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Abstract

A key question in automating governance is whether machines can recover the corporate ob-
jective. We develop a corporate recovery theorem that establishes when machines can do
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find that managers systematically underestimate investment costs, leading to over-investment
and under-exploration. This bias persists even when accounting for intangibles, managerial
compensation, and ESG scores. While social and governance concerns influence corporate ob-
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alignment with shareholder value is imperfect, but it has improved over time.
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Corporate purpose, or the objective function of the firm defines the goals and values that management

aims to achieve. The doctrine for the last century has been that firms ought to maximize shareholder value,

which means they invest and finance to increase the wealth of shareholders (Friedman, 1970). Shareholder-

value maximization has recently been challenged by alternative theories focusing on welfare, stakeholders,

misalignment of incentives, and non-standard preferences. A firm can and in some cases should have

objectives beyond maximizing shareholder value for a number of reasons. Corporations may have environ-

mental and social responsibility objectives, such as reducing carbon footprint or promoting diversity and

inclusion; other objectives may relate to employee satisfaction and well-being, product quality, or customer

satisfaction (Freeman, 1984). In addition, CEOs and other managers face incentive problems leading to

agency conflicts in which their personal interests do not align with the interests of the shareholders and

which can result in suboptimal decisions and outcomes for the corporation (Jensen and Meckling, 1976).1

Ultimately, the objective function of a firm likely depends on a number of features, including its social

objectives, governance, environmental impact, organizational structure, ownership structure, industry,

management culture, and the values and goals of all its stakeholders.

In this paper we ask if a machine can recover the de-facto corporate objective from managers’ observed

behavior. This is a key issue in automating corporate governance. The firm’s objective is not directly

observable in the data. However, if the reward associated with a managerial action can be measured

across different states, one can derive conditions for when the objective function of the firm and the

features that determine it can be recovered. In addition, one can go beyond identifying the reward

function and generalize to new environments by training a machine to perform the same task(s) as the

CEO or other managers. This may ultimately allow to automate corporate decision making and other

complex managerial tasks. After establishing conditions for recoverability and generalizability, we show

which objective function of the firm can be recovered based on firms’ observed investment, financing, and

operational policies.

A recent strand of artificial intelligence techniques, Inverse Reinforcement Learning (IRL), recovers an

agent’s reward function or objective function based on observed behavior.2 The basic idea of IRL is to

1To address agency conflicts, corporations often implement governance mechanisms to better align the managerial
incentives with those of the shareholders, including executive compensation, board of directors, ownership structure,
auditing and monitoring, and shareholder activism.

2IRL learns the reward function by observing the optimal policy/behavior. IRL is the reverse of the reinforcement
learning (RL) approach, where the agent learns the optimal policy based on a given reward function (Sutton and
Barto, 2018). RL is typically used in environments where the agent can experiment and learn by receiving feedback
from rewards, such as in games, robotics, or financial trading. Campello et al. (2024) apply RL in corporate finance.
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observe the actions of a human expert, in our case the CEO managing the firm, and then infer the reward

function that the expert is maximizing. Once the reward function is inferred, it can be used to train an

artificial agent to perform the task in a new environment similar to the expert without the assistance of

the original expert. IRL is a challenging problem and generally ill-defined. The majority of the existing

IRL literature has therefore focused on a simpler task, recovering the agent’s policy function, instead of

the agent’s objective or reward function. The advantage of recovering the policy is that it can directly

be applied to train a new agent. The disadvantage is that policy-based IRL is not necessarily robust to

exogenous factors and does not naturally generalize to new environments. Recently, Cao et al. (2021) and

Rolland et al. (2022) have shown that the agent’s objective function and state-action contingent rewards

can be recovered in a Markov decision problem (MDP) under some regularity conditions. While Cao

et al. (2021) assume a condition that the agents’ MDPs are value-distinguishing, Rolland et al. (2022)

only impose rank conditions on the state transition probabilities and illustrate how they can be checked

empirically. They then show that the value function can be recovered state by state up to a constant if the

agents’ policies are entropy regularized by a known penalty, such that they are stochastic and ergodic, and

either the same agent acts in environments varying over time or different agents share the same reward.

We develop a corporate recovery theorem and apply the IRL methodology to financial data on firms’

investment and financial policies which allows us to recover the importance of features affecting firms’

objectives. We start by generalizing the results in Cao et al. (2021) and Rolland et al. (2022) to the

case where the agents’ reward functions contain additively separable preference shocks and the weight

on exploration (i.e., the entropy regularization weight) are unknown to the observer/machine, which is a

scenario likely to be the case in economics and finance. We show that the agents’ instantaneous rewards

and value functions can still be recovered up to affine transformations for each state-action pair observed

in the data. Based on these results, we can similar to regressions specify a set of features (or independent

variables) and recover the coefficients on these features.

We document a number of stylized facts about the corporate purpose. Applying the corporate recovery

theorem to a large dataset on investment and financial policies of publicly traded U.S. firms, we document

the following findings. Our first main result concerns the relative importance of current profits to invest-

ment. Neoclassical models postulate that firms’ investment is determined by expected profitability and

the cost of capital, or that the reward function is of the form Profitability− InvestmentRate, reflecting

a price of capital equal to one. However, we find that managers act as if they underestimate the cost of
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investment by up to 35-55% relative to theory. Simply speaking, managerial policies are consistent with

a reward function of the form Profitability − p× InvestmentRate where the manager’s shadow price of

capital p ranges from 0.45 to 0.65 depending on the specification, significantly less than one. This finding

is robust to alternative definitions of investment and capital, the inclusion of additional features such as

control features, managerial compensation and ESG scores, as well as different discount rates.

These results show that managers de-facto over-invest and under-explore. The over-investment is

pervasive across profitability levels, with the relative increase the largest for low levels of profitability. In

addition, managers do too little exploration, or experimentation by varying investment less than optimal.

This corporate reward puzzle is inconsistent with the predictions from the foundational q-theory model

and supports alternative theories predicting over-investment and under-exploration.3 While both over-

and under-investment have been documented empirically (Blanchard et al., 1994; Cho, 1998; Richardson,

2006; Ferreira and Matos, 2008; Cronqvist and Fahlenbrach, 2009), under-exploration and hence too little

experimentation over investment opportunities have not been documented before. We link these distortions

in the observed corporate behavior to the manager’s shadow cost of capital, which is too low. Consistent

with our findings, Ben-David and Chinco (2024) demonstrate that a parametric model where managers are

EPS maximizers can account for observed capital budgeting behavior, but they do not explicitly consider

investment rates nor exploration incentives. Jha et al. (2024) use ChatGPT to compute a firm-level

investment score and show that high-investment-score firms experience negative future abnormal returns,

consistent with value-destructing over-investment but silent about exploration/experimentation.

To better understand the source of the investment inefficiency, we explore whether financial factors,

intangible capital, compensation policy, managerial risk aversion, and ESG concerns enter the corporate

objective. We find that financial factors, including cash holdings, book leverage, and net book leverage,

contribute to the corporate reward function, although their impact is neither large nor consistent across

models. Intangible capital (following Peters and Taylor (2017)) significantly improves the model fit, but it

does not resolve the corporate reward puzzle that the manager’s shadow price of capital is less than one.

We then construct a shareholder alignment measure, Alignment, defined as the correlation across

3Over-investment is consistent with models of asymmetric information, agency costs, and managerial overconfidence.
The free cash flow hypothesis of Jensen (1986) (see also Richardson (2006)) suggests that firms with substantial free
cash flow and limited growth opportunities are prone to overinvestment, as managers prefer to invest excess cash
rather than return it to shareholders. Agency cost models (Myers and Majluf, 1984; Shleifer and Vishny, 1989;
Stulz, 1990) highlight conflicts between shareholders and managers. In situations where managerial incentives
are misaligned with shareholder interests, managers may overinvest in projects that do not maximize shareholder
value. Managerial overconfidence models (Malmendier and Tate, 2005) incorporate behavioral biases to predict
that managers will overestimate the returns on investment projects, leading to overinvestment.
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different states between the recovered value that managers maximize and observed market values. Our

results suggest that managerial alignment with shareholder value is imperfect, but it has significantly

improved over time. Agency theory implies a misalignment of interests, predicting that, absent governance

mechanisms, managers take decisions with respect to their own reward function rather than the one of

shareholders, predicting Alignment < 1. We quantify the degree of alignment relative to both Tobin’s

q and Total q. We find that compensation policy significantly affects the manager’s reward but the

improvement in model performance is small from incorporating compensation policy. CEO bonus, CEO

ownership, CEO options, and other C-level managers’ compensation all enter the corporate objective but

do not improve model fit by much. The degree of manager-shareholder alignment is also not materially

affected by compensation policy, reaching up to Alignment = 0.85 (0.52) for Tobin’s q (Total q).

Stakeholder theory predicts that social and environmental performance should positively affect the

reward function. Managers’ survey responses and shareholder communications confirm that, de jure, they

act in stakeholders’ interests, including employees, customers, and the environment (Graham, 2022; Rajan

et al., 2024). When adding social and environmental performance scores, we find that good social perfor-

mance (which takes into account criteria such as human capital, product liability, stakeholder opposition

and social opportunities4 and benefits employees and customers) increases the manager’s period-by-period

reward by approximately 19% of profitability on average. However, environmental performance has little

to no effect on the manager’s reward on top of profits when considering only investment decisions, and

decreases the reward by 11% when considering joint investment and leverage decisions. While this sug-

gests strong materiality of environmental concerns or no care for the environment, the latter is in line with

survey evidence that only 20% of CFO responded that they manage the company in the interest of the

environment. To the extent that we recover the reward function consistent with all managers’ actions,

another possibility is that these managers spoke the truth, but were counterbalanced by others that do

not care about the environment (Hart and Zingales, 2017).

Overall, firms maximize shareholder value to a large extent in the sense that the alignment measure

reaches values of Alignment = 0.89, with 1 indicating perfect alignment. However, we find this large

alignment only after accounting for the fact that social and governance considerations enter the firm’s de-

facto objective. The correlation between the recovered value and Total q increases substantially once we

incorporate ESG considerations, from 0.20 for 2007-2014 to 0.51 for 2014-2021 without to 0.77 for 2007-

4See https://www.msci.com/documents/1296102/34424357/MSCI+ESG+Ratings+Methodology.pdf.
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2014 to 0.80 for 2014-2021 with ESG considerations. This increase in manager-shareholder alignment

suggests that (environmental), social, and governance considerations play a substantial role in firms’

decision-making, and it suggests a strong but imperfect alignment of the reward function of the manager

with the valuation of the firm in the market.

More broadly, we demonstrate how machine learning techniques, such as IRL, can be used in economics

and finance to analyze settings where agents make intertemporal decisions. Chen et al. (2023) show how to

incorporate economic restrictions from structural models into a machine learning model through transfer

learning. Campello et al. (2024) employ RL in corporate finance to learn managers’ policy functions,

explaining and predicting firm outcomes and guiding policy recommendations. Complementing this inno-

vative work, we establish conditions when RL can be used to learn the manager’s objective function. Our

IRL approach infers managers’ underlying incentives and rewards based on their actions across various

states. This enables us to address questions about incentive alignment and explore how optimal policies

must adapt as the economic environment evolves. IRL is a flexible methodology that holds significant

potential for applications in corporate finance, asset management, market microstructure, banking, and

household finance, where learning about agents’ reward and value functions can provide economic insights

without relying on specific parametric models. Additionally, understanding the reward structure is crucial

for adapting to constantly changing environments.

Literature review. The literature on the corporate objective and purpose is vast. The debate over

the corporate objective is rooted in two primary perspectives: the shareholder primacy view and the stake-

holder theory. The shareholder primacy view, advocated by scholars like Friedman (1970), posits that the

sole responsibility of a corporation is to maximize shareholder wealth, operating within the boundaries of

the law and ethical customs. In contrast, the stakeholder theory, advanced by Freeman (1984), argues that

corporations have a broader responsibility to various stakeholders, including employees, customers, sup-

pliers, and the community, alongside shareholders. This perspective emphasizes that sustainable success

is achieved by balancing the interests of all stakeholders.

Shareholder wealth maximization (Friedman, 1970) effectively means the maximization of a stream of

discounted cash flows to shareholders which is the prevailing norm for the corporate objective function.

Assuming that markets are competitive and absent monopolies and externalities, social welfare is also

maximized under shareholder wealth maximization. As Jensen and Meckling (1976) show, this is due to

the fact that shareholders are the residual claim-holders to the firm’s cash flows. All other parties involved
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in the production of the firm’s output (suppliers, employees, debtholders, government) receive their rewards

ahead of shareholders. Many studies, for example in the literature on the relation between investment and

Tobin’s Q (Tobin, 1969; Hayashi, 1982; Abel and Eberly, 1994), focus on firm value maximization as an

alternative to shareholder wealth maximization.

Proponents of stakeholder value maximization (Freeman, 1984) argue that the firm should maximize

the value of all its stakeholders (customers, suppliers, employees, governments, etc.). While there is no

consensus on what exactly constitutes the set of stakeholders (Miles, 2012), the shareholders of the firm

are free to choose. Stakeholder value maximization implies that the reward function includes at least

some altruistic/charitable component in addition to the profit motive (Elhauge, 2005; Graff Zivin and

Small, 2005; Baron, 2007; Bénabou and Tirole, 2010; Magill et al., 2015; Hart and Zingales, 2017, 2022;

Morgan and Tumlinson, 2019; Ericson, 2024). Without entering into the details, environmental, social

and governance (ESG) performance considerations, sustainable development goals (SDGs) and corporate

social responsibility (CSR) are all related to stakeholder value maximization in that they also advocate

for additional terms beyond profits in the reward function.5 Separation of ownership and decision-making

gives rise to the principal-agent problem (Jensen and Meckling, 1976), meaning a possible misalignment

between the interests of the manager (decision-maker) and those of the shareholders (owners). Absent any

governance mechanism, the manager maximizes own value consisting of a stream of discounted rewards

which may be different from the one of shareholders. Agency frictions can arise due to differences in

preferences (e.g., risk aversion), time horizon, and/or reward function, which we all model.

There are two major points of contention in the literature. First, do shareholders care about non-

pecuniary benefits? Second, do managers’ decisions align with shareholder welfare maximization or not

(e.g. due to agency frictions or behavioral biases)? The first question is difficult to answer in practice.

For example, a firm that invests into their employees today may do so because they care about their

employees’ well-being or because they expect these employees to bring in more profits in the future. To

clearly establish that the firm cares about non-pecuniary benefits, one would have to observe that the

5Opponents of stakeholder value maximization (or some implementation thereof) often criticize that stakeholder
value maximization is infeasible to implement in practice (Jensen, 2010; Bebchuk and Tallarita, 2020). Non-
pecuniary benefits (e.g. “making the world a better place”) may be hard or even impossible to measure. Even if
perfectly measurable, as the number of shareholders of a firm increases, it becomes increasingly likely that their
individual valuations of these non-pecuniary benefits vary. As a result of this, two problems are likely to arise: it
may be practically infeasible to aggregate individual preferences into one single objective function and the manager
may not be aware of the shareholders’ (individual or aggregate) preferences. This, in turn, can exasperate agency
problems (holding the firm manager accountable is hard when there is no clear goal) and can render the company
less competitive (a firm that under-weights the profit motive may see its survival threatened by competitors).
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firm continuously invests in their employees despite this not resulting in increased marginal profits over a

long horizon. Hong and Shore (2023) survey the literature and find that, overall, shareholders care about

corporate social responsibility and that their interest is predominantly driven by non-pecuniary motives.

