
Asset (and Data) Managers

Marco Zanotti∗

Swiss Finance Institute, USI Lugano

Job Market Paper

PRELIMINARY VERSION

This version: June 4, 2025

Abstract

This paper studies the direct impact of new technologies on the asset management industry.

I show that technological innovations substantially improve fund managers’ ability to target

product demand and attract capital inflows, with implications for the industry’s structure.

Exploiting information from their websites’ codes, I track when fund managers start collect-

ing and analyzing customers’ data using tools like Google Analytics or A/B testing. Funds

adopting such technologies attract 1.5% higher annual flows and charge higher fees, with no

improvement in performance. Results are concentrated in retail share classes and do not hold

on placebo technologies. Additionally, funds expand product offerings and the effects decrease

with competition, as more funds within the same fund-category adopt similar technologies.

Overall, these results show that fund managers extract more value from financial markets after

adopting data technologies –without sharing it with their own investors. This evidence high-

lights that technological innovation in asset management extends beyond portfolio allocation

decisions to impact how funds attract and retain capital.
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1 Introduction

Asset managers are in the business of making predictions. It is not surprising then,

that increasing availability of data and technological innovations are impacting the industry.

For example, artificial intelligence or increasing computational power can affect the way

managers select their assets. A growing literature studies how data abundancy and new

technologies impact the asset allocation decisions of fund managers. In this paper, I take

a different perspective. Asset managers focus on more than just predicting returns. The

majority of their compensation is tied to the total assets under management (AUM) and

the inflows they can attract1. Therefore, a significant portion of their incentives is aligned

toward increasing the total assets they manage. These observations raise several important

questions: Do asset managers use new technologies to improve their ability to attract capital

flows? How does this impact the structure of the industry and the distribution of rents

between fund managers and investors?

These are important questions. Recent advances in digital technologies have substan-

tially increased the ability of corporations to observe detailed information from interaction

with customers. Understanding how such shifts in the information structure affect an indus-

try’s equilibrium is of first-order importance for practitioners and policymakers concerned

with competitive and welfare consequences of a “data economy”. The asset management

industry offers an ideal setting to study these economic forces. Mutual funds operate in a

regulatory environment that ensures high-frequency reporting of fund flows, fees, holdings,

and performance. Investors in this market span from unsophisticated retail clients to large

institutions, making it possible to observe heterogeneous responses to a shift in managers’

data availability. Moreover, the industry’s well-defined contractual structure allows to study

the distribution of value added between fund managers and investors.

Most studies on the role of new technologies in asset management focus on their impli-

1See Cen, Dou, Kogan and Wu (2024) for details on US mutual funds’ contract structure. Ibert, Kaniel,
Van Nieuwerburgh and Vestman (2017) find similar compensation structure in Swedish mutual funds.
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cations for the portfolio management side of the industry. Yet, fund managers have strong

incentives to predict investors’ demand, and such innovations may improve their ability to

do so. Little is known about this direct impact of technologies on the asset management

industry. While it is widely recognized that investors learn managers’ skills over time, the

implicit common assumption in the literature has been that no economic forces work in the

opposite direction –i.e., there is no learning channel from fund managers to investors. This

paper helps bridge that gap by showing that asset managers learn from investors’ data and

recent technological innovations have direct implications for the asset management industry.

Answering whether asset managers use new technologies to attract more flows requires

observing which (if any) fund managers adopt such technologies. A key challenge is that nei-

ther regulatory filings nor standard surveys record whether managers employ technologies to

extract information from customers interaction. To address this issue, I exploit information

from asset managers’ websites to quantify their willingness to collect and analyze investors’

data. Every website is made by different building blocks, called technologies. For example,

e-commerce often install technologies that allow safe payments, like Apple Pay or PayPal.

My strategy is to identify technologies designed to collect and analyze customers’ data (e.g.,

Google Analytics) and the exact installation date on asset managers’ websites. These data

technologies allow storing digitized information about user interactions over websites’ pages.

For instance, they let run A/B testing (tools similar to Randomized Control Trials), learn

about which channels are bringing more potential customers, audience overlap with competi-

tors, detailed demographics, and search history. I obtain data from BuiltWith, an alternative

data provider specialized in website profiling. BuiltWith scans website codes in search for

clues that identify the usage of technologies, such as HTML tags. They continuously crawl

several websites and keep track of the installation date (and eventual removal) of a website’s

technologies. Thus, observing the adoption date of data technologies by asset managers, I

can proxy for when a given manager starts collecting investors’ information.

I use a difference-in-differences framework to study how asset managers change after in-
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stalling technologies that process customers’ data. I compare changes in monthly inflows

(pre- and post-adoption) within the same fund and month-category, controlling for com-

monly used covariates. This approach allows me to reduce concerns that time-invariant fund

characteristics or common shocks are driving the results. First, I find that asset managers

receive more flows after adopting a data technology on their website. Funds using tech-

nologies that collect and analyze investors’ information receive 1.5% more flows each year.

This effect is not negligible. The magnitude is comparable to inflows from flow-performance

sensitivity associated with a 1.30% annual net alpha2. The effect is driven by an increase

in inflows with no significant impact on outflows, suggesting the results might be primarily

attributable to change along the extensive margin –rather than the intensive margin.

Second, I find that funds charge higher expense ratios after installing data technologies.

The effect is not driven by an increase in marketing and distribution fees. This result is im-

portant since it highlights that technological innovation does not always reduce search costs

frictions3. Development in technologies such as smartphone apps might reduce investors’

search costs, as they allow easier access to information at their fingertips. However, my

results show that the impact of new technologies on the asset management industry is more

complex than this. When managers learn about customer preferences and data, digital inno-

vations allow funds to charge higher fees in equilibrium. Importantly, after adoption, there

is no change in funds’ net performance to investors, suggesting that managers appropriate

all the monetary surplus, as measured by value added (Berk and van Binsbergen, 2015).

Third, I conduct a number of placebo and robustness tests to examine the empirical

validity of results being driven by a learning channel. For example, I exploit the granularity

of mutual funds data at the share class level to study heterogeneity of the effect. The data

technologies I use in this paper generate signals from web traffic activity, which is arguably

mostly informative about retail investors. Therefore, I compare the effect of data technology

2Results are robust to concerns over staggered difference-in-differences (de Chaisemartin and
D’Haultfœuille, 2020; Goodman-Bacon, 2021).

3See, among many others, Thakor (2020); Basten and Ongena (2020); Hong et al. (2024); Argyle et al.
(2022) for examples in which development in financial technologies reduce search costs.
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adoption on retail share classes against institutional share classes, within fund. Consistent

with this hypothesis, I find no effect on institutional share classes and a strong positive

effect on retail share classes. Further placebo tests on adoption of website technologies not

aimed to collect and analyze customers’ data (e.g., JavaScript plugins) give insignificant

results, suggesting the effect is unique to technologies designed to process customer data.

Moreover, if the above results are driven by a learning channel, when many funds observe

similar information, the marginal benefit of it should decline. Accordingly, I show that the

positive effect of data technologies decreases as more funds within the same category adopt

those technologies. Finally, if managers are learning about investor preferences through web

traffic data, this should enable fund managers to better predict demand and fill gaps in

their product offerings. Consistent with this conjecture, I find that at the fund family level,

data technology adopters open more new funds than non-adopters in the period following

adoption.

The above results do not warrant a causal interpretation, since the adoption of data

technology is a choice made by asset managers. For example, even though I find no evidence

of pre-treatment trends, managers might still install those technologies when they expect

higher demand for their products. Similarly, assuming time-varying managerial skills, man-

agers’ adoption might be correlated with an increase in their skills (e.g., training in general

data analytics). In this setting, asset managers’ endogenous choice makes it challenging to

identify a causal link. To alleviate endogeneity concerns, I use variation in the information

that funds can extract from web traffic data, which is plausibly unrelated to fund flows.

Specifically, I exploit the public release of TensorFlow, a widely used open-source machine

learning (ML) library that significantly increased the availability of ML worldwide4. Google’s

release of TensorFlow in November 2015 dramatically increased predictions’ precision where

large amounts of data are available. For example, Uber and Airbnb directly integrated

TensorFlow to develop their ML algorithms for rider-driver matching and pricing models,

4See, for example: wired.com/[. . . ]/google-open-sources-its-artificial-intelligence-engine.
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among other things. Intuitively, if the widespread availability of ML allow to extract more

informative signals from data, the effect of data technology adoption, should increase post

TensorFlow release. I confirm this conjecture by estimating the additional effect of data

technologies after the shock, removing from the analysis fund managers who adopt after

TensorFlow’s release. The impact of data is 30% larger after the release of TensorFlow,

which plausibly allows extracting more precise signals from customers’ data. Furthermore,

I exploit cross-sectional heterogeneity before TensorFlow’s release to confirm the intuition

behind this result. I construct two proxies for funds’ availability of data when TensorFlow is

released: (i) the number of months between the fund’s adoption of a technology and Novem-

ber 2015, and (ii) the number of different data technologies installed. These two measures

serve as proxy for the amount of data available, when TensorFlow is released (i.e., (i) proxy

for the time series of customer data collected up to TensorFlow’s release, and (ii) proxy for

the cross-sectional size of the dataset). Using a difference-in-differences specification with

(i) and (ii) as continuous treatment intensity, I show that funds with larger datasets benefit

more from TensorFlow’s release. Importantly, these results do not assume that all funds

must use ML algorithms to analyze their customers’ data, as this setting is similar in spirit

to an intent-to-treat (ITT) specification.

I entertain several alternative explanations for my findings. One rationale behind the

results might be that funds adoption of new technologies correlates with a superior ability to

generate performance. Although I control for past performance across all specifications and

the results on retail share classes (with no effect on institutional share classes within same

fund) is inconsistent with this hypothesis, I formally test and reject this conjecture using

different measures of risk-adjusted performance. Another plausible explanation is that fund

managers may not be learning about investor preferences, but they are persuading them. For

example, it might be that fund managers’ adoption of data technologies is correlated with

a re-branding of the fund. This mechanism would align with results being purely driven

by obfuscation and marketing (Mullainathan et al., 2008; Ellison and Ellison, 2009). If this
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were true, one key prediction would be that fund flows should be less responsive to a change

in fees after adopting data technologies. Nevertheless, I reject this hypothesis, as fund flows

are not less responsive to fee changes after technology adoption but rather more elastic.

Overall, my findings suggest that the impact of new technologies on the asset management

industry is not limited to asset allocation. These results have important implications. For

example, larger asset managers might disproportionately benefit from the bigger amount

of data they can collect relative to competitors. On a similar note, this trend can affect

managers’ incentives. The efficiency of the asset management industry hinges on investors’

ability to identify good funds and allocate capital to them. Using data, managers may reach

their AUM capacity without fully aligning their incentives with investors’.

Related Literature. This paper contributes mainly to three strands of literature. First,

it contributes to the growing literature on the role of new technologies in financial markets.

Existing research studies the effect of these technologies in financial forecasting (e.g., Chi,

Hwang and Zheng, 2024; Coleman et al., 2022; Dessaint, Foucault and Frésard (2024); van

Binsbergen, Han and Lopez-Lira, 2022), stock market quality (e.g., Martin and Nagel, 2022;

Farboodi and Veldkamp, 2020; Dugast and Foucault, 2024), households (e.g., Mihet, 2022;

Rossi and Utkus, 2024; D’Acunto and Rossi, 2023) and capital allocation (Abis, 2022; Bonelli,

2024; Birru et al., 2024; Bonelli and Foucault, 2024). I study the effects of new technologies

on asset managers’ capital collection and their consequences on the industry structure. My

results show that fund managers can use data technologies to gather and analyze investors’

information and increase their inflows. In that sense, this work also relates to studies on the

impact of technologies on the financial industry more broadly (Abis and Veldkamp, 2023).

Second, this paper contributes to the literature on the industrial organization of the asset

management industry.5 Hortaçsu and Syverson (2004) show that investors’ search costs are

crucial to explain why homogeneous S&P500 index funds charge different fees. Intuitively,

5Gârleanu and Pedersen (2018) link the efficiency of asset prices to the efficiency of the market for
asset management services. These findings bridge the (in)efficiencies in both markets and emphasize the
importance of the asset management industry for asset prices.
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if investors face costs when searching for managers’ products, their choice will not neces-

sarily be to buy the best option available. They will pick the option within a subset of all

available products, limiting competition and generating price dispersion even in homoge-

neous product markets. Roussanov, Ruan and Wei (2020) explore the role of mutual funds’

marketing and distribution expenditures in a market with search costs. Their results high-

light the importance of mutual funds’ marketing for attracting investors’ capital6 (Sirri and

Tufano, 1998; Reuter and Zitzewitz, 2006). According to this strand of literature, technolog-

ical improvement will reduce search costs frictions and increase the industry’s competition.

More recently, Obizhaeva (2024) finds that ETFs attract more flows when advertising on

online search engines. Within this literature, a few papers consider the strategic product

market choices by asset managers (e.g., Massa, 2003; Betermier et al., 2023; Cvitanić and

Hugonnier, 2022; Kostovetsky and Warner, 2020; Bonelli, Buyalskaya and Yao, 2024; Loseto

and Mainardi, 2023). In these works, fund families change their product menus to reduce

investors’ switching costs or to differentiate themselves from others. To the best of my

knowledge, this paper is the first to investigate whether asset managers collect and analyze

customers’ data to improve their ability to attract flows. These findings provide a framework

for thinking about managers learning from investors’ demand to optimize their product menu

(offering vertical differentiation, expanding the product space or changing fee structure).

Third, this paper contributes to the literature on the role of data in the economy (e.g.,

Jones and Tonetti, 2020; Cong et al., 2020; Brynjolfsson and McElheran, 2016; Goldfarb and

Tucker, 2019). Chung and Veldkamp (2024) review this growing literature in detail. The

main insight is that the increasing amount of digitized information is valuable for economic

agents, and a no-data equilibrium is different from a data economy (Farboodi and Veldkamp,

2023). Although digitized information itself might not be different from simple information,

what is different is the enormous amount of data points available and the sources from which

6This literature intersects with research studying what drives investors’ flows to asset managers and their
effect on asset prices (e.g., Dou, Kogan and Wu, 2024). See Christoffersen, Musto and Wermers (2014) for
a survey.
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agents extract those information. I show that investors’ data are part of an asset manager’s

stock of knowledge and help funds cater to investors’ demand. Fund managers can collect and

analyze useful information about prospect investors from web traffic on their own websites.

Therefore, valuable data for asset managers are not only datasets for identifying investment

opportunities (Farboodi et al., 2021, 2024; Bonelli and Foucault, 2024), but customers’ data

also represent a crucial part of managers’ information set.

2 Hypotheses Development

Traditional models of competitive markets for asset management services (e.g., Berk and

Green, 2004) assume investors learn fund managers’ skills observing their risk-adjusted per-

formance over time. However, the other side of the learning channel is silent. In other words,

whether managers do or do not have information about investors’ behavior and preferences

is of second- or third-order importance in determining the industry equilibrium. Appendix

A describes a simple economic framework in which customers’ information are relevant to

determine the equilibrium of the industry. In this section, I summarize the main intuition

and define the main hypothesis.

