investment at time t, equation (43) also implies that
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V0 = K0 + EQ
0

{∫ ∞

0

e−
∫ t
0 rndndItE

Q
t

(∫ ∞

t

FK (u) e−
∫ u
t (rn+δn)dndu− 1

)}
= K0 + EQ

0

{
(dKt + δtKtdt) e

∫ t
0 δndn

(∫ ∞

t

FK (u) e−
∫ u
0 (rn+δn)dndu

)}
− EQ

0

{∫ ∞

0

e−
∫ t
0 rndndIt

}
= K0 + EQ

0

{
d
(
e
∫ t
0 δndnKt

)(∫ ∞

t

FK (u) e−
∫ u
0 (rn+δn)dndu

)}
− EQ

0

{∫ ∞

0

e−
∫ t
0 rndndIt

}
(44)

Using integration by parts gives

EQ
0

∫ ∞

0

d
(
e
∫ t
0 δndnKt

)(∫ ∞

t

FK (u) e−
∫ u
0 (rn+δn)dndu

)
= (45)

= EQ
0

[
e
∫ t
0 δndnKt

(∫ ∞

t

FK (u) e−
∫ u
0 (rn+δn)dndu

)]∞
0

+ EQ
0

{∫ ∞

0

KtFK (t) e−
∫ t
0 rndndu

}
= lim

T→∞
EQ

0

{
e
∫ T
0 −rndnKT

}
−K0 + EQ

0

{∫ ∞

0

KtFK (t) e−
∫ t
0 rndndu

}
.

(46)

Combining (44) with (46) leads to

V0 = EQ
0


∫ ∞

0

e−
∫ t
0 rndn

 KtFK (t)︸ ︷︷ ︸
Aggregate profits

du− dIt︸︷︷︸
Aggregate investment

 (47)

+ lim
T→∞

EQ
0

{
e
∫ T
0 −rndnKT

}
The expression insides square brackets can be interpreted as aggregate dividends at time

t, and accordingly, the first line of equation (47) corresponds to the present value of aggregate

dividends. However, all expressions in (47) are “formal” in the sense that the integrals may

not exist and the limit limT→∞EQ
0

{
e
∫ T
0 −rndnKT

}
may diverge to infinity.
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