Graham (2022) surveys managers about their de jure objective function (i.e., what managers say that

they maximize). When asked in whose interest they think the company should be run in 2020, CFOs

responded that the company should be managed to 41% in the interest of stakeholders (compared to

31% in 2010). When asked about which stakeholders are most important, approximately 60% responded

employees, 50% responded customers and 20% responded the environment. The study also finds that

managers use heuristics and suffer from costly biases.

Our methodology, Inverse Reinforcement Learning (IRL), is not widespread in economics and finance.

We contribute to the literature on the corporate objective function by applying IRL to recover the reward

function that firm managers use in their decision-making. In doing so, this paper is the first to use IRL

in a corporate finance setting to recover corporate policies and managers’ reward function in a model-

free setting. IRL consists in inferring an agent’s unknown underlying preferences or reward function by

observing its behavior (Russell, 1998; Ng et al., 2000).

IRL is directly related to revealed preference theory. The economics literature distinguishes between

axiomatic and revealed preference theory. In axiomatic preference theory, the reward function is postulated

or derived from basic axioms. However, empirical and experimental studies often reject these reward

specifications and show that agents display behavioral biases and/or non-standard preferences. Revealed

preference theory (Samuelson, 1938) assumes that an agent’s reward/preferences can be revealed by their

decisions. Our corporate recovery theorem provides conditions for when revealed preferences can be

recovered, extending the results in Cao et al. (2021) and Rolland et al. (2022). The use of IRL in

economics has clear benefits, as it allows to better understand the rewards of agents in various decision-

making problems. It can provide a measurable and interpretable function consistent with agents’ behaviour

when there is no obvious benchmark. Moreover, this reward function can be used to conduct counterfactual

analysis and study how an agent would behave in a new environment. We contribute to this literature by

providing conditions for the recovery of an agent’s reward and value function and an empirical methodology.
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1 The Recovery Framework

One of the main goals in economics and finance is to understand agents’ objective function and explain their

behavior based on the rewards they receive from their actions. In a corporate setting, corporate purpose

captures the objective function of the firm when the corporation’s investment and financial decisions are

delegated to a CEO or other manager. This section derives conditions for when and how IRL can be used

to recover the reward function that corporate managers use in making their intertemporal investment and

financing decisions. Most applied models of corporate decision making posit a set of economics assumptions

and infer the model parameters from panel data on, for instance, firms’ investment and financing decisions,

including profitability, size, investment, depreciation, leverage, and other features.6 This section explores

conditions for the recovery of an agent’s reward and value functions, assuming optimality but a limited

set of other economic assumptions.

1.1 Model setup

The agent’s (a CEO or other manager) decision problem can be formulated as follows. Given a set

of states s ∈ S and a set of potential actions a ∈ A, agent i = 1, ..., I receives instantaneous reward

ui(s, a) and has discount factor γi, which determines the importance of future rewards in the agent’s

intertemporal optimization. Let Ti(s′|s, a)|S||A|×|S| denote the state transition probability for agent i, that

is, the probability of arriving in state s′ when taking action a in state s which is allowed to vary by

agent. The agent must trade off exploitation (maximizing immediate rewards) and exploration (gathering

information about the environment), which leads to stochastic policies π : S → P(A) where P(·) denotes

the set of all probability distributions over all actions in A at every state.

To model this, we assume the agent solves an infinite-horizon Markov decision problem with instan-

taneous reward ui(s, a) and entropy regularization H(πi) which captures the manager’s incentive for ex-

ploration. At each time t, the agent observes the current state st and takes action a ∈ A with probability

πi(a|st):

V π∗
i (s) = max

{at}t≥0

Ei[
∞∑
t=0

(γti (ui(st, at) + λH(πi(·|st))))], (1)

where V π∗
i (s) is the value function under optimal policy π∗ and initial state s0 = s, Ei denotes the

6A similar logic applies to other fields of finance, including consumer finance where one tries to explain consumers’
financial decisions.
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expectation over trajectories {(st, at)}t≥0 under Ti(st+1|st, at) and following policy πi(·|st) and H(π) =

−
∑

a∈A π(a) log π(a) is the entropy of π. The parameter λ > 0 controls the trade-off between explo-

ration (high entropy, more diverse action choices) and exploitation (low entropy, more deterministic action

choices) and, hence, the dispersion in π which ensures that all actions occur with non-zero probability in

each state.

The assumption of a shared common reward across the agents ensures that the instantaneous rewards

ui(s, a) can be recovered from data on the agents’ behavior.

Assumption 1. Agents i = 1, ..., I share the same instantaneous reward up to an additively separable

preference shock ϵit: ui(st, at) = u(st, at) + ϵit, with E[ϵit|Tj(·|st, at)] = 0 for all (i, j).

Here we allow each agent to receive different instantaneous rewards from the same actions, while Cao

et al. (2021) and Rolland et al. (2022) assume ϵit = 0 which may not hold in financial data.

The solution to (1) is an entropy-regularized optimal policy π∗i that satisfies for all a ∈ A:

π∗i (a|s) =
e

1
λ
Q
π∗i
i (s,a)∑

a′∈A e
1
λ
Q
π∗
i
i (s,a′)

, (2)

where the Qπi -function is the agent-specific state-action value of π at (s, a) ∈ S ×A:

Qπi (s, a) ≡ ui(s, a) + γi
∑
a′∈A

Ti(s
′|s, a)V π

i (s
′), (3)

and V π
i (s

′) is the continuation value given π. The entropy regularization λ > 0 can be arbitrarily small and

ensures that the agent’s policies are stochastic and ergodic, such that π∗i (a|s) ∈ (0, 1) for all (s, a) ∈ S×A.

The policy function (2) generates for each agent a set of observed state-action trajectories {s0, a0,

s1, a1, s2, a2, ..., s∞, a∞} starting from initial state s0 = s that allow to estimate πi = π∗i (a|s) and Ti =

Ti(s
′|s, a) for any i and (s, a). For any i with fixed policy πi(a|s) ∈ (0, 1) and an arbitrary choice of

function vi : S → R, Cao et al. (2021) show there is a unique corresponding reward function

ui(s, a) = λ lnπi(a|s)− γi
∑
s′∈S

Ti(s
′|s, a)vi(s′) + vi(s). (4)

Condition (4) with π∗i (a|s) yields agent i’s reward function iff vi(s) = V π∗
i (s) for all s ∈ S. The identifying

assumption we will use to recover the agents’ reward is that λ is the same across i.

9



1.2 Strong reward recovery

In this environment, we aim to recover the instantaneous reward functions ui(s, a) that best explain the

agents’ behavior. It will be convenient to work with the log probability of action a by agent i in state s,

lnπ∗i (a|s), and collect them for each agent and state-action pair in the vector

yi = (lnπ∗i (a|s))|S||A|×1. (5)

The transition probabilities Ti = Ti(s
′|s, a) in (3) are endogenously determined by π∗i and known given

(s, a) which allows to define the matrix

Xi = −(I − γiTi)|S||A|×|S|. (6)

Define the residual makers for projections on the space spanned by Xi as

Mi = I −Xi(X
⊤
i Xi)

−1X⊤
i . (7)

The problem of reward recovery is to find the function ui(s, a) that assigns a reward to each state

s ∈ S and potential action a ∈ A and maximizes the log-likelihood of observing the agent’s behavior,

subject to the constraint that the agent’s policies are optimal with respect to ui(s, a), that is, (2) holds.

Once the individual reward function ui(s, a) is found, it can be used to back out the agent’s value

function V π∗
i (s). Alternatively, condition (4) shows we can also proceed in reverse order, backing out

ui from V π∗
i . The recovered reward function u(s, a), that is, the component shared among all experts

can then be used to train (using reinforcement learning) agents to perform the same task(s) in a new

environment. These new agents learn their own optimal policy by using the reward function u and the

transition function T (s′|s, a) to determine the optimal actions to take in each state.

Theorem 1 (Strong Recovery). The agents’ instantaneous reward functions ui(s, a) and their value func-

tions V π∗
i (s), i = 1, ..., I, can be recovered up to affine transformations if and only if rank([X1X2...XI ]) =

I|S| − 1.

The corporate reward recovery Theorem 1 is weaker but more widely applicable than Theorem 3 in

Rolland et al. (2022) as it does not require observing λ.
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The optimality conditions (2) and (4) show that the agent’s reward is the unexplained part in a

projection of the log choice probabilities on the transition probabilities. Using the definitions (5) and (6)

and rescaling vi and ui by λ, the optimality conditions allow to decompose the log-probabilities yi into

the projection on (a transformation of) the transition probabilities and residuals that capture the agent’s

reward:

yi = Xivi + ui. (8)

For any two agents i and j,

yi − yj = ( Xi −Xj ) ·

 vi

vj

+ εij , (9)

with iid noise εij is independent of the instantaneous reward u.

The following proposition provides closed-form expressions for recovering V π∗
i (s) and ui(s, a).

Proposition 1. Let X = (Xi −Xj) ∈ R|S||A|×2|S| for any i ̸= j with rank(X) = 2|S| − 1 be the stacked

transition probabilities, y = yi − yj ∈ R|S||A|×1 be the difference in log probabilities of actions taken across

agents, and state values vi(s) ≡ V π∗
i (s). Then:

(i) Up to affine transformations represented by constants (av, bv) ∈ R, the value functions can be

recovered by

vi = av + bv(X
⊤
i MjXi)

−1X⊤
i Mjy. (10)

These expressions correspond to weighted or generalized least squares.

(ii) The agents’ individual reward functions can be recovered for all (s, a) from (13) and any i by

ui = yi −Xiv̂i. Finally, the shared common reward can be recovered for all (s, a) by

u = lim
I→∞

1

I

I∑
i=1

ui. (11)

The proposition shows that the agents’ reward function is recovered for all (s, a) and any i up to an

affine transformation represented by constants (au, bu) ∈ R from

ui(s, a) = au + bu(lnπ
∗
i (a|s)− γi

∑
s′∈S

Ti(s
′|s, a)vi(s′) + vi(s)), (12)

and u(s, a) can be approximated by 1
I

∑
i ui(s, a). Expression (12) shows that the observed log probabilities

lnπ∗i (a|s) and the observed transition probabilities Ti(s′|s, a) can be used to back out the agents’ reward
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u(s, a) state-by-state and action-by-action once the value functions vi have been recovered from (13). With

the stacked vector v = (v⊤i v⊤j )
⊤ ∈ R2|S|×1 and constants (av, bv) ∈ R2, (10) yields

v = av1+ bv(X
⊤X)−1X⊤y. (13)

The proposition provides conditions and presents a method for recovering the value functions V π∗
i (s)

and individual reward functions ui(s, a) for each agent i. The value functions V π∗
i (s) are recovered using

closed-form expressions that involve weighted least squares. These expressions allow for the estimation

of the value functions up to affine transformations. The individual reward functions ui(s, a) are then

recovered based on the estimated value functions and observed log probabilities lnπ∗i (a|s) and transition

probabilities Ti(s′|s, a). This recovery process enables the determination of the reward functions for each

agent and each state-action pair. Additionally, the proposition describes how a shared common reward

u(s, a) can be recovered by averaging the individual reward functions across all agents. The recovered

value and reward functions provide insights into the underlying decision-making processes of the agents.

By estimating these functions from observed data, the proposition offers a method for understanding and

analyzing the behavior of the agents.

1.3 Weak reward recovery

We now make the additional assumption that the reward function u is linear in features f : S ×A → Rd,

as this makes the model more amenable to use with corporate financial data.

Assumption 2. For θ ∈ Rd, u(s, a) = f(s, a) · θ.

We introduce the following notation. With Xi from (6), define for agents (i, j) ∈ {1, ..., I}2 the matrix

X =

 Xi −Xj 0

Xi 0 f

 . (14)

Let Ω be the matrix that is composed of four sub-matrices:

Ω ≡ X⊤X =

 A C⊤

C F

 , (15)
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with submatrices corresponding to the quadratic form X⊤X:

A =

 2X⊤
i Xi −X⊤

i Xj

−X⊤
j Xi X⊤

j Xj

 , C = ( f⊤Xi 0 ), F = (f⊤f). (16)

Denote the Schur complements of Ω with respect to A and F by Ω/A and Ω/F , respectively. With these

definitions at hand, we obtain the following recovery result:

Theorem 2 (Weak Recovery). Under Assumption 2, the agents’ instantaneous reward functions ui(s, a)

and their value functions V π∗
i (s), i = 1, ..., I, can be recovered up to affine transformations if and only if

rank(X) = 2|S|+ d.

Proof. This is an extension of Theorem 7 in Rolland et al. (2022). Consider the linear reward recovery

problem. For any agent i = 1, ..., I,

yi = Xivi + fθ + εi, (17)

where yi = lnπ∗i (a|s) is defined in (5), Xi = −(I − γiTi) is defined in (6), and εi is iid noise that is

independent of Xi and the features f . In matrix notation, the conditions for agents (i, j) can be written:

 yi − yj

yi


︸ ︷︷ ︸

y

=

 Xi −Xj 0

Xi 0 f


︸ ︷︷ ︸

X

·


vi

vj

θ

+ ε. (18)

This highlights the joint influence of agent-specific value functions vi, vj , and the shared parameters θ.

The next step involves recovering vi, vj , and θ by solving the system of equations. After pre-multiplying

by Ω−1X⊤, so long as Ω is invertible, the solution is given by


vi

vj

θ

 =

 (Ω/F )−1 − (Ω/F )−1C⊤ F−1

− (Ω/A)−1CA−1 (Ω/A)−1


︸ ︷︷ ︸

Ω−1

X⊤(y − ε). (19)

This structure reflects a decomposition of the reward function into agent-specific and shared components.

The matrix inversion and multiplication by Ω−1 means that we are solving a system of linear equations,

using regularization (implicit in Ω) to ensure numerical stability.
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Agent i’s transitions: Xivi

Agent j’s transitions: Xjvj

Agents’ shared reward: fθ

yi

yj

Xivi + fθ

Xjvj + fθ

Shared projection point R where θ is recovered

Figure 1: Illustration of reward recovery
The figure illustrates the reward recovery as the task of finding the shared projection point R, which represents the
same combination of Xivi + fθ and Xjvj + fθ. The blue area depicts the shared projection plane where both yi

and yj are projected. This plane represents the span of the agent-specific contributions, allowing us to see how the
choices yi and yj interact with the shared feature fθ.

Illustration. Figure 1 provides a visualization of Theorem 2. To build intuition how θ is recovered,

note that the recovery process involves projecting the observed outcomes yi and yj , i.e., the log choice

probabilities, the respective transitions Xi and Xj , and the shared features f onto the parameter space

where vi, vj , and θ reside. We can visualize the recovery of θ as finding the point where the two projections

cross, that of the vectors yi and yj , respectively, onto a subspace defined byXi, Xj , and f . In this geometric

representation, we are looking for the point in this 3D parameter space where the projection of the log

choice probabilities aligns with the components.

Imagine the outcomes yi (blue arrow) and yj (red arrow) are points in the shared 3D space. The value

functions vi and vj for agents i and j live in their respective vector spaces. These spaces are defined by the

matrices Xi and Xj , which transform the agent-specific transition probability into outcomes. The reward

features f interact with both agents and impact the outcomes in a similar way through θ. In Figure 1,

the axes represent the projection of the outcome space into the parameter space for vi, vj , and fθ. The

vectors Xivi, Xjvj , and fθ are projected from these points.
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The goal is to align these projections in such a way that we recover θ, which can be seen as the

intersection of the outcome vectors with the shared feature space (blue area). The dashed lines show the

projection of yi and yj onto the shared point R, which represents the same combination of Xivi + fθ

and Xjvj + fθ. The point R is the target projection where we recover θ, showing how it aligns with the

features and observed outcomes.