Consider an industry with two identical funds, A and B. Suppose investors have het-

erogeneous preferences about which type of product they want to buy, or their preferred

distribution channel. For example, investors based in Boston may be more open to buy a

fund their financial advisor advice them, whereas investors in Seattle might prefer funds

they lookup online or their friends’ advice. If funds A and B have the same information

about investors’ tastes, they will offer the same product and compete. However, if fund A

observes a signal about investors’ behavior, it might benefit from such information, offering

a product more aligned with their preferences. Thus, it is natural to expect that funds with

more information about investors would attract more flows, all else equal. Formally, the

first empirical question that I address is whether adoption of technologies aimed to collect
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and analyze customer data has explanatory power for fund flows. Intuitively, as funds with

data technologies in place may offer products closer to a larger mass of customer preferences,

they will collect more capital. Therefore, my first hypothesis posits that funds receive higher

flows after adopting a data technology (i.e., after collecting signals on investor preferences).

Hypothesis 1. (Flows and Data Technologies)

Asset managers with more information about investor preferences receive a larger share of

the total flows to the asset management industry.

The second hypothesis concerns product prices, i.e., fund fees. When a fund’s product

offering is closer to a larger mass of (heterogeneous) investor preferences, those consumers

are willing to pay more for the product (e.g., Salop, 1979; Lancaster, 1966; Pellegrino, 2024

among many others). Thus, my second hypothesis is that fund managers that know more

about customer preferences can charge higher fees in equilibrium.

Hypothesis 2. (Expense Ratio and Data Technologies)

Funds with more information about investor preferences charge higher fees compared to com-

petitors.

Interestingly, in a setting where the fee set by funds without data technologies is equal to

investor search costs (e.g., as in Gârleanu and Pedersen, 2018), adoption of data technologies

increase fund fees dispersion in a given product market. Thus, the dispersion in fees charged

by funds in equilibrium can remain large even though search cost frictions decline. This

is also consistent with what we have observed empirically in the past years. Even though

search cost frictions have arguably been declining (e.g., because of cheaper internet access),

the dispersion in fund fees within a given category did not decrease at all. Figure C.2 in the

Appendix shows the fee dispersion within fund categories from 1995 to 2022. In this modern

sample period, the dispersion in fund fees has been remarkably stable, which is at odds with

theories purely based on search cost frictions. This mechanism is consistent with results in

Bonelli et al. (2024) and reminiscent of Menzio (2023).

While this examples abstract from some important considerations, it illustrates how data
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technology can help funds to attract capital. Asset managers with more information about

investors’ tastes can collect more flows and charge higher fees at the same time.

Fees, Redemptions, and Number of Funds. The availability of data technologies to

inform managers on investor preferences have a few additional testable implications on asset

managers. First, if a data technology informs managers about their investors’ preferences,

it may enable to maintain a lower cash buffer during bad times (when expected returns

are higher but redemption volatility is large). Intuitively, funds with better knowledge of

their customers have lower uncertainty about fund liquidation. Thus, when more investment

opportunities are available (in states of the world with higher expected returns) managers

may face less redemption uncertainty and maintain a lower cash buffer in their portfolios.

On a similar note, funds should hold more illiquid assets when they face less redemption

risk, consistent with more “committed” capital (Gómez, Prado and Zambrana, 2024).

Second, the information advantage gained through investors’ data may influence product

development strategies. For instance, suppose funds predict a surge in demand for thematic

products. In that case, they might be better positioned to timely offer those funds to

investors and increase their product offerings accordingly7.

3 Data and Measurement

In this section, I describe the data and report a series of new facts on asset managers’

adoption of data technologies.

3.1 Data

I focus on US mutual funds and ETFs from March 1993 to December 2022. My main data

sources are the CRSP Survivorship Bias-Free Mutual Funds dataset and Factset, to identify

7Ben-David et al. (2022) rationalize the increase in offerings of thematic products as “competition for
attention”. In their paper, ETFs compete on either price (fees) or attention (specializing in the product
space). While their findings align with this paper’s results, I provide another perspective on the proliferation
of thematic funds.
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share classes of the same fund. I also use Thomson Reuters8 (s12) holdings, and information

from N-SAR filings reported at the SEC. I merge CRSP/Factset by cusip, which identifies

unique financial securities and is not re-assigned over time. I follow Berk and van Binsbergen

(2015) as closely as possible in cleaning CRSP funds’ data. I summarize here the main steps

and provide thorough details in Appendix B. I select all US equity mutual funds and ETFs. I

adjust all AUM numbers by inflation (in January 2000 dollars). I remove observations dated

before the fund’s first offer date to reduce incubation bias concerns (Evans, 2010). I also

drop funds with less than two years in the sample and before their total (inflation-adjusted)

AUM reaches $5 million for the first time (Berk and van Binsbergen, 2015). CRSP data are

available at the share class level; that is, different share classes belonging to the same fund

are reported separately. Therefore, for each month I aggregate share classes at the fund level,

summing up the AUM of all subclasses and weighting all other variables (e.g., fees, returns)

by lagged AUM. The sample start date (March 1993) is dictated by the limited availability of

AUM before that date (see Pástor, Stambaugh and Taylor, 2015). The final sample includes

7,900 funds (7,649 equity mutual funds and 251 ETFs) and 987,242 fund-month observations.

My sample is somewhat larger than comparable samples using CRSP mutual funds data.

The reason is that I do not remove index funds, institutional share classes, sector funds,

or funds that allocate less than 80% of their portfolio to stocks. I estimate funds’ alphas

using rolling-window regressions from monthly returns in the past 24 months. The holdings’

sample starts in 2004:Q2, because the SEC began requiring quarterly holdings disclosure in

May 2004, following the adoption of Rule 30b1-5.

Following prior literature (e.g., Lou, 2012), I compute the investment flow to fund i in

month t as

Flowi,t =
AUMi,t −AUMi,t−1 ⋅ (1 + ri,t) −MRGi,t

AUMi,t−1
× 100, (1)

8Previous research (e.g., Shive and Yun, 2013) reports a discontinuity in Thomson Reuters (s12) mutual
funds holdings coverage after 2008, when compared to CRSP holdings. A common solution in the literature
has been to use s12 holdings before June 2008 and CRSP thereafter. However, Thomson Reuters seems to
have solved this issue in later vintages (Appendix Figure C.3). Thus, I prefer not to append different data
sources and use the updated s12 holdings throughout the sample.
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where AUMi,t is assets under management (Total Net Assets) of fund i in month t, ri,t

is the monthly (gross) return, and MRGi,t is the increase in AUM due to fund’s mergers

happening in month t. Accounting for MRGi,t, I avoid to misattribute funds’ mergers as

inflows. Finally, I winsorize all variables at the 1% and 99% level.

Table 1 about here

Table 1 presents summary statistics for all fund-months observations in my sample. The

distribution of AUM is rightly skewed, as is common in the institutional investors’ literature.

The average expense ratio is 1.13%, with 0.28% attributable to marketing and distribution

expenses (12b-1 fees). On average, funds in my sample have statistically insignificant 0.12%

outflows each month and net abnormal returns (after expenses) are zero or negative on

average, consistent with evidence for the US.

3.2 Data Technologies

To identify asset managers’ willingness to collect data, I exploit information contained on

their websites. Specifically, I use the website’s code to detect whether asset managers adopt

technologies for storing and analyzing investors’ web traffic data. Web traffic data are widely

used in several industries to understand customers’ behaviors and preferences. Therefore,

this is a good laboratory for studying the role of customer data in asset management.

Every website is made by different tools that work as building blocks. These building

blocks are typically called technologies. For example, installing Google Maps technology

allows a website to display an interactive map on its pages (e.g., to show store locations).

Other technologies, like Adobe Analytics, are aimed to collect and analyze web visitors’

data. I obtain technologies’ adoption data from BuiltWith, an alternative data provider,

and use the adoption date of analytics technologies as a proxy for managers’ willingness to

collect customers’ data. BuiltWith analyzes websites’ source code and searches for specific

patterns, such as HTML tags, that identify the presence of technologies. They continuously
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crawl websites to capture installed technologies, starting January 2000. Therefore, I observe

the exact month a website installs (and eventually removes) a technology. Henceforth, I

define data technologies as those aimed to collect and analyze visitors’ data, such as Google

Analytics or Adobe Analytics. These tools are specifically designed to gather or generate

signals from users’ data. My goal is to study whether the ability to collect capital differs

between asset managers adopting data technologies and non-adopters.

A legitimate concern about using website technologies as a proxy for the willingness to

collect and analyze customer data might be that the hosting provider pre-determines the

adoption choice. For example, the same set of technologies could be installed by default on

all funds’ websites registered using AWS Web Hosting. In this case, the adoption would not

be a fund’s choice but rather a hosting provider’s choice, undermining the idea that data

technologies proxy for a fund’s willingness to collect data. To ensure this is not the case, I

collect the hosting service used by all websites in my sample. Then, for each hosting-month

group, I compute the average cosine similarity in website technology adoption within a group.

The cosine similarity measures the overlap between two vectors. Intuitively, if two websites

using the same hosting provider in a given month share the same set of technologies, the

cosine similarity equals one. When the cosine similarity within hosting-month group is lower

than one, the websites installed different technologies. In Appendix Figure C.1, I show the

histogram of cosine similarities within hosting-month groups in my sample9. The technology

overlap for websites using the same hosting service in a given month is almost always below

one (mean 0.29). Thus, website technology adoption is unlikely to be a choice entirely made

by hosting services.

I merge BuiltWith data with all funds’ websites from CRSP. Moreover, since CRSP

reports funds’ websites starting January 2008, I hand-collected information on the website

registration date from whois.com, and back-fill a fund’s website until its registration date10.

9For comparison, Appendix Figure C.1 also reports the distribution of cosine similarity for a simulation
in which the adoption of technology within hosting-group is randomly assigned.

10This procedure marginally increases the number of technologies’ adoptions in my sample (see Figure 1).
However, it ensures I don’t misclassify funds as non-adopters before January 2008.
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Figure 1 and Table 2 about here

Figure 1 shows the adoption of data technologies in my sample of funds. The blue area

represents the total number of funds with at least one data technology on their website

each month. The red line shows the percentage of funds adopting data technologies. A

few early adopters started employing these technologies since 2006-2007. However, the big

shift in data technology adoption occurred in 2012, when the percentage of funds with such

technologies grew from 15% to 30% in the cross-section. This increase is concurrent with

a major release of Google Analytics by Google, which is still the leading data technology

provider nowadays. Data technologies’ adoption in asset management surged significantly

after 2012 and gradually stabilized after 2017. As of December 2022, as many as 75% of

asset managers in my sample (more than 2,000 unique funds) have adopted technologies to

collect visitors’ web traffic data.

In Table 2 I report the leading data technologies by adoption, as of end-of-sample. Google

Analytics accounts for the lion’s share of adoption, with around 60% of funds installing it11.

Among other leading technologies, I find Omniture Test & Target, used for A/B testing12,

and LiveRamp, which helps the storage of big data. Overall, all technologies in Table 2 are

used to collect or generate informative signals about web visitors’ preferences. This features

are not limited to the most common data technologies used by asset managers in my sample.

Appendix Figure C.4 shows the word cloud built from descriptions of all data technologies

installed by asset managers.

Technology Diffusion in the Asset Management Industry. The diffusion of tech-

nological innovation is critical for understanding growth and improvements in several in-

dustries (Barro and Sala-I-Martin, 1997). The dynamic of technology adoption in the asset

management industry is particularly important, as it might inform us about the dynamics

of information diffusion. For example, technology diffusion (and information) may spread

11Appendix C.2 ensures the results are not entirely driven by Google Analytics (see Tables C.7 and C.8).
12A/B tests are tools similar to RCTs, which are increasingly used in several industries. They allow to

randomly split web traffic audience and study several alternatives of products’ bundles, pricing, etc.
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among peers within a particular fund style (e.g., among competitors) or geographically (e.g.,

within a given state or city through social interactions). Given that precise data on technol-

ogy adoption are typically not readily available (Stokey, 2020), I briefly examine how data

technology diffuses among asset managers. I explore whether adoption is driven primarily

by geographic location or fund category by regressing the probability of installing a data

technology, on the (lagged) adoption rate within a given geographic cluster or fund category.

In particular, I define the adoption rate in a fund category for month t as the percentage

of funds within that category with data technology in place as of month t. Similarly, I

define adoption rate within US states, cities, and zip codes. Then, I regress the probability

to adopt data technology on the lagged adoption rate within fund category and geographic

location, using a probit/logit specification13. The results are in Appendix Table C.9. Inter-

estingly, the adoption rate within fund style is never significant in predicting the probability

of adopting data technology in the subsequent month. On the other hand, adoption rates at

the state, city, and zip code levels consistently show a positive relationship with the prob-

ability of installing data technology. This result is in line with previous research on the

information diffusion among asset managers (Christoffersen and Sarkissian, 2009; Cujean,

2020). While it is important to emphasize that technological adoption differs fundamentally

from the diffusion of ideas and information, these results suggest a potential relationship

between technology and information diffusion in asset management. Clearly, this evidence

is only suggestive and by far not conclusive. Exploring how technology adoption spread in

the asset management industry remains a relevant area for future research.

4 Empirical Findings

In this section, I use information on asset managers’ adoption of data technologies to

explore the impact of new technologies on the industry. Guided by the hypothesis in Section

13To avoid double counting, I exclude all observations after the first adoption month from the logit/probit
regression. Given the persistence in technology use after initial adoption, this correction is important.
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2, I first examine the effect of data technology adoption on fund flows and fees. Then, I

examine ancillary results consistent with fund managers extracting useful information from

customers’ data.

4.1 Funds Flows and Data Technologies

The first main hypothesis (Hypothesis 1, Section 2), argues that if data technology allows

an asset manager to collect signals on investors’ preferences, it will ultimately be reflected in

the fund’s flows. Therefore, I first study whether funds receive more capital after adopting

a technology analyzing web traffic data. For each fund i and month t, I define a dummy

variable Datai,t equal to one if the fund has at least one data technology in place in that

month. Then, I estimate the following baseline specification:

Flowi,t+1 = αi + ηt + θ Datai,t +β
′X i,t + εi,t+1, (2)

where Flowi,t+1 is the fund i’s flow in month t+1, defined in equation (1). αi and ηt are fund

and time fixed effects, respectively, and X i,t is a set of control variables. The control variable

vector contains fund size (logAUM), performance, (log) age, expense ratio, turnover, and

monthly flows. I proxy for fund performance with the annual CAPM alpha, as it is the closest

model to the one investors use to make capital allocation decisions (Berk and van Binsbergen,

2016). Results are similar using other measures such as Fama-French 3- or 5-factors alpha

(see Appendix C.2). The main coefficient of interest is θ. Importantly, including fund and

time fixed effects implies that identification of θ comes from variation in flows before versus

after data-adoption, relative to the same change for other funds without data technology.

Standard errors are clustered at fund and month-levels14.