Analytic expressions. To obtain analytic expressions based on these results, note that the feature

weights θ and the value functions vi, i = 1, ..., I, can be expressed explicitly in terms of the features f ,

Xi, yi, and yj , j ̸= i. The projections and residual makers corresponding to Xi and, respectively, f from

matrix X are given by (7) and

Mf = I − f(f⊤f)−1f⊤, (20)

which is the residual maker for the projection on f . To compute A−1, the Schur complement of the block

D ≡ X⊤
j Xj in A equals

A/D = 2X⊤
i Xi −X⊤

i Xj(X
⊤
j Xj)

−1X⊤
j Xi. (21)

Expression (21) defines a norm that can be used to define an alternate projection on Xi. The positive

definite matrix D defines an inner product ⟨x, y⟩D = y⊤Dx, and the projection Pij relative to D is given

by Pijx = argminy∈range(Xi) ∥x− y∥2D. Then under this norm:

Projection relative to ∥·∥D: Pij = Xi (A/D)−1X⊤
i ,

Residuals relative to ∥·∥D: Mij = I −Xi (A/D)−1X⊤
i .

(22)

So long as A and F are square invertible and C is of conformable dimension, the Schur complements of Ω

with respect to A and, respectively, F are equal to

Ω/A = f⊤Mijf,

Ω/F =

 X⊤
i (I +Mf )Xi −X⊤

i Xj

−X⊤
j Xi X⊤

j Xj

 .
(23)

The double Schur complement of Ω with respect to F and D will also be important and equals (Ω/F )/D =

X⊤
i (Mf +Mj)Xi. It captures a double projection and reports the residuals corresponding to both sub-

spaces generated by f and Xj , respectively. We are now ready to state expressions for θ and vi.
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Proposition 2. The reward function u(s, a) = f(s, a) · θ can be recovered from

θ = (f⊤Mijf)
−1f⊤ (Mijyi +PijMj(yj − yi)) . (24)

Up to affine transformations represented by constants (av, bv) ∈ R, the agents’ value functions for i =

1, ..., I can be recovered by

vi = av + bv

(
X⊤
i (Mj +Mf )Xi

)−1
X⊤
i ((Mj +Mf )yi −Mjyj) . (25)

Proof. See Appendix.

In the reward function recovery, the matrix Mij is a residual maker matrix that orthogonalizes vectors

with respect to the span of f concerning agents i and j. The term involving Pij and Mj are adjustments

based on the residuals from agent j’s outcomes yj relative to i’s outcomes yi. In the value function

recovery, that is defined up to an affine transformation (scaling and shifting by av and bv), the matrices

Mj and Mf are both residual makers for different contexts: Mj with respect to agent j’s influence, and

Mf with respect to the features f . The appearance of Mf is crucial as it adds an additional layer of

orthogonalization regarding the features used in the model. This inclusion shows that the value function

recovery takes into account not just the difference with other agents but also the specific features of the

environment and the agents themselves (captured by f). This additional complexity is necessary since the

agent’s behavior is mediated/modulated through the features of the agent and the environment, which

would otherwise confound the estimation of individual agent value functions.

Proposition 2 differs from Proposition 1 in that the recovery of vi now involves the residual maker for

the features f , Mf , in addition to the residual maker for the second agent, Mj . The proposition provides

a method for feature importance and value function recovery in our framework involving agents interacting

with their environment. The mathematical tools needed in Proposition 2 are typical in econometrics and

statistical learning for handling confounding influences and separating out the effects of interest. The

end goal is to estimate the parameters θ that best describe how agents’ decisions are influenced by their

context and actions.
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1.4 A step-by-step example of recovering corporate purpose

We briefly review the neoclassical investment model in which the corporate purpose is shareholder value

maximization, map it into the IRL framework described in Section 1, and apply our (weak) recovery

theorem in this controlled environment.

A benchmark model for recovery: Neoclassical investment with exploration. We extend

the basic investment model by Strebulaev and Whited (2012) in discrete time with an infinite horizon

(t = 0, 1, . . . ,∞) to stochastic policies. Let k = kt denote the level of capital this time period and

k′ = kt+1 be the level of capital next period, which evolves according to k′ = (1 − δ)k + I, where δ

denotes the depreciation rate and I denotes investment in capital. For simplicity, the price of capital is

normalized to one. Let z = zt denote a persistent stochastic productivity shock which evolves according

to ln(z′) = ρ ln(z) + σϵ, where ϵ ∼ N (0, 1).

Each period, a risk-neutral manager, acting on behalf of shareholders, observes the state s = (k, z)

and chooses as action next period’s level of capital a = k′ with probability π(a|s) in order to maximize

the value of the firm, which is given by the expected present value of a stream of future cash flows to

shareholders. In choosing π, the manager trades off exploitation with exploration. Let u(s, a) denote the

cash flow function that depends on state (current capital, productivity shock) and action (next period’s

capital). The manager maximizes firm value

V ∗
λ (s) = max

{at}t≥0

E[
∞∑
t=0

γt(u(st, at)− λ ln(π (at|st)))], (26)

subject to the laws of motion for k′ and ln(z′) and given the regularization coefficient λ > 0. The policy

function π : S → P(A) is stochastic, where P(·) denotes the set of all probability distributions, as opposed

to deterministic π : S → A in the benchmark model in Strebulaev and Whited (2012). As λ → 0, the

entropy term in (26) vanishes and the model degenerates to the benchmark model. From the assumption

of risk-neutrality, γ = 1
1+r with risk-free interest rate r.

In the deterministic case (λ = 0), solving this problem consists in finding the (optimal) policy function

π(k, z) that maps (capital, profitability)-pairs (k, z) into choices of next period’s capital k′. Under the

optimal policy function π∗, the value function V ∗
λ (s) is maximized. Except for specific cases, the pure

exploitation model has no analytical solution.
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Cash flows and the reward function. We dedicate special attention to the cash flow function, as

it is the model component that we want to recover. In Strebulaev and Whited (2012), cash flows are given

by

u(k, z, k′) = ϕ(k, z)− I(k, k′)− ψ(I, k′), (27)

where ϕ(k, z) = zkζ is the firm’s profit with parameter ζ ∈ (0, 1) governing its concavity, I(k, k′) =

k′− (1− δ)k is investment, and ψ is an adjustment cost function. Many models share this basic structure.

We consider two different cases for adjustment costs that are common in the literature. In the first case,

we abstract away from adjustment costs by setting them to zero. As a result of this assumption, even

the deterministic model has an analytical solution that can serve as a benchmark. In the second case,

we consider convex and fixed adjustment costs. This case has no analytical solution but is more realistic.

Consequently,

ψ(I, k) =


0 , if no adjustment costs,

ψ0

2
I2

k + ψ1k1{I ̸=0} , if adjustment costs,
(28)

where ψ0, ψ1 ≥ 0 are parameters that govern how costly is investment and 1{I ̸=0} is an indicator function

equal to 1 (0) if investment is not equal (equal) to zero. Combining (27) and (28) yields an expression for

the cash flow function

u(k, z, k′) =


zkζ + (1− δ)k − k′ , if no adjustment costs

zkζ + (1− δ)k − k′ − ψ0

2
I2

k − ψ1k1{I ̸=0} , if adjustment costs
(29)

In state-action notation, we can write state s = (s1, s2) with state variables s1 = k, s2 = z and action

a = k′(= s′1).7 Expressing the cash flow function (29) in terms of states and actions yields the reward

function

u(s, a) =



s2s
ζ
1︸︷︷︸

Profits

− δs1︸︷︷︸
Depreciation

− (a− s1)︸ ︷︷ ︸
Net investment

, if no adjustment costs,

s2s
ζ
1︸︷︷︸

Profits

− δs1︸︷︷︸
Depreciation

− (a− s1)︸ ︷︷ ︸
Net investment

− ψ0

2

(a− (1− δ)s1)
2

s1︸ ︷︷ ︸
Feature f4

− ψ1s11{a−(1−δ)s1 ̸=0}︸ ︷︷ ︸
Feature f5

, otherwise.

(30)

7In this section, we limit ourselves to the analysis of problems with only one action variable. However, it is possible
to extend the analysis to cases where the action consists in choosing combinations of multiple action variables
a = (a1, a2, . . . ) which we do in our empirical analysis.
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One can see from (30) that the reward function, while non-linear in the state and action variables, is linear

in three or five features depending on the case.

Feature selection. In line with Assumption 2, we express the reward function (30) as a linear combi-

nation of features f(s, a) and weights θ, such that u(s, a) = f(s, a) · θ. Four key considerations guide the

specification of features:

1. To avoid problems related to the (non-)invertibility of the X matrix, we avoid including features that

are constant across all (state, action)-pairs, i.e., f(s, a) ̸= c ∀ s, a where c is a constant. Moreover,

we avoid including features that are constant for almost all (state, action)-pairs.

2. To avoid problems related to multicollinearity, we avoid including features that are highly correlated

with other features.

3. To keep the feature set parsimonious, we avoid adding irrelevant features (i.e., we avoid kitchen sink

regressions). However, adding them should not materially affect the reward recovery, provided that

they are not overly correlated with other features.

4. There is some degree of freedom when it comes to defining features and weights. In particular,

features may be decomposed into linear combinations of other features, provided that they do not

conflict with the previous points.

Table 1, Panel A summarizes our feature selection. To illustrative the feature selection, we consider

several specifications of features f(s, a) and weights θ. Specification 1 corresponds to the benchmark

model without adjustment costs. The first feature is profit, s2s
ζ
1. The second feature is net investment,

a−(1−δ)s1. Specification 2 is the same as Specification 1, except that we have split up the second feature

into two features, capital today (s1) and next period (a). Specification 3 corresponds to the benchmark

model with adjustment costs. Specifications 4 (5) corresponds to the benchmark model without (with)

adjustment costs where we scale all features by capital s1. Consequently, s2s
ζ−1
1 denotes profitability and

a−(1−δ)s1
s1

denotes the investment rate.

Model solution. We solve the model(s) using Q-value Iteration, and by Value Function Iteration in

the benchmark model without entropy-regularization. The standard value function iteration algorithm

tries to find the optimal deterministic policy function π(s) that picks for each state s the optimal action
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Table 1: Reward recovery in controlled environment.
Panel A contains different specifications of features and coefficients in our controlled environment. Panel B documents the recovered
weights for different feature specifications and experiments in our controlled environment. Column 1 refers to the specification of features
and true weights used. Column 2 refers to the recovery experiment. π and T refer to whether we used the true or estimated policy and
transition functions. We used the following parameter values: ζ = 0.55, δ = 0.2, ρ = 0.7, r = 0.05, σϵ = 0.04, ψ0 = 0.01, ψ1 = 0.01, nk =
15, d = 3, nz = 5,m = 2, λ = 0.2, σ1

ϵ = 0.035, σ2
ϵ = 0.045, γ1 = 0.94, γ2 = 0.96, nsteps = 1, 000, 000, seed = 0.

Panel A: Reward specifications in controlled environment

Specification No. of features Features f(s = (s1, s2), a = s′1) True Weights (θ)

1 2 [ s2s
ζ
1 a− (1− δ)s1 ] [ 1 −1 ]

2 3 [ s2s
ζ
1 s1 a ] [ 1 1− δ −1 ]

3 4 [ s2s
ζ
1 a− (1− δ)s1

(a−(1−δ)s1)2
s1

s11{a−(1−δ)s1 ̸=0} ] [ 1 −1 −ψ0
2

−ψ1 ]

4 2 [ s2s
ζ−1
1

a−(1−δ)s1
s1

] [ 1 −1 ]

5 4 [ s2s
ζ−1
1

a−(1−δ)s1
s1

(
a−(1−δ)s1

s1

)2
1{a−(1−δ)s1 ̸=0} ] [ 1 −1 −ψ0

2
−ψ1 ]

Panel B: Reward recovery in controlled environment

Specification Experiment π T True Weights (θ) Recovered Weights (θ̂)

1 1 True True {1,−1} {1.0,−1.0}
1 2 Estimated True {1,−1} {1.005,−1.005}
1 3 True Estimated {1,−1} {0.777,−0.796}
1 4 Estimated Estimated {1,−1} {0.781,−0.801}
2 1 True True {1, 0.8,−1} {1.0, 0.8,−1.0}
2 2 Estimated True {1, 0.8,−1} {0.995, 0.786,−0.985}
2 3 True Estimated {1, 0.8,−1} {0.626, 0.891,−1.0}
2 4 Estimated Estimated {1, 0.8,−1} {0.619, 0.878,−0.986}
3 1 True True {1,−1,−0.005,−0.01} {1.0,−1.0,−0.005,−0.01}
3 2 Estimated True {1,−1,−0.005,−0.01} {1.011,−1.012,−0.005,−0.01}
3 3 True Estimated {1,−1,−0.005,−0.01} {0.724,−0.745,−0.007,−0.01}
3 4 Estimated Estimated {1,−1,−0.005,−0.01} {0.744,−0.766,−0.007,−0.009}
4 1 True True {1,−1} {1.0,−1.0}
4 2 Estimated True {1,−1} {1.001,−0.996}
4 3 True Estimated {1,−1} {0.986,−1.0}
4 4 Estimated Estimated {1,−1} {0.993,−0.995}
5 1 True True {1,−1,−0.005,−0.01} {1.0,−1.0,−0.005,−0.01}
5 2 Estimated True {1,−1,−0.005,−0.01} {1.006,−1.01,−0.002,−0.013}
5 3 True Estimated {1,−1,−0.005,−0.01} {0.976,−1.021, 0.0,−0.01}
5 4 Estimated Estimated {1,−1,−0.005,−0.01} {0.981,−1.03, 0.004,−0.013}

a and maximizes the state value function V (s). The Q-value function iteration algorithm tries to find

the optimal stochastic policy function π̃(s) that picks for each state s the optimal (non-zero) probability

of picking a given action P (a|s) and maximizes the (state, action)-pair value function Q(s, a). Once we

have found the optimal Q∗(s, a) iteratively, we can recover the optimal value V ∗(s) and policy π∗(a|s) as

follows. We have that for any s ∈ S,

V ∗
λ (s) = λ ln

∑
a∈A

e
1
λ
Q∗
λ(s,a). (31)

and the maximum is achieved by the randomized policy

π∗λ(a|s) =
e

1
λ
Q∗
λ(s,a)∑

a′∈A e
1
λ
Q∗
λ(s,a

′)
for a ∈ A. (32)
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Recovering the feature weights. We now illustrate our recovery theorem by implementing it in

a controlled environment. Appendix B explains in detail how we implement the weak recovery theorem

in this controlled environment. We perform several experiments for each specification in which we either

use the true model-implied policy π and true transition probability matrix T , or we estimate from our

simulated data one or the other, or both. We expect the best recovery results in the true π, true T

experiment and the worst in the estimated π, estimated T experiment.

Our results are summarized in Panel B of Table 1. In Experiment 1, we are able to recover the true

coefficients perfectly across all specifications. This result is expected given Proposition 2 and reassures

us that the methodology works. In Experiment 2, we are able to recover coefficients that are very close

to the true ones. This result indicates that the estimation of the policy function does not materially

affect the recovery of coefficients. In Experiment 3, the coefficients on the first two features are biased for

specifications 1, 2 and 3, but are close to the true ones for specifications 4 and 5. We hypothesize that the

biased results for the first two features in specification 1 to 3 are due to a combination of (1) insufficient

precision in the estimation of the transition functions and (2) the high correlation between capital and

profits, which are increasing in capital. Scaling the features by capital, as we do in specifications 4 and 5,

solves this problem. The results of Experiment 4 mirror those of Experiment 3, indicating that estimating

both policy functions and transition functions does not constitute a problem, provided that the feature

definitions are adequate. In unreported results, we confirm that the recovered coefficients converge to the

true coefficients as nsteps → ∞, as one would expect.

2 Data and Empirical Methodology

This section discusses the different datasets and the variable constructions we use to recover the corporate

objective of publicly listed U.S. firms.

2.1 Data sources and sample

We download annual firm fundamentals data for all U.S. firms in the Compustat universe. To this, we

add CPI data from the U.S. Bureau of Economic Analysis (BEA) and interest rate data from the Federal

Reserve Economic Data (FRED). Following Peters and Taylor (2017), we add data on intangible capital

and total q downloaded from WRDS. Their measures rely, in part, on the marginal tax rates introduced
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in Graham (1996), which we download from the author’s website. Coverage starts in 1975, as this is the

first year that R&D is reported. We supplement this data with executive compensation metrics from

Execucomp, which are available from 1992 onward, as well as environmental, social and governance scores

from MSCI, which are available from 2007 onward.8

2.2 Variable definitions

We follow standard screening procedures in the literature. In particular, we remove firms whose SIC code is

between 4900 and 4999 (utilities), between 6000 and 6999 (financials), or above 9000 (government agencies).

We also remove observations with missing or weakly negative book value of assets (at ≤ 0), sales (sale

≤ 0) and/or number of common shares outstanding (csho ≤ 0). We additionally remove observations with

physical capital below $1 million (ppent < 1). We impute missing values of amortization of intangibles

(am), cash and cash equivalents (che), short-term debt (dlc), long-term debt (dltt), R&D expense (xrd)

and in-process R&D (rdip) by a zero. We impute missing values of deferred taxes and investment tax

credit (txditc) by deferred taxes (txdb) if available or by a zero otherwise.

Table C.1 in Appendix C contains the definitions for all of our variables. We winsorize all variables at

the 1% and 99% level by year to mitigate the impact of outliers. Our approach requires beginning of year

(BoY) and end of year state variables, as well as action variables, to be observed. Consequently, we remove

observations for which either of the following variables are missing: beginning-of-period total capital , end-

of-period total capital, beginning-of-period alternative cash flow return on assets, end-of-period alternative

cash flow return on assets or the total investment rate.

Table 2 shows the summary statistics for all variables. We provide descriptive statistics across four dis-

tinct panels and datasets: Compustat (1975-2021), Peters & Taylor (1975-2021), ExecuComp (1992-2021),

and MSCI (2007-2021). The summary highlights that the key variables such as Size, Profitability, Invest-

ment Rate, and ESG Scores among others are in line with the prior literature. Panel A shows that average

firm size is 4.66 with a standard deviation of 2.24 (median size is 4.52). On average, profitability is 0.51

with large variability evident from its standard deviation of 0.91. The main corporate actions, investment

rate and net debt to EBITDA, display averages of 0.24 and 1.78 respectively, indicating varying levels of

corporate investment and debt management practices. Average tangibility is reported at 0.34, and Tobin’s

q averages at 1.56. In Panel B, ln(Total Capital) is 6.06 and alternative profitability is 0.21, indicating

8We note that coverage of ESG scores increases dramatically in 2012; see Figure 2 in Pástor et al. (2022)
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Table 2: Summary Statistics.
This table contains summary statistics for our variables across different samples.

N Mean S.D. 20% 40% 50% 60% 80%

Panel A: Compustat (1975-2021)

Size 121,773 4.66 2.24 2.62 3.93 4.52 5.14 6.65
Profitability 121,773 0.51 0.91 0.13 0.26 0.32 0.41 0.72
Investment Rate 121,773 0.24 0.23 0.08 0.16 0.20 0.25 0.39
Net Debt to EBITDA 121,773 1.78 5.60 -0.51 0.64 1.15 1.70 3.42
Cash Holdings 121,772 0.12 0.13 0.02 0.05 0.07 0.10 0.19
Book Leverage 120,488 0.26 0.20 0.06 0.19 0.24 0.29 0.41
Net Book Leverage 121,772 0.15 0.30 -0.08 0.10 0.16 0.23 0.37
Tangibility 121,772 0.34 0.22 0.14 0.24 0.29 0.35 0.54
Tobin,’s q 112,151 1.56 1.05 0.92 1.12 1.24 1.40 1.96

Panel B: Peters & Taylor (1975-2021)

ln(Total Capital) 121,773 6.06 2.07 4.18 5.37 5.92 6.48 7.88
Alternative Profitability 121,773 0.21 0.13 0.12 0.17 0.20 0.22 0.29
Physical Investment Rate 121,773 0.07 0.08 0.02 0.04 0.05 0.06 0.11
Intangible Inv. Rate 121,773 0.16 0.10 0.05 0.12 0.15 0.18 0.24
Total Investment Rate 121,773 0.23 0.13 0.13 0.19 0.22 0.25 0.32
Total q 116,617 0.88 1.29 0.10 0.38 0.52 0.68 1.24

Panel C: ExecuComp (1992-2021)

CEO Bonus (%) 30,481 0.03 0.06 0.00 0.00 0.00 0.00 0.04
CEO Ownership 29,647 0.02 0.05 0.00 0.00 0.00 0.00 0.02
CEO Own. & Options 29,642 0.03 0.05 0.00 0.01 0.01 0.01 0.03
CEO Own. & Opt. 2 29,642 0.03 0.06 0.00 0.01 0.01 0.02 0.04
Mana. Bonus (%) 30,481 0.07 0.13 0.00 0.00 0.01 0.03 0.10
Mana. Ownership 30,420 0.03 0.07 0.00 0.00 0.01 0.01 0.03
Mana. Own. & Options 30,420 0.05 0.08 0.01 0.01 0.02 0.03 0.05
Mana. Own. & Opt. 2 30,420 0.05 0.08 0.01 0.02 0.03 0.04 0.07

Panel D: MSCI (2007-2021)

ESG Score 11,299 4.58 0.99 3.80 4.40 4.60 4.90 5.40
Industry-adj. ESG Score 14,455 4.58 2.15 2.80 3.90 4.40 5.10 6.50
E Score 14,454 4.86 2.11 3.00 4.15 4.70 5.30 6.60
S Score 14,455 4.53 1.58 3.20 4.17 4.60 4.90 5.80
G Score 14,450 5.38 1.97 3.90 4.82 5.30 5.70 6.80

substantial intangible capital and modest profitability. Total q has a lower average compared to traditional

Tobin’s q, with a mean of 0.88. In Panel C, the ExecuComp CEO and management compensation metrics

highlight both fixed (bonuses) and variable (ownership and options) compensation elements. Ownership

structures reflect a relatively modest level of stock holding by CEOs and management, indicating the

potential for incentive misalignment. In Panel D, the ESG scores from MSCI (2007-2021) have averages

around 4.58 to 5.38, reflecting moderate to good ESG performance across the typical firm. The standard

deviation of the ESG scores is quite large, ranging between 1.58 for S to 2.11 for E.

2.3 Empirical methodology

Our empirical methodology can be summarized in the following steps: (1) specification of expert definitions,

states, actions and features, (2) estimation of the policy and transition functions in the data and (3)
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recovery of the value function, reward function, and feature weights.

Specification of experts, states, actions, and features. We refer to one specification of our

model as a combination of 3 elements, namely (1) definitions of our two experts, (2) a set of state variable(s)

and action variable(s) with a corresponding number of bins for each state and action variable and (3) a

set of features.

The first step consists in defining our two experts. Conceptually, we think of expert definitions as

queries that can be applied to a data set in order to obtain a sub-sample of all observations. Our expert

definitions are based on time periods and bundle together all firm-year observations that belong to a

certain year range. The underlying assumption is that the reward function should be the same for both

experts, i.e., not change over time. We remove all observations that do not correspond to the definition

of either expert.9 We compute discount factors as γi = 1
1+r̄f,i

for i = 1, 2, where r̄f,i denotes the average

risk-free rate during the respective period. We assume that both experts share the same preference for

entropy parameter λ = 1.

We choose to represent states as combinations of state variables, e.g., pairs in the case of two state

variables, and actions as combinations of action variables. We choose to define state and action variables

based on quantiles. In line with the theoretical literature on corporate investment, we generally define

states as (size quantile, profitability quantile)-pairs and actions as investment rate quantiles or (investment

rate quantile, net debt to EBITDA quantile)-pairs. As a baseline, we opt for five bins, i.e., quintiles, for

each state and action variable. Table 2 shows the cutoff values we use to determine quintiles (20%, 40%,

60%, 80%).

Features map (state, action)-pairs into (real) numbers. Generally speaking, the feature array will

be of dimension |S| × |A| × nf . We measure each feature as the median value of a variable across all

(non-missing) observations corresponding to a given (state, action)-pair If a feature is never observed for

a given (state, action)-pair, we impute its value by the full sample median. Finding one parsimonious set

of features is one of the main empirical challenges we face in this paper. Consequently, our feature set will

vary across specifications.

Estimation of policy and transition functions. Given a specification of expert definitions for

i = 1, 2, states s and actions a, we determine for each firm-year observation which state it is in, which

9We aim to define experts in a way that partitions the full data set into two subsets and avoid losing any observations.
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action is chosen and which state s′ the firm will be in next year. We require that the next state s′ be

observed and consequently drop all firm-year observations for which s′ is missing.

We estimate choice probabilities based on a multinomial logistic regression model. Let the outcome

y = 1, . . . , J denote the index of the action a, where J = |A| denotes the number of possible actions.

Then, for each expert i = 1, 2, the probabilities of picking a certain action are given by

Pi(y = j|xi) =


exp(xiβi,j)

1+
∑J
h exp(xiβi,h)

, if j = 2, . . . , J

1
1+

∑J
h exp(xiβi,h)

, if j = 1

(33)

where xi is a 1 × K vector of first-element unity and K − 1 observed conditioning variables. βi,j is a

1 ×K vector of unknown parameters. Our conditioning variables include all state variables, interactions

between state variables and squared state variables. For example, if size and profitability are the state

variables, then xi = [1, Sizei, P rofitabilityi, Sizei × Profitabilityi, Size
2
i , P rofitability

2
i ].

Since we have fully specified the density of yi given xi, we estimate this model via maximum likelihood.

For each observation n = 1, . . . , N corresponding to expert i, the conditional log likelihood is given by

ℓi,n(βi) =

J∑
j=0

1{yi,n=j} log[pi,j(xi,βi)] (34)

where 1 is an indicator function. We estimate βi by maximizing
∑N

n=1 ℓi,n(βi) using the gradient-based

L-BFGS algorithm.

To estimate the transition probabilities, we proceed in a similar fashion, except that j now rep-

resents the index of the next state, such that J = |S|, and that vector xi now includes all state

variables, action variables, interactions between state and action variables and squared state and ac-

tion variables. For example, if size and profitability are the state variables and the investment rate is

the action variable, then xi = [1, Sizei, P rofitabilityi, InvestmentRatei, Sizei × Profitabilityi, Sizei ×

InvestmentRatei, P rofitabilityi × InvestmentRatei, Size
2
i , P rofitability

2
i , InvestmentRate

2
i ].

Recovery of feature weights, reward function and value functions. Given the transition

functions Ti(s′|s, a), policy functions πi(a|s), discount factors γi and the feature array f , we proceed as

follows. First, we create, for each agent i = 1, 2, arrays yi, based on (5), and Xi, based on (6). Next, we

define the X matrix based on (14) and test if Theorem 2 holds, i.e., whether rank(X) = 2|S|+ d. If this
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condition holds, we compute (f,Mij , yi, yj , Pij ,Mj ,Mf ) in the data. Finally, we recover the coefficients θ

based on (24), the reward from û = fθ̂, and the value v̂i based on (25) (for i, j = 1, 2 with i ̸= j).

3 Recovering Corporate Purpose

We now recover the corporate objective function given different specifications of experts, state variables,

action variables and features.

3.1 Corporate reward puzzle: Reward recovery in foundational model

At its core, the neoclassical theory of investment states that the reward of the corporate investment

problem should consist of profits (Π), net of the investment (I) needed to generate them. Scaling the

reward by capital (K) to make it independent of firm size, this implies a reward of the form u = fθ, where

f = [ΠK ,
I
K ], θ = [1,−1]T , Π/K denotes profitability and I/K denotes the investment rate.

Table 3 shows the results of applying our recovery theorem to empirical data on managers’ decisions.

Expert 1 corresponds to the time period from 1975 until 1998, whereas expert 2 corresponds to the time

period from 1999 until 2021. The year-based expert definitions were chosen such that the full sample is

split into are a roughly equal number of years and observations for each expert. Defining experts based

on years implicitly assumes that the reward function stays constant across time. In what follows, we

will investigate whether this is true by altering expert definitions. Each time period is associated with

a discount factor γ, which is based on the average risk-free rate during that time period. We opt for a

relatively coarse grid of 5 size bins, 5 profitability bins and 5 investment rate bins. This results in 25

possible states (combinations of size quintile and profitability quintile) and 5 possible actions (investment

rate quintile). In Appendix E, we expand the state and action sets to allow for a finer grid.

We report both the raw and normalized (in parantheses) recovered coefficients of the reward function.

Columns (1) to (6) differ in our choice of the features f .10

10We normalize the coefficients by the absolute value of the coefficient on profitability, such that profitability
always has a normalized coefficient of 1 (or -1) and the magnitude of all other coefficients is expressed relative
to profitability. The reasoning is as follows. Our framework assumes that agents have a preference for entropy,
governed by the λ parameter whose value is unknown. The raw coefficients are recovered under the assumption
that λ = 1 and are proportional to λ. In other words, λ scales the coefficients up or down. For example, if
we assume that λ = 10, we recover coefficients that are ten times larger. However, the relative magnitude of
the coefficients is not affected, which allows us to normalize all coefficients by the same amount. We choose to
normalize by the absolute value of the coefficient on profitability because there is a strong prior in the literature
that profitability should have a coefficient of one. In other words, we are more confident that profitability has a
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Table 3: Reward recovery from corporate investment data.
The table presents the results of recovering the reward function from corporate investment data. It displays the recovered feature
importance weights, denoted by θ, for six different specifications. The reward features considered include profitability, investment rate,
tangibility, cash holdings, book leverage, and net book leverage. Additionally, performance measures such as the Kullback-Leibler
divergence between the estimated and true policies are provided. Model specifications include for the two state variables 5 size (BoY)
bins, 5 profitability (BoY) bins, and for the action variable 5 investment rate bins. The discount factors are γ1 = 0.923 and γ2 = 0.967.

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5) (6)

Profitability 4.649 7.580 4.483 3.675 4.646 7.453
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Investment Rate -1.193 -3.314 -1.181 -0.721 -1.192 -3.773
(-0.257) (-0.437) (-0.263) (-0.196) (-0.256) (-0.506)

Tangibility 8.882 14.704
(1.172) (1.973)

Cash Holdings -12.06
(-2.690)

Book Leverage -3.650
(-0.993)

Net Book Leverage -0.013 -8.515
(-0.003) (-1.142)

KLD1 0.248 0.204 0.249 0.242 0.248 0.184
KLD2 0.096 0.115 0.092 0.109 0.096 0.142
N1 59,743 59,743 59,743 59,743 59,743 59,743
N2 49,836 49,836 49,836 49,836 49,836 49,836

Column (1) reports our results for the simplest possible specification with two features. We find a

normalized coefficient of -0.257 on the investment rate. The positive coefficient on profitability indicates

that profitability is a desirable feature, as prescribed by the theory. The negative sign of the coefficient

on the investment rate is in-line with the theory, as investment is costly. However, the magnitude of the

coefficient is only about one fourth of what theory would prescribe. For a given amount of capital, managers

act as if $1 of investment would only cost them $0.257. This finding suggests one of two possibilities: either

the model is correct and managers’ preferences are heavily non-standard or the benchmark model is too

simple and fails to accurately describe the data. Assuming the latter explanation, we investigate possible

limitations of the base model.