Table 3 about here

14As funds might share the same website within the fund family (on average, a fund family has 1.30
websites), for some funds the “treatment” is at the fund family level. To ensure the results are not driven by
within-family cross-sectional dependence, I verify the results hold two-way clustering at fund family-month
levels.
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Table 3 reports the main results from regression (2). I omit coefficients on control vari-

ables for brevity15. The first row shows the coefficient on the dummy variable Datai,t. The

baseline result of 0.14 (t-stat 3.39) in column (1) suggests that funds adopting technologies

aimed to store and analyze web traffic data are associated with larger fund flows. The co-

efficient implies a 0.14% (1.68%) larger monthly (yearly) inflows for data-driven funds after

adoption. In columns (2) and (4), I include category×time fixed effects to account for any

category-specific shift in a given month. The coefficients are consistent with the baseline

specification in equation (2) (t-stat 3.14), suggesting that results are not driven by one cat-

egory. I further address the concern that results might be driven by funds marketing and

sales expenditures. If adoption of data technologies is associated with a fund’s re-branding

or increasing marketing efforts, my findings might reflect the effect of marketing in attracting

fund flows (Sirri and Tufano, 1998; Roussanov, Ruan and Wei, 2020). To reduce concerns

that these results are purely driven by marketing, in columns (3) and (4), I include 12b-1

Feesi,t in the set of covariates, which represent marketing and distribution expenses incurred

by the fund. As expected, marketing and distribution fees are positively related to fund flows

(second row). However, the effect of marketing on flows does not explain the coefficient on

data technologies (t-stat 3.47). Therefore, funds adopting data technologies experience larger

fund flows above and beyond the role played by marketing efforts16.

Moreover, as the adoption of data technologies is staggered over time, in Table C.1 I verify

these results are robust to recent critiques on staggered difference-in-differences (de Chaise-

martin and D’Haultfœuille, 2020; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2021).

The results are qualitatively and quantitatively unchanged. Notably, the magnitude of the

estimated coefficient for θ and its t-stat remains nearly identical across all specifications.

Indeed, in my setting, the total weight attached to “forbidden comparisons” in staggered

15All controls enter with the expected sign across all specifications, e.g., positive flow performance sensi-
tivity (Sirri and Tufano, 1998; Pástor et al., 2015; Franzoni and Schmalz, 2017). For comparison with effects
on flow-performance sensitivity, Appendix Table C.2 shows detailed results.

16In Section 5.2, I provide further evidence that my results are unlikely to be explained by re-branding or
marketing.
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difference-in-differences (Goodman-Bacon, 2021) is only 8%. This is because my sample

starts several years before the first adoption of data technology (treatment), which allows

precise estimates of group effects (Gardner et al., 2024). A similar argument applies for

period (time) effects.

The fund flows described in equation (1) represent net flows, which capture the difference

between inflows and outflows for fund i during month t. To further investigate the impact

of data technology on fund flows, I exploit information from SEC regulatory filings (NSAR),

which require funds to report their monthly inflows and outflows separately. The NSAR sam-

ple runs from January 2006 to June 2018, at which point NCEN filings replaced NSAR. For

additional details on these SEC regulatory filings, see Evans et al. (2024). Appendix Table

C.3 shows the results for fund inflows and outflows, separately. In line with my Hypothesis

1, funds experience larger (new) inflows following the adoption of data technologies (columns

(1) to (3)), while there is no significant difference in the funds’ outflows post-adoption. This

result suggests the effect may primarily be product of a change in the extensive margin (e.g.,

funds attracting new investors).

To study the dynamic of the effect of data technologies on flows, I interact the coefficient

of interest in Table 3, with event-time dummies for each month before and after adoption.

Figure 2 shows the estimated coefficients with 95% confidence intervals. Importantly, there

is no evidence of significant pre-trend before installing a technology. Moreover, the effect of

data technology on fund flows is persistently significant after 8 months from adoption.

Figure 2 about here

In Appendix C.2, I run tests for the parallel trends assumption, implicitly behind the

identification in equation (2), and balance covariates. I find no evidence of statistically

different pre-trends (Table C.4) or imbalanced covariates before adoption (Table C.5).

Taken together, these results support the view that data technologies help asset managers

attract more capital. Funds adopting data technology are associated with larger inflows after

adoption, and this result goes beyond the role of marketing expenditures.
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4.2 Increase in Expense Ratio

My second hypothesis in Section 2, is that fund managers with more data about customer

preferences should charge higher expense ratio, all else equal. For example, if these tech-

nologies allow managers to offer funds closer to investors’ personal preferences, they might

elicit a higher willingness-to-pay and increase fees.

Interestignly, theory of the industrial organization of asset management predicts that

equilibrium fees are determined by investors’ search costs (see Hortaçsu and Syverson (2004);

Gârleanu and Pedersen (2018); Roussanov et al. (2020), among others). A key prediction in

these models is that when investors’ search costs decrease, fees should decrease too. Intu-

itively, with lower search costs, investors can contact more managers, identify good ones, and

the economy approaches the first-best with no price dispersion and equilibrium fees equal

to the fund’s marginal cost. According to these models, new technologies should reduce

fees for financial services (e.g., FinTech lending). However, the data technology I study in

this paper differs from traditional financial technology. Data technologies do not facilitate

information acquisition for customers but for asset managers. Thus, the prediction on funds’

fees might be the opposite of traditional financial innovation studied in the literature. When

fund managers better align their product offerings with investors’ demand, they can elicit a

greater willingness-to-pay for products closer to personal preferences.

Table 4 about here

I study this hypothesis with a similar specification to equation (2), where the expense

ratio (in %) is on the LHS. Table 4 shows the results. The first row reports coefficients on

the dummy variable Datai,t. As predicted, funds installing data technologies are associated

with higher fees after adoption. The estimates in column (1) imply that funds using a data

technology increase their fees by 1.5 basis points after adoption. Results are similar, including

category×time fixed effects and controlling for marketing fees. Therefore, the increase in

expense ratio is independent of changes in marketing and distribution expenditures.
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Overall, these results are consistent with fund managers charging higher fees for funds

closer to customers’ preferences. Below, I explore other predictions consistent with the

hypothesis that managers learn from customers’ information.

4.3 Ancillary Results: Cash Buffer, and Number of Funds

In this section, I study further how new technologies can impact the asset management

industry. First, managers better informed about customers’ demand may face less redemp-

tion uncertainty. Therefore, I explore whether data technologies allow maintaining a smaller

cash buffer when investment opportunities are available, and more illiquid assets. Second,

I study whether the product menu offered by the fund family expands to cater to specific

preferences and diversify with respect to peers.

Cash Buffer. If data technologies allow for extracting informative signals on customers’

demand, installing such technologies should help funds better predict future demand shocks.

Therefore, adopting funds should face lower redemption uncertainty. To test this hypothesis,

I study whether (after adoption) funds maintain a smaller cash buffer in their portfolio when

expected returns are high. The intuition is that when good investment opportunities are

available, an asset manager with no uncertainty about investors’ redemption will try to take

advantage of those opportunities and keep only a small part of her AUM to accommodate

unexpected liquidations. On the other hand, if the manager has no information on investors’

redemption, she might decide to maintain a larger cash buffer –forgoing investment opportu-

nities. I study this prediction using the dividend-price ratio (D/P ) to proxy for investment

opportunities. Specifically, I run the following regression:

wi,t(cash) = αi + λ1 ⋅D/Pt + λ2 ⋅ (D/Pt ×Datai,t) +β
′X i,t + εi,t, (3)

where wi,t(cash) is fund i’s portfolio weight in cash (in %), at month t, and X i,t is the

same fund-month controls’ vector as in my main results. Intuitively, when D/Pt is high,
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equity prices are (relatively) low and expected returns are high. Therefore, I expect λ1

to be negative as asset managers might reduce their cash holdings when good investment

opportunities are available. The main coefficient of interest is on the interaction term (λ2).

Importantly, identification of λ2 comes from variation over time within a fund, not from

variation across funds.

Table 5 about here

Table 5 shows the results. The coefficient estimates for λ1 and λ2 are in the first and

second rows, respectively. Column (1) confirms that when the dividend-price ratio is high

(higher expected returns), fund managers tend to reduce their cash holdings –although with

only 10% statistical significance. Columns (2) and (3) include the main coefficient of inter-

est: the interaction term with Datai,t. As predicted, funds with data technology in place

maintain a lower cash buffer (λ2 < 0). These results support the view that data technologies

allow to extract useful signals about investor preferences. Asset managers with better pre-

cision about customers’ demand face lower redemption uncertainty. Consequently, they can

maintain a smaller cash buffer and deploy capital in investment opportunities.

On a similar note, data technology adoption is associated with funds tilting their holdings

towards illiquid stocks, as measured by the Amihud illiquidity ratio (Appendix Table C.11).

This result is in line with existing research showing that funds with more “committed”

capital hold more illiquid stocks (Gómez, Prado and Zambrana, 2024).

Number of Products. Next, I test whether fund families increase their product of-

ferings when funds within the family adopt a data technology. To test this prediction, I

aggregate observations within the same fund family and test whether the number of funds

within the family increases after adopting a data technology. I estimate the following speci-

fication17:

log(N. of Fundsf,t+1) = αf + ηt + δ Dataf,t + log(Agef,t) + εf,t+1, (4)

17Importantly, as the argument of the log in my specification is never zero, it does not suffer for well
known identification challenges when the argument can equal zero (see Chen and Roth, 2023).
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where N. of Fundsf,t+1 denoted the number of funds offered by fund family f in month t+ 1.

Similarly to previous specifications, I define a dummy variable Dataf,t which takes value one

if at least one fund within family f has a data technology in place in month t. I control for

the fund family’s age as it is plausible that families develop organizational skills over time,

which reduces the cost of setting up a new fund. As for the results above, including family

and time fixed effects ensures that identification comes from variation in the number of funds

offered before versus after data-adoption, relative to the same change for fund families not

adopting data technologies. I report results in Table 6, column (1).

Table 6 about here

Table 6 confirms that fund families with at least one data technology installed increase

their product menu after adoption. More precisely, the semi-elasticity coefficient suggests

that fund families offer 8% more funds after adoption. In column (2), I estimate a similar

specification with a Poisson regression where the LHS is N. of Fundsf,t+1 (not in log). Results

are similar, although statistical significance is reduced to 10%.

This result is consistent with the effect of other new technologies, such as AI, on firms’

product portfolio. Babina et al. (2024) finds that more AI-intensive firms expand their

product varieties, as AI facilitates the accumulation of knowledge and reduces uncertainty

in product innovation.

Overall, these findings support the view that the role of new technologies in asset manage-

ment extends beyond portfolio allocation decisions. The results in this section are consistent

with fund managers adopting technologies to learn useful signals from investors’ web traf-

fic behavior, which in turn helps their capital collection efforts. Moreover, asset managers

adopting technologies charge higher fees, keep smaller cash buffer when investment oppor-

tunities are available, and increase the number of funds offered within fund family.
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4.4 Identification: Open Source Machine Learning

The above results suggest a positive relationship between data technologies and fund

inflows, but do not establish causality. Adoption is an endogenous choice made by fund

managers, so it might be correlated with other fund characteristics that cause fund flows.

In this section, I exploit variation in the information that funds can extract from web traffic

data, which is plausibly exogenous to investors’ flows. Specifically, I use the public release

of TensorFlow in November 2015, a major open-source machine learning (ML) library. The

release of TensorFlow drastically decreased the cost of training and using ML algorithms

in settings with large amounts of data available. Intuitively, ML allows fund managers

to extract more informative signals from a given dataset. Accordingly, the effect of data

technology on fund flows should increase after TensorFlow’s release in November 2015.

The goal of my identification strategy is to isolate plausibly exogenous shock in the pre-

cision of information that managers can leverage to learn about their investors’ preferences.

Therefore, I compare the effect of data technology before and after TensorFlow’s release,

within fund. To alleviate endogeneity concerns about the adoption of data technologies after

the shock, I remove from this analysis: (i) all funds installing data technology after November

2015, and (ii) funds installing technologies in the six-months window before TensorFlow’s

release18. This filters ensure that results are not driven by asset managers choosing to adopt

a data technology, anticipating the release of TensorFlow.

As a first step, I compare the effect of data technologies on flows before and after Ten-

sorFlow’s release. Specifically, I interact the dummy variable Datai,t with a dummy equal

to one post-November 2015 and zero otherwise (denoted Postt):

Flowi,t+1 = αi + ηt + θ1 Datai,t + θ2 (Datai,t ×Postt) +β
′X i,t + εi,t+1, (5)

where the coefficient θ2 captures the additional impact of installing a data technology, after

18Results are unchanged extending this window to 12 months.
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TensorFlow’s release.

Next, I exploit cross-sectional heterogeneity in funds to define a continuous treatment.

Ideally, I would construct a continuous treatment based on the amount of investors’ data

available to each fund (just before TensorFlow’s release). The intuition is that asset man-

agers with larger datasets can benefit more from ML algorithms, and therefore, one should

observe a more significant incremental effect for those funds. Since I cannot directly observe

the amount of data available as of TensorFow’s release date, I construct two fund-specific

measures to proxy for it. The first proxy is the tenure of data technology adoption for each

fund i as of November 2015. I construct a continuous variable equal to the (log) number

of months between fund i’s first adoption of data technology and TensorFlow’s release date.

Intuitively, this proxy captures the length of the time series data that asset manager i can use

to train ML algorithms. The second proxy is the number of different technologies installed

as of November 2015. The idea behind this proxy is that funds with more data technologies

can collect more customers’ characteristics and, thus, have larger datasets. Then, I study

the impact of TensorFlow’s release on data technologies using the following specification:

Flowi,t+1 = αi + ηt + θ1 Datai,t + θ3 (Datai,t ×Postt × zi) + θ4zi +β
′X i,t + εi,t+1, (6)

where zi is either the tenure of data technology adoption as of November 2015, or the number

of technologies installed (i.e., the continuous treatments introduced above). The coefficient

of interest is the interaction with the continuous treatment: θ3. Table 7 reports the results.

Table 7 about here

The second row shows results for θ2 in specification (5). Coefficients estimates on this

interaction term in columns (1) and (2) show that the effect of data technologies on fund

inflows is 30% higher after TensorFlow’s release. The third row reports estimates for θ3.

Columns (3)-(4) and (5)-(6) show the results using as continuous treatment the tenure of

technology adoption, and the number of technologies installed, respectively. Results using
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both continuous treatment confirm the intuition that the additional effect post-November

2015 is higher for funds with larger datasets.

A limitation in my identification is that by design, it relies on plausibly exogenous vari-

ation in prediction precision, not variation in data availability. With this caveat in mind, I

think it is plausible in this context that more precise predictions are economically akin to

more data/signals (i.e., ML increases the signal-to-noise ratio in customers’ data).

Taken together, these results mitigate endogeneity concerns linked to the adoption choice,

and they are consistent with a causal interpretation of data technology on asset managers’

ability to attract capital.

5 Learning Mechanism: Validation and Robustness

The results above corroborate the hypothesis that asset managers use data technologies

to learn investors’ preferences and better attract flows. To further support that these results

stem from a learning mechanism, I investigate other robustness tests to validate my hypoth-

esis. First, I study the connection between technology adoption for retail and institutional

share classes separately. Since my hypothesis hinges on asset managers observing signals

from web traffic data, they should generate more information about retail investors. Second,

I run placebo tests on different technologies that are not aimed at collecting and analyzing

data. Third, I explore whether the returns to data technology are concave. Fourth, I study

whether managers’ competition in data collection impacts their ability to attract more flows.