Performance evaluation. We can assess the fit of each model specification by using the recovered

reward to solve for each expert’s optimal policy function that is consistent with this recovered reward. We

then compare this recovered policy function to the actual one. Within our framework, investment policies

are probability distributions over actions in a given state. To assess how similar the recovered policy

functions are to the ones we observe for the real CEOs, we compute, for each state s, the Kullback-Leibler

coefficient of one than we are that λ equals one. For this reason, we focus on normalized coefficients in the rest
of our analysis.
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divergence between the recovered policy function π̂i and the policy function πi of expert i as

KLDi(π̂i, πi | s) =
∑
a∈A

π̂i(a | s) log
(
π̂i(a | s)
πi(a | s)

)
, (35)

and take the average across states to arrive at the mean Kullback-Leibler divergence

KLDi =
1

|S|
∑
s∈S

KLDi. (36)

The Kullback-Leibler (KL) divergence, also known as relative entropy, measures the difference between the

two probability distributions capturing investment across states. A large KL divergence can be interpreted

as a measure for how the probability distribution representing the model diverges from the true empirical

distribution. The KLD measures capture the expected log difference in investment probabilities; they

equal zero if (and only if) π̂ = π, and lower values indicate that the two policy functions are more similar.

The mean KL divergence in our base model for expert 1 equals 0.248 and is more than double than that

for expert 2, which equals 0.096. The KL divergence should not be interpreted as a “distance measure”

between the distributions, but rather as a measure of entropy increase due to the use of an approximation

to the true distribution rather than the true distribution itself. In other words, the KL divergence measures

the increase in entropy in π̂ over and above the unavoidable entropy of distribution π. In economic terms,

the KLD = 0.248 (0.096) means the entropy increases by 24.8% (9.6%).

Financial factors entering the manager’s reward. Columns (2) to (6) of Table 3 show the re-

sults for different feature sets that include tangibility, cash holdings, book leverage, and net book leverage.

One limitation of the base model may be that it only has two features, whereas managers may take into

account additional features. The additional features are commonly used in empirical studies to account

for differences in firms and, as such, it is plausible that they affect the reward function. We therefore

include them as additional features. All models consistently assign positive weights to profitability, indi-

cating its significant positive impact on the manager’s reward function. The coefficients for investment

rate are negative, suggesting an inverse relationship with the manager’s reward function. However, the

magnitude varies across models, indicating some variability in its influence. As we add additional features,

the coefficient on the investment rate increases (in absolute value) from -0.257 in column (1) to -0.506 in

column (6), but still falls short of the -1 posited by the theory.
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Financial factors, including cash holdings, book leverage, and net book leverage, also contribute to

the reward function, although their impact appears less consistent across models. The coefficients vary

in magnitude and sign, suggesting a nuanced relationship with the reward. The normalized coefficient on

tangibility is positive at 1.172 and 1.973, respectively, whereas the ones on cash holdings, book leverage and

net book leverage are negative. Tangibility’s positive influence on the reward function receives substantial

weights; however, the normalized coefficients show considerable variation, indicating its importance varies

across specifications. Similar, book leverage has a normalized weight of -1 (column 4), while net book

leverage has a normalized weight of -1.142 (column 6).

As we add features, the mean KL divergence of expert 1 decreases from 0.248 in column (1) to 0.184 in

column (6), whereas the one of expert 2 increases from 0.096 to 0.142. This suggests that the additional

features help explain the policy choices of expert 1, but not expert 2.

Corporate reward puzzle. The corporate reward puzzle documented in Table 3 is that managers

use p ≈ 0.5 when deciding investment. We explore the impact of this corporate reward puzzle through

the lens of the foundational q-theory model from Section 1.4. We use this model to document the effects

of underestimating the cost of investing, p, as managers seem to do. In the benchmark model, a dollar of

investment costs as much as a dollar of profits today, hence, p = 1 in the benchmark model. However, the

estimation results in Table 3 show that p = 0.45-0.55.

To explore the impact of p < 1 on the dynamics of investment, we simulate the neoclassical investment

model in two ways. In the benchmark case, we set p = 1, simulate profitability shocks and compute the

optimal investment rates in each state. In the de-facto case, we set p = 0.5, simulate the same profitability

shocks as in the benchmark case and compute the de-facto investment rates in each state. We then

summarize and compare them.

Table 4 documents statistics for the investment rates in the de-facto case (columns 1-3) and the

benchmark case (columns 4-6). Across rows, we condition on different profitability levels (z) ranging from

low to high, with specific values of z = 0.894, 0.946, 1, 1.058, 1.119. We report the mean investment rate,

the variance of the investment rate, and the Kullback-Leibler divergence (KLD) between the policy function

and a uniform distribution. The KLD represents a measure of exploration, with the uniform distribution

representing maximum entropy (i.e., maximum exploration). A lower value of the KLD captures proximity

to the uniform distribution and, hence, higher entropy and more exploration.

The table shows that the manager’s de-facto reward function with p < 1 has a significant effect on
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Table 4: Corporate reward puzzle.
This table documents, for different profitability shocks z and different prices of investment (as perceived by the manager) p, the mean
investment rate, variance of the investment rate, and the Kullback-Leibler divergence (KLD) between the policy function and a uniform
distribution. The KLD represents a measure of exploration, with the uniform distribution representing maximum entropy/exploration.
A lower value of the KLD captures proximity to the uniform distribution, i.e., higher entropy and more exploration.

Investment rate (p = 0.5) Benchmark investment rate (p = 1)

Profitability Mean Variance KLD Mean Variance KLD

Low (z=0.894) 0.380 0.113 0.294 0.005 0.102 0.051
2 (z=0.946) 0.401 0.109 0.342 0.027 0.106 0.035
3 (z=1) 0.423 0.103 0.395 0.051 0.111 0.022
4 (z=1.058) 0.444 0.097 0.452 0.076 0.115 0.014
High (z=1.119) 0.464 0.092 0.508 0.103 0.119 0.011

the dynamics of investment. Higher profitability corresponds to higher expected investment rates. For

p = 0.5, as profitability increases, both the mean investment rate and KLD increase, while the variance

decreases slightly. In the benchmark case, mean investment rates are significantly lower compared to

p = 0.5, particularly at low profitability levels. The KLD is also lower, indicating more exploration in the

benchmark case, while variance is somewhat stable. The KLD values represent how much the manager

explores different investment strategies. The higher KLD in the de-facto case indicates less exploration,

while the lower KLD (closer to the uniform distribution) in the benchmark case means the manager is

exploring more investment options.

These results show that managers de-facto over-invest and under-explore. The over-investment is

pervasive across profitability levels, with the relative increase the largest for low levels of profitability. In

addition, managers do too little exploration, or experimentation by varying investment less than optimal.

This corporate reward puzzle is, hence, inconsistent with the predictions from the foundational q-theory

model and supports alternative theories predicting over-investment and under-exploration.

Over-investment is consistent with models of asymmetric information, agency costs, and managerial

overconfidence. The free cash flow hypothesis of Jensen (1986) (see also Richardson (2006)) suggests that

firms with substantial free cash flow and limited growth opportunities are prone to overinvestment, as

managers prefer to invest excess cash rather than return it to shareholders. Agency cost models (Myers

and Majluf, 1984; Shleifer and Vishny, 1989; Stulz, 1990) highlight conflicts between shareholders and

managers. In situations where managerial incentives are misaligned with shareholder interests, managers

may overinvest in projects that do not maximize shareholder value. Managerial overconfidence models

(Malmendier and Tate, 2005) incorporate behavioral biases to predict that managers will overestimate the

returns on investment projects, leading to overinvestment. Both over- and under-investment have been

documented empirically (Blanchard et al., 1994; Cho, 1998; Richardson, 2006; Ferreira and Matos, 2008;
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Cronqvist and Fahlenbrach, 2009), but under-exploration has not. In studies with related findings, Ben-

David and Chinco (2024) demonstrate that a model where managers are EPS maximizers can account for

observed capital budgeting behavior, but they do not explicitly consider investment rates nor exploration

incentives. Jha et al. (2024) use ChatGPT to compute a firm-level investment score and show that

high-investment-score firms experience negative future abnormal returns, which is also consistent with

over-investment but silent about exploration/experimentation.

3.2 Taking account of intangible capital

A limitation of the base model is its inability to account for the growing importance of intangible capital.

Peters and Taylor (2017) provide alternative variable definitions that account for total capital, comprised of

both tangible and intangible capital, and the corresponding total investment rate, as well as an alternative

measure of profitability that takes into account the tax-reducing effects of intangible investment.

Table 5 presents the results of our analysis after using these alternative measures. Intangible capital

does not resolve the corporate reward puzzle from Table 3. We still find that managers act as if investment

were half as costly as theory posits, with coefficients ranging from -0.478 in column (1) to -0.496 in column

(6). The coefficient for tangibility is relatively small, ranging from 0.025 to 0.031. This suggests that while

tangibility may have some influence on investment decisions, its impact is relatively minor compared to

profitability and investment rate. The coefficient for cash holdings is -0.042, indicating a relatively small

impact on the reward function. The coefficients for book leverage and net book leverage are negative and

relatively small in magnitude, ranging from -0.411 to -0.142. This suggests that higher levels of leverage

are associated with lower rewards. Overall, these coefficients provide insights into the factors driving

corporate investment decisions, highlighting the importance of profitability and investment costs while

also considering the influence of other financial indicators such as tangibility and leverage.

Surprisingly, adding additional features does not improve the overall fit of the model to the data in

terms of mean KL divergence when we use these alternative measures. The KL divergence ranges from

0.400 to 0.421 for Expert 1 and from 0.546 to 0.623 for Expert 2 across the different model specifications.

These values suggest that the models exhibit a reasonable but not very close level of alignment with the

true policies, indicating their limited effectiveness in capturing the decision-making dynamics of corporate

investment. Hence, a more detailed analysis incorporating other features is needed to improve the models’

predictive accuracy and robustness.
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Table 5: Reward recovery from investment in tangible and intangible capital.
The table presents the results of recovering the reward function from corporate investment data. It displays the recovered feature
importance weights, denoted by θ, for six different specifications. The reward features considered include alternative profitability,
total investment rate, tangibility, cash holdings, book leverage, and net book leverage. Additionally, performance measures such as
the Kullback-Leibler divergence between the estimated and true policies are provided. Model specifications include for the two state
variables 5 ln(Total Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the action variable 5 total investment rate bins.
The discount factors are γ1 = 0.923 and γ2 = 0.967.

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5) (6)

Alt. Profitability 32.236 34.7 32.637 23.279 27.439 30.033
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -15.416 -16.301 -15.534 -12.279 -13.947 -14.882
(-0.478) (-0.470) (-0.476) (-0.527) (-0.508) (-0.496)

Tangibility 0.866 0.933
(0.025) (0.031)

Cash Holdings -1.377
(-0.042)

Book Leverage -9.559
(-0.411)

Net Book Leverage -4.223 -4.278
(-0.154) (-0.142)

KLD(π̂1, π1) 0.414 0.409 0.411 0.400 0.421 0.419
KLD(π̂2, π2) 0.561 0.593 0.546 0.588 0.623 0.662
N1 59,745 59,745 59,745 59,745 59,745 59,745
N2 49,836 49,836 49,836 49,836 49,836 49,836

3.3 Role of managerial compensation

To better understand the source for the corporate reward puzzle documented in Table 3, we now investigate

the effect of managerial compensation. Under the agency frictions hypothesis (Jensen and Meckling

(1976)), managers maximize their own wealth which implies that managerial compensation in the form

of a bonus or ownership should have a positive weight in the reward function. Under the no agency

frictions hypothesis, managerial compensation should have a negative coefficient as it is a cash outflow

which reduces shareholder profits.

Table 6 shows the results when we add CEO compensation.11 In columns (1) and (2), we repeat the

previous analysis to show the recovered coefficients with updated expert definitions. Looking at column

(1) of Table 6 and comparing it to column (1) of Table 5, the coefficient on the investment rate has

increased (in absolute value) to -0.562 (compared to -0.478 before). The mean KL divergence of expert 1

has decreased to 0.379 (compared to 0.414 before), whereas the one of expert 2 has stayed almost the same

at 0.562 (compared to 0.561 before). This indicates a better fit for expert 1 and overall. These findings

suggest that the corporate objective function has changed over time.

In column (2), we add our control features and in columns (3) to (5), we introduce the CEO bonus,

11The inclusion of these features implies that we need to change expert definitions, as executive compensation data
is available only from 1992 onward. Expert 1 is now defined as the time period from 1992 until 2006, whereas
expert 2 is defined as the time period from 2007 until 2021.
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Table 6: Reward recovery including CEO compensation.
The table presents the results of recovering the reward function from corporate investment data. It displays the recovered feature
importance weights, denoted by θ, for six different specifications. The reward features considered include alternative profitability, total
investment rate, tangibility, net book leverage, and CEO compensation. Additionally, performance measures such as the Kullback-
Leibler divergence between the estimated and true policies are provided. Model specifications include for the two state variables 5
ln(Total Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the action variable 5 total investment rate bins. The
discount factors are γ1 = 0.947 and γ2 = 0.975.

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5) (6)

Alt. Profitability 26.408 24.033 24.247 24.264 24.359 24.655
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -14.847 -14.303 -14.474 -14.398 -14.355 -14.543
(-0.562) (-0.595) (-0.597) (-0.593) (-0.589) (-0.590)

Tangibility 0.232 0.584 0.104 0.236 0.6
(0.01) (0.024) (0.004) (0.01) (0.024)

Net Book Leverage -2.46 -3.057 -2.416 -2.347 -2.937
(-0.102) (-0.126) (-0.100) (-0.096) (-0.119)

CEO Bonus -5.729 -5.915
(-0.236) (-0.240)

CEO Ownership 10.247
(0.422)

CEO Own. & Opt. 3.448 4.241
(0.142) (0.172)

KLD(π̂1, π1) 0.379 0.382 0.368 0.380 0.383 0.368
KLD(π̂2, π2) 0.562 0.606 0.601 0.607 0.609 0.604
N1 39,305 39,305 39,305 39,305 39,305 39,305
N2 29,093 29,093 29,093 29,093 29,093 29,093

CEO ownership and CEO ownership & options one-by-one. In column (6), we find that CEO bonus has a

negative coefficient of -0.240, whereas CEO ownership and options has a positive coefficient of 0.172. The

negative coefficient on CEO bonus suggests that the manager is not acting purely in their self-interest. The

positive coefficient on CEO ownership and options suggests that this feature is desirable, either because the

CEO likes control or because the shareholders like to align the CEO’s incentives with their own. Adding

CEO compensation features improves the model’s performance in terms of mean KLD for expert 1, but

worsens it for expert 2.

While the CEO is ultimately responsible for any decision taken within the firm, other executives

contribute to the decision-making process. We therefore repeat our analysis taking into account the

compensation of the top five executives by total current compensation. Appendix E.3 shows that the

results are qualitatively unchanged if we use top managerial instead of CEO compensation.

Overall, the results in this section suggest that the corporate recovery theorem from Section 1 can

be used to recover the manager’s reward function. We find that material factors such a profitability and

investment have the right signs, positive and negative, respectively, but the relative magnitude of current

profits in managers’ rewards is larger than the cost of investments. Incorporating intangible capital and

features of managerial compensation packages do not resolve this corporate reward puzzle. In the next
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section, we explore the extent to which the manager’s incentives align with shareholder value maximization

as well as the impact of ESG considerations.

4 Alignment of Manager’s Reward with Shareholder-Value

Maximization and the Role of ESG

Corporate finance theory prescribes that managers should maximize shareholder value. Absent non-

pecuniary benefits in the reward function, shareholder value maximization boils down to shareholder wealth

maximization, i.e., the maximization of the market value of equity. Absent bondholder expropriation,

shareholder wealth maximization amounts to firm value maximization, i.e., the maximization of the market

value of equity and debt. Scaling everything by capital, this implies maximizing Tobin’s q, i.e., the market

value of equity and debt divided by the book value of total assets. Our methodology allows us to recover

the value that managers actually maximize in practice. We can thus compare the manager’s recovered

value v̂ to Tobin’s q and Total q which measure the shareholders’ valuation of the firm.

4.1 Alignment measure

We recover expert i’s true value only up to affine transformations (vi = av + bvv̂i, where av and bv are

unknown). Hence, we cannot directly compare v̂i and qi. Instead, we construct a measure of alignment

based on the correlation across different states between the recovered value that managers maximize and

observed market values:12

Alignmenti = Corr ({v̂i(s)}s∈S , {Median(qi(s))}s∈S) , (37)

for i = 1, ..., I. If the two were perfectly aligned, the correlation and, hence, the alignment measure will

be 1.

Table 7 shows the correlation between the recovered value of expert i, v̂i, and Tobin’s q (in Panel A)

or Total q (in Panel B). Panel A computes the alignment between manager’s value and Tobin’s q based

on the recovered value from the specification in Table 3. The different columns in Panel A replicate the

12While we can recover vi only up to affine transformations, this should not affect the correlation Corr(qi, vi) =
Corr(qi, av + bv v̂i) = sign(bv)Corr(qi, v̂i) as it is unlikely that bv < 0.
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specifications in columns (1) to (6) of Table 3. Panel B computes the alignment between manager’s value

and Total q based on the recovered value from the specification in Table 5. We measure Tobin’s q at

the end of year t. To mitigate possible concerns related to the timing of the action within the year or

the incorporation of information into market prices, we also report correlations for q measured at the

beginning of year (t− 1) and end of next year (t+1), and show that the timing does not materially affect

the results.

In column (1), we find that the degree of alignment between the manager’s value and Tobin’s q is

positive and equal to 0.716 for expert 1, but -0.519 for expert 2. The latter suggests that managers’

incentives are perversely distorted, with managers gaining from lower market valuations. This is likely

due to the fact that the specification is incomplete. In columns (2)-(6), when we include additional features,

we find that the degree of alignment between the manager’s value and Tobin’s q improves. In column (6)

it equals to 0.756 for expert 1, but still only 0.082 for expert 2. This suggests that the objective function

of the firm has become less aligned with firm value maximization over time, as expert 1 is defined as the

time period from 1975 to 1998 and expert 2 is defined as the time period from 1999 until 2021.

A potential explanation for this finding is that, over time, intangible capital has become more impor-

tant, but this is not properly accounted for in the standard measure of q in the specification in Table 3. In

Panel B, we repeat the analysis with our alternative measures that incorporate intangible capital. Columns

(1) to (6) correspond to the specifications in columns (1) to (6) of Table 5. Incorporating intanglible capital

we find that the correlation between the recovered value and Total q is 0.385 for expert 1 and 0.473 for

expert 2 in column (6). This suggests incorporating intangible capital helps us in finding a more reasonable

positive alignment between manager rewards and firm value maximization. The correlations are, however,

still far from perfect which is what one would expect if managers maximize shareholder value.

4.2 ESG and non-pecuniary benefits

Next, we investigate the effect of non-pecuniary benefits on corporate decision-making and the alignment

between manager and shareholder value. Under the shareholder or stakeholder welfare hypothesis, non-

pecuniary benefits should have a positive effect on the reward. We measure these non-pecuniary benefits by

environmental, social, and governance scores. Under shareholder wealth maximization, the environmental

and social scores should have little to no effect. Under the agency frictions hypothesis, the sign of the

coefficient on governance is ambiguous. From the manager’s point of view, strong governance mechanisms
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Table 7: Alignment between recovered value and q without ESG considerations.
The table documents the alignment between the recovered value function and Tobin’s q (Panel A) as well as Total q (Panel B). Panel A
computes the alignment between manager’s value and Tobin’s q based on Table 3. Panel B computes the alignment between manager’s
value and Total q based on Table 5. † indicates a violation of the economic prior.

(1) (2) (3) (4) (5) (6)

Panel A: Alignment between manager’s value and Tobin’s q

Features included:
Profitability X X X X X X
Investment Rate X X X X X X
Tangibility X X
Cash Holdings X
Book Leverage X
Net Book Leverage X X

Alignment 1975-1998 0.712 0.846 0.835 0.615 0.712 0.756
Alignment 1999-2021 -0.519† 0.144 0.001 -0.588† 0.111 0.082

1975-1998
Corr(v̂1, q1,t−1) 0.716 0.825 0.826 0.625 0.716 0.745
Corr(v̂1, q1,t+1) 0.695 0.859 0.832 0.590 0.695 0.758

1999-2021
Corr(v̂2, q2,t−1) -0.491† 0.186 0.047 -0.564† 0.153 0.125
Corr(v̂2, q2,t+1) -0.539† 0.161 0.033 -0.612† 0.135 0.093

Panel B: Alignment between manager’s value and Total q

Features included:
Alt. Profitability X X X X X X
Total Investment Rate X X X X X X
Tangibility X X
Cash Holdings X
Book Leverage X
Net Book Leverage X X

Alignment 1975-1998 0.471 0.478 0.474 0.276 0.377 0.385
Alignment 1999-2021 0.443 0.430 0.523 0.187 0.485 0.473

1975-1998
Corr(v̂1, qtot1,t−1) 0.539 0.546 0.542 0.354 0.451 0.459
Corr(v̂1, qtot1,t+1) 0.364 0.372 0.367 0.157 0.263 0.272

1999-2021
Corr(v̂2, qtot2,t−1) 0.454 0.440 0.535 0.201 0.495 0.483
Corr(v̂2, qtot2,t+1) 0.353 0.340 0.437 0.087 0.397 0.386

reflected in a high G score are undesirable because they limit their ability to misbehave. From the

shareholder’s point of view, strong governance is desirable, but costly.

Table 8 shows the results when we include ESG scores. ESG data is available only from 2007 onward.

Expert 1 is now defined as the time period from 2007 until 2014, whereas expert 2 is defined as the time

period from 2015 until 2021. In column (1) we repeat the previous analysis with the updated definitions.

The coefficient on the investment rate is now -0.611, i.e., closer to the theoretical benchmark. The KL

divergence decreases to 0.268 for expert 1 and 0.503 for expert 2, indicating a better fit to the data from

2007 onward. The correlation between the recovered value and Total q decreases for expert 1 (Corr=0.20),

but increases for expert 2 (Corr=0.51) compared to Table 5.

In column (2), we add tangibility and our financial features. Then in columns (3) to (6), we add
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Table 8: Do ESG considerations affect corporate purpose?
The table presents the results of recovering the reward function from corporate investment data. It displays the recovered feature
importance weights, denoted by θ, for six different specifications. The reward features considered include alternative profitability, total
investment rate, tangibility, net book leverage, and ESG scores. Additionally, performance measures such as the Kullback-Leibler
divergence between the estimated and true policies are provided. Model specifications include for the two state variables 5 ln(Total
Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the action variable 5 total investment rate bins. The discount factors
are γ1 = 0.971 and γ2 = 0.980.

Panel A: Feature importance in reward recovery specification u = fθ

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5)

Alt. Profitability 21.833 22.749 21.589 22.505 21.662
(1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -13.344 -13.464 -13.335 -13.572 -13.300
(-0.611) (-0.592) (-0.618) (-0.603) (-0.614)

Tangibility -0.024 0.141 0.093 0.091
(-0.001) (0.007) (0.004) (0.004)

Net Book Leverage 0.927 0.657 0.939 0.976
(0.041) (0.030) (0.042) (0.045)

ESG Score 0.231
(0.011)

Adj. ESG Score 0.073
(0.003)

Environmental Score -0.010
(-0.000)

Social Score 0.189
(0.009)

Governance Score 0.286
(0.013)

KLD1 0.268 0.271 0.265 0.269 0.258
KLD2 0.503 0.492 0.478 0.492 0.482
N1 18,518 18,518 18,518 18,518 18,518
N2 10,575 10,575 10,575 10,575 10,575

Panel B: Alignment between recovered value v̂ and Total q

Alignment 2007-2014 0.204 0.428 0.508 0.548 0.773
Alignment 2015-2021 0.509 0.837 0.797 0.889 0.802

2007-2014
Corr(v̂1, qtot1,t−1) 0.252 0.469 0.543 0.58 0.793
Corr(v̂1, qtot1,t+1) 0.081 0.318 0.411 0.459 0.711

2015-2021
Corr(v̂2, qtot2,t−1) 0.502 0.837 0.798 0.888 0.807
Corr(v̂2, qtot2,t+1) 0.474 0.844 0.809 0.887 0.823

the weighted-average ESG score, industry-adjusted ESG score and individual E, S, and G scores. We

find positive coefficients of 0.011 for the weighted-average ESG score and 0.003 for the industry-adjusted

ESG score, respectively. Economically, a one standard deviation (1-SD) change in the weighted-average

ESG score (SD=0.99) changes the reward by 1.1% which is a small to moderate effect. A 1-SD change

in the industry-adjusted ESG score (SD=2.15) changes the reward by 0.65% which is a small effect.

Breaking up the ESG score into its individual components has a more significant impact. Interestingly,

the environmental score by itself has no impact at all. We recover normalized coefficients of 0.009 on the

social score and 0.013 on the governance score. While these coefficients appear small, the average E, S,

and G scores are an order of magnitude larger than profitability. A 1-SD change in the S score (SD=1.58)
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changes the reward by 1.4%. A 1-SD change in the G score (SD=1.97) changes the reward by 2.6%. By

comparison, a 1-SD change in alternative profitability (SD=0.13) changes the reward by 13% and a 1-SD

change in total investment (SD=0.13) changes the reward by 7.9%. To further investigate the relevance

of E, S, and G scores relative to profitability, we compute how much each of these features contributes to

the reward when measured at their mean. On average, environmental performance results in a period-by-

period loss in reward that is roughly equal to 2.5% of profitability (in absolute value). Social performance

and governance performance result in a period-by-period benefit in reward that is roughly equal to 19%

and 33% of profitability, respectively.

Including ESG scores improves the model’s performance in terms of mean KL divergence, which

decreases from 0.268/0.503 in column (1) to 0.258/0.482 in column (6) for experts 1/2, respectively. This

improvement in model performance is moderate. From this perspective, ESG does not appear to be of

large economic relevance for firms. However, this interpretation is incomplete.

Incorporating ESG scores into the manager’s reward materially affects our interpretation of manager

with shareholder alignment.13 The correlation between the recovered value and Total q increases substan-

tially, from 0.204/0.509 in column (1) to 0.773/0.802 in column (6) for experts 1/2, respectively. This

increase in alignment suggests that environmental, social, and governance considerations play a substan-

tial role in firms’ decision-making and suggests strong alignment of the reward function of the manager

with the valuation of the firm in the market. Absent ESG considerations, manager incentives and market

valuations exhibit a low correlation. However, incorporating ESG considerations increases the correlation

to about 80% which is still less than unity but changes our interpretation whether manager incentives are

aligned with shareholder/market valuations. Our results suggest that firms maximize shareholder value

particularly because S and G considerations enter the firm’s objective.

4.3 Misalignment

The misalignment between the manager’s value and shareholders’ valuation of the company can be better

understood by comparing the valuations state-by-state across different firm sizes and profitability levels.

If the alignment is high, the two should exhibit a similar shape.

13Bonnefon et al. (2022) find that investors buy shares of companies whose (social) values align with their own. In
the extreme case, this would imply that the manager and investors are always aligned (at least when it comes
to social values) irrespective of whether the manager places positive, zero, or negative weight on the social score.
Iliewa et al. (2024) suggest an (im-)morality-payoff associated with certain corporate actions.
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(a) Manager’s recovered value as a function of
size and profitability.

(b) Shareholders’ valuation of the company as
a function of size and profitability.

Figure 2: The manager’s recovered value (left) and company valuation (right) for different firm
sizes and profitability levels.

Figure 2 illustrates the recovered value for the manager for each firm size-profitability combination in

the left plot. For comparison and to illustrate the (mis)alignment between manager value and shareholder

value, the right plot depicts the median value of Total q for each corresponding firm size-profitability

combination. The Alignment measure is the correlation between the two, with a value of 1 if the two

plots have the same shape, though not necessarily the same levels.

The figure illustrates there is a clear disconnect between the recovered value, especially for the lowest

size quintile, and firm value. Both the manager’s and firm value are monotonically increasing in prof-

itability, as one would expect. However, the manager’s is U shaped in firm size. The manager’s value is

largest for small, highly profitable firms and lowest for unprofitable mid-sized firms. The large increase in

manager value for the smallest firm size category is particularly astonishing. In contrast, Total q is inverse

U shaped in firm size. Mid-sized firms have the largest q while the smallest and largest firms have the

lowest q. Most notably, the manager’s value and firm value are inversely related to each other in the firm

size dimension.14

Overall, by comparing state-by-state valuations, it is evident that while both the manager’s and firm’s

values increase with profitability, their relationship with firm size diverges. The inverse relationship high-

lights a disconnect between managerial priorities and shareholder value, particularly for small firms.

14During the later period, the alignment has improved because the manager’s value is now monotonic in firm size
and profitability (using specification 5), as one would expect.
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4.4 Extensions of the analysis and robustness

We consider several extensions of our analysis in Appendix D. Investment needs to be financed through, for

example, debt or equity. As such, one would expect that managers take investment and leverage decisions

jointly, rather than implement separate investment and financial policies. We therefore investigate first

how the corporate recovery theorem performs when we specify the actions to be two-dimensional choices

as combinations of investment rate and net debt to EBITDA.

Table D.1 provides the results. Overall, our main results remain largely unchanged. Managers still

act as if investment were less costly than prescribed by theory, with shadow cost coefficients ranging

from 0.54 to 0.61. Adding managerial compensation, ESG scores and higher discount rates improves the

model’s explanatory performance. The alignment between the recovered value and Total q goes down

when we consider joint investment and leverage decisions, compared to investment decisions alone. This

suggests that managers are less aligned with shareholders when it comes to making leverage decisions

than investment decisions. Moreover, the coefficient on governance becomes negative, indicating that the

manager would prefer bad governance when making leverage decisions in addition to investment decisions.

Next, we explore the impact of managerial preferences. Table D.2 shows that higher discount rates

help explain managers’ policies and align their recovered value with shareholders. As we add control

and ESG-related features, Alignment increases to 0.675 (2007-2014) and 0.935 (2015-2021), respectively.

Again, the results suggest that manager-shareholder alignment is imperfect, but it has increased over time.

Last, we explore the robustness of our results in Appendix E. In this section, we vary the estimation

approach for choice and transition probabilities, the coarseness of the state and action variable grid, as

well as rely on alternative definitions of managerial compensation. Overall, the results remain unchanged.

5 Conclusion

This paper uses a machine learning technique, inverse reinforcement learning, to recover the reward func-

tion(s) that managers use in deciding firms’ investment and financial policies. We first derive conditions

for a corporate recovery theorem that establishes when and under what conditions the recovery is unique.

We then apply the method to a large dataset on U.S. public corporations including financial accounting

information, intangible capital, managerial compensation, and ESG scores for the period 1975–2021.

We document several novel facts. First, managers’ reward function can be recovered from the data
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without imposing parametric assumptions. We find that managers act as if they underestimate the cost

of investment. Managers’ subjective cost of investment is about 45-65 cents on the dollar. Incorporating

intangible capital improves the model performance but does not resolve this corporate recovery puzzle.