Retail and Institutional Share Classes. The type of data technologies I study in this

paper are designed to collect and analyze information from web traffic data. Accordingly, if

fund managers improve capital collection by observing signals on customers’ demand from

these technologies, one would expect a more significant effect on retail investors. Intuitively,

web traffic data should reveal more information about retail investors than institutional

investors. Mutual funds data offer a good laboratory to test this prediction, as I can compare
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the effect of data technology on retail and institutional share classes within fund. Specifically,

I run a specification similar to equation (2), but at the share class level:

Flowj,i,t+1 = αi + ηt + θ Dataj,i,t + θR (Dataj,i,t ×Retailj,i,t) +β
′Xj,i,t + εj,i,t+1, (7)

where Flowj,i,t+1 is the flow of share class j, in fund i at month t. I separate retail and

institutional share classes and denote by Retailj,i,t a dummy equal to one if the share class

j of fund i is sold to retail investors. Importantly, including fund fixed effects allows me to

compare the effect on different share classes within the same fund. The coefficient of interest

is θR, which captures the coefficient of data technology on retail share classes. If managers

extract valuable signals from web traffic data, I expect θR to be positive. Table 8 shows the

results.

Table 8 about here

The first row in Table 8 confirms that the effect of data technologies I study in this

paper is concentrated on retail investors. The coefficient θR is positive and significant across

all specifications. Moreover, data technologies have no effect on institutional share classes

(second row). This result is consistent with websites’ technologies being useful to generate

signals about retail investors, but not enough to cater to institutional investors’ preferences19.

These results support the view that asset managers can learn customers’ preferences to

attract capital inflows.

Placebo tests. Next, to strengthen the interpretation of the results, I run a falsification

test on my main result using technologies not aimed to collect and analyze data. That is,

I estimate regression (2) substituting Datai,t with placebo technologies installed on funds

websites20. These technologies include, for example, Feeds (e.g., used to publish blog pages),

19Results in Table 8 are unchanged when aggregating retail (institutional) share classes separately, and
running the regression at the fund level. See Appendix Table C.14.

20To select placebo technologies, I select technologies with adoption rate comparable to the adoption of
data technologies.
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JavaScript (e.g., to show interactive plugins), and Advertising technologies. In Figure 3,

I display the 90% confidence interval on the coefficient associated with the effect of each

placebo technology. All placebo technologies yield statistically insignificant results. This

evidence corroborates the idea that managers use data technology to extract information

from web traffic activity.

Figure 3 about here

Decreasing Returns to Data. A natural prediction of managers learning investors’

preferences from web traffic data is that giving fund managers additional (new) information

should increase the beneficial effect of data. Assuming different data technologies allow to

generate different signals, I can test this prediction using the number of data technologies

installed by the fund manager. For example, one technology might allow to observe the av-

erage time visitors spend on each website’s page. In contrast, other technologies might allow

to observe information about age, geolocation, and other demographics. Those technologies

provide different signals to the fund managers. In columns (1) to (3) of Table 9, I test this

prediction.

Table 9 about here

As expected, the effect of data technologies on the ability to attract flows increases with

the number of technologies installed. When the squared number of technologies is included in

the specification, its coefficient enters negatively (although not significantly) in the regression

(column (2)), suggesting concave returns to data.

Competing for Data. Finally, if results are indeed driven by managers extracting

information from web traffic activity, the effect of data technologies should decline as more

funds adopt such tools. Intuitively, as more agents observe a signal, the marginal benefit

of that signal should decline (Grossman and Stiglitz, 1980). Therefore, I test whether there

is a competition effect in the data space. To test this prediction, I define a coefficient that
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captures “data competition” within a fund category as:

γc,t =
∑
Nc,t

i=1 Datai,c,t
Nc,t

, (8)

where Nc,t denotes the total number of funds in category c, in month t; and the sum in

the numerator is the number of funds with data technology in place, in category c at time

t. A larger γc,t means that a larger fraction of funds within a fund-category collect signals

using data technologies. I test whether funds adopting in less competitive markets have

stronger benefits from data. Figure 4 shows the coefficient on Datai,t (θ in equation 2),

by different values of γc,t at the adoption date. For example, the leftmost bar in Figure

4 represents funds adopting a data technology when competition for data is relatively low

γc,t < 25%. According to the assertion that the marginal benefit of data should decline as

many acquire similar signals, the coefficient is decreasing in competition (from left to right),

with last adopters having insignificant effect on their net flows. Furthermore, the effect of

competition marginally affects even funds that already installed data technologies. I include

an interaction term with γc,t in regression (2), to capture the additional effect of competition

within fund-category after adoption. Results are in Table 9, column (4). The coefficient

on the interaction term is negative, suggesting again that competition within fund category

reduces the marginal benefit of data.

Overall, these findings are consistent with the hypothesis that fund managers observe

signals to predict customers’ demand. Data technologies allow managers to collect and

analyze data from web traffic activity, which helps attract (retail) capital.

5.1 How do Funds Attract More Flows?

The findings above indicate that data technology adoption is associated with funds at-

tracting more (in)flows. A natural further question for understanding the role of data in the

asset management industry is: what do managers learn from these technologies? In other
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words, what type of data are useful for fund managers to attract capital? Unfortunately, a

key limitation common to much of the literature using proxies for learning, is that I do not

observe the fund managers’ actual information sets. As such, providing a definitive answer

to this question is virtually impossible21.

However, I can explore how do funds attract flows after adoption of data technology.

Categorizing data technologies by what they allow to do, might yield intuition on how fund

managers use customer data and the type of information they process. To this end, I use

BuiltWith’s classification of data technologies to define six different categories, based on a

technology’s capabilities (i.e., based on what each technology allow to do). BuiltWith pro-

vide a short classification for the majority of data technology in my sample. I group those

classification to identify six separate categories: Customer Tracking, A/B Testing, Lead

Generation, Analytics Automation, and Search Engine Optimization (SEO). Furthermore, I

group the remaining data technologies (unclassified by BuiltWith) as “Others”22. Customer

Tracking technologies include those plugins that allow to measure audience visits (e.g., col-

lect basic demographics or bounce rate), A/B Testing tools allow running RCT on web

traffic audience, Lead Generation technologies help identify target or prospect customers,

Analytics Automation include technologies aimed to personalize content and forecast cus-

tomer conversion, SEO improves a website’s search engine positioning tailoring to specific

keywords.

After assigning a unique category to each data technology, I run a specification similar

to (2), in order to tentatively understand which types of technologies are driving the re-

sults. Before discussing the results, it is important to note a caveat in their interpretation.

21Moreover, the type and usage of data by different funds can be fundamentally different. For example, 1st
Source Monogram Diversified Equity mentions on its cookies policy that “The types of personal information
we collect and share depend on the product or service you have with us. This information can include:
Social Security number and income, Account balances and transaction history, Credit history and credit
scores”. While American Beacon Large Cap Value fund mentions using “demographic information to better
understand your investment and service needs. To know your online preferences and viewing behaviors [. . . ]”.

22Most of these technologies provide supplementary services to other technologies. For example, Makazi
and Spotler Activate integrate data collected from several analytics technologies in a unique database, and
help comply with privacy regulation.
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When classifying data technology, I assign one unique category for each technology. How-

ever, several technologies might integrate more than one specific features. For instance, the

technology Dynamic Yield is classified as an A/B Testing tool but also supports segmen-

tation and personalization, features typically associated with Analytics Automation. Thus,

the analysis is suggestive at best, offering tentative intuition into the precise mechanisms

through which data technologies influence fund flows.

Table 10 shows the results for each of the six categories I identified from BuiltWith’s

classification. The coefficients for two out of six technology categories are statistically in-

significant at conventional confidence level. In particular, adoption of Customer Tracking

and SEO technologies are not associated with more flows. This suggests that merely col-

lecting data on customer demographics or improving search engine rankings may not, by

themselves, enhance a fund’s ability to attract capital.

In contrast, the adoption of A/B Testing tools and Analytics Automation technologies

is associated with significantly higher post-adoption flows. These results suggest that fund

managers who actively experiment to learn customer preferences (e.g., via A/B Testing) or

optimize their targeting (Analytics Automation) are those that benefit from data technolo-

gies. Interestingly, many technologies categorized as Analytics Automation include features

at the intersection between AI and marketing (e.g., Autoketing, Black Crow AI, Blueshift).

Although these results are far from conclusive, they suggest that one channel through which

customer data help fund managers attracting flows is by improving customer conversion via

personalization and targeting strategies.

5.2 Alternative Channels

The main findings above are consistent with fund managers using new technologies to

learn about (potential) customers. According to a learning channel, funds observe signals

about investor tastes and deviate from their peers (e.g., specialize) to cater more to cus-

tomers’ demand. However, the results of funds attracting more capital after installing data
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technologies and charging higher fees are arguably consistent with alternative explanations.

Here, I rule out two main alternative stories. First, one possible explanation might be that

adoption of data technologies correlates with managers’ ability to generate alpha. If funds

earn high risk-adjusted performance after installing a data technology, investors should notice

it and increase their inflows to those funds. In Appendix Tables C.13, I test this alternative

explanation with different measures of risk-adjusted performance, as well as using the recur-

sive demeaning approach in Pástor, Stambaugh and Taylor (2015). Across all specifications,

I cannot reject the hypothesis that managers’ skills are unchanged after adoption of a data

technology. Therefore, since investors should observe funds’ superior ability to generate per-

formance if this were the main driver of larger inflows, this alternative explanation seems

implausible.

Another interpretation of my main findings could be that data technologies adoption

is correlated with re-branding, persuading rather than learning about customer preferences

(Mullainathan et al., 2008). According to this channel, a mechanism similar to obfuscation

would drive the results on flows and fees. One key implication of this interpretation is that

customers would react less to price changes after being subject to persuasion (Varian, 1980;

Ellison and Ellison, 2009). To test this hypothesis, I compare the elasticity of fund flows

to changes in fees after adopting data technology. If an obfuscation mechanism is at play,

the “flows-fee elasticity” should be significantly lower, in absolute terms, after adoption (i.e.,

flows react less to change in expense ratio while investors are obfuscated). I show that

this is not the case in Appendix Table C.15. On the contrary, if anything flows became

more elastic to fees change after funds adopt new technology. This result squares with

the framework in Appendix A: the share of investors who perceive both funds A and B

attractive is proportional to the area between x = 0 and xA (shaded blue area in Figure

A.1). This result is also inconsistent with a “competing for attention” interpretation (Ben-

David et al., 2022), where funds would not compete on fees. Overall, my results are in line

with a channel based on fund managers using new technologies to learn about investors and
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improving the match with customers accordingly. Notwithstanding the evidence presented,

it is important to recognize that I cannot completely rule out that other mechanisms explain

my results. However, any other interpretation requires to be consistent with all the results

above. For example, it should explain why funds adopting data technologies hold more

illiquid assets after adoption, why the effect is concentrated in retail share classes and specific

to technologies designed to collect and analyze customer data.

6 Concluding Remarks

The development of new technologies is changing how asset managers operate. While

existing research focuses on their impact on portfolio allocation decisions, this paper shows

that technological innovation also affects how managers attract and retain capital. Using

novel data on website technologies, I show that asset managers actively collect and analyze

customers’ data, leading to 1.5% higher annual flows for adopting funds.

The effects are concentrated in retail share classes, decline with competition in data col-

lection, and allow funds to maintain a smaller cash buffer when investment opportunities

are available, consistent with managers extracting valuable signals about investors’ prefer-

ences. Moreover, fund managers expand their product offerings after adoption and increase

fees, suggesting that customers’ data helps optimize both product placement and pricing

strategies. To alleviate endogeneity concerns, I exploit the release of TensorFlow, an open-

source machine learning library, as positive shock in signals’ precision that asset managers

can extract from investors’ data.

These findings underline the economic importance of asset managers learning customers’

preferences to attract capital. This mechanism raises important questions about market

efficiency and fund manager incentives. While better knowledge of investor tastes could help

match funds to customers, whether investors’ product preferences are rational becomes even

more critical to understanding the welfare implications of new technologies. Product prolif-
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eration might harm investors, as households show well-known systematic biases and make

mistakes in their economic decisions. Moreover, tools informing about detailed customer

information may disproportionately benefit larger fund families as they are able to collect

more extensive datasets.
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Figure 1: Funds and Data Technology adoption. This figure shows the adoption of data technologies
aimed to capture visitors data, on funds’ websites. The data are from BuiltWith, which detects the instal-
lation and removal of various technologies by analyzing webpage code. See Section 3.2 for details on data
technologies. The blue line (left axis) represents the number of funds with at least one data technology in
place for each month of the sample period. The red line (right axis) shows the percentage of funds adopting
data technologies relative to the total number of funds in a given month.
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Figure 2: The Dynamic Effect of Data Technologies on Fund Flows. This figure shows results for
the difference-in-differences regression where the dependent variable is the one-month-ahead fund flow. Each
point represents the estimated coefficient on the treatment group interaction with each month before/after
data technology adoption. The treatment is a dummy equal to one if a fund i has a data technology in place
at month t (Datai,t). The fund-month control variables include a fund’s size (logAUM), expense ratio,
(log) age, flows, turnover, CAPM alpha, 12b-1 fees, and the coefficient of data competition (equation (8))
in month t. Regression include fund and category×month fixed effects, and the gray area represent the 95%
confidence interval for the coefficient estimates. The month just before data technology adoption (-1) is the
excluded category in the regression, and is reported as zero in the figure. The rightmost (leftmost) estimates
include all observations after (before) 12 months from the adoption month. The monthly sample include
equity mutual funds and ETFs from March 1993 to December 2022.
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Figure 3: Placebo tests. This figure shows results from placebo tests on technologies different from data
technologies. Each horizontal line represents the 95% confidence interval for tests replacing data technologies
with one of the following (placebo) technologies: Network (Content Delivery Network), Server, JavaScript,
Copyright, Feeds, and Ads. The specification is the same as the main results in Table 3, column (1). The
dependent variable is the one-month-ahead fund flow. The confidence interval refers to the coefficient on a
dummy equal to one if fund i has a technology of the respective type in place at month t; i.e., analogous to
θ in Equation (2). All regressions include fund and time fixed effects, and controls: fund’s size (logTNA),
(log) age, flows, turnover, and CAPM alpha in month t.
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Figure 4: Effect of Competition within Fund-Category. This figure shows results for difference-
in-differences coefficients across different values of competition (γc,t) as of data technology adoption. The
competition coefficient γc,t is built following equation (8), and it captures the fraction of funds with data
technologies in place within fund category-month. Each bar represents a level of competition as of adoption
date (e.g., the first bar represents all fund managers installing their first data technology when less then
25% of funds within its own fund-category have a data technology already installed). Each vertical line
represents the 95% confidence interval. The specification is the same as the main specification in equation
(2). All regressions include fund and time fixed effects, and controls: fund’s size (logTNA), (log) age, flows,
turnover, 12b-1 fees, and CAPM alpha in month t.
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obs. mean sd p5 p25 p50 p75 p95

AUM ($M) 987,242 1,529.46 8,250.46 8.73 54.06 215.77 820.84 5,551.85

Expense Ratio (%) 987,242 1.13 0.53 0.18 0.83 1.12 1.45 2.05

12b-1 Fees (%) 987,242 0.28 0.24 0.00 0.06 0.25 0.41 0.75

Flows (%) 987,242 -0.12 5.71 -6.04 -1.80 -0.63 0.82 7.16

Turnover Ratio 987,242 0.80 1.02 0.06 0.25 0.51 0.95 2.34

Age (Years) 987,242 12.87 8.59 2.50 5.92 11.00 18.25 30.00

Raw Returns 987,242 0.01 0.05 -0.08 -0.02 0.01 0.03 0.08

CAPM Alpha 987,242 0.00 0.10 -0.17 -0.05 -0.00 0.05 0.17

FF5 Alpha 987,242 -0.00 0.26 -0.45 -0.11 0.01 0.11 0.38

N. of Data Tech. 987,242 1.09 2.25 0.00 0.00 0.00 1.00 6.00

Data 987,242 0.35 0.48 0.00 0.00 0.00 1.00 1.00

Table 1: Summary Statistics: This table reports summary statistics for the full sample. For each variable,
the table shows the number of available observations (obs,), the mean (mean), the standard deviation (sd),
the 5th (p5), 25th (p25), 50th (p50), 75th (p75), and the 95th (p95) percentiles. AUM is inflation adjusted
in January 2000 $ million. Expense Ratio, 12b-1 Fees, and Flows are in %; e.g., the average fund flow in the
sample is -0.12% monthly. The variable N. of Data Tech. represents the total number of data technologies
installed on the fund’s website in a given month, the variable Data is a dummy equal to 1 if the fund-month
observation has at least one data technology installed. The monthly sample include equity mutual funds and
ETFs from March 1993 to December 2022.
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Installation %
Data Technology Name (in 2022) Description

Google Analytics 63.50 Users Tracking and Analytics

LinkedIn Insights 37.51 Social Media Tracking and Analytics

Adobe Analytics 29.68 Users Tracking and Analytics

Omniture Test & Target 17.74 A/B Testing

Facebook Pixel 16.98 Social Media Tracking and Analytics

Google Analytics 4 15.04 Users Tracking and Analytics

RapLeaf 13.80 Users Tracking

Twitter Analytics 12.02 Social Media Tracking and Analytics

Bing Universal Event Tracking 11.76 Users Tracking and Analytics

LiveRamp 8.64 Data Connectivity Platform

Yahoo Web Analytics 7.10 Users Tracking and Analytics

Crazy Egg 6.94 Track and Visualize User Interaction

mPulse 6.60 Real Time Customer Experience

Google Optimize 360 6.41 A/B Testing

iPerceptions 6.31 Analyze Customer Feedback

Hotjar 6.05 Users Tracking and Analytics

Table 2: Main Data Technologies: This table reports the main data technologies installed on funds’
websites, as of December 2022. This technologies are aimed to collect and analyze website visitors’ data.
The second column shows the percentage of funds having the technology installed on its website with respect
to the total number of funds, as of December 2022. The third column reports a short description of the
technology’s features.
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Fund Flowsi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.141*** 0.127*** 0.144*** 0.130***
(0.042) (0.041) (0.042) (0.041)

12b-1 Feesi,t 0.251** 0.251**
(0.112) (0.109)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.221 0.221 0.221 0.221
Outcome SE 6.293 6.293 6.293 6.293

Obs. 971,730 970,832 971,730 970,832
Adj. R2 0.112 0.141 0.112 0.141

Table 3: Fund Flows and Data Technologies: This table shows results of OLS panel regression in which
the dependent variable is the one-month-ahead fund flow. The regressors are a dummy equal to one if a fund
i has a data technology in place at month t (Datai,t), 12b-1 fees, and controls for fund-month characteristics
(omitted for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s
size (logAUM), expense ratio, (log) age, flows, turnover, and CAPM alpha in month t. The monthly sample
include equity mutual funds and ETFs from March 1993 to December 2022. All standard errors are two-way
clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5%
and 1% respectively.
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Expense Ratioi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.015*** 0.015*** 0.018*** 0.017***
(0.004) (0.004) (0.004) (0.004)

12b-1 Feesi,t 0.255*** 0.237***
(0.017) (0.016)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 1.141 1.141 1.141 1.141
Outcome SE 0.538 0.538 0.538 0.538

Obs. 971,918 971,013 971,918 971,013
Adj. R2 0.918 0.922 0.921 0.925

Table 4: Expense Ratio and Data Technologies: This table shows results of OLS panel regression in
which the dependent variable is the one-month-ahead fund expense ratio. The regressors are a dummy equal
to one if a fund i has a data technology in place at month t (Datai,t), 12b-1 fees, and controls for fund-month
characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The control variables
include a fund’s size (logAUM), (log) age, flows, turnover, and CAPM alpha in month t. The monthly
sample include equity mutual funds and ETFs from March 1993 to December 2022. All standard errors are
two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the
10%, 5% and 1% respectively.
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wi,t(cash) (%)

(1) (2) (3)

D/Pt -29.905* -26.035*
(15.704) (15.533)

Datai,t × D/Pt -21.969*** -20.837***
(4.825) (4.878)

Controls ✓ ✓ ✓

Fund FE ✓ ✓ ✓

Outcome mean 4.367 4.367 4.367
Outcome SE 12.085 12.085 12.085

Obs. 837,070 837,070 837,070
Adj. R2 0.569 0.569 0.569

Table 5: Portfolio Cash Holdings and Technologies: This table shows results of OLS panel regression
in which the dependent variable is the one-month-ahead portfolio weight in cash. The regressors are the
dividend-price ratio (DPt), an interaction term with a dummy equal to one if a fund i has a data technology
in place at month t (Datai,t), and controls for fund-month characteristics (omitted for brevity). See Section
3.2 for details on data technologies. The control variables include a fund’s size (logAUM), expense ratio,
flows, turnover, and CAPM alpha in month t. The monthly sample is from March 1993 to December 2022.
All standard errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote
statistical significance at the 10%, 5% and 1% respectively.
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log(N. of Funds)f,t+1 N. of Funds f,t+1

(1) (2)

Dataf,t 0.079** 0.058*
(0.031) (0.032)

log(Age)f,t 0.3323*** 0.479***
(0.023) (0.040)

Estimator OLS Poisson
Fund Family FE ✓ ✓

Time FE ✓ ✓

Outcome mean 1.495 13.375
Outcome SE 1.358 30.652

Obs. 159,566 159,566
Adj. R2 0.906 −

Pseudo R2 − 0.852

Table 6: Number of Funds in Fund Family and Data Technologies: This table shows results of OLS
panel regression in which the dependent variable is the number of funds offered by fund family f in month
t+ 1. The regressors are a dummy equal to one if at least one fund within family f has a data technology in
place at month t (Dataf,t), and the (log) fund family age. See Section 3.2 for details on data technologies.
The monthly sample is from March 1993 to December 2022. All standard errors are two-way clustered by
fund family and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and
1% respectively.
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Fund Flowsi,t+1 (%)

zi ∶ Tenure of Adoption N. of Data Tech.

(1) (2) (3) (4) (5) (6)

Datai,t 0.590*** 0.606*** 0.654*** 0.686*** 0.654*** 0.647***
(0.126) (0.126) (0.146) (0.148) (0.135) (0.133)

Datai,t × Postt 0.260** 0.313***
(0.109) (0.109)

Datai,t × Postt × zi 0.071** 0.091*** 0.130*** 0.140***
(0.031) (0.031) (0.035) (0.034)

Controls ✓ ✓ ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ × ✓ × ✓ ×

Category×Time FE × ✓ × ✓ × ✓

Outcome mean 0.170 0.170 0.170 0.170 0.170 0.170
Outcome SE 6.322 6.322 6.322 6.322 6.322 6.322

Obs. 770,276 769,423 555,493 554,639 662,336 661,458
Adj. R2 0.107 0.139 0.096 0.136 0.104 0.137

Table 7: Fund Flows and Data Technologies after TensorFlow Release: This table shows results of
OLS panel regression in which the dependent variable is the one-month-ahead flow for share class j of fund
i. Columns (1) and (2) follow specification in equation (5), while columns (3) to (6) follow (6). In columns
(3) and (4) the continuous treatment zi is the (log) number of months between the first data technology
adoption and TensorFlow’s release. Columns (5) and (6) use the number of data technologies installed as
of TensorFlow’s release, as continuous treatment zi. Datai,t is a dummy equal to one if fund i has a data
technology in place at month t. See Section 3.2 for details on data technologies. The fund-month control
variables (omitted for brevity) include a fund’s size (logAUM), expense ratio, (log) age, flows, turnover,
CAPM alpha, 12b-1 fees, and the coefficient of data competition (equation (8)) in month t. The monthly
sample include equity mutual funds and ETFs from March 1993 to December 2022, which did not adopt
a data technology after June 2015 (i.e., six-months before TensorFlow’s release). All standard errors are
two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the
10%, 5% and 1% respectively.
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Share Class Flowsj,i,t+1 (%)

(1) (2) (3) (4)

Datai,t × Retail 0.467*** 0.446*** 0.377*** 0.358***
(0.088) (0.092) (0.089) (0.092)

Datai,t -0.153 -0.165 0.019 0.003
(0.100) (0.104) (0.102) (0.106)

12b-1 Feesj,i,t 0.825*** 0.804***
(0.094) (0.093)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.691 0.691 0.691 0.691
Outcome SE 10.541 10.541 10.541 10.541

Obs. 799,220 798,719 799,220 798,719
Adj. R2 0.104 0.114 0.104 0.115

Table 8: Retail and Institutional Share Classes: This table shows results of OLS panel regression in
which the dependent variable is the one-month-ahead flow for share class j of fund i. The regressors are a
dummy equal to one if fund i has a data technology in place at month t (Datai,t) interacted with the share
class’ j type (retail or institutional), 12b-1 fees, and controls for share class-month characteristics (omitted
for brevity). See Section 3.2 for details on data technologies. All funds in this sample have both retail and
institutional share classes, to compare different share classes within the same fund. The control variables
include a share class’ (log) AUM, expense ratio, (log) age, flows, turnover, and CAPM alpha in month t.
The monthly sample is from March 1993 to December 2022. All standard errors are two-way clustered by
fund and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1%
respectively.

50



Number of Technologies Competition Effect

Fund Flowsi,t+1 (%) Fund Flowsi,t+1 (%)

(1) (2) (3) (4)

N. Techi,t 0.030*** 0.047*** Datai,t 0.377***
(0.007) (0.018) (0.114)

N. Tech2i,t -0.002 Datai,t × γc,t -0.471**

(0.001) (0.186)

log(1+ N. Techi,t) 0.130***
(0.031)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Category×Time FE ✓ ✓ ✓ ✓

Outcome mean 0.221 0.221 0.221 0.221
Outcome SE 6.294 6.294 6.294 6.294

Obs. 850,544 850,544 850,544 971,070
Adj. R2 0.139 0.139 0.141 0.141

Table 9: Fund Flows, Technology Adoption, and Competition: This table shows results of OLS
panel regression in which the dependent variable is the one-month-ahead fund flow. The regressors are the
number of data technologies in place for fund i at month t (N. Techi,t) in column (1), column (2) adds
its square (N. Tech2i,t), and the log of (1+N. Techi,t) in column (3). In column (4), the regressors are a
dummy equal to one if a fund i has a data technology in place at month t (Datai,t), and an interaction
term with the competition coefficient γc,t for fund category c in month t. The competition coefficient is
built following equation (8), and it captures the fraction of funds with data technologies in place within
fund category-month. See Section 3.2 for details on data technologies. All columns include controls for
fund-month characteristics (omitted for brevity). The control variables are a fund’s size (logAUM), expense
ratio, (log) age, flows, turnover, and CAPM alpha in month t. The monthly sample include equity mutual
funds and ETFs from March 1993 to December 2022. All standard errors are two-way clustered by fund and
month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flowsi,t+1 (%)

(1) (2) (3) (4) (5) (6)

Customer Trackingi,t 0.001
(0.022)

A/B Testingi,t 0.294***
(0.090)

Lead Generationi,t 0.087*
(0.049)

SEOi,t -0.035
(0.079)

Analytics Automationi,t 0.274***
(0.059)

Othersi,t 0.196**
(0.097)

Controls ✓ ✓ ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓ ✓ ✓

Category×Time FE ✓ ✓ ✓ ✓ ✓ ✓

Outcome mean 0.221 0.221 0.221 0.221 0.221 0.221
Outcome SE 6.294 6.294 6.294 6.294 6.294 6.294

Obs. 878,022 949,947 950,727 941,077 948,523 948,910
Second-stage Adj. R2 0.000 0.000 0.000 0.000 0.001 0.000

Table 10: Fund Flows and Technology Categories: This table shows results of OLS panel regression in
which the dependent variable is the one-month-ahead fund flow. The regressors are a dummy equal to one if a
fund i has at least one data technology belonging to each category in place at month t, and controls for fund-
month characteristics (omitted for brevity). The six data technology categories are Customer Targeting, A/B
Testing, Lead Generation, Search Engine Optimization (SEO), Analytics Automation, and Others (which
included unclassified technology by BuiltWith). See Section 5.1. The control variables include a fund’s
size (logAUM), expense ratio, (log) age, flows, turnover, and CAPM alpha in month t. The difference-in-
differences estimator robust to identification concerns in staggered difference-in-differences settings following
Gardner (2021); Gardner et al. (2024). The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2022.
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Appendix

A Economic Framework

To illustrate the main mechanism, I provide a simple and tractable framework of fund

flows and fees in a market with heterogeneous investor preferences. The setup builds on a

Hotelling-type of model, where investor preferences are described by a continuous variable.

Without information on the distribution of customer preferences, two funds will equally share

the flows to the asset management industry. However, when one fund uses data technologies

to learn more about the distribution of preferences, it will offer products that are closer

to what investors prefer. This mechanism allows the “Data” fund to attract more capital

and charge higher fees in equilibrium. The goal of this framework is to guide the empirical

strategy and discuss additional predictions.

Model setup. There are two dates, t = {0,1}. Two risk neutral asset managers, denoted

by A and B, offer investment portfolios to a measure-one continuum of investors indexed by

i who can only invest through the asset managers, i.e., investors do not invest directly in the

asset market23. Here, the fund manager A will have access to data analytics technologies,

while fund B has no access to data technology. Without loss of generality, I assume each

investor i picks exactly one asset manager. Importantly, investors have heterogeneous pref-

erences. I summarize those preferences in a continuous variable represented on a line x ∈ R.

For example, x might represent a linear combination of several characteristics and tastes,

the outcome of k-means analysis, or PCA, all commonly used methodologies in data and

customer analytics (Abdulhafedh, 2021; Savic et al., 2019). In the asset management indus-

try, a large xi might represent investor i’s preference for ESG stocks (Pástor, Stambaugh

and Taylor, 2021) or specific themes such as AI- or cannabis-ETFs (Ben-David, Franzoni,

Kim and Moussawi, 2022). At the same time, xi might represent other personal tastes, such

as the preferred distribution channel for buying a fund (e.g., through a financial advisor

23This assumption follows, for example, Basak and Cuoco (1998) and Gârleanu and Pedersen (2018). A
similar situation might arise because investors can share information costs or other types of frictions. One
can think about the investors in this section as the fraction of investors that decide to invest via an asset
manager, e.g., α = µ/(γσ2

r) in a CARA-normal setup similar to Grossman and Stiglitz (1980).
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or brokerage account)24. I assume investors have quadratic costs in deviating from their

preference xi. Formally, the net cost investor i faces when buying fund j is:

ci,j = fj + t ⋅ (xj − xi)
2, for j = {A,B},

where fj is the fee (price) charged by fund j, and t is a parameter that governs how costly

it is for investors to deviate from their own preferences. A large t implies that investors

perceive as expensive to buy a product much different from xi. The term (xj−xi)2 represents

how investor i’s taste is distant from fund j. Asset managers offer a variety of products to

clients with heterogeneous needs, endowments, hedging motives, and preferences. Intuitively,

investors will find buying a fund closer to their preference more attractive.