Managerial compensation policies and ESG concerns enter the corporate objective. Managerial rewards

significantly improve with social and governance scores. However, we find environmental factors do not

materially affect managers’ rewards.

The degree of alignment between managers’ reward and shareholder-value maximization is reasonably

high, with a correlation between manager’s value function and Total q is in excess of 80%. The alignment is

higher in the later than in the earlier period of our sample, suggesting that improvements in compensation

policies and corporate governance have reached their intended goal. Social and governance considera-

tions in the manager’s reward are not in conflict with, but crucial ingredients for aligning incentives and

maximizing shareholder value.
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APPENDIX

Appendix A Proofs
Define X and Ω as in (14)-(15), where A and F are square invertible and C is of conformable dimension and defined
by (16). Let B ≡ −X⊤

j Xi and D ≡ X⊤
j Xj . If A is nonsingular, the Schur complement of Ω with respect to A is

defined as Ω/A = F − CA−1C⊤. If F is nonsingular, the Schur complement of Ω with respect to F is defined as
Ω/F = A− C⊤F−1C. Then

Ω−1 =

(
(Ω/F )−1 −(Ω/F )−1C⊤F−1

−(Ω/A)−1CA−1 (Ω/A)−1

)
. (A.1)

To compute A−1, the Schur complement of the block D in A equals

A/D = 2X⊤
i Xi −X⊤

i Xj(X
⊤
j Xj)

−1X⊤
j Xi. (A.2)

One obtains

A−1 =

(
(A/D)

−1 − (A/D)
−1
BTD−1

−D−1B (A/D)
−1

D−1 +D−1B(A/D)
−1
B⊤D−1

)
. (A.3)

Define the projection matrix under the norm defined by D as

Pij = Xi (A/D)
−1
X⊤

i ,

Mij = I −Xi (A/D)
−1
X⊤

i .
(A.4)

The Schur complement Ω/A then equals

Ω/A = (f⊤f)− ( f⊤Xi 0 )A−1

(
X⊤

i f
0

)
= (f⊤f)− (f⊤Xi (A/D)

−1
X⊤

i f)

= f⊤(I −Xi (A/D)
−1
X⊤

i )f

= f⊤Mijf, (A.5)

with inverse
(Ω/A)

−1
=

(
f⊤Mijf

)−1
. (A.6)

The Schur complement Ω/F equals

Ω/F =

(
2X⊤

i Xi −X⊤
i Xj

−X⊤
j Xi X⊤

j Xj

)
−

(
X⊤

i f
0

)(
f⊤f

)−1
( f⊤Xi 0 )

=
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2X⊤

i Xi −X⊤
i f(f

⊤f)−1f⊤Xi −X⊤
i Xj

−X⊤
j Xi X⊤

j Xj

)
, (A.7)

and the Schur complement (Ω/F ) /D equals

(Ω/F )/D = 2X⊤
i Xi −X⊤

i f(f
⊤f)−1f⊤Xi −X⊤

i Xj(X
⊤
j Xj)

−1X⊤
j Xi

= X⊤
i

(
I − f(f⊤f)−1f⊤

)
Xi +X⊤

i

(
I −Xj(X

⊤
j Xj)

−1X⊤
j

)
Xi

= X⊤
i (Mf +Mj)Xi. (A.8)

The inverse (Ω/F )
−1 can now be written

=

(
((Ω/F ) /D)−1 −((Ω/F ) /D)−1B⊤D−1

−D−1B((Ω/F ) /D)−1 D−1 +D−1B((Ω/F ) /D)−1B⊤D−1

)
=

(
E11 E12

E21 E22

)
, (A.9)
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with
E11 =
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X⊤

i (Mf +Mj)Xi

)−1
,

E12 =
(
X⊤
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)−1
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⊤
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−1,
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)−1
,
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j Xj)

−1.

(A.10)

The inverse Ω−1 can now be written explicitly as(
(Ω/F )

−1 − (Ω/F )
−1
C⊤F−1

− (Ω/A)
−1
CA−1 (Ω/A)

−1

)
(A.11)

=
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i f

(
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We get the analytical expressions v1
v2
θ
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yi − yj
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)
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 , (A.12)

with

E1 = ((Ω/F ) /D)−1X⊤
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(A.13)

We now obtain our main results:

v1 = ((Ω/F ) /D)−1X⊤
i
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yi
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i [(Mf +Mj) yi −Mjyj ] , (A.14)

and
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with projection matrix
Qij = Xi((Ω/F ) /D)−1X⊤

i , (A.16)

and
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Appendix B Implementing Recovery in a Controlled Envi-
ronment

Discretization. We start by creating the environment, consisting of a set of states S, a set of actions A, real-
valued features f : S ×A → Rd, coefficients θ and rewards u(s, a) = f(s, a) · θ. The model has two state variables,
capital k and profitability shock z. For k, we create a set K containing nk grid points centered around the steady
state value of k, denoted k∗. We then add (nk − 1)/2 grid points to either side, given by k∗

∏(nk−1)/2
j=1 (1 − δ)±

j
d ,

respectively, where d is a density parameter. For z, we create a set Z containing (a preferably odd number of)
nz equi-spaced grid points between −mσϵ and mσϵ, where m represents a multiple of the unconditional standard
deviation of ϵ. We then follow Tauchen (1986) to approximate the corresponding shock transition probabilities
P (z′ | z). Based on these grids, we can create our set of states S as all possible pairs of (k, z) s.t. k ∈ K, z ∈ Z. Our
action a consists in picking the next period’s capital k′. Consequently, the action set A equals the set of discrete
values for capital K. The reward u(s, a), feature matrix f(s, a) and true coefficients θ∗ vary across specifications
and are defined as in the table above.

Experts. Next, we create two experts i = 1, 2 acting in this environment. Both experts share the same preference
for entropy (captured by the λ parameter), but differ in their discount factor γ, as well as their subjective assessment
of the unconditional standard deviation of profitability shocks σϵ,i (γi should be different, but similar in magnitude
to γ = 1

1+r . Similarly, σϵ,i should be different, but similar in magnitude to σϵ). The latter part implies different
shock transition probabilities Pi(z

′ | z). These, in turn, lead to different state transition probabilities Pi(s
′ | s, a),

which we collect in a three-dimensional array Ti(s
′ | s, a). We solve for each expert’s optimal stochastic policy

function πi(s) using an algorithm called Q-value function iteration.

Simulations and Estimation. For each expert i, we simulate a trajectory of nsteps steps, starting from a the
steady state capital k0 = k∗ and a neutral profit shock z0 = 1 and following Ti(s′|s, a) and πi(a|s). We start by
drawing the initial action a0 from π(a|s = (k0, z0). For each time step t = 1, . . . , nsteps, we first draw the next state
st from Ti(s

′|s = st−1, a = at−1) and then draw the next action at from πi(a|s = st). For each expert, we then
estimate T̂i(s′|s, a) and π̂i(a|s) using the consistent count-based estimators

π̂i,N (a|s) = # (ai,t = a and si,t = s ; t ≤ N)

# (si,t = s ; t ≤ N)
→ πi(a|s) a.s. as N → ∞ (B.18)

and
T̂i,N (s′|s, a) = # (si,t+1 = s and si,t = s and ai,t = a ; t ≤ N)

# (si,t = s and ai,t = a ; t ≤ N)
→ Ti(s

′|s, a) a.s. as N → ∞ (B.19)

Experiments. To test how our recovery depends on the estimation of the policy and transition functions, we run
4 experiments for each specification. In Experiment 1, we recover the coefficients of the reward function based on the
known policy and transition functions. In Experiment 2, we estimate the policy functions based on our simulated
trajectories and recover the coefficients of the reward function based on the estimated policy functions and true
transition functions. In Experiment 3, we estimate the transition functions based on our simulated trajectories and
recover the coefficients of the reward function based on the true policy functions and estimated transition functions.
In Experiment 4, we estimate both the policy functions and transition functions based on our simulated trajectories
and recover the coefficients of the reward function based on the estimated policy and transition functions. To test
how our recovery depends on the specification of features and coefficients, we repeat all four experiments for each
of the specifications listed above.
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Appendix C Data Definitions

Table C.1: Variable Definitions.
This table contains the definitions and sources of all variables used in our empirical analysis.

Variable Name Definition Formula

U.S. Bureau of Economic Analysis (BEA)
CPIAdj CPI adjustment factor (base year=2000) CPI2000

CPIt

Federal Reserve Economic Data (FRED)
Rf Market Yield on U.S. Treasury Securities at 10-Year

Constant Maturity
DSG10

Compustat
Size Natural Logarithm of (real) net property, plant and

equipment (ppent)
ln(ppentt × CPIAdj,t)

Profitability Earnings before extraordinary items (ib) plus
depreciation and amortization (dp); divided by lagged
net property, plant and equipment (ppent)

ibt+dpt

ppentt−1

Investment Rate Change in net property, plant and equipment (ppent)
plus depreciation and amortization (dp) minus
amortization (am); divided by lagged net property,
plant and equipment (ppent). Values above 1 are
treated as missing.

ppentt−ppentt−1+dpt−amt

ppentt−1

Net Debt / EBITDA Debt in current liabibilites (dlc) plus long-term debt
(dltt) minus cash and cash equivalents (che); divided
by EBITDA (ebitda) if EBITDA is positive. Treated
as missing if EBITDA is negative.

dlct+dlttt−chet
ebitdat

Book Equity Stockholders’ equity (seq) plus deferred taxes and
investment tax credit (txditc) minus the book value
of preferred stock (preference order if available:
redemption value (pstkrv) ≻ liquidation value
(pstkl) ≻ carrying value (pstk) ≻ 0). Negative
values are treated as missing.

seqt + txditct −
coalesce(pstkrv, pstkl, pstk, 0)

Tobin’s q Total Assets (at) minus BookEquity plus common
shares outstanding (csho) times share price (prcc_f);
divided by total assets (at)

att−BookEquityt+cshot×prcc_ft
att

Tangibility Net property, plant and equipment (ppent); divided
by total assets (at)

ppentt
att

Cash Holdings Cash and cash equivalents (che); divided by total
assets (at)

chet
att

Book Leverage Debt in current liabibilites (dlc) plus long-term debt
(dltt); divided by total assets (at). Negative values
are treated as mssing.

dlct+dlttt
att

Net Book Leverage Debt in current liabibilites (dlc) plus long-term debt
(dltt) minus cash and cash equivalents (che); divided
by total assets (at)

dlct+dlttt−chet
att

Execucomp
CEO Bonus Bonus (bonus) received by the CEO (ceoann=1);

divided by total assets (at) (in %)

bonust
att

CEO Ownership Shares excluding options (shrown_excl_opts) owned
by the CEO; divided by common shares outstanding
(csho)

shrown_excl_optst
cshot
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(Table C.1 continued)
Variable Name Definition Formula
CEO Own. & Options CEO Ownership plus unexercised exercisable options

(opt_unex_exer_num) owned by the CEO; divided by
common shares outstanding (csho)

CEOOwn.t +
opt_unex_exer_numt

cshot

CEO Own. & Opt. 2 CEO Ownership & Options plus unexercised
unexercisable options (opt_unex_unexer_num) owned
by the CEO; divided by common shares outstanding
(csho)

CEOOwn.&Opt.t +
opt_unex_unexer_numt

cshot

Managerial Bonus Sum of the bonuses (bonus) received by the top 5
managers ranked by total current compensation
(total_curr) in a given year; divided by total assets
(at) (in %)

∑5
i=1 bonusi,t

att

Mana. Ownership Sum of the shares excluding options
(shrown_excl_opts) owned by the top 5 managers;
divded by number of shares outstanding (csho)

∑5
i=1 shrown_excl_optsi,t

cshot

Mana. Own. & Opt. Managerial Ownership plus the sum of unexercised
exercisable options (opt_unex_exer_num) owned by
the top 5 managers; divided by common shares
outstanding (csho)

Mana.Own.t +∑5
i=1 opt_unex_exer_numi,t

cshot

Mana. Own. & Opt. 2 Managerial Ownership & Options plus the sum of
unexercised unexercisable options
(opt_unex_unexer_num) owned by the top 5
managers; divided by common shares outstanding
(csho)

Mana.Own.&Opt.t +∑5
i=1 opt_unex_unexer_numi,t

cshot

Peters & Taylor (2017) Data (Downloaded from WRDS)
Total Capital (Ktot) Gross property, plant and equipment (ppegt) plus

intangible capital (K_int)
ppegtt +Kint,t

ln(Total Capital) Natural Logarithm of (real) total capital (K_tot) ln(Ktot,t × CPIAdj,t)

Phys. Inv. Rate (Iphy) Change in net property, plant and equipment (ppent)
plus depreciation and amortization (dp) minus
amortization (am); divided by lagged total capital
(Ktot).

ppentt−ppentt−1+dpt−amt

Ktot,t−1

Int. Inv. Rate (Iint) Research and development expense (xrd) plus 0.3
times the selling, general and administrative expense
(xsga) plus 0.15 times lagged intangible capital
(Kint); divided by lagged total capital (Ktot)

xrd+0.3×xsga+0.15×Kint,t−1

Ktot,t−1

Total Inv. Rate (Itot) Physical investment rate (Iphy) plus intangible
investment rate (Iint)

Iphy,t + Iint,t

Alt. Profitability Alternative measure of profitability. Earnings before
extraordinary items (ib) plus depreciation and
amortization (dp); divided by lagged total capital
(Ktot) plus tax-adjusted intangible investment rate.
The marginal tax rate (κ) is taken from Graham
(1996).

ibt+dpt

Ktot,t−1
+ (1− κ)Iint,t

MSCI ESG Ratings
The environmental score (E_score), social score (S_score), governance score (G_score), weighted-average ESG
score (ESG_score) and industry-adjusted ESG score (ESG_score_adj) are taken directly from MSCI without
adjustment.
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Appendix D Extensions of the Analysis
In this section, we explore several extensions of the analysis, including the joint investment and leverage problem
and the impact of managerial preferences and beliefs.

Joint investment and leverage problem. As before, we choose 5 bins each for the total investment rate and the
net debt to EBITDA ratio, resulting in 25 possible actions (compared to 5 before). This has two main implications.
First, the dimensionality of our policy functions and transition functions increase and we estimate more parameters
using the same number of observations. As a result, we expect the results to be a little more noisy. Second, given
that the definition of the action has changed, it is no longer possible to compare the Kullback-Leibler divergence
with earlier results.

Table D.1 shows that our results remain largely unchanged. Managers still act as if investment were less costly
than prescribed by theory, with coefficients ranging from -0.613 in column (1) to -0.542 in column (6). Adding
managerial compensation, ESG scores and higher discount rates improves the model’s explanatory performance
and the alignment between the managers’ recovered value and Total q. The KL divergence decreases from 0.673
and 0.879 in column (1) to 0.669 and 0.848 in column (6) for experts 1 and 2 respectively. The correlation between
the recovered value and Total q increases from 0.416 and 0.312 in column (1) to 0.640 and 0.580 in column (6).
Comparing column (5) of Table D.1 to column (6) of Table 8, the alignment between the recovered value and Total
q goes down when we consider joint investment and leverage decisions, compared to investment decisions alone.
This suggests that managers are less aligned with shareholders when it comes to making leverage decisions than
investment decisions. Moreover, the coefficient on governance becomes negative, indicating that the manager would
prefer bad governance when making leverage decisions in addition to investment decisions.

Impact of managerial preferences. So far, we have assumed that the manager acts risk-neutral and discounts
at the risk-free rate. This may not be true in practice. We now increase the manager’s discount factor such that

γi =
1

1 + r̄f,i + c
for i = 1, 2, (D.20)

where r̄f,i denotes the average risk-free rate during the respective period and c = 0.06 is a constant representing
risk-aversion or impatience. If the manager is indeed risk-averse or impatient, the higher discount rates (and lower
discount factors) should improve the model’s explanatory performance in terms of KL divergence. Moreover, these
higher discount rates are likely more aligned with the weighted average cost of capital used by investors to value
the firm. As such, the correlation between the recovered value and Total q should also increase.