The mass of investors with preference equal to xi is given by φ(µ;xi), where φ(µ; ⋅) is

the p.d.f. of a logistic distribution with average µ, and scale parameter one. Similarly, the

c.d.f. of the same logistic distribution is denoted by Φ(µ; ⋅).

Crucially, the average of the distribution, µ, is randomly drawn from a standard normal

distribution: µ ∼ N{0,1}. If µ > 0, the distribution of preferences φ(µ;x) shifts rightwards,

which means that a larger mass of investors prefers products with x > 0. Investors know

their preferences, while fund managers only know the distribution (i.e., they don’t know the

realization of µ). Thus, they don’t observe the actual profile of customers’ tastes. However,

the asset managers using data technologies, A, extract a signal s from collecting and ana-

lyzing investors’ data in t = 0. The signal is unbiased and noisy25: s∣µ ∼ N{µ,σ2
s}; I will

denote a signal’s precision as τs = σ−2s . Collecting data allows a manager to learn investors’

tastes better, and the lower σ2
s , the more data are informative. The unknown realization

of µ determines where most investor preferences are, and having a signal on it makes data

technologies relevant in this simple framework. Figure A.1 shows an overview of this simple

framework for µ > 0. In what follows, I discuss the case of µ > 0: in this case, a larger mass

of investors will lie on x > 0. The same economic intuition will hold for µ < 0, with a slightly

different formulation.

24Industry practitioners in the retail funds segment are particularly interested in understanding the best
distribution channel for a given clientele, see for instance: broadridge.com/press-release/2025/.

25This simple example does not include endogenous information choice; its only purpose is to illustrate
the idea behind the hypothesis that managers can learn valuable information from customers’ data.
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x̃ xA µ x

φ(µ;x)

Figure A.1: Economic Framework Overview. This figure illustrates an overview of the distribution
of investor preferences x ∈ R. The black curve shows φ(µ;x) for µ = 2. xA is the location picked by the
“Data” fund denoted A, and x̃ the threshold below which investors will find fund B (without access to data
technologies) more convenient (see Section A.1). The area underneath the p.d.f. φ(µ;x), on the right of x̃,
represents the total market share of fund A (filled area). The hatched area shows fund’s A captive market
share, whereas the shaded lightblue area (vertical section between x̃ and xA) is the fraction of market share
that A gains competing with B on fees.

In t = 0, the two asset managers A and B set up a fund picking one location over the line

of preferences denoted xA and xB, respectively, to align as much as possible with investor

demand. I assume the costs of setting up a fund are independent of x, so both funds have the

same marginal cost c, regardless of their location choice on the line. In t = 1, funds compete

on fees to maximize profits, and each investor i buys the fund that is most convenient for

her.
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A.1 Summary of the Equilibrium

The fundamental intuition in this simple example is that funds can differentiate their

product offerings to better meet investors’ demand. Asset managers located closer to a

larger mass of customers will receive more capital. An equilibrium in this framework is a set

of fund locations (xA, xB) and fees (fA, fB) such that both funds pick the closer x to their

expected µ in t = 0 since they minimize the distance to the mode of investor tastes, and

maximize their respective profits in t = 1. Importantly, I separate the location and pricing

problems, as it is well known that Hotelling-type of models have no equilibrium when firms

can use both location and prices (contemporaneously) as strategies, see for example (Shy,

1995, Proposition 7.7). For instance, this simplification might imply that once funds commit

to delivering a particular investment strategy, they find it costly to deviate from it. Abis and

Lines (2024) find consistent evidence in the US mutual funds industry. In what follows, I

will first consider a baseline equilibrium in which none of the two funds can observe a signal

about the distribution of investor preferences. This benchmark is useful for comparison with

the second equilibrium, in which I allow the “Data” fund denoted A to extract a signal from

collecting and analyzing customers’ data. The subsection A.2 contains all the proofs.

Baseline. First, consider a benchmark economy where no data technologies are available.

In this case, asset managers A and B know only the prior distribution of µ (i.e., as if

τs → 0). Thus, in t = 0, when funds set their location on the preferences line, they will choose

xA = xB = E[µ] = 0. Intuitively, as fund managers have no information about where the

realization of investor preferences is, they will locate on their point where they believe more

investors lie –i.e., on the mode (and average) of the logistic distribution with µ = 0. In t = 1,

with both funds in the same location x = 0, competition will resemble a Bertrand duopoly

equilibrium. The two funds will split the total share of investors’ flows equally and price at

marginal cost c.

Next, I consider a similar market for asset management products, where fund A observes

a signal on the realization of investors’ preferences.

Asset and Data Managers. When fund A has access to data technologies, the manager

receives a signal s about the realization of investor preferences. Now, while in t = 0 the
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naive fund B will pick location xB = 0, the “Data” fund will set xA = τs
1+τs s. Thus, when

observing the unbiased signal, asset manager A deviates from x = 0 to locate closer to

the mode of investor preferences. The deviation in x can be interpreted as specialization

vis-à-vis a “standard” product. In the asset management industry, funds can differentiate

from competitors in many ways; for instance, they can overweight stocks with particular

characteristics, change their distribution channel, or differentiate their fund prospectus.

Once A sets xA > 0, the mass of investors on the right-hand side of xA will find the fund

offered by A more attractive, as it is closer to their preferences. This market share is given

by 1 − Φ(µ;xA), and it represents fund A’s captive investors (hatched area in Figure A.1).

Similarly, investors on the left-hand side of xB = 0 will prefer fund B. This mass of investors

is determined by Φ(µ; 0), representing fund captive demand for fund B. However, the mass

of investors between xB and xA is not captive for either of the two funds. In this area, there

will be a threshold x̃ above which investors find A more attractive than B, and below, they

will prefer B. This threshold is given by:

x̃ =
xA
2
+
fA − c

2xAt
. (A.1)

Intuitively, xA/2 represents the midpoint between the products offered by funds A and B.

Then, the threshold x̃ shifts to the right –resulting in lower market share for fund A– as the

“Data” fund increases its fee over its costs. Investors in this area prefer fund B if fA is too

large, even though their preferences might be closer to xA.

In choosing fund fees fA, the “Data” fund manager maximizes its total profits, πA =

[1−Φ(µ; x̃)] ⋅ (fA − c), trading-off a higher market share from setting a lower fA, with fewer

profits. The optimal fee satisfies:

fA = c + 2xA ⋅ t ⋅ exp{−(xA − µ)}. (A.2)

A key implication from equation (A.2) is that fund A can set its fee above marginal costs.

The second term in the equation determines how much the “Data” fund charges in excess

of fund B (without data technologies), in equilibrium. This term increases with the fund’s

deviation from x = 0, and it is larger as xA lies closer to µ (i.e. when the signal from data is
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more precise and the fund A locates closer to a larger mass of investors).

A.2 Proofs

This subsection contains proofs for the simple framework. In t = 0, both funds will

pick the location on x ∈ R that maximizes the number of investors allocating capital to

their respective products. In this example, investor preferences are distributed as a logistic

distribution, and capturing the larger mass of customers is equivalent to locate in the mode

of the distribution. Since φ(µ, ⋅) is a symmetric distribution the mode coincides with the

mean, and both funds will choose

xj = E[µ ∣ Ij], j = {A,B}, (A.3)

where Ij is the information set of fund j –i.e., only the prior for fund B, and the prior plus

the signal s for fund A.

In t = 1, funds compete on fees to maximize their revenues. First, I need to compute the

threshold that define the market share of the two funds, i.e., the x̃ such that an investor

with preference x̃ will find equivalent buying either of the two funds. This is given by:

x̃ s.t.: fB + t ⋅ x̃
2 = fA + t ⋅ (x̃ − xB)

2. (A.4)

Simple computations yield x̃ = xA/2 +
fA−c
2xAt

, which is equation (A.1). Now, the optimal fee

set by fund D is straightforward:

fA = argmax πA = argmax Φ(µ, x̃)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
Maket share

⋅ (fA − c). (A.5)

The F.O.C. is:

1 −Φ(µ, x̃) = φ(µ, x̃) ⋅
fA − c

2xAt

1 −
1

1 + e−(x̃−µ)
=

e−(x̃−µ)

(1 + e−(x̃−µ))2
⋅
fA − c

2xAt
,

(A.6)
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denoting b ∶= e−(x̃−µ), and κ ∶= fA−c
2xAt

, I can rewrite:

1

1 + b
=

(1 + b)2 − bκ

(1 + b)2

(1 + b) = (1 + b)2 − bκ

b2 + b(1 − κ) = 0,

(A.7)

which gives solution b1 = κ−1, and b2 = 0. As b ∶= e−(x̃−µ), b2 = 0 does not yield a real solution.

Substituting back b, and κ:

e−(x̃−µ) =
fA − c

2xAt
− 1

fA − c = 2 ⋅ (e−(x̃−µ) + 1) ⋅ xAt

fA = c + 2 ⋅ (e−(x̃−µ) + 1),

fA = c + 2xA ⋅ t ⋅ exp{−(xA − µ)}

(A.8)

which is equation (A.2). The S.O.C. for a maximum is satisfied, as:

− φ(µ, x̃) ⋅
1

2xAt
− φ′(µ, x̃) ⋅

fA − c

2xAt
− φ(µ, x̃) ⋅

1

2xAt
=

= −2 ⋅ φ(µ, x̃) ⋅
1

2xAt
− φ′(µ, x̃) ⋅

fA − c

2xAt
=

= −φ(µ, x̃) ⋅
1

xAt
− φ′(µ, x̃) ⋅

fA − c

2xAt
< 0, for x ∈ (0, µ).

(A.9)
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B Data Appendix

In this Appendix I describe the main dataset’s construction procedures. I use four main

data sources: (i) CRSP Survivorship-Bias-Free US Mutual Funds data, (ii) Factset Mutual

Funds data, (iii) BuiltWith for websites’ technology installation/removal dates, and (iv) data

from whois.com for details on websites’ registration date, hosting service, etc.

B.1 CRSP Mutual Funds

I follow Berk and van Binsbergen (2015) and Pástor, Stambaugh and Taylor (2015)

procedures as closely as possible. I start from the raw CRSP Survivorship-Bias-Free US

Mutual Funds monthly data. Each observation in this dataset identifies a fund’s share class

(crsp fundno) in a given month. CRSP Mutual Funds dataset from January 1980 to De-

cember 2022 has 8,803,093 share class-month observations. I start filling missing contact

information in CRSP data; i.e., address1, city, state, website, and zip. For 62,266 obs.

(0.71% of total), the missing information are between two (or more) non-empty information

within the same share class, and the two non-empty coincides. I fill those missing observa-

tions using the non-empty contact information within the same share class.

CRSP reports a fund’s website starting January 2008. I use information from whois.com to

backward fill missing websites’ observations. Whois.com has information on websites’ regis-

tration date, hosting service, and others. I hand-collected from whois.com the registration

date for each website in CRSP (when available), and I verify the website belongs to the

CRSP fund using the Internet Archive Wayback Machine. Then, I backward fill 1,423,338

obs. (16.17% of total) missing websites observations before 2008 for months after the web-

site’s registration date.

Following Berk and van Binsbergen (2015), I backfill missing cusip with the last avail-

able non-empty cusip within the same share class. This step replace 836, 636 cusip obs.

(9.50% of total). I do not forward fill missing observations. I replace missing exp ratio and

actual 12b1 fees with their time series average within the same share class (Roussanov, Ruan

and Wei, 2020). This step fill 1,506,773 obs. (17.35% of total) and 708,187 obs. (8.16% of
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total) respectively. Following Sirri and Tufano (1998) and Roussanov, Ruan and Wei (2020)

I compute the “effective” 12b-1 fee summing CRSP’s actual 12b1 to the share class-month

front load, and assuming the front load fee is amortized over 7 years.

I adjust AUM (TNA) for inflation to be comparable across time. The seasonally adjusted

monthly CPI is from FRED All Consumers: All Items, and I use January 2000 as baseline

month (as in Berk and van Binsbergen, 2015).

Finally, since several funds in CRSP report their AUM only at the quarterly (or annual)

frequency before March 1993 (Pástor, Stambaugh and Taylor, 2015), I drop all share class-

month observations before that date. I also drop observations with missing cusip. After

this steps, I have 8,237,580 share class-month observations from the CRSP Mutual Funds

dataset.

B.2 Factset Mutual Funds

I obtain mutual funds data from Factset at the share class level, and I will merge it with

CRSP data at the cusip-month level. I use cusip rather than ticker, because the cusip

cannot be re-assigned. I use Factset mainly to identify all share classes of the same mutual

fund factset fund id in a given month. From Factset, I obtain the fund id, -fund type (e.g.,

ETF, Open-end fund, etc.), the fund name, brand, share class, leverage factor, category,

minimum initial investment, and cash holdings (deflated in January 2000 dollars as done for

AUM –see Appendix Section B.1).

B.3 CRSP-Factset Merged

I merge CRSP and Factset dataset by cusip-month. The CRSP dataset resulting from

Appendix Section B.1 has 3,506 observations (0.04% of total) in which the same cusip-month

pair appears twice. Inspecting those observations, they do not appear to be double reporting,

but rather mistakes on CRSP’s side. For each of those observations, I keep the cusip-month

with the largest total AUM in the sample.

Then, I merge CRSP and Factset dataset by cusip-month. The merge results in 7,646,136/8,237,580
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observations merged (92.82%). I drop the remaining 472,797 unmerged observations, since

merging them by ticker-month might result in incorrect attribution of share classes to fund

with re-assigned ticker.

I classify index funds following Berk and van Binsbergen (2015) and Pástor, Stambaugh

and Taylor (2015) as closely as possible. I flag a share class observation as index fund if

contains ”INDEX”, ”ETF”, ”ISHARES”, ”IDX”, ”INDX” in its (uppercase letters) fund

name, et flag is either ”F” or ”N”, the lipper class belongs to S&P500 index (lipper class is

”SPSP” or ”SP”), the index fund flag is ”Y”, the Factset’s fund type is either ”ETF” or

”ETN”, the (uppercase letters) brand name is ”ISHARES”, or it is an index levered fund. I

classify a share classes to be of an index levered funds if it has Factset’s leverage factor larger

than 1, or if it contains ”INVERSE”, ”SHORT”, ”ULTRA”, ”2X”, ”3X”, ”4X”, ”5X”, ”6X”,

”7X”, ”8X”, ”9X”, ”0X”, ”SHORT TERM”, ”SHORT TM”, ”SHORT BOND”, ”SHORT

BND”, ”LONG SHORT”, ”LG SHORT” in its (uppercase letters) fund name.

I classify institutional share classes as observations with inst fund equal to ”Y”, or

if it contains ”INSTITUTIONAL SHARES”, ”INSTITUTIONAL CLASS”, ”CLASS I”, or

”CLASS Y” in its (uppercase letters) fund name. I classify retail share classes as observations

with retail fund equal to ”Y”, or if it contains ”RETAIL SHARES”, ”RETAIL CLASS”,

”CLASS A”, ”CLASS B”, ”CLASS C”, or ”INVESTOR CLASS” in its (uppercase letters)

fund name.

I then aggregate observations across all share classes of the same fund. I sum the AUM

of all share classes, and average all other variables (e.g., expense ratio, returns, turnover,

etc.), weighted by lagged AUM. I also keep the first offer date of the oldest share class within

fund. Finally, I drop observations before the first time a fund reaches more than $5 million

in AUM (in January 2000 dollars) if the fund ever reach that threshold in the sample. I drop

observations dated before the fund’s first offer date to account for incubation bias (Evans,

2010) and I remove observations with less than 2 years in the full sample (Berk and van

Binsbergen, 2015). After this step, I have 2,861,642 fund-month observations
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B.4 Website Technologies

I obtain information on a fund website’s technology adoption from BuiltWith. In gen-

eral, website technologies are defined as tools and services like analytics, payment systems,

networking and programming scripts that enhance a website’s features. For example, Pay-

Pal Credit is a technology that enables customers to make buy-now-pay-later payments on

a website. BuiltWith is a company specialized in website profiling, who sells these data to

companies and consultants. They analyze websites’ page code and search for specific pat-

terns that identify the usage of technologies –similar to how a virus scanner searches for

pattern in files to identify viruses. The most common patterns they use to identify such

technologies are HTML tags, cookies, and Javascript snippets found in a website’s source

code. BuiltWith continuously crawls websites and analyzes their underlying technologies.

The provide a comprehensive database of technologies with installation and (eventual) re-

moval date for millions of websites. They mark a technology as “removed”, if they don’t find

it for two consecutives crawls on a website’s code. Appendix Figure B.1 shows a snapshot of

the technology data for arrowfunds.com, as it appears in my sample. For each unique web-

site in my sample (from CRSP Mutual Funds data) I collect all the technologies name, and

installation/removal dates. BuiltWith also provide a technology category (e.g., Analytics,

Feeds, etc.) for each technology, that I map to all technologies installed at least once in my

sample. Then, I build a panel with website-technology name-month where the first month

is the first detected month, and the last one is the last detected month. I further filter for

analytics’ technologies that are aimed to collect and analyze customers’ data, and I count

the number of such technologies installed in the website. Finally, I merge this dataset by

website-date to the main CRSP/Factset data at the share class level (before aggregation).

I merge 3,091,431/7,646,136 observations (i.e., 40.43% of the crsp fundno-month observa-

tions have at least one data technology in place). Then, I replace missing with zeros, if I

have a valid website for the crsp fundno-month observation and I have data from BuiltWith

for the associated website-month, but BuiltWith does not detect data technologies for that

month.
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B.5 Final Sample

From the sample of 2,861,642 factset fund id-month observations, I compute fund flows

following Lou (2012):

Flowi,t =
AUMi,t −AUMi,t−1 ⋅ (1 + ri,t) −MGNi,t

AUMi,t−1
, (B.1)

where AUMi,t represents total net assets for fund i in month t, ri,t is the (gross) monthly

return, and MGNi,t is the increase in AUM due to the fund’s mergers (if any) in month

t. Since CRSP does not reports the exact date in which the merger takes place, I follow

Lou (2012) and use information about the latest available NAV of the target funds to build

a six-months window where the merger plausibly took place. In particular, from CRSP I

observe the last date in which the target fund has non-empty NAV, and the identifier of the

acquirer. For the acquiring fund, I build a six months window which starts one month before

the latest available date of the dead fund, until five months after. Within this window, I

compute the flows without accounting for the possible merger (i.e.,
AUMi,t−AUMi,t−1⋅(1+ri,t

AUMi,t−1
) and

I flag as merger month the date with highest flow within the six-months window. Appendix

Table B.1 gives an example of this approach for the acquirer fund crsp fundno == 662.

In the example, the target fund had latest AUM of $452.5 million (latest date 1999m4).

Around the six-months window, the acquirer has one clear flow outlier (computed without

accounting for the merger); i.e., 1995m5. I flag the 1999m5 observation as merger date.

Therefore, following equation B.1, the actual fund flow in 1999m5 is -0.6417.

Finally, I keep observations with available variables for my analysis (i.e., Flow, AUM,

fees). I remove fixed income mutual funds, money market funds, variable products, and

others (e.g., 529 Plan, Collective Investment Trust). The monthly sample now contains only

ETFs and equity (open-end) mutual funds from March 1993 to December 2022.
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crsp fundno month TNA window6M trgt lastTNA flow flagMerger

662 1999m1 19.94 0 . 0.0203 0
662 1999m2 18.71 0 . -0.0127 0
662 1999m3 20.14 1 452.5 0.0517 0
662 1999m4 19.19 1 452.5 -0.0818 0
662 1999m5 459.05 1 452.5 22.9441 1
662 1999m6 450.48 1 452.5 -0.0645 0
662 1999m7 410.50 1 452.5 -0.0478 0
662 1999m8 400.31 1 452.5 -0.0182 0
662 1999m9 368.87 0 . -0.0510 0
662 1999m10 375.46 0 . -0.0415 0

Table B.1: Example of Funds Merger: This table shows an example of funds merger attribution date
on CRSP. In this case, the attributed merger month is 1999m5, since it has the largest flow within the six
months window around the target latest AUM (1999m4).
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C Additional Results

This section contains additional results and robustness not contained in the main text.

C.1 Appendix Figures
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Figure C.1: Overlap in Technology Adoption within Hosting Platform. The figure shows the
cosine similarity in website technology adoption within website hosting platform. Cosine similarity is higher
when there is high overlap among website technology within a given hosting platform. For example, when the
cosine similarity equals one all website on that hosting platform share the same set of technologies installed.
The blue area shows the histogram of cosine similarity for the sample of US mutual funds in this paper
(mean 0.29, median 0.27). The red hatched area shows the histogram for the average cosine similarity from
simulations where the adoption of technology within hosting platform is randomly assigned and maintaining
the same number of technologies within hosting platform, for comparability (mean 0.43, median 0.44).
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A: Small Cap Funds. B: Emerging Market Funds.

C: All US Funds.

Figure C.2: Fund Fees Dispersion within Fund Categories. The figure plots the average fund fees
dispersion within fund categories from 1995 to 2022. Panel A and Panel B show the fund fees dispersion
(coefficient of variation) for Small Cap and Emerging Market US funds, respectively. Panel C depicts the
average fee dispersion within fund category. For each month t, I compute the average and standard deviation
of fund fees in a given category. Then, I obtain the average coefficient of variation for each month from 1995
to 2022. The solid red line in Panel C shows the equally weighted dispersion in fund fees, while the dashed
purple line reports the AUM-weighted dispersion.

68



Figure C.3: Total Assets in Thomson Reuters (s12) and CRSP Holdings. The figure shows
the total assets (in trillion of US dollars) in the Thomson Reuters (s12) and CRSP mutual funds holdings
databases. CRSP has no holdings data before 2003 (shaded area). The solid blue line reports total equity
assets in the Thomson Reuters (s12), while the dotted red line show the CRSP mutual funds holdings data.
This figure updates Figure 1 in Shive and Yun (2013) using updated vintages of data.
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Figure C.4: Word Cloud of Data Technologies’ Descriptions. The figure shows the word cloud of
data technologies’ features in my sample. For each data technology, I collect a short description of what the
technology allows to do (e.g., ipstack: “provides IP to geolocation APIs and global IP database services”)
and plot the word cloud where larger fonts indicate a higher word frequency.
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Figure C.5: Cumulative Average Monthly Flows. The figure shows the cumulative monthly average
flows from January 2006 to December 2022, with 95% confidence intervals. For each month t, I compute
an equally weighted average of flows for funds with data technology in place (dashed blue line) and funds
without data technology (solid red line). See Section 3.2 for details on data technologies. The vertical
dotted black line represents the release of TensorFlow in November 2015, which I use as plausibly exogenous
variation in signals’ precision in Section 4.4. This plot only shows sample averages.
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C.2 Appendix Tables

Fund Flowsi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.175*** 0.173*** 0.180*** 0.179***
(0.039) (0.046) (0.052) (0.050)

12b-1 Fees × × ✓ ✓

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.221 0.221 0.221 0.221
Outcome SE 6.293 6.293 6.293 6.293

Obs. 844,344 830,721 844,345 830,721
Second-stage Adj. R2 0.001 0.001 0.001 0.001

Table C.1: Fund Flows and Data Technologies, staggered treatment correction: This table
shows results of panel regression robust to concerns in staggered difference-in-differences (see Goodman-
Bacon, 2021). I estimate equation (2) following the approach in Gardner (2021); Gardner et al. (2024) to
correct for identification concerns in staggered difference-in-differences settings. The dependent variable is
the one-month-ahead fund flow, and the regressors are a dummy equal to one if a fund i has a data technology
in place at month t (Datai,t), and controls for fund-month characteristics (omitted for brevity). See Section
3.2 for details on data technologies. The control variables include a fund’s size (logAUM), expense ratio,
(log) age, flows, turnover, and CAPM alpha in month t. Columns (3) and (4) include 12b-1 fees as additional
controls, following Table 3 in the main text. The monthly sample include equity mutual funds and ETFs
from March 1993 to December 2022. All standard errors are bootstrapped and two-way clustered by fund and
month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flowsi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.141*** 0.127*** 0.144*** 0.130***
(0.042) (0.041) (0.042) (0.041)

12b-1 Feesi,t 0.251** 0.251**
(0.112) (0.109)

Alpha CAPMi,t 7.402*** 10.113*** 7.404*** 10.117***
(0.285) (0.363) (0.285) (0.363)

Fund Flowsi,t 0.125*** 0.117*** 0.125*** 0.117***
(0.010) (0.010) (0.010) (0.010)

logAUMi,t -0.548*** -0.538*** -0.549*** -0.539***
(0.026) (0.026) (0.026) (0.026)

logAgei,t -1.709*** -1.701*** -1.709*** -1.701***
(0.064) (0.064) (0.064) (0.064)

Exp. Ratioi,t -1.212*** -1.100*** -1.250*** -1.137***
(0.098) (0.095) (0.100) (0.096)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.221 0.221 0.221 0.221
Outcome SE 6.293 6.293 6.293 6.293

Obs. 971,730 970,832 971,730 970,832
Adj. R2 0.112 0.141 0.112 0.141

Table C.2: Fund Flows and Data Technologies, Detailed Results: This table shows results of OLS
panel regression in which the dependent variable is the one-month-ahead fund flow. The regressors are a
dummy equal to one if a fund i has a data technology in place at month t (Datai,t), 12b-1 fees, and controls
for fund-month characteristics. See Section 3.2 for details on data technologies. The control variables include
a fund’s size (logAUM), expense ratio, (log) age, flows, turnover, and CAPM alpha in month t. The monthly
sample include equity mutual funds and ETFs from March 1993 to December 2022. All standard errors are
two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the
10%, 5% and 1% respectively.
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Inflowsi,t+1 (%) Outflowsi,t+1 (%)

(1) (2) (3) (4) (5) (6)

Datai,t 0.284*** 0.220** 0.218*** 0.110 0.005 0.007
(0.053) (0.087) (0.083) (0.115) (0.097) (0.113)

12b-1 Fees × ✓ ✓ × ✓ ✓

Controls ✓ ✓ ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ × × ✓ × ×

Category×Time FE × ✓ ✓ × ✓ ✓

Outcome mean 5.698 5.698 5.698 5.459 5.459 5.459
Outcome SE 15.466 15.466 15.466 16.620 16.620 16.620

Obs. 198,791 194,903 194,903 198,790 194,901 194,902
Second-stage Adj. R2 0.002 0.001 0.001 0.000 -0.000 -0.000

Table C.3: Fund Inflows, Outflows and Data Technologies: This table shows results of panel re-
gression on fund inflows and outflows separately, robust to concerns in staggered difference-in-differences
(see Goodman-Bacon, 2021). I estimate equation (2) substituting the LHS with fund inflows and outflows,
following the approach in Gardner (2021); Gardner et al. (2024) to correct for identification concerns in
staggered difference-in-differences settings. The dependent variable is the one-month-ahead fund inflows in
columns (1) to (3) and fund outflows in columns (4) to (6). The regressors are a dummy equal to one if
a fund i has a data technology in place at month t (Datai,t), and controls for fund-month characteristics
(omitted for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s
size (logAUM), expense ratio, (log) age, past flows, turnover, and CAPM alpha in month t. Columns (3)
and (6) include 12b-1 fees as additional controls, following Table 3 in the main text. The monthly sample is
from January 2006 to June 2018. All standard errors are bootstrapped and two-way clustered by fund and
month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Pre-adoption growth rates Control Treatment Difference p-value

Monthly
Fund Flows -0.190 -0.198 0.008 0.780

Quarterly
Fund Flows -0.241 -0.280 0.039 0.260

Table C.4: Parallel trends: This table reports the growth rate of fund flows in the 12 months pre-
adoption, for adopting and not-adopting fund. For each fund’s adoption of a data technology in month t
(treatment), I construct the control group as the sample of funds with no data technologies in place in month
t. The table shows monthly and quarterly growth rates of fund flows for the sample of treated and control
group in the 12 months pre-adoption. I winsorize growth rates at the 1% and 99% level. The last column
reports the p-value of the difference between treated and control groups.
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Panel A: Treated (at adoption)
mean sd p5 p25 p50 p75 p95

AUM ($M) 1,509.28 6,934.52 7.27 45.49 197.33 846.95 5,761.43

Expense Ratio (%) 1.06 0.53 0.13 0.74 1.07 1.39 1.97

12b-1 Fees (%) 0.28 0.21 0.00 0.10 0.25 0.39 0.71

Flows (%) 0.30 6.02 -5.54 -1.55 -0.41 1.12 8.17

Turnover Ratio 0.75 1.08 0.05 0.23 0.46 0.85 2.31

Age (Years) 12.48 8.76 1.42 5.08 11.08 18.00 29.67

Panel B: Control
mean sd p5 p25 p50 p75 p95

AUM ($M) 1,201.05 5,540.89 6.85 40.43 171.23 670.08 4,268.67

Expense Ratio (%) 1.12 0.52 0.18 0.81 1.13 1.44 2.01

12b-1 Fees (%) 0.29 0.22 0.00 0.10 0.26 0.43 0.74

Flows (%) 0.20 6.11 -5.76 -1.76 -0.56 1.01 8.76

Turnover Ratio 0.83 1.03 0.07 0.27 0.54 0.99 2.40

Age (Years) 11.58 8.07 1.33 4.83 10.25 16.50 27.42

Table C.5: Balance covariates: This table reports summary statistics of covariates for funds in the
treatment and control group. For each fund’s adoption of a data technology in month t (treatment), I
construct the control group as the sample of funds with no data technologies in place in month t. For
each group, I report the covariates in the 3 months pre-adoption. The table shows covariates included in
regressions in the main text. AUM is inflation adjusted in January 2000 $ million. Expense Ratio, 12b-1
Fees, and Flows are in %; e.g., the average fund flow for the control group is 0.20% monthly.
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Expense Ratioi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.035*** 0.033*** 0.038*** 0.036***
(0.006) (0.006) (0.004) (0.006)