Table D.2 shows that higher discount rates help explain managers’ policies and align their recovered value with
shareholders. As we increase the discount rate, the KL divergence decreases to 0.259 and 0.455 in column (1)
for expert 1 and 2 respectively (compared to 0.268 and 0.503 in column (1) of Table 8). As we add control and
ESG-related features, it further drops to 0.249 and 0.447 in column (4) (compared to 0.258 and 0.482 in column (5)
of Table 8). This result is largely unchanged when we add compensation features in column (5). The correlation
between the recovered value and Total q increases to 0.499 and 0.721 in column (1) for expert 1 and 2 respectively
(compared to 0.204 and 0.509 in column (1) of Table 8). As we add control and ESG-related features, it further
increases to 0.675 and 0.935 in column (4) for expert 1 and 2 respectively (compared to 0.773 and 0.802 in column
(5) of Table 8).
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Table D.1: Reward recovery for joint investment and capital structure problem.
The table presents the results of recovering the reward function from corporate investment and capital structure data. It displays the
recovered feature importance weights, denoted by θ, for six different specifications. The reward features considered include alternative
profitability, total investment rate, tangibility, net book leverage, CEO compensation, and ESG scores. Additionally, performance
measures such as the Kullback-Leibler divergence between the estimated and true policies are provided. Model specifications include
for the two state variables 5 ln(Total Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the two action variable 5 total
investment rate bins, and 5 net debt to EBITDA bins. The discount factors are γ1 = 0.971 and γ2 = 0.980 for specifications (1)-(5)
and γ1 = 0.917 and γ2 = 0.926 for specification (6).

Panel A: Feature importance in reward recovery specification u = fθ

Recovered feature importance θ (θnormalized)
(1) (2) (3) (4) (5) (6)

Alt. Profitability 4.782 7.342 7.360 7.322 7.345 7.598
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -2.932 -4.505 -4.534 -4.387 -4.418 -4.115
(-0.613) (-0.614) (-0.616) (-0.599) (-0.602) (-0.542)

Tangibility 0.043 0.043 0.019 0.023 0.031
(0.006) (0.006) (0.003) (0.003) (0.004)

Net Book Leverage 0.788 0.786 0.809 0.807 0.818
(0.107) (0.107) (0.110) (0.110) (0.108)

CEO Bonus -0.994 -0.969 -1.084
(-0.135) (-0.132) (-0.143)

CEO Own. & Opt. -0.632 -0.814 -0.950
(-0.086) (-0.111) (-0.125)

Environmental Score -0.040 -0.040 -0.039
(-0.005) (-0.005) (-0.005)

Social Score 0.072 0.074 0.076
(0.010) (0.010) (0.010)

Governance Score -0.002 -0.004 -0.002
(-0.000) (-0.001) (-0.000)

KLD(π̂1, π1) 0.673 0.672 0.671 0.668 0.667 0.669
KLD(π̂2, π2) 0.879 0.849 0.849 0.846 0.845 0.848
N1 18,518 18,518 18,518 18,518 18,518 18,518
N2 10,575 10,575 10,575 10,575 10,575 10,575

Panel B: Alignment between recovered value v̂ and Total q

Corr(v̂1, qtot1,t ) 0.416 0.471 0.477 0.489 0.495 0.640
Corr(v̂2, qtot2,t ) 0.312 0.395 0.396 0.407 0.408 0.580
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Table D.2: Reward recovery with managerial risk aversion or impatience.
The table presents the results of recovering the reward function from corporate investment data. It displays the recovered feature
importance weights, denoted by θ, for six different specifications. The reward features considered include alternative profitability,
total investment rate, tangibility, net book leverage, CEO compensation, and ESG scores. Additionally, performance measures such as
the Kullback-Leibler divergence between the estimated and true policies are provided. Model specifications include for the two state
variables 5 ln(Total Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the action variable 5 total investment rate bins.
The discount factors are γ1 = 0.917 and γ2 = 0.926.

Panel A: Feature importance in reward recovery specification u = fθ

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5)

Alt. Profitability 23.728 23.886 23.192 22.861 22.484
(1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -13.906 -13.930 -13.793 -13.643 -13.497
(-0.586) (-0.583) (-0.595) (-0.597) (-0.600)

Tangibility 0.020 -0.025 0.106 0.074
(0.001) (-0.001) (0.005) (0.003)

Net Book Leverage 0.095 -0.175 0.212 0.12
(0.004) (-0.008) (0.009) (0.005)

CEO Bonus -46.124 -42.976
(-1.989) (-1.911)

CEO Own. & Opt. -3.732 -6.58
(-0.161) (-0.293)

Environmental Score -0.016 -0.035
(-0.001) (-0.002)

Social Score 0.168 0.209
(0.007) (0.009)

Governance Score 0.275 0.241
(0.012) (0.011)

KLD(π̂1, π1) 0.259 0.259 0.256 0.249 0.249
KLD(π̂2, π2) 0.455 0.455 0.452 0.447 0.446
N1 18,518 18,518 18,518 18,518 18,518
N2 10,575 10,575 10,575 10,575 10,575

Panel B: Alignment Between the Recovered Value (v̂) and Total q

Corr(v̂1, qtot1,t ) 0.499 0.514 0.562 0.675 0.780
Corr(v̂2, qtot2,t ) 0.721 0.873 0.904 0.935 0.929
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Appendix E Robustness
In this section, we check the robustness of our results to a different estimation approach for choice and transition
probabilities, as well as a finer state and action variable grid.

Estimation of choice and transition probabilities. In our main analysis, we have estimated choice and
transition probabilities using a multinomial logit model. This model essentially gives us an estimate of choice
probabilities conditional on state variables and an estimate of transition probabilities conditional on state and
action variables. To better understand how our results depend on our method of estimating the empirical choice
and transition probabilities, we now repeat our analysis using an alternative count-based estimator. As the name
suggests, this estimator simply measures how frequently a given choice (transition) occurred in the data. Since
we need to avoid zero-probability events and cannot guarantee ex ante that we will observe very possible (state,
action)-pair and (state, action, next state)-triplet in the data, we perform so additive smoothing. Additive smoothing
ensures that there are no zero-probability events by adding α fictional observations to each event. Consequently,
we estimate the choice probabilities based on

π̂i(a|s) =
# (ai,t = a and si,t = s) + α

#(si,t = s) + α|A|)
, (E.21)

and the transition probabilities based on

T̂i(s
′|s, a) = # (si,t+1 = s and si,t = s and ai,t = a) + α

#(si,t = s and ai,t = a) + α|S|
, (E.22)

where α > 0 is a constant that can be arbitrarily small.
Table E.1 shows the results when we use our count-based estimator of probabilities in the joint investment and

leverage problem.

Coarseness of the state and action variable grid. In our analysis, we have opted for a grid of 25 states and
5 (for the investment problem) or 25 (for the joint investment and leverage problem) actions. We now repeat our
analysis using finer grids, with up to 100 possible states and actions.

Table E.2 shows the results when increase the number of state and action variable bins in the joint investment and
leverage problem with managerial compensation, ESG scores and higher discount rates. We still find that managers
underestimate the cost of investment. However, some coefficients change sign, the explanatory performance in terms
of KL divergence decreases and so does the alignment between the recovered value and Total q. We believe that
this is due to the curse of dimensionality. As the number of state and action variable bins increases, the number
of choice probabilities p(a|s) and transition probabilities T (s′|s, a) increases disproportionally while the number of
observations used to estimate these parameters stays constant.

Alternative definitions of managerial compensation. In our analysis, we have opted to measure managerial
compensation as the compensation received by the CEO. We now repeat our analysis with managerial compensation,
defined as the compensation received by the top 5 managers by total current compensation in a given year.

Table E.3 shows that our results are not materially affected when we use managerial compensation instead of
CEO compensation.
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Table E.1: Robustness of reward recovery for joint investment and leverage problem
to the estimation of probabilities.
The table presents the results of recovering the reward function from corporate investment data when we change our estimation approach.
It displays the recovered feature importance weights, denoted by θ, for six different specifications. The reward features considered include
alternative profitability, total investment rate, tangibility, net book leverage, and ESG scores. Additionally, performance measures such
as the Kullback-Leibler divergence between the estimated and true policies are provided. Model specifications include for the two state
variables 5 ln(Total Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the two action variables 5 total investment rate
bins, and 5 net debt to EBITDA bins. The discount factors are γ1 = 0.971 and γ2 = 0.98 for columns (1) to (5). In column (6), we
change the discount factors to γ1 = 0.917 and γ2 = 0.926.

Panel A: Feature importance in reward recovery specification u = fθ

Recovered feature importance θ (θnormalized)
(1) (2) (3) (4) (5) (6)

Alt. Profitability 2.170 1.313 1.269 1.322 1.280 1.52
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -1.161 -1.080 -1.051 -1.053 -1.021 -1.051
(-0.535) (-0.822) (-0.828) (-0.797) (-0.798) (-0.692)

Tangibility -0.512 -0.529 -0.518 -0.532 -0.495
(-0.390) (-0.417) (-0.392) (-0.416) (-0.326)

Net Book Leverage 0.001 -0.005 0.015 0.009 0.037
(0.000) (-0.004) (0.011) (0.007) (0.025)

CEO Bonus -1.909 -1.894 -1.923
(-1.504) (-1.480) (-1.265)

CEO Own. & Opt. -0.401 -0.545 -0.652
(-0.316) (-0.426) (-0.429)

Environmental Score -0.019 -0.019 -0.016
(-0.015) (-0.015) (-0.011)

Social Score 0.038 0.040 0.042
(0.029) (0.032) (0.027)

Governance Score -0.005 -0.007 -0.006
(-0.004) (-0.005) (-0.004)

KLD(π̂1, π1) 0.631 0.634 0.630 0.635 0.631 0.629
KLD(π̂2, π2) 0.606 0.605 0.604 0.605 0.603 0.602
N1 18,518 18,518 18,518 18,518 18,518 18,518
N2 10,575 10,575 10,575 10,575 10,575 10,575

Panel B: Alignment Between the Recovered Value (v̂) and Total q

Corr(v̂1, qtot1,t ) 0.606 0.603 0.605 0.607 0.608 0.633
Corr(v̂2, qtot2,t ) 0.389 0.531 0.526 0.534 0.528 0.543
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Table E.2: Robustness of reward recovery for joint investment and leverage problem
to number of state and action variable bins. The table presents the results of recovering the reward function
from corporate investment data when we change our binning approach. It displays the recovered feature importance weights, denoted by
θ, for six different specifications. The reward features considered include alternative profitability, total investment rate, tangibility, net
book leverage, and ESG scores. Additionally, performance measures such as the Kullback-Leibler divergence between the estimated and
true policies are provided. Model specifications include for the two state variables 5-10 ln(Total Capital) (BoY) bins, 5-10 alternative
profitability (BoY) bins, and for the two action variables 5-10 total investment rate bins, and 5-10 net debt to EBITDA bins. The
discount factors are γ1 = 0.917 and γ2 = 0.926.

Panel A: Feature importance in reward recovery specification u = fθ

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5) (6)

Alt. Profitability 7.598 4.699 5.831 4.216 4.684 3.602
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -4.115 -2.644 -3.141 -2.601 -2.648 -1.357
(-0.542) (-0.563) (-0.539) (-0.617) (-0.565) (-0.377)

Tangibility 0.031 -0.074 0.101 -0.346 0.233 0.855
(0.004) (-0.016) (0.017) (-0.082) (0.050) (0.237)

Net Book Leverage 0.818 0.329 0.500 0.339 0.364 -0.060
(0.108) (0.070) (0.086) (0.080) (0.078) (-0.017)

CEO Bonus -1.084 0.134 -0.615 -1.971 -0.647 1.853
(-0.143) (0.028) (-0.105) (-0.467) (-0.138) (0.514)

CEO Own. & Opt. -0.950 -0.987 -0.707 -1.550 -1.730 1.423
(-0.125) (-0.210) (-0.121) (-0.368) (-0.369) (0.395)

Environmental Score -0.039 -0.027 -0.030 -0.047 -0.005 0.044
(-0.005) (-0.006) (-0.005) (-0.011) (-0.001) (0.012)

Social Score 0.076 0.037 0.042 0.060 0.041 0.002
(0.010) (0.008) (0.007) (0.014) (0.009) (0.000)

Governance Score -0.002 -0.02 -0.008 0.014 0.003 0.024
(-0.000) (-0.004) (-0.001) (0.003) (0.001) (0.007)

KLD(π̂1, π1) 0.669 0.702 0.804 0.742 0.758 0.893
KLD(π̂2, π2) 0.848 0.908 1.022 0.909 0.868 1.081
N1 18,518 18,518 18,518 18,518 18,518 18,518
N2 10,575 10,575 10,575 10,575 10,575 10,575

Panel B: Alignment Between the Recovered Value (v̂) and Total q

Corr(v̂1, qtot1,t ) 0.640 0.618 0.709 0.535 0.477 0.443
Corr(v̂2, qtot2,t ) 0.580 0.480 0.637 0.485 0.425 0.373

Panel C: Number of Bins for States and Action Variables

State Variable(s) and Bins
ln(Total Capital) (BoY) 5 10 5 5 5 10
Alt. Profitability (BoY) 5 5 10 5 5 10
Action Variable(s) and Bins
Total Investment Rate 5 5 5 10 5 10
Net Debt to EBITDA 5 5 5 5 10 10
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Table E.3: Reward recovery including managerial compensation.
The table presents the results of recovering the reward function from corporate investment data. It displays the recovered feature
importance weights, denoted by θ, for six different specifications. The reward features considered include alternative profitability,
total investment rate, tangibility, net book leverage, and managerial compensation. Additionally, performance measures such as the
Kullback-Leibler divergence between the estimated and true policies are provided. Model specifications include for the two state variables
5 ln(Total Capital) (BoY) bins, 5 alternative profitability (BoY) bins, and for the action variable 5 total investment rate bins. The
discount factors are γ1 = 0.947 and γ2 = 0.975.

Panel A: Feature importance in reward recovery specification u = fθ

Recovered feature importance θ (θnormalized)

(1) (2) (3) (4) (5) (6)

Alt. Profitability 26.408 24.033 24.38 24.076 24.207 24.658
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000)

Total Investment Rate -14.847 -14.303 -14.611 -14.367 -14.344 -14.688
(-0.562) (-0.595) (-0.599) (-0.597) (-0.593) (-0.596)

Tangibility 0.232 0.487 0.119 0.222 0.485
(0.010) (0.020) (0.005) (0.009) (0.020)

Net Book Leverage -2.460 -2.894 -2.51 -2.408 -2.839
(-0.102) (-0.119) (-0.104) (-0.099) (-0.115)

Managerial Bonus -2.095 -2.205
(-0.086) (-0.089)

Managerial Ownership 5.174
(0.215)

Managerial Own. & Opt. 1.695 2.525
(0.070) (0.102)

KLD(π̂1, π1) 0.379 0.382 0.370 0.382 0.383 0.370
KLD(π̂2, π2) 0.562 0.606 0.600 0.606 0.607 0.601
N1 39,305 39,305 39,305 39,305 39,305 39,305
N2 29,093 29,093 29,093 29,093 29,093 29,093

Panel B: Alignment Between the Recovered Value (v̂) and Total q

Corr(v̂1, qtot1,t ) 0.350 0.205 0.306 0.131 0.156 0.223
Corr(v̂2, qtot2,t ) 0.350 0.453 0.765 0.236 0.351 0.570
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