12b-1 Fees × × ✓ ✓

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 1.141 1.141 1.141 1.141
Outcome SE 0.538 0.538 0.538 0.538

Obs. 844,345 830,722 844,344 830,722
Second-stage Adj. R2 0.012 0.011 0.015 0.013

Table C.6: Expense Ratio and Data Technologies, staggered treatment correction: This table
shows results of panel regression robust to concerns in staggered difference-in-differences (see Goodman-
Bacon, 2021). I estimate a similar specification to results in Table 4, following the approach in Gardner
(2021); Gardner et al. (2024) to correct for identification concerns in staggered difference-in-differences
settings. The dependent variable is the one-month-ahead expense ratio, and the regressors are a dummy
equal to one if a fund i has a data technology in place at month t (Datai,t), and controls for fund-month
characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The control variables
include a fund’s size (logAUM), (log) age, flows, turnover, and CAPM alpha in month t. Columns (3) and (4)
include 12b-1 fees as additional controls. The monthly sample include equity mutual funds and ETFs from
March 1993 to December 2022. All standard errors are bootstrapped and two-way clustered by fund and
month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flowsi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.149*** 0.139*** 0.153*** 0.149***
(0.041) (0.041) (0.042) (0.042)

12b-1 Feesi,t 0.295** 0.307**
(0.127) (0.124)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.349 0.349 0.349 0.349
Outcome SE 6.101 6.101 6.101 6.101

Obs. 683,114 682,065 683,114 682,065
Adj. R2 0.145 0.176 0.145 0.177

Table C.7: Robustness of Results on Flows, excluding Google Analytics: This table addresses
concerns that the results are entirely driven by Google Analytics. The table replicates the main findings
on flows (Table 3) excluding Google Analytics from the set of data technologies. Specifically, this table
shows results of OLS panel regression in which the dependent variable is the one-month-ahead fund flow.
The regressors are a dummy equal to one if a fund i has a data technology in place (different from Google
Analytics) at month t (Datai,t), 12b-1 fees, and controls for fund-month characteristics (omitted for brevity).
See Section 3.2 for details on data technologies. The control variables include a fund’s size (logAUM), expense
ratio, (log) age, flows, turnover, and FF-3 factors alpha (columns (1) and (2)) or FF-5 factors alpha (columns
(3) and (4)) in month t. For this table, I remove funds with Google Analytics being the only data technology
in place. The monthly sample include equity mutual funds and ETFs from March 1993 to December 2022.
All standard errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote
statistical significance at the 10%, 5% and 1% respectively.
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Expense Ratioi,t+1 (%)

(1) (2) (3) (4)

Datai,t 0.035*** 0.035*** 0.046*** 0.044***
(0.007) (0.007) (0.007) (0.007)

12b-1 Feesi,t 0.273*** 0.252***
(0.020) (0.018)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 1.167 1.167 1.167 1.167
Outcome SE 0.560 0.560 0.560 0.560

Obs. 683,114 682,065 683,114 682,065
Adj. R2 0.928 0.932 0.931 0.935

Table C.8: Robustness of Results on Expense Ratio, excluding Google Analytics: This table
addresses concerns that the results are entirely driven by Google Analytics. The table replicates the main
findings on expense ratio (Table 4) excluding Google Analytics from the set of data technologies. Specifically,
this table shows results of OLS panel regression in which the dependent variable is the one-month-ahead fund
expense ratio. The regressors are a dummy equal to one if a fund i has a data technology in place (different
from Google Analytics) at month t (Datai,t), 12b-1 fees, and controls for fund-month characteristics (omitted
for brevity). See Section 3.2 for details on data technologies. The control variables include a fund’s size
(logAUM), (log) age, flows, turnover, and CAPM alpha in month t. For this table, I remove funds with
Google Analytics being the only data technology in place. The monthly sample include equity mutual funds
and ETFs from March 1993 to December 2022. All standard errors are two-way clustered by fund and month
(in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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P {Adoption} (%)

(1) (2) (3) (4) (5) (6)

Category Adoption %i,t 0.171 0.169 -0.283 0.140 0.272 0.314*
(0.893) (0.291) (0.731) (0.223) (0.501) (0.172)

State Adoption %i,t 3.034*** 1.145***
(0.814) (0.276)

City Adoption %i,t 4.066*** 1.455***
(0.692) (0.227)

Zip Code Adoption %i,t 4.766*** 1.904***
(0.463) (0.183)

Estimator Logit Probit Logit Probit Logit Probit
Controls ✓ ✓ ✓ ✓ ✓ ✓

Obs. 720,730 720,730 720,730 720,730 720,730 720,730
Pseudo R2 0.093 0.096 0.141 0.140 0.233 0.226

Table C.9: Technology Diffusion in the Asset Management Industry: This table shows results of
logit/probit regression of probability to adopt data technology, on the (lagged) adoption rate at different
levels of aggregation. The adoption rate is defined as the percentage of funds with data technology in place,
within a given category, state, city, or zip code in month t. Columns (1) and (2) use adoption rate at the
state level, columns (3) and (4) at city, and columns (5) and (6) at the zip code level. The regressors are
adoption rate within fund category, adoption rate at the geographical level (state, city, or zip code), and
controls for fund-month characteristics (omitted for brevity) The control variables include (lagged) fund’s size
(logAUM), expense ratio, (log) age, and flows. All standard errors are clustered by month (in parentheses).
*, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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Fund Flowsi,t+1 (%)

FF-3 factors FF-5 factors

(1) (2) (3) (4)

Datai,t 0.149*** 0.139*** 0.153*** 0.149***
(0.041) (0.041) (0.042) (0.042)

12b-1 Feesi,t 0.247** 0.230** 0.232** 0.198*
(0.113) (0.110) (0.114) (0.112)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.221 0.221 0.221 0.221
Outcome SE 6.293 6.293 6.293 6.293

Obs. 972,199 971,294 972,199 970,832
Adj. R2 0.106 0.136 0.100 0.129

Table C.10: Robustness of Main Results with alternative performance measures: This table
replicates the main results using different performance measures. This table shows results of OLS panel
regression in which the dependent variable is the one-month-ahead fund flow. The regressors are a dummy
equal to one if a fund i has a data technology in place at month t (Datai,t), 12b-1 fees, and controls for
fund-month characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The
control variables include a fund’s size (logAUM), expense ratio, (log) age, flows, turnover, and FF-3 factors
alpha (columns (1) and (2)) or FF-5 factors alpha (columns (3) and (4)) in month t. The monthly sample
include equity mutual funds and ETFs from March 1993 to December 2022. All standard errors are two-way
clustered by fund and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5%
and 1% respectively.

81



Amihudi,q+1 (%)

(1) (2) (3) (4)

Datai,q 0.496*** 0.426*** 0.492*** 0.433***
(0.011) (0.103) (0.113) (0.098)

12b-1 Fees × × ✓ ✓

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.525 0.525 0.525 0.525
Outcome SE 4.588 4.588 4.588 4.588

Obs. 149,870 147,328 149,889 147,346
Second-stage Adj. R2 0.010 0.007 0.010 0.008

Table C.11: Illiquid Holdings and Data Technologies: This table shows results of panel regression
on the fund portfolio tilt toward illiquid stocks, as measured by Amihud illiquidity. I define portfolio tilts
similarly to Pastor et al. (2024). Formally, fund i tilt towards illiquid stocks in quarter q is the absolute
value of deviation in weighted characteristics, as defined in Lettau et al. (2024): 1

2 ∑
N
n=1 ∥(wi,q(n)− w̄i,q(n)) ⋅

Amihudq(n)∥, where w̄i,q(n) is the weight of a value-weighted portfolio within the stocks held by fund i
in quarter q. In the estimation, I follow the approach in Gardner (2021); Gardner et al. (2024) to correct
for identification concerns in staggered difference-in-differences settings, as the sample of fund holdings data
begins in 2004:Q2. The dependent variable is the one-month-ahead fund’s portfolio tilt towards illiquid
(Amihud) stocks, and the regressors are a dummy equal to one if a fund i has a data technology in place
at month t (Datai,t), and controls for fund-month characteristics (omitted for brevity). See Section 3.2 for
details on data technologies. The control variables include a fund’s size (logAUM), (log) age, flows, turnover,
and CAPM alpha in month t. The quarterly sample is from 2004:Q2 to 2022:Q4. All standard errors are
bootstrapped and two-way clustered by fund and quarter (in parentheses). *, **, and *** denote statistical
significance at the 10%, 5% and 1% respectively.
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zi ∶ Tenure of Adoption N. of Data Tech.

(1) (2) (3) (4) (5) (6)

Datai,t 0.567*** 0.595*** 0.517*** 0.517*** 0.491*** 0.491***
(0.139) (0.140) (0.146) (0.146) (0.136) (0.136)

Datai,t × Postt 0.253** 0.313***
(0.109) (0.109)

Datai,t × Postt × zi 0.080** 0.080** 0.023** 0.023**
(0.033) (0.033) (0.011) (0.011)

Controls ✓ ✓ ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ × ✓ × ✓ ×

Category×Time FE × ✓ × ✓ × ✓

Outcome mean 0.182 0.182 0.182 0.182 0.182 0.182
Outcome SE 6.458 6.458 6.458 6.458 6.458 6.458

Obs. 598,363 597,524 438,485 438,485 519,866 519,866
Adj. R2 0.104 0.140 0.093 0.093 0.101 0.101

Table C.12: Fund Flows and Data Technologies after TensorFlow, without Growth Funds:
This table replicates the findings in Section 4.4 (Table 7 in the main text) removing growth funds from the
sample. This robustness address the concern that results in Table 7 are driven by TensorFlow affecting flows
to growth funds only. Specifically, this table shows results of OLS panel regression in which the dependent
variable is the one-month-ahead flow for share class j of fund i. Columns (1) and (2) follow specification in
equation (5), while columns (3) to (6) follow (6). In columns (3) and (4) the continuous treatment zi is the
(log) number of months between the first data technology adoption and TensorFlow’s release. Columns (5)
and (6) use the number of data technologies installed as of TensorFlow’s release, as continuous treatment
zi. Datai,t is a dummy equal to one if fund i has a data technology in place at month t. See Section 3.2
for details on data technologies. The fund-month control variables (omitted for brevity) include a fund’s
size (logAUM), expense ratio, (log) age, flows, turnover, CAPM alpha, 12b-1 fees, and the coefficient of
data competition (equation (8)) in month t. The monthly sample include equity mutual funds and ETFs,
excluding growth funds, from March 1993 to December 2022, which did not adopt a data technology after
June 2015 (i.e., six-months before TensorFlow’s release). All standard errors are two-way clustered by fund
and month (in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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CAPM alpha FF-3 alpha FF-5 alpha

(1) (2) (3) (4) (5) (6)

Datai,t 0.0003** 0.0002 -0.0000
(0.0001) (0.0001) (0.0002)

Datai,t 0.0000 0.0001 -0.0002
(0.0001) (0.0002) (0.0002)

Estimator OLS RD OLS RD OLS RD
Controls ✓ ✓ ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

Outcome mean 0.0010 0.0010 -0.0012 -0.0012 0.0012 0.0012
Outcome SE 0.0252 0.0252 0.0363 0.0363 0.0558 0.0558

Obs. 971,918 971,918 971,918 971,918 971,918 971,918
Adj. R2 0.1199 -0.0067 0.5019 -0.0081 0.6377 -0.0080
First stage F-stat − 7,421.13 − 7,421.13 − 7,421.13

Table C.13: Performance and Data Technologies: This table shows results of regression in which
the dependent variable is the one-month-ahead fund performance. Columns (1), (3), and (5) report results
for OLS regressions, while columns (2), (4), and (6) use the recursive demeaning approach (RD) in Pástor,
Stambaugh and Taylor (2015) which accounts for the positive contemporaneous correlation between fund
size and unexpected returns. The regressors are a dummy equal to one if a fund i has a data technology in
place at month t (Datai,t), 12b-1 fees, and controls for fund-month characteristics (omitted for brevity). See
Section 3.2 for details on data technologies. The control variables include a fund’s size (logAUM), (log) age,
flows, turnover, and performance in month t. I use CAPM alpha (columns (1) and (2)), FF-3 factors alpha
(columns (3) and (4)), and FF-5 factors alpha (columns (5) and (6)) as proxy of funds’ performance. The
monthly sample include equity mutual funds and ETFs from March 1993 to December 2022. All standard
errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical significance
at the 10%, 5% and 1% respectively.
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Retail Funds Institutional Funds

(1) (2) (3) (4)

Datai,t 0.161** 0.190** 0.027 -0.012
(0.075) (0.076) (0.121) (0.123)

12b-1 Feesi,t -0.598** -0.635** -0.139 -0.194
(0.246) (0.250) (0.434) (0.439)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.421 0.421 0.746 0.746
Outcome SE 7.930 7.930 8.421 8.421

Obs. 407,509 406,755 188,295 185,928
Adj. R2 0.136 0.161 0.113 0.123

Table C.14: Retail and Institutional Aggregation and Data Technologies: This table shows results
of OLS panel regression in which the dependent variable is the one-month-ahead fund expense ratio. Columns
(1) and (2) report results aggregating observations for retail share classes only, while columns (2) and (4) for
institutional share classes only. The regressors are a dummy equal to one if a fund i has a data technology
in place at month t (Datai,t), 12b-1 fees, and controls for fund-month characteristics (omitted for brevity).
See Section 3.2 for details on data technologies. The control variables include a fund’s size (logAUM), (log)
age, flows, turnover, and CAPM alpha in month t. The monthly sample include equity mutual funds and
ETFs from March 1993 to December 2022. All standard errors are two-way clustered by fund and month
(in parentheses). *, **, and *** denote statistical significance at the 10%, 5% and 1% respectively.
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(1) (2) (3) (4)

Exp. Ratioi,t -1.249*** -1.114*** -1.249*** -1.114***
(0.100) (0.086) (0.089) (0.096)

Exp. Ratioi,t × Datai,t -0.246*** -0.246***
(0.062) (0.079)

Controls ✓ ✓ ✓ ✓

Fund FE ✓ ✓ ✓ ✓

Time FE ✓ × ✓ ×

Category×Time FE × ✓ × ✓

Outcome mean 0.222 0.222 0.222 0.222
Outcome SE 6.295 6.295 6.295 6.295

Obs. 971,984 971,079 971,984 971,079
Adj. R2 0.112 0.141 0.112 0.141

Table C.15: Fund Flows Semi-Elasticity and Data Technologies: This table shows results of OLS
panel regression in which the dependent variable is the one-month-ahead fund fund flows. The regressors
are a the fund expense ratio (in %), a dummy equal to one if a fund i has a data technology in place at
month t (Datai,t), an interaction term with the fund expense ratio and the dummy, 12b-1 fees, and controls
for fund-month characteristics (omitted for brevity). See Section 3.2 for details on data technologies. The
control variables include a fund’s size (logAUM), (log) age, flows, turnover, and CAPM alpha in month
t. The monthly sample include equity mutual funds and ETFs from March 1993 to December 2022. All
standard errors are two-way clustered by fund and month (in parentheses). *, **, and *** denote statistical
significance at the 10%, 5% and 1% respectively.